Learning accurate probabilistic models from data is crucial in many practical
tasks in data mining. In this paper we present a new non-parametric calibration
method called \textit{ensemble of near isotonic regression} (ENIR). The method
can be considered as an extension of BBQ, a recently proposed calibration
method, as well as the commonly used calibration method based on isotonic
regression. ENIR is designed to address the key limitation of isotonic
regression which is the monotonicity assumption of the predictions. Similar to
BBQ, the method post-processes the output of a binary classifier to obtain
calibrated probabilities. Thus it can be combined with many existing
classification models. We demonstrate the performance of ENIR on synthetic and
real datasets for the commonly used binary classification models. Experimental
results show that the method outperforms several common binary classifier
calibration methods. In particular on the real data, ENIR commonly performs
statistically significantly better than the other methods, and never worse. It
is able to improve the calibration power of classifiers, while retaining their
discrimination power. The method is also computationally tractable for large
scale datasets, as it is O(NlogN) time, where N is the number of
samples