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Abstract

Predictive learning forms the backbone of several data-driven systems powering sci-

entific as well as commercial applications, e.g., filtering spam messages, detecting faces

in images, forecasting health risks, and mapping ecological resources. However, one

of the major challenges in applying standard predictive learning methods in real-world

applications is the heterogeneity in populations of data instances, i.e., different groups

(or populations) of data instances show different nature of predictive relationships. For

example, different populations of human subjects may show different risks for a disease

even if they have similar diagnosis reports, depending on their ethnic profiles, medical

history, and lifestyle choices. In the presence of population heterogeneity, a central

challenge is that the training data comprises of instances belonging from multiple pop-

ulations, and the instances in the test set may be from a different population than that

of the training instances. This limits the effectiveness of standard predictive learning

frameworks that are based on the assumption that the instances are independent and

identically distributed (i.i.d), which are ideally true only in simplistic settings.

This thesis introduces several ways of learning predictive models with heterogeneity

in populations, by incorporating information about the context of every data instance,

which is available in varying types and formats in different application settings. It

introduces a novel multi-task learning framework for problems where we have access

to some ancillary variables that can be grouped to produce homogeneous partitions of

data instances, thus addressing the heterogeneity in populations. This thesis also intro-

duces a novel strategy for constructing mode-specific ensembles in binary classification

settings, where each class shows multi-modal distribution due to the heterogeneity in

their populations. When the context of data instances is implicitly defined such that

the test data is known to comprise of contextually similar groups, this thesis presents a

novel framework for adapting classification decisions using the group-level properties of

test instances. This thesis also builds the foundations of a novel paradigm of scientific

discovery, termed as theory-guided data science, that seeks to explore the full potential

of data science methods but without ignoring the treasure of knowledge contained in

scientific theories and principles.
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Chapter 1

Introduction

1.1 Overview

From satellites in space to wearable computing devices and from credit card transac-

tions to electronic health-care records, the deluge of data [1–3] has pervaded every walk

of life. Our ability to collect, store, and access large volumes of information is acceler-

ating at unprecedented rates with better sensor technologies, more powerful computing

platforms, and greater on-line connectivity. With the growing size of data, there has

been a simultaneous revolution in the computational and statistical methods for pro-

cessing and analyzing data, collectively referred to as the field of data science. These

advances have made long-lasting impacts on the way we sense, communicate, and make

decisions [4], a trend that is only expected to grow in the foreseeable future. Indeed,

the start of twenty-first century may well be remembered in history as the “golden age

of data science.”

A unique ability of data science methods is to automatically extract patterns and

models from large volumes of data, using a variety of methods and modeling paradigms.

One of the paradigms of data science that has found great success in several applica-

tions is the paradigm of predictive learning. The basic goal in predictive learning is to

estimate the value of a target variable, Y , (also referred to as the output or the re-

sponse variable), using observations of other input variables, X, referred to as features,

attributes, or explanatory variables. For example, given information about the age,

1
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medical history, disease symptoms, and diagnosis reports of a person (treated as at-

tributes), we can predict their chances of being infected by a certain disease (treated as

output). Predictive learning forms the backbone of several data-driven systems power-

ing scientific as well as commercial applications, e.g., filtering spam messages, detecting

faces in images, forecasting health risks, and mapping ecological resources. When the

target variable is categorical in nature and only takes discrete values (e.g., Y ∈ {+1, 1}
or Y ∈ {1, 2, . . . ,K}), the predictive learning problem is called classification. Other-

wise, when the target variable is allowed to take continuous values (Y ∈ R), we call it

regression.

The general framework for predictive learning involves finding predictive relation-

ships between input and output variables by sifting through several examples of input-

output pairs, termed as training data. Formally, given a training data set D = {x, y}n1 ,

we aim to learn a mapping, f : X → Y , such that f(.) can be applied on any unseen test

instance, x, to predict the value of its target variable y = f(x). A variety of approaches

have been developed to learn predictive models from training data, ranging from simple

solutions such as perceptrons and decision trees to advanced algorithms such as support

vector machines and deep neural networks [5]. Many of these methods are based on

strong statistical foundations that ensure that models trained over a training set are

generalizable over unseen instances encountered during testing.

One of the underlying assumptions in standard frameworks for predictive learning

is that the data instances in the training set are identical to each other, and belong to a

common yet unknown population. Hence, the training instances are generally considered

independent and identically distributed, commonly referred to as the ‘i.i.d’ assumption.

Furthermore, it is assumed that instances in the training set are fairly reflective of the

distribution of unseen test instances encountered in the future. In other words, the

training and test sets are assumed to contain instances belonging to a single common

population, thus sharing identical (or homogeneous) relationships between input and

output variables.

Although standard predictive learning frameworks work well under these assump-

tions of homogeneity, they are routinely violated in a number of real-world applications.

This is because most real-world systems are composed of a plurality of data populations,

with varying properties of predictive relationships in every population. For example,
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Figure 1.1: Illustration of population heterogeneity and its impact on predictive learn-
ing. Figure 1.1(a) shows a tabular view of data instances for a binary classification
problem from three different populations, G1 to G3. Figure 1.1(b) shows the distribu-
tion of the classes in the feature space for each population.

in the problem of predicting a patient’s risk for a certain disease (output) given their

healthcare records (input variables), different populations of subjects from diverse ethnic

backgrounds and living conditions can show huge variations in the relationship between

their healthcare records and disease risks. In fact, two patients with the same health-

care record (input variables) can be associated with different risks for a disease (output)

depending on the population that they belong.

We refer to the scenario where: (a) the training data is comprised of instances from

multiple populations, and (b) the test set belongs to a population different from that

of the training set as population heterogeneity. Figure 1.1 illustrates a toy example of

population heterogeneity for a binary classification problem (involving two classes: +

and −). We can see in Figure 1.1(a) that the data set comprises of instances from

three different populations, G1 to G3, each consisting of n instances. Figure 1.1(b)

shows that the positive and negative classes of each population (shown using colored

circles) have widely varying distributions in the feature space. While the classes may be

separable in some populations (e.g., G1 and G3), they may be more difficult to separate

in other populations (e.g., G2). Some of the real-world problems that are impacted by
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population heterogeneity include:

• Predicting the risk of a disease (output) given the healthcare records (input vari-

ables) of a patient. In this problem, different populations of subjects may require

different models of disease risk given the input variables.

• Estimation of geoscience variables such as health of vegetation or presence of sur-

face water (output) using remote sensing data (input variables) observed at every

location on the Earth at every time-step. It is well-known that the characteristics

of predictive relationships for geoscience variables vary widely across geographic

space and time, due to changes in geography, topography, types of soil, climatic

conditions, and seasonal cycles [6].

• Recommending posts on social networking websites (output) using information

about users such as their age or level of education (input variables). In this case,

depending on their social affiliations and usage history, the preferences of two

users may be different even if they have similar age or education.

1.2 Challenges and Objective

There are a number of challenges in learning predictive models with heterogeneity in

populations of data instances.

• First, the training data comprises of instances from not just one distribution but

several distributions juxtaposed together. For example, in classification problems,

every class may appear as multiple sub-categories or modes (shown as red and

blue regions in the illustration shown in Figure 1.1(b)). In the presence of multi-

modality within the classes, there may be imbalance among the distribution of

different modes in the training set. Hence, some of the modes may be under-

represented during training, resulting in poor performance on those modes during

the testing stage. This may be critical in the presence of anomalous modes that are

rare but important to detect, e.g., ecosystem disturbances and weather extremes.

• Second, while some of the modes of a particular class may be easy to distinguish

from modes of the other class, there may be modes that participate in class confu-

sion, i.e., reside in regions of feature space that overlap with instances from other
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classes. The presence of such overlapping modes can degrade the learning of any

classification model trained across all modes of every class.

• Third, even if we are able to learn a predictive model that shows reasonable

performance on the training set, the test set may have a completely different

distribution of data instances than the training set, as the populations of training

and test sets can be different. Hence, the training performance can be quite

misleading as it may not always be reflective of the performance on test instances.

These challenges severely restrict the applicability of standard predictive learning

frameworks when applied to scenarios involving heterogeneity in populations. In such

settings, it is evident that the set of feature values observed at a data instance are

not sufficient for estimating the value of its target variable without ambiguity. This is

because along with the observed feature values, the population that the data instance

belongs plays a decisive role in making predictions of the target variable. Hence, what is

needed is a way to incorporate knowledge about the context in which a data instance is

observed, e.g., using ancillary variables other than its features that can help in inferring

its population. The goal of this thesis is to address the challenges associated with

population heterogeneity in predictive learning by incorporating information about the

context of data instances, which are available in varying forms in different application

settings.

1.3 Thesis Contributions and Organization

This thesis presents several approaches for predictive learning with heterogeneity in

populations, that incorporate information about the context of data instances in pre-

dictive learning frameworks. Following are the main contributions of this work and the

organization of the remainder of this thesis.

• Chapter 2 presents a brief review of the landscape of methods for handling the

presence of population heterogeneity in different predictive learning settings. It in-

troduces the concepts of explicit context (where ancillary variables can be directly

used to estimate the nature of predictive relationships at every instance) and im-

plicit context (where ancillary variables are absent or their influence on predictive



6

relationships is latent), which are used to provide a systematic categorization of

related approaches relevant to the contributions presented in this thesis.

• Chapter 3 presents a novel approach for handling population heterogeneity when

contextual information of training and test instances are explicitly available as

ancillary variables, that can be grouped using clustering methods to form homo-

geneous partitions of the data. The proposed approach uses a multi-task learning

formulation to jointly address the challenge of population heterogeneity as well as

paucity of labeled data, common in several real-world problems [7].

• Chapter 4 presents a novel ensemble learning framework for incorporating the

multi-modal structure of classes in binary classification settings, when both classes

show heterogeneity in populations. The proposed framework, termed as Bipar-

tite One-vs-One (BOVO) [8], uses mode-specific information to provide superior

predictive performance than traditional ensemble learning methods. It further of-

fers interpretability of results by providing additional information about the mode

affiliations of every test instance.

• Chapter 5 presents a novel scheme for adapting the classification responses of

mode-specific ensembles using group-specific information of test instances [9]. By

inferring the implicit context in a group of test instances by observing their distri-

bution in the feature space, it is able to appropriately select ensemble classifiers

that are most relevant in the context of the test group.

• An underlying theme of research in learning with population heterogeneity is a

systematic way of incorporating domain (or scientific) knowledge in predictive

learning frameworks, for inferring the relevant context of data instances. Chapter

6 presents a broader paradigm developed as part of this thesis on combining the

strengths of scientific knowledge with data science methods, termed as theory-

guided data science [10]. This chapter presents a review of this emerging paradigm

of research and discusses several research themes under this paradigm that is being

pursued in varied scientific and engineering disciplines.

• Chapter 7 presents concluding remarks and discusses future directions of work.



Chapter 2

Background

This chapter presents a landscape of predictive learning methods for handling the chal-

lenge of heterogeneity in populations. A sufficient requirement for incorporating the

effects of population heterogeneity in predictive learning is to exactly known which

population every instance belongs. Unfortunately, this information is seldom available

at the required level of detail in most practical settings. This is because the total number

of populations present in a real-world system, let alone their distributions, is often an

unknown quantity. In fact, populations can be defined at varying levels of granularity

depending on the requirements of the application and availability of data instances. For

example, in order to predict housing costs based on affinity to economic assets, we can

build predict models at the level of counties, districts, states, or countries, each resulting

in populations at different spatial scales. Hence, information about data populations

and the affiliation of instances to populations is mostly hidden and needs to be inferred

from the data, often with the help of domain or background knowledge.

The background of every data instance is often captured in the form of ancillary

variables, Z, that are recorded along with the attributes at every observation. Some

examples of ancillary variables in spatio-temporal settings include the spatial identifiers

of the location at which the observation was taken (e.g., coordinates such as latitude

and longitude of the location), or the time-stamp of observation. Other examples of an-

cillary variables include the history of observations at every instance (e.g., past medical

records of every subject), the genetic profile of subjects, or the structure of relation-

ships of every instance with respect to other instances (e.g., in social networks). It is

7
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evident that the nature and formats of ancillary variables widely vary across different

application settings. If used appropriately, they can provide the necessary information

about the context of every data instance that can help in addressing the heterogeneity

in populations. In the following, we describe two basic types of contexts defined by

ancillary variables, that can be used in predictive learning problems in a number of

ways.

• Explicit Context: In some cases, the values of ancillary variables, Z, are directly

related to the nature of predictive relationships at every instance. For example,

in the problem of predicting traits of a plant such as its leaf area and seed mass

(output) given environmental factors (input variables), we can consider the species

or any other phylogenetic information of the plant as its ancillary variable. Since

plants belonging to the same species are expected to show similar behavior of

plant traits given environmental conditions, we can use the species affiliation of

every plant as an explicit context for incorporating the effects of population het-

erogeneity. In other cases, the dependence of predictive relationships on values of

ancillary variables may not be in absolute terms, but in relation to the values of

other instances. For example, consider the problem of predicting a spatial target

variable such as land cover using observations at every location. While the ab-

solute value of the spatial coordinates may not provide information on how the

predictive relationships behave over space, we know that nearby locations mostly

have similar target values due to the spatial auto-correlation in the data. Hence,

the relative values of spatial coordinates contain useful information for learning

predictive relationships in spatial settings, and thus can be treated as ancillary

variables providing explicit context.

• Implicit Context: In most predictive learning problems, we do not know the right

ancillary variables influencing heterogeneity in populations, as they are often unob-

served and implicitly defined. Moreover, even if we have access to some ancillary

variables about every observation, we may not know the nature of dependence

between the values of ancillary variables and the properties of predictive relation-

ships. For example, consider the problem of predicting a time-varying quantity

such as the number of Web queries containing a certain keyword, e.g., “Donald
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Trump,” using input variables such as media posts on other topics. In such com-

plex problems, if we treat time as an ancillary variable, we may be able to enforce

smoothness in predictions at nearby time-steps, but long-term trends in the na-

ture of predictive relationships may not be fully understood. This requires more

ingenious ways of using the ancillary variables (if at all available) for handling the

challenge of heterogeneity in populations.

A variety of approaches have been explored for incorporating both these types of

context in predictive learning problems, using different ancillary variables in various

applications. Figure 2.1 provides a basic taxonomy of these approaches, which are

briefly reviewed in the following sections.

Methods	
  for	
  Handling	
  Population	
  Heterogeneity

Using  Explicit  Context Using  Implicit  Context

Partitioning-­based

Examples:
– Hierarchical  Bayesian  
Models

– Multi-­task  Learning
[Karpatne  et  al.  2014]

Structure-­based

Examples:
– Spatial/Temporal  
Models

– Collective  
Classification

Using  Incremental  
Labels

Examples:
– Incremental  Learning
– Transfer  Learning

Using  Group-­level  
Features

Examples:
– Adaptive  Ensemble  
Learning
[Karpatne  et  al.  2015]

Figure 2.1: Taxonomy of approaches for handling population heterogeneity in predictive
learning problems.
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2.1 Using Explicit Context

In the presence of ancillary variables that are directly relevant for inferring the effects

of population heterogeneity, one of the simplest ways of including them in predictive

modeling frameworks is to concatenate them with the set of features used as input vari-

ables. Although, in theory, the expanded set of features and ancillary variables may

be sufficient for an adequate learning algorithm to extract the necessary predictive re-

lationships when supplied with ample training instances, in practice, treating ancillary

variables as just other input variables may not be the most effective strategy for address-

ing population heterogeneity when training data is limited in size. This is especially

true in applications where the ancillary variables have widely varying types and formats

than the explanatory variables, e.g., in the form of networks or time-series [11], and a

simple concatenation may not be useful or even possible.

Indeed, there are several ways of making better use of ancillary variables in predic-

tive learning frameworks than simple concatenation with features, where the ancillary

variables are treated separately to extract the right context for learning predictive re-

lationships. There are two broad categories of approaches for using the explicit context

of ancillary variables in predictive learning frameworks: (a) methods that partition the

data instances into groups with same (or similar) ancillary variables, and then learn

different predictive models for every partition, and (b) methods that utilize the struc-

ture among the instances based on the values of their ancillary variables, to constrain

the predictions at instances relative to other instances. We describe relevant methods

in both these categories of approaches below.

2.1.1 Partioning-based Methods

In this category of approaches, the primary objective is to construct partitions of data

instances such that every partition is homogeneous in nature and includes instances only

from a single population. For example, we can cluster Z to construct homogeneous par-

titions of instances, under the assumption that instances with similar ancillary variables

belong to the same population. The learning of a predictive model at every partition of

the data can then be considered as a separate task. The use of multi-task learning for-

mulations to jointly learn predictive models at all partitions, while sharing the learning



11

across related tasks, has been explored in Karpatne et al. [7]. Another partitioning-based

approach for handling the heterogeneity in populations is to use hierarchical Bayesian

models, where the effect of ancillary variables on predictive relationships is modeled

using different strategies such as mixed effects models and random effects models [12].

2.1.2 Structure-based Methods

Another category of approaches for informing predictive decisions using Z is to extract

structured dependencies among the data instances based on the relative values of their

ancillary variables. For example, given the location coordinates of data instances, we

can construct a neighborhood graph where adjacent nodes correspond to instances that

are spatially close to each other. Graphical models such as Markov Random Fields

can then be used to enforce spatial contiguity constraints on the predictions made at

adjacent locations. Similarly, Hidden Markov Models can be used for enforcing temporal

consistency in the predictions made at nearby time stamps. Another area of work

that makes use of structured dependencies among instances is collective classification

methods [13], where the node attributes are used together with the properties of adjacent

nodes to make predictions of a target variable.

2.2 Using Implicit Context

When the influence of ancillary variables on the nature of predictive relationships is

implicit in nature, we can either use incremental labels to dynamically adapt the predic-

tions to changing populations in the test set, or develop methods that use the group-level

features of test instances, e.g., their distribution in the feature space, to adapt predic-

tions without using incremental labels. Both these categories of methods are discussed

in the following.

2.2.1 Using Incremental Labels

If it is possible to collect new labeled samples from current testing scenarios in an

on-line fashion, we can adapt the predictive model learned from the original training

set to the dynamic needs of changing populations in the test set. The framework

of incremental learning [14], which attempts to capture the notion of concept drift
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(changing characteristics of class distributions over time) using incremental labels, is

directly relevant in this category. Another relevant area of work is that of transfer

learning [15], where the learning from a source task with ample availability of labeled

data can be transferred to a target task with limited availability of labeled data. In our

problem setting, the source task corresponds to the learning of a predictive model over

the original training set, and the target task corresponds to learning predictive models

on future testing scenarios with limited availability of labeled samples.

2.2.2 Using Group-level Properties of Unlabeled Instances

In the absence of incremental labels from future testing scenarios, we can address the

challenge of population heterogeneity by observing the distribution of a group of unla-

beled test instances and identifying the population of training instances that it closely

resembles. In this way, we can adapt predictive models to future testing scenarios

without using incremental labels, which are challenging to obtain in most real-world

applications. In a recent work by Karpatne et al. [9], group-level properties of test

instances were extracted using a mixture of Gaussian models learned from the training

data. These group-level properties were then used to adapt the decisions of an ensemble

of predictive models to the specific requirements of a given group of test instances.



Chapter 3

Multi-task Learning using

Ancillary Variables

3.1 Introduction

In order to learn predictive relationships in the presence of population heterogeneity,

one approach can be to first divide the entire data set into homogeneous partitions by

grouping instances based on the values of their ancillary variables. This would result in

groups of instances with similar values of ancillary variables, which are likely to share

common predictive relationships between explanatory and target variables. If sufficient

training data is available for every such data partition, we can conveniently learn a

predictive model for every partition independently of the other partitions. However, in a

number of real-world problems, training data is often limited because obtaining ground-

truth labels is time-consuming, labor-intensive, and expensive. This when coupled with

the challenge of population heterogeneity makes the learning of independent predictive

models at every data partition prone to over-fitting, leading to poor generalization

performance. This is especially true for data partitions that suffer from paucity of

training data, which are insufficient for learning suitably complex predictive models

required for the problem. Hence, there exists a trade-off between increasing the amount

of heterogeneity explained by the model and reducing the model complexity. This

motivates the need for an approach that that can utilize the structure in the data

instances and their partitions for regularized learning of heterogeneous relationships.

13
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There are various forms of structure that exist in real-world datasets. As an example,

remote sensing datasets show a strong structure in space and time, and the presence

of multiple types of vegetation on land dictates a structured similarity among locations

belonging to similar vegetation (land cover) types. Social network datasets on the other

hand express the structure among users (data instances) using graph-based network

representations. The structure among the data instances can be leveraged for reducing

the model complexity, by constraining the model search space. As an example, we can

penalize the learning of widely dissimilar relationships at structurally similar partitions

of the data, leading to a lower model complexity as opposed to learning a model at each

partition independently.

In this chapter, we propose a multi-task learning framework for learning predictive

relationships in the presence of data heterogeneity and insufficient training data, which

utilizes the structure among data partitions for robust predictive learning. Specifically,

the proposed framework comprises of three key steps: (a) partitioning the heterogeneous

data into relatively homogeneous data partitions, (b) extracting the structure among

the data partitions, and (c) utilizing the structure among the partitions for regularizing

the learning of a predictive model at each data partition. By performing a series of

experiments to evaluate our performance in comparison with the baseline approaches,

we show that this proposed method: (a) captures meaningful information about the

heterogeneity in the data, (b) improves the prediction performance in the presence

of data heterogeneity, (c) is robust to over-fitting in scenarios with limited training

data, and (d) is robust to the choice of the number of partitions used to represent the

heterogeneity in the data.

The remainder of this chapter is organized as follows: Section 3.2 provides a brief

overview of related work. Section 3.3 describes the proposed approach. Section 3.4

discusses the data. Section 3.5 discusses the evaluation setup. Section 3.6 provides

experimental results. Section 3.7 includes concluding remarks and discusses directions

for future work.
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3.2 Related Work

Existing methods that utilize structure in the data can be broadly classified into the

following three categories: (i) methods that utilize structure among the explanatory

variables, (ii) methods that utilize structure among the response variables, and (iii)

methods that utilize structure among the data instances. In this section, we briefly

review the literature pertaining to each of the three categories above. Out of these

three categories, methods that utilize structure among the data instances for addressing

heterogeneity are most related to this chapter.

Methods that utilize structure among the explanatory variables aim at extracting

discriminative features from explanatory variables which are useful in predictive learn-

ing. In this context, dimensionality reduction and subspace monitoring techniques have

been explored for high-dimensional predictor datasets [16]. Further, shrinkage estima-

tors encompass a broad family of methods that aim at regularizing ill-posed problems by

introducing additional information, such as the desired structural properties of explana-

tory variables [17]. Methods that have utilized structure among multivariate response

variables include structured output regression techniques, that have been mainly ex-

plored for localization and image restoration applications in computer vision and image

processing [18]. Multi-label learning has been proposed for classification scenarios where

the classes are not mutually exclusive and there is a structure among the classes [19].

The family of methods that is closest to the problem being addressed in this chap-

ter includes those that incorporate structure among data instances or their partitions.

Methods that perform semi-supervised learning utilize information about the structure

in unlabeled data, which can then be used to assist a supervised learning task [20].

However, they do not explore the heterogeneity in relationships between explanatory

and response variables, which requires learning a different model for each partition of

the data. On the other hand, transfer learning and multi-task learning aim at utilizing

the knowledge learned in a source task for its application in a target task [15] or for shar-

ing the learning among multiple related tasks [21]. For instance, the similarity among

related tasks can be represented in the form of a graph which can then be used for

regularizing the learning over each individual task [22,23]. Further, task clustering has

been used for representing task similarities in multi-task learning [24]. However, these
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approaches need explicit knowledge about task definitions and prior information about

the number of tasks and their structure. Obtaining information about task divisions

can be difficult in real-world scenarios where the inherent heterogeneity is implicit and

needs to be extracted.

3.3 Proposed Approach

We first present a generic formulation of the proposed multi-task learning framework

in section 3.3.1, and then subsequently provide a specific instantiation of the proposed

framework for its application in estimating forest cover using remote sensing datasets

in section 3.3.2.

3.3.1 Generic Formulation

Let y ∈ R be the response variable that needs to be predicted using x ∈ Rd, which

is a d-dimensional vector comprising of d explanatory variables. Let X = {xi}N1 and

Y = {yi}N1 be the set of explanatory variables and response variables over N data

instances, respectively. Let there exist a heterogeneity among the N data instances,

implying that different segments of (X ,Y) share different relationships between x and

y. Furthermore, let each data instance, (xi, yi), be associated with an additional set of

structural variables, zi, that capture information about the structural dependencies of

(xi, yi) with other data instances. The structural variables, Z = {zi}N1 , thus account

for the heterogeneity in the data, and can take different forms depending on the source

of heterogeneity being experienced in the application domain.

We consider the scenario where both X and Z are available over all N data instances

during the training phase, but supervised information about y is available only over a

few n data instances, where n� N . Let Ytr = {yi}n1 denote the set of response variables

that are available during the training phase. Our objective is to utilize the information

in X , Z, and Ytr for learning relationships between x and y, and use the learning to

predict yi for each xi ∈ X .

We present a framework for learning predictive relationships in the presence of het-

erogeneity and limited training data, which comprises of the following three steps: (a)
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partitioning the overall data into homogeneous partitions (whose instances share a com-

mon relationship between x and y), (b) learning the structure among the data partitions,

and (c) using the structure among the partitions for regularizing the learning of a re-

lationship at each partition of the data. We next provide a brief description of each of

the three steps of the generic framework.

In order to group data instances into homogeneous partitions, we make use of the

structural variables, zi ∈ Z, for assigning every xi ∈ X to a homogeneous data partition

comprising of structurally similar data instances (with similar zi values). With the

assumption that structurally similar data instances share similar relationships between

x and y, we can cluster Z into m clusters, {Zk}m1 , thus partitioning X into m partitions,

{Xk}m1 .

For each data partition, Xk, let Yk = {yi}nk
1 denote the set of response variables for

some nk instances in Xk, for which training data is available. Let Xk denote the set of

explanatory variables for the same nk instances in Xk, where
∑m

k=1 nk = n. We consider

learning a generalized linear model [25] at each data partition, Xk, for predicting Yk

given Xk.

Let the linear predictor at Xk be given by:

ηk = Xkβk (3.1)

The expected value of the set of response variables, µk = E[Yk], can be written as a

function of the linear predictor using a link function, g, in the following fashion:

µk = g−1(ηk) (3.2)

The model parameter can then be estimated by minimizing the negative log-likelihood

function of βk.

β̂k = min
βk

− logP (Yk|βk) (3.3)

However, in scenarios where m is large and nk is small, learning a unique βk indepen-

dently at each data partition is prone to over-fitting. Instead, we can make use of the

structure among the data partitions, {Xk}m1 , for regularizing our learning of β = {βk}m1 .

Let the structure among the data partitions be represented as an undirected graph,
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G = (V ,E), where the vertices of the graph, V , denote the m data partitions, and

the edges of the graph, E, denote similarities among the data partitions, learned using

similarities in the structural variables of the partitions, {Zk}m1 .

We include the structure among the data partitions, expressed using G, as a regu-

larization term in our objective function of minimizing the negative log-likelihood of β.

In particular, we intend to penalize the learning of model parameters, βi and βj , if i

and j are neighboring data partitions in G but βi is widely different from βj . This can

be achieved by introducing the squared L2 distance between βi and βj in our objective

function as follows:

min
β
−

m∑
k=1

logP (Yk|g−1(Xkβk)) + λ
∑

(i,j) ∈ E

∥∥∥(βi − βj)
∥∥∥2
2

(3.4)

where λ is a regularization trade-off parameter. It can be observed that the regu-

larization term in equation 3.4 can be succinctly written as βT L̃β, where L̃ is the

component-wise unnormalized graph Laplacian of G [26], over each dimension in βk

from 1 to d. L̃ can thus be written as

L̃ = L⊗ Id (3.5)

where, L is the unnormalized graph Laplacian ofG, Id is an identity matrix of dimension

d, and a ⊗ b denotes the Kronecker product between a and b. Let Y = (YT
1 . . .Y

T
m)T

be an n × 1 stacked vector of response values over all data partitions, and X be the

design matrix of size: n×md over all data partitions, represented as

X =


X1 0 . . . 0

0 X2 . . . 0
...

...
. . .

...

0 0 . . . Xm

 (3.6)

where 0 denotes a zero matrix of appropriate dimensions. Equation 3.4 can then be

rewritten using matrix notations involving β, as

β̂ = min
β
− logP (Y |g−1(Xβ)) + λβT L̃β (3.7)
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The solution to equation 3.7 can be found by using gradient descent techniques or the

Newton-Raphson method [27].

3.3.2 Specific Formulation

The generic formulation described in section 3.3.1 comprises of three essential steps. In

this section, we present specific approaches for realizing each of the three steps for the

purpose of forest cover estimation in the remote sensing domain.

For the problem of forest cover estimation, the response variable, yl,t, is the amount

of forest cover (FC) at a location l in year t, where forest cover denotes the proportion of

pixel area covered by forests at a given location in a year (yl,t ∈ [0, 1]). The explanatory

variable, xl,t, consists of land surface temperature (LST) observations at a location l in

year t.

Due to the presence of multiple land cover types, different regions on land show

different relationships between LST and FC, leading to the presence of data heterogeneity.

Since information about land cover types is not known explicitly, we are tasked at

learning the partitioning of locations into homogeneous regions (whose locations share

a common relationship between LST and FC). To achieve this, we look at the temporal

behavior of locations in remote sensing datasets over the first few years, represented

as a time-series at every location. With the assumption that locations that behave

similarly in time (having similar time-series characteristics) belong to the same data

partition, and thus share similar relationships between LST and FC, we can extract the

data heterogeneity due to the presence of land cover types. We use normalized difference

vegetation index (NDVI) time-series during the first few years as our structural variable,

since NDVI has been shown to contain discriminatory information about land cover types

in a recent study [28].

Partitioning the data

We employ unsupervised clustering approaches on Z (NDVI) for partitioning locations

into homogeneous groups, each belonging to a different land cover type. By clustering

the NDVI time-series during the first few years (zl), we are able to group locations that

show similar trend in the NDVI time-series, which is indicative of their belonging to the
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same land cover type. The choice of the clustering method would be more evident in the

subsequent discussion in section 3.3.2 on learning the structure among data partitions.

Learning structure among data partitions

There exists multiple techniques for learning the structure among data partitions which

have been obtained by clustering NDVI time series (zl). If the partitions have been dis-

covered using a partitional clustering approach, such as the k-means algorithm, we can

use the similarity between cluster representatives (centroids) for learning the structure

among the partitions as a weighted complete graph among the m partitions. As an

alternative approach, relationships between data partitions can be learned by employ-

ing hierarchical clustering techniques such as the bisecting k-means algorithm [29], and

using the parent-child associations obtained in the clustering process as the structure

among partitions. The presence of aggregated groups discovered by bisecting k-means is

intuitive for our target application, since land cover types exhibit a hierarchical structure

among themselves, e.g. broadleaf and needleleaf forests can be grouped into evergreen

forests, which can be grouped with deciduous forests to form dense forests. It should be

noted that the aggregated groups discovered as internal nodes act as dummy clusters

that induce a structure among the leaf clusters. However, the final partitioning of the

data is obtained only using the leaf nodes.

Using structure in predictive learning

Since the values of yl,t vary between [0, 1], we consider logistic regression as our preferred

regression algorithm. Logistic regression can be viewed as a generalized linear model,

which uses the logit link function between the expected values of the response variable,

µk, and the linear predictors, ηk, given by:

ηk = Xkβk, and µk =
1

1 + exp(−ηk)
(3.8)

The structure among the clusters can be represented as a graph and used for regularizing

our learning in lines of equation 3.7. Furthermore, due to the presence of aggregated

groups which do not directly take part in the partitioning process, we discount the log-

likelihood of observations at an internal node at height i by wi, where wi < wj for i > j
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(nodes with higher heights have lower weights). Let

W = Diag(wh1en1 , wh2en2 , . . . , whmenm) (3.9)

be a diagonal matrix of size n× n, where hi is the height of node i, and eni is a vector

of ones of length ni. Minimizing the negative log-likelihood of β using the logit link

function along with introducing a regularization term in the objective function leads to

the following optimization problem:

min
β
E(β) = −WY T log(µ)−W (en − Y )T log(1− µ)

+ λβT L̃β

(3.10)

where, µ = (µT1 . . .µ
T
m)T, and en is a vector of ones of length n. Taking the first and

second derivatives of E(β) with respect to β, we get

∇E(β) = XTW (µ− Y ) + 2λL̃β (3.11)

∇2E(β) = XTRWX + 2λL̃ (3.12)

where, R = Diag(µ(1 − µ)) is a diagonal matrix of size n × n. We can then use the

values of ∇E(β) and ∇2(β) in the Newton-Raphson method to get the following update

equation for β:

βt+1 = βt −D−1(XTW (µ− Y ) + 2λL̃βt) (3.13)

where D = XTRWX + 2λL̃ is an md×md matrix whose inverse has to be computed

at each iteration of the Newton-Raphson method. We start with an initial choice of β0

as the global β learned by running a single logistic regression over the entire data. We

stop iterating when the difference in βt+1 and βt starts diminishing and goes below a

certain tolerance value (10−3), which indicates that the learning has converged to the

optimum solution. After learning β, we use the βi at a leaf node for testing over unseen

data instances that belong to partition i (leaf node).
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3.4 Datasets

Both LST and NDVI are obtained from the MODIS instrument onboard NASA’s Terra

and Aqua satellitesThe datasets are gridded at a spatial resolution of 0.05◦ on the

geographic climate modeling grid (CMG), and are available at a monthly temporal

resolution starting from the year 2000. We provide a description of each of the datasets

below:

3.4.1 Land Surface Temperature (LST)

LST is derived from thermal infrared bands and measures the land surface temperature

during the day as well as the night. We only consider cloud-free observations of LST for

evaluation. Using a similar treatment of LST as proposed in [30], we consider the mean

difference between LST Day and LST Night during the months corresponding to the dry

season at a location in a year as the explanatory variable.

3.4.2 Normalized Difference Vegetation Index (NDVI)

NDVI provide a measure of greenness at a location which is indicative of the health of

the biomass at that location. We consider the monthly NDVI time-series at a location,

l, over a period of five years (2000 to 2004) as our structural variable, zl. The choice of

NDVI for discriminating different land cover types from each other has been justified in

a previous work on forest cover estimation [28].

3.4.3 Forest Cover Dataset (PRODES)

To obtain supervised information about the forest cover at a given location in Brazil, we

used information from the Program for the Estimation of Deforestation in the Brazilian

Amazon (PRODES) [31], which provides an annual deforestation product for each state in

the Brazilian Amazon, using the analysis of high-resolution Landsat Thematic Mapper

(TM) images.
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3.5 Evaluation Setup

3.5.1 Baseline Algorithms

We compare the performance of our approach with the following three baseline methods:

Global Model (GLOBAL)

This baseline method (proposed in [30]) relies on learning a single logistic regression

over the entire data. Since the global model neglects the rich heterogeneity in remote

sensing datasets due to the presence of multiple land cover types, it suffers from poor

generalization performance, and suffers from under-fitting.

Unregularized Regression (UNREG)

Instead of learning a single global model of the relationship between x and y, this

baseline method (proposed in [28]) independently learns a separate logistic regression

model at each data partition discovered by clustering z. This can be viewed as a special

version of our proposed approach, where the value of the regularization parameter, λ,

is equal to 0, indicating the absence of any regularization. This model suffers from

high model complexity and in scenarios where the size of training data is small, it often

experiences the phenomena of over-fitting, leading to poor generalization performance.

Since the model is not able to perform any learning in clusters which have 0 training

instances, we utilize the global model learned using the overall data at such clusters for

making predictions.

Ridge Regression (RIDGE)

In order to minimize the structural risk (indicative of the complexity of the model) at

a data partition independently of other partitions, we introduce the L2-norm of β as a

regularization term in the objective function of UNREG, an approach commonly used

in statistics to handle multi-collinearity [32]. This can be viewed as a special case of

the proposed approach where the graph consists of a completely disconnected set of

nodes with no edges. This enforces complete independence among the learned model

parameters at data partitions and thus is a weaker form of regularization as compared
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to our proposed approach. In order to learn relationships at clusters with 0 training

instances, we utilize the global model learned using the overall data.

3.5.2 Evaluation Metric

We consider prediction performance as the guiding theme for evaluating and comparing

predictive learning models. Let {yi}n1 denote the set of true observations for a response

variable, and let {ŷi}n1 be the set of predicted values of the response variable. The

Coefficient of Determination (R2), which measures the proportion of variability in the

response variable explained by the regression model, can then be formally defined as

R2 = 1−
∑n

i=1(yi − ŷi)2∑n
i=1(yi − y)2

(3.14)

where y =
∑
yi/n denotes the mean. We use (1−R2) as an evaluation metric for ana-

lyzing the performance of our approach in comparison with other baseline approaches,

since the same evaluation metric has been used in existing approaches for forest cover

estimation, such as [28]. A lower (1−R2) value corresponds to a better goodness of fit

of the model.

3.5.3 Experimental Design

We evaluate the performance of our proposed approach in comparison with the baseline

approaches over the combined region of four states in Brazil. The names of the four

states, along with their latitude and longitude boundaries, can be enlisted as: Mato

Grosso (7◦–19◦S, 62◦–50◦W ), Pará (3◦N–10◦S, 59◦–46◦W ), Amapá (5◦N–2◦S, 55◦–

49◦W ), and Roraima (6◦N–2◦S, 65◦–58◦W ). We consider 10 years of LST and FC data

from 2000 to 2009 for the purpose of evaluation. The total number of locations in the

combined region of these four states is 164,400, amounting to 1,644,000 distinct data

instances. We randomly sample P number of data instances for training, Q = 100

number of data instances from the remaining data for validating meta-parameters, and

the remainder of the data is used for testing. Each random sampling is repeated N = 50

times so as to obtain the mean and standard deviation statistics of the evaluation metric,

(1−R2).
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3.6 Experimental Results

3.6.1 Visualization of clusters

We cluster the overall data into 15 partitions using the bisecting k-means algorithm,

and specifically focus on two of the discovered clusters in figure 3.1. Figures 3.1(a)

and 3.1(b) show the scatter plot of data instances belonging to cluster 1 and cluster 2,

respectively, where the X axis corresponds to the explanatory variable, LST, and the Y

axis corresponds to the response variable, FC. The black curves show the global logistic

regression model learned over the entire data, whereas the red curves shows the logistic

regression models learned at each cluster of the data independently. It can be seen that

the global model overestimates Y in cluster 1, while it underestimates Y in cluster 2

as compared to the individual models at each cluster. This shows the importance of

learning different regression models over different clusters of the data, thus accounting

for data heterogeneity.

Figures 3.2(a) and 3.2(b) show the the centroid NDVI time series of locations belong-

ing to cluster 1 and cluster 2, respectively. It can be seen that locations belonging to

cluster 1 have a higher seasonal variance in NDVI and a lower annual NDVI mean than

locations belonging to cluster 2. Furthermore, figures 3.1(c) and 3.1(d) show a sample

of locations on land (marked by orange and yellow dots respectively) that belong to

cluster 1 and cluster 2, respectively. It can be observed that cluster 1 corresponds to

a land cover type that includes farms and barren land, while cluster 2 corresponds to

densely vegetated forests. This shows that the discovered clusters correspond to land

cover types and have real-world interpretability.

3.6.2 Varying the number of clusters

We randomly sample P = 400 observations for training and explore the behavior of

testing errors for each competing algorithm as the number of clusters is increased from

1 to 500. Figure 3.3 shows the behavior of the mean and standard deviation of (1 −
R2) values over varying number of clusters. It can be observed that the GLOBAL

approach gives a constant mean (1−R2) value of 0.70, since the GLOBAL approach is

oblivious to any clustering procedure. On the other hand, UNREG, RIDGE, and the

proposed approach shows an improvement in performance as the number of clusters, m,
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(a) Distribution of data instances belong-
ing to cluster 1
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(b) Distribution of data instances belong-
ing to cluster 2

(c) Sample image of locations (shown as
orange dots) belonging to cluster 1

(d) Sample image of locations (shown as
yellow dots) belonging to cluster 2

Figure 3.1: Visual exploration of the partitions discovered by clustering NDVI time series.
Figures 3.1(a) and 3.1(b) show scatter plot of data instances belonging to cluster 1 and
2, respectively. The X axis is LST Day - LST Night (explanatory variable) and the Y axis
is FC (response variable). The black curves represents the global model, while the red
curves represent individual models learned at each of the two clusters. Figures 3.1(c)
and 3.1(d) show sample images of locations belonging to cluster 1 and 2, respectively.

is increased from 1 to 30. This indicates their potential in addressing data heterogeneity.

However, increasing m from 30 to 500 increases the model complexity, making the

learning prone to over-fitting. UNREG gradually starts over-fitting and reaches a (1−
R2) value close to that of GLOBAL at higher values of m. On the other hand, RIDGE

is able to regularize the learning and maintains a constant (1 − R2) value as m is

increased from 30 to 100. This shows the ability of RIDGE in avoiding over-fitting

using limited training data. However, the performance of RIDGE eventually starts

degrading as m increases from 50 to 500. Finally, the proposed approach consistently

outperforms the three baseline methods for every value of m and is able to provide
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(b) Centroid NDVI time series of cluster 2

Figure 3.2: NDVI time series of the centroids of cluster 1 (Figure 3.2(a)) and cluster 2
(Figure 3.1(c)).

a stronger regularization in the learning, indicated by lower (1 − R2) values even at

m = 500. The minimum (1− R2) value obtained by the proposed approach is 0.41, at

m = 50.

3.6.3 Varying the size of training data

As we increase the number of observations available during training, we progress from an

insufficient training data scenario to a sufficient training data scenario. In the presence

of sufficient training data, algorithms with higher model complexity (such as UNREG)

can be supported with lesser propensity of running into the problem of over-fitting.

Figure 3.4 illustrates this effect by showing the results obtained by using P = 1000

observations for training. It can be observed that the (1 − R2) values for RIDGE and

UNREG are relatively closer to the proposed approach, and keep on decreasing for all

values of m from 1 to 50.

On the contrary, reducing the size of the training set reduces the amount of in-

formation available for addressing heterogeneity in the data, thus limiting the scope

for reducing (1 − R2) values as compared to the GLOBAL approach. Furthermore,

algorithms with higher model complexity would start over-fitting at lower values of m.

Figure 3.5 demonstrates this phenomena using P = 100 observations for training. In
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Figure 3.3: Errorbar plots of (1−R2) at P = 400, as the number of clusters is increased
from 1 to 500.

this case, both UNREG and RIDGE start over-fitting at m = 5. Also, it can be ob-

served that the performance of UNREG deteriorates as we increase m from 1 to 30,

indicating the presence of over-fitting. However, as we increase m from 30 to 500, we

start encountering clusters with 0 training instances, and since the UNREG approach

is not able to perform any learning in such clusters, it starts using the GLOBAL model

for making predictions at such clusters. Thus, it can be observed that the performance

of UNREG starts approaching the GLOBAL results at m = 500. On the other hand,

our proposed approach consistently outperforms the baseline approaches for each value

of m, since it employs a strong structural regularization scheme. The lowest (1 − R2)

values obtained by the proposed approach is 0.48 at m = 5. It can also be observed that

the performance of the proposed approach does not drastically deteriorate on increasing

the m as compared to the baseline approaches.
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Figure 3.4: Errorbar plots of (1−R2) at P = 1000 as the number of clusters is increased
from 1 to 500

3.6.4 Randomizing the structure in data

In order to assess the significance of using the structure among data partitions in reg-

ularizing our learning, we perform two randomization experiments, R-CLUSTER and

R-EDGE, described as follows:

R-CLUSTER

Instead of assigning locations to clusters on the basis of their similarity in z (NDVI

time series), we randomly assign each location to a cluster, while still preserving the

structure among the clusters extracted using bisecting k-means. By randomizing the

assignment of locations to clusters, we intend to construct artificial partitioning of loca-

tions which do not resemble homogeneous partitions of the data (corresponding to land

cover types), but still are treated as unique entities (requiring the learning of separate
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Figure 3.5: Errorbar plots of (1−R2) at P = 100 as the number of clusters is increased
from 1 to 500

model parameters) by the proposed approach. This would help quantitatively verify

the interpretability of the discovered data partitions, obtained by clustering NDVI time

series.

R-EDGE

We preserve the assignment of locations to clusters but randomize edges between the leaf

nodes and their immediate parents in the structure among the clusters, leading to the

creation of a randomized structure among clusters. The aim of this experiment is to test

the significance of the structural relationships (extracted by bisecting k-means) among

the data partitions, useful in regularizing our model learning and avoiding over-fitting.

Figure 3.6 summarizes the results of the randomization experiments in comparison

with the results of the proposed approach and the GLOBAL model (repeated from

section 3.6.2), using P = 400 observations for training.



31

1 5 15 30 50 150 300 500
0

0.2

0.4

0.6

0.8

1

Number of clusters

1
 −

 R
2

 

 

GLOBAL

PROPOSED

R−CLUSTER

R−EDGE

Figure 3.6: Errorbar plots of (1 − R2) at P = 400 after performing randomization
experiments: R-CLUSTER and R-EDGE

Figure 3.6 shows that as m increases, R-CLUSTER starts showing higher (1− R2)

values than the GLOBAL model. This indicates that learning multiple model param-

eters (in an ensemble fashion) over random partitions of the data does not necessarily

capture data heterogeneity. On the other hand, due to the increased model complexity

of R-CLUSTER, the performance of R-CLUSTER starts degrading even in comparison

with the GLOBAL approach.

It can be observed from figure 3.6 that R-EDGE shows similar (1 − R2) values as

the proposed approach for m less than 50, after which it starts over-fitting. This can

be explained by the fact that addressing heterogeneity alone is sufficient to improve the

prediction performance for smaller values of m. However, as m is increased from 50

to 500, R-EDGE starts over-fitting in the presence of a randomized structure among

data partitions. This indicates the existence of an underlying structure among the

clusters, which is being extracted by the bisecting k-means and is being utilized in the
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learning process for overcoming over-fitting. Furthermore, it can be observed that the

performance of R-EDGE is very similar to that of the RIDGE model, shown in figure 3.3

and described in section 3.6.2. This correspondence can be explained by the fact that

in the presence of a randomized structure among clusters, the regularization scheme

effectively starts learning model parameters at each cluster independently, since sharing

the model parameters in accordance with the randomized structure does not provide

any gain in performance.

3.7 Conclusions and Future Work

There exists a rich population heterogeneity in a number of real-world datasets, that

correspond to the presence of different relationships between explanatory and response

variables over different partitions of the data. This can be conveniently exploited for

improving prediction performance. In the absence of sufficient training data, addressing

data heterogeneity is challenging, due to the increased model complexity in addressing

heterogeneity. We proposed a framework for learning relationships in the presence of

data heterogeneity and limited training data, which utilizes the structure among data

partitions for regularizing the overall learning. We presented a generic formulation of our

approach using generalized linear models, and further provided specific instantiations of

the generic formulation for its application in estimating forest cover using remote sensing

datasets. In particular, we utilized a graph-Laplacian based regularization scheme for

sharing the learning of logistic regression models over data partitions (corresponding

to land cover types), in the presence of limited training data. By performing a series

of comparative experiments with the baseline approaches, we show that our proposed

approach is both accurate and robust to over-fitting and the choice of parameters used

to represent the heterogeneity in remote sensing datasets.

Future work would explore specific instantiations of each of the key steps of the pro-

posed framework using state-of-the-art methods. In particular, we can explore extending

our generic formulation using graph-based regularization to non-linear regression mod-

els. Since the guiding theme of our work is improving the prediction performance, we

have omitted any discussion on the computational efficiency of our approach. Since the

solution to our proposed approach requires matrix inversions at each step of an iterative
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algorithm, we can explore techniques for improving the computational efficiency of the

proposed approach. Further, we would be interested in learning the posterior estimates

of the model parameters, thus additionally learning the confidence in our predictions

of response variables. Finally, the proposed approach can be applied in other domains

of study which suffer from insufficient training data, and exhibit similar forms of data

heterogeneity.



Chapter 4

Learning Mode-specific

Classification Ensembles

4.1 Introduction

In a number of real-world binary classification problems, there often exists a heterogene-

ity in the populations of instances belonging to the two classes, leading to a multi-modal

distribution of both classes. As an example, different groups of locations on the Earth,

belonging to either the water or the land class, show different characteristics in remote

sensing datasets due to differences in geographies, topographies, climatic conditions,

etc., resulting in a rich variety of land and water bodies at a global scale. As another

example, different groups of human subjects, belonging to either the healthy or the

diseased class, show different physiological symptoms to a certain disease, based on dif-

ferences in their genetic information, living conditions, etc. To illustrate the presence

of heterogeneity within the two classes, Figure 4.1 shows a toy example of a synthetic

dataset where each of the two classes (positives and negatives) exhibit a multi-modal

distribution in the feature space.

In the presence of a multi-modal distribution of instances within the two classes, one

possibility is to learn a single non-linear classifier that discriminates between all positive

and negative modes in the data. However, learning such a classifier is difficult especially

in scenarios where certain pairs of positive and negative modes have higher degrees of

overlap in the feature space as compared to others. The presence of such overlapping

34
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Figure 4.1: An illustrative example showing multi-modality in the distribution of the
two classes.

pairs can impact the performance of the single classifier over other modes in the data

that are reasonably separable in the feature space. In other words, since the properties

of the desired classification boundary can vary differently across different modes of the

positive and negative classes, learning a single classifier is difficult. Furthermore, the

learning of a single classifier can be biased towards certain modes in the data that have

been favorably represented in the training set, resulting in improper learning of the

classifier over modes that have been under-represented during training. This motivates

the need for decomposing the learning of a single classifier into the learning of different

classifiers for different groups of positive and negative modes.

Recently, a number of machine learning techniques have been introduced for address-

ing various forms of heterogeneity in the data, e.g. heterogeneity among the instances

(multi-instance learning) or heterogeneity among the views (multi-view learning). How-

ever, none of the existing heterogeneous machine learning approaches are suitable for

dealing with multi-modality within the classes. In fact, techniques that appear closest to
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handling multi-modality within the classes include multi-class classification techniques,

since the problem of learning classifiers for different groups of positive and negative

modes can be translated as a multi-class classification problem, where every positive

or negative mode corresponds to a different sub-class. As an example, clustering-based

techniques for decomposing the two classes into sub-classes, and then employing multi-

class classifiers for discriminating between the different sub-classes has been explored

in [33,34]. Ensemble learning approaches for multi-class classification include the error

correcting output coding (ECOC) approach presented in [35], which learns a different

classifier to discriminate between different subsets of class labels. ECOC has been shown

to provide improvements in both the bias as well as the variance of a base classifier [36],

and a number of variants of ECOC have been proposed in the literature [37, 38]. An-

other ensemble learning approach for multi-class classification includes the pair-wise

classifiers [39], which learns a classifier for every pair of class labels and has been shown

to provide comparable performance as ECOC. A unified analysis of ECOC and the

pair-wise classifiers was presented in [40].

However, existing ensemble learning methods for multi-class classification would ig-

nore the bipartite nature of the sub-classes when used for a binary classification problem

where each class constitutes of multiple sub-classes. Learning a classifier that discrimi-

nates between different sub-classes belonging to the same class is irrelevant for a binary

classification problem, and the presence of such irrelevant classifiers can degrade the

performance of the ensemble of classifiers. This motivates the need for devising ensem-

ble learning methods that can take into account the bipartite nature of the positive and

negative modes, which is unique to binary classification problems with multi-modality

within the classes. The resulting classifier ensemble can also have the advantage of

discarding classifiers for pairs of positive and negative modes that have a high degree of

overlap in the feature space, differentiating it from existing ensemble learning methods

for multi-class classification.

It should be noted that existing ensemble learning methods for binary classification

use random partitions of the input space for learning ensemble classifiers [41,42] and do

not take into account the multi-modal structure within the two classes. As an example,

bagging makes use of bootstrap samples of training instances for learning every classifier,
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as opposed to performing a stratified sampling of training instances using their multi-

modal structure. In contrast, we are interested in using the multi-modal structure of

the two classes, as opposed to random samples, for learning ensemble classifiers. This

would help in ensuring adequate representation of every mode in the learning of the

classifier ensemble, along with maintaining diversity among the classifiers. Additionally,

by learning classifiers for different subsets of positive and negative cluster labels, we

attempt at capturing the local properties of the desired classifier in different regions of

the feature space, in accordance with the multi-modality of the data.

In this thesis, we present a generic ensemble learning framework for binary classi-

fication with multi-modality within the classes. We compare the performance of the

proposed methods with baseline approaches on a synthetically generated dataset and

a real-world application of global lake monitoring using remote sensing datasets. We

are able to demonstrate that the proposed approaches are able to provide significant

improvements in classification performance as compared to learning a single classifier or

using traditional ensemble learning techniques, over a broad range of base classification

algorithms. The remainder of the chapter is organized as follows. Section 4.2 discusses

related work that is relevant to this chapter. 4.3 describes the proposed mode-specific

ensemble learning approach. Section 4.4 presents experimental results on a global sur-

face water monitoring data set. Section 4.5 provides a discussion of the results. Section

4.6 includes concluding remarks and discusses directions for future work.

4.2 Related Work

The presence of heterogeneity within the two classes leads to differences in the charac-

teristics of instances in different regions of the feature space. This requires the learning

of classification models that can adapt themselves in different regions of the feature

space, in lieu of the multi-modal distribution of the two classes. Traditional classifi-

cation approaches that exhibit this property by learning different classification models

in different sub-regions of the feature space include k-nearest neighbor (KNN) based

classifiers, decision trees, and rule-based methods. However, KNN based approaches

are susceptible to the fallibility of distance functions, especially in the presence of a

large number of attributes. On the other hand, decision trees and rule-based techniques
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can exhibit high model complexity and thus are prone to over-fitting. This limits the

usability of existing classification approaches in scenarios that involve high degree of

heterogeneity within each of the two classes.

There exists a rich body of literature on ensemble learning methods for binary clas-

sification problems [41–43]. The underlying principle of ensemble classifiers is to use

a diverse set of weak learners, such that their aggregate response is closer to the true

response than any of the individual responses of the weak learners. Ensemble learning

methods have been shown to provide promising improvements in classification perfor-

mance over a broad range of base classifiers. Popular techniques for ensemble learning

include bagging [44], boosting [43], and random forests [45].

Ensemble learning approaches for multi-class classification problems, include the

Error correcting output coding (ECOC) approach presented in [35], which learns a

different classifier to discriminate between different subsets of class labels. ECOC has

been shown to provide improvements in both the bias as well as the variance of a base

classifier [36], and a number of variants of ECOC have been proposed in the literature

[37, 38]. As an alternate ensemble learning approach for multi-class classification, the

pair-wise classifiers [39] learns a classifier for every pair of class labels, which has been

shown to provide comparable performance with ECOC. A unified analysis of ECOC

and the pair-wise classifiers was presented in [40].

Supervised learning approaches that have made use of unsupervised techniques for

learning the structure in the training data have been explored in [33, 34, 46, 47]. These

methods involve the use of clustering-based techniques for decomposing the two classes

into sub-classes, and then employ multi-class classifiers to discriminate between the

different sub-classes.

4.3 Approach

The proposed ensemble learning framework comprises of the following three compo-

nents: (i) extracting multi-modal structure within the two classes, (ii) constructing an

ensemble of binary classifiers using the learned multi-modal structure in the data, and

(iii) combining the responses from ensemble classifiers in order to assign binary labels

to test instances. We discuss each of the three components in detail in the following
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subsections:

4.3.1 Learning the Multi-modal Structure

Since the information about the multi-modal structure of the two classes is not explicitly

known, it is important to learn the multi-modal distribution of the two classes from the

training dataset. This can be achieved by clustering the training instances belonging to

each of the two classes separately, as proposed in [33]. This can be formally described

as follows.

Let the training dataset be represented as D = {(xi, yi)}n1 , where xi ∈ Rd is a d-

dimensional feature vector and yi ∈ {−1,+1} is the binary response label. Let this

training dataset constitute of nP positive instances, XP = {xi | yi = +1}nP
1 , and nN

negative instances, XN = {xi | yi = −1}nN
1 . Using a suitable clustering strategy, we

can cluster XP into kP clusters such that the cluster label of a positive training instance

can be given as ci ∈ {P1, ..., PkP }. Similarly, we can cluster XN into kN clusters such

that the cluster label of a negative training instance can be given as ci ∈ {N1, ..., NkN }.
It must be noted that the choice of the clustering technique and the number of

clusters used for representing the multi-modality is dependent on the target application.

We thus provide a generic framework for ensemble learning that is not tied to a specific

clustering strategy but instead can be used in conjunction with any reasonable clustering

strategy that captures the multi-modality within the classes. We used Gaussian mixture

model (GMM) clustering as the preferred clustering strategy in this chapter.

4.3.2 Constructing Classifier Ensemble

In order to learn classifiers that discriminate between different subsets of positive and

negative modes in the data, we need to selectively sample training instances that belong

to the cluster labels being considered by a classifier. We present a generic framework

for ensemble construction using a similar analysis presented in [40] on constructing en-

sembles for multi-class classification. Our objective for ensemble construction can be

formulated as designing a coding matrix, M ∈ {−1, 0,+1}(kP+kN )×m, which encapsu-

lates information about the subsets of cluster labels participating in the learning of

every classifier. The rows of M correspond to the positive and negative cluster labels,
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the columns correspond to the m classifiers, and the value at M(i, j) denotes whether

the ith cluster label will be used for learning the jth classifier as either the positive or

the negative class. This can be formally described as follows.

Let the assignment of every positive and negative cluster label, ci, to a row in the

coding matrix, M, be represented as A(ci), where A(ci) = i, if ci = Pi and A(ci) = i+kP ,

if ci = Ni. A(ci) thus maps the positive cluster labels to the first kP rows of M and the

negative cluster labels to the last kN rows of M. In order to learn the jth classifier, fj ,

we use training instances from cluster label, ci, only if M(A(ci), j) 6= 0. In particular,

we train fj using a subset of training instances, Dj , where,

Dj = {(xi, ti) | ti = M(A(ci), j) and ti 6= 0}.

The jth column of the coding matrix, M(:, j), thus helps in assigning a binary label,

ti ∈ {−1,+1}, to every instance belonging to a cluster label that either has a +1 or

a −1 at its corresponding row position in M(:, j). fj can then be learned using Dj

given a base classification algorithm. We can further compute the accuracy of fj on Dj ,

denoted by Accj , which can be used for weighting the classifiers while combining their

responses during testing as described in Section 4.3.3.

Depending on the choice of the coding matrix, M, different strategies for ensemble

construction can be developed. We present two promising coding strategies for binary

classification with multi-modal data, which have their roots in multi-class classification

techniques and are able to incorporate the bipartite nature of the cluster labels.

Bipartite Error Correcting Output Coding (BECOC)

Similar in essence to the error correcting output coding (ECOC) techniques used for

multi-class classification problems, we propose Bipartite ECOC (BECOC) approach

that exploits the bipartite nature of the cluster labels. The objective of BECOC is to

design a coding matrix, M, such that:

M(i, j) ∈

{0,+1}, if i ≤ kP .

{−1, 0}, if i > kP .

This ensures that instances belonging to positive cluster labels are treated as positive
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instances, while instances belonging to negative cluster labels are treated as negative

instances in the learning of every classifier. Hence, no classifier discriminates between

cluster labels belonging to the same class. Furthermore, it is desirable for M to satisfy

the following two properties of ECOC for maximum error-correcting properties:

• Column Separation The columns of M should be different from each other. This

is important for ensuring sufficient diversity and limited redundancy among the

classifiers. It can be measured as the maximum Hamming distance between any

two columns in M.

• Row Separation The rows of M for the positive cluster labels should be different

from the rows of M for the negative cluster labels. This is required for ensur-

ing effective error-correcting properties of the classifier ensemble, which will be

discussed in more detail in Section 4.3.3. It can be measured as the maximum

Hamming distance between rows corresponding to positive and negative cluster

labels in M.

Devising an optimal coding matrix for ECOC with maximum row and column sep-

aration is an NP-complete problem, and choosing the number of columns of M is an

open problem [48,49]. Using the suggestions presented in [40], we chose an M that pro-

vided the maximum row and column separation out of 1000 randomly generated coding

matrices. Furthermore, we used the suggested choice of m to be d15 log2(kP + kN )e in

all our implementations.

Bipartite One-vs-One (BOVO)

BOVO involves the learning of a different classifier for every pair of positive and negative

cluster labels. This corresponds to designing a coding matrix, M, such that for every

pair of positive and negative cluster labels, (ci, cj), there exists a column l in M such

that:

M(k, l) =


+ 1, if k = A(ci).

− 1, if k = A(cj).

0, otherwise.
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4.3.3 Combining Ensemble Responses

Having learned an ensemble of m classifiers, {f1, ..., fm}, we can apply the ensemble

of classifiers at a test instance, x, to obtain a vector of ensemble responses, f(x) =

[f1(x), ..., fm(x)]. One possibility for combining the ensemble responses is to compute

the aggregate ensemble response and use the sign of the aggregate response for predicting

the class label, similar to existing ensemble learning methods for binary classification.

However, in the presence of multi-modality within the two classes, every ensemble clas-

sifier specifically discriminates between different groups of positive and negative cluster

labels, and hence is designed for predicting different groups of cluster labels as opposed

to their associated class labels. In scenarios where the cluster labels within the same

class are highly diverse in nature, taking an aggregate of the classifier responses would

lose information about the cluster labels predicted by an ensemble classifier. This moti-

vates the need for combining classifier responses without loosing information about the

cluster labels predicted by every classifier, similar to the methods used for combining

ensemble responses in multi-class classification literature.

For every cluster label ci, the corresponding row of ci in M represents the optimal

vector of classifier responses for a test instance that belongs to ci. We can thus associate

the loss of a cluster label ci at a test instance x, termed as Loss(ci,x), in terms of the

agreement between the corresponding row of ci in M and the response vector, f(x).

This can be defined as follows:

Loss(ci,x) =

m∑
j=1

αjL(zj),

where zj = tifj(x), and ti = M(A(ci), j).

Here, zj measures the disagreement between the response of the jth classifier on x,

Base Classification Algorithm Loss Function, L(z)

Support Vector Machine max{1− z, 0}
AdaBoost e−z

Bagging (1− sign(z))/2
Decision Trees (1− sign(z))/2
Random Forests (1− sign(z))/2

Table 4.1: Loss functions used for decoding
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fj(x), and the class label, ti = M(A(ci), j), assigned to ci while learning the jth classifier.

It can be observed that zj is positive when the signs of both ti and fj(x) agree, whereas

zj is negative when ti and fj(x) disagree. Further, L(z) is an appropriate loss function

that penalizes disagreements between ti and fj(x), depending on the choice of the base

classification algorithm. Table 4.1 provides a list of the loss functions used for different

choices of base classification algorithms presented in this chapter. Finally, αj is the

weight associated with each ensemble classifier computed as follows:

αj =

 Accj , if Accj > 0.5.

0, otherwise.

where Accj is the accuracy of fj , computed over its training set, Dj . Using αj thus

helps in discarding classifiers that have been trained poorly, possibly due to the presence

of overlaps among the involved cluster labels in the feature space. We can then choose

ĉi as the cluster label which provides the minimum loss, ĉi = arg min Loss(ci,x). The

predicted label, ŷ at a test instance x is then given as

ŷ =

+1, if ĉi ∈ {P1, ..., PkP }.

−1, if ĉi ∈ {N1, ..., NkN }.

It can be observed that having sufficient separation among the rows of the coding

matrix for cluster labels belonging to opposite classes ensures that the loss of the true

cluster label at an instance is sufficiently smaller than the loss of the cluster labels

belonging to the other class, even after incurring few errors in f(x). Row separation

thus helps in imparting robust error-correcting properties to BECOC, making them

resilient to errors in the ensemble responses.

4.4 Experimental Results

We used support vector machines (SVMs) using linear kernel and decision trees as the

base classifiers for the ensemble learning methods. We further considered AdaBoost,

bagging, and random forests as base classification algorithms in order to compare the

proposed ensemble learning methods with traditional ensemble learning techniques. The
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trade-off parameter of SVM was chosen to be 0.5 in all our experiments. We considered

pruned decision trees with maximum number of internal nodes equal to 30, in order to

prevent over-fitting of decision trees. The sizes of the ensembles for AdaBoost, bagging,

and random forests were chosen to be 50 each, while decision trees were used as base

classifiers for AdaBoost and bagging. The number of positive and negative clusters were

kept equal in all experiments (kP = kN = k). We used the classification error rate as

the evaluation metric for comparing the performance of classification algorithms.

4.4.1 Results on Synthetic Datasets

We used the synthetic dataset shown in Figure 4.1, which is representative of real-world

classification scenarios involving multi-modality within the classes. Each of the two

classes comprised of instances generated in a 2-dimensional feature space from 10 bi-

variate Gaussian distributions, with varying means and variances. The prior probability

of each of the 10 Gaussian distributions in each class was kept equal. We used 200 ran-

domly sampled instances for training, and a separate set of 20, 000 instances for testing,

where the random sampling procedure was repeated 10 times.
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Figure 4.2: Comparison of ensemble learning methods on the synthetic dataset for
different base classifiers, using k = 10 positive and negative clusters.
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Figure 4.3: Varying clustering choices on the synthetic dataset, with SVM as the base
classifier and BOVO as the ensemble learning method.

Figure 4.2 compares the performance of proposed ensemble learning methods, BE-

COC and BOVO, with single classifier for different choices of base classification algo-

rithm: SVM and decision trees. The number of positive and negative clusters, k, was

chosen to be 10. It can be observed that both BECOC and BOVO show better per-

formance than learning a single classifier for both choices of the base classifier. This

demonstrates the importance of using ensemble learning methods in the presence of

multi-modality within the two classes, as opposed to learning a single classifier. Fur-

thermore, BOVO shows better performance than BECOC on using SVM as the base

classifier, while BECOC provides better performance than BOVO on using decision

trees as the base classifier.

We next study the impact of varying the number of clusters used to represent the

multi-modality within the two classes on the performance of an ensemble classifier.

Figure 4.3 shows the performance of the BOVO classifier, learned using SVM as the

base classifier, for different choices of the number of clusters, k = 5, 10, 20. It can be

observed that the error rate of BOVO is higher for k = 5 than k = 10, which implies that

the multi-modality in the synthetic data (generated using 10 Gaussian distributions) is

not being fully explained by 5 clusters, resulting in an inferior learning of the ensemble

classifiers. However, increasing the number of clusters from k = 10 to k = 20 further
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leads to reduction in the error rate. This shows that over-clustering of the two classes

does not significantly impact the performance of BOVO for k = 20.

Next, in order to assess the meaningfulness of the clustering step in the construction

of the ensemble classifiers, we randomly assigned every training instance to either of

the k randomly generated clusters, resulting in an artificial partitioning of the data into

k random clusters. Figure 4.3 shows the performance of BOVO using random clusters

instead of using clusters learned by GMM. It can be observed that the error rate of

BOVO using k = 5 random clusters is very close to the error rate of a single base

classifier, SVM. However, the error rate of BOVO starts reducing as the number of

clusters is increased from k = 5 to k = 20. This can be attributed to the fact that

learning an ensemble of classifiers where each classifier uses a random subset of the data

for training (given a random clustering) is similar in essence to bagging. Furthermore, it

can be observed from Figure 4.3 that using a meaningful clustering technique, such as the

GMM clustering, is able to provide significantly lower error rates than using randomly

assigned clusters (similar to bagging). This shows the strength of using information

about the multi-modality within the two classes for ensemble construction, as opposed

to using bootstrap samples of training instances.

4.4.2 Results on Global Lake Monitoring Dataset

We consider a real-world application of global lake monitoring using remote sensing

datasets. Lakes are important natural resources that act as major sources of freshwater,

which is essential for supporting a variety of human needs, such as drinking, agriculture,

and industrial needs [50]. Monitoring the extent and growth of lakes at a global scale is

thus important for effective water management. To this effect, remote-sensing datasets

provide timely and cost-effective observational data of lakes at a global scale. We use the

optical remote sensing dataset obtained via the MODerate-resolution Imaging Spectora-

diometer (MODIS) instrument onboard NASA’s Terra and Aqua satellites. This data

product (MCD43A4) is publically available through the MODIS repository [51] at 500

meter resolution for every 8 days, starting from Feb 18, 2000. This dataset has seven

reflectance bands, covering visible, infrared, and thermal parts of the electromagnetic

spectrum, which can be used as features for discriminating between water and land.

Ground truth information about the extent of lakes was obtained via the Shuttle
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Figure 4.4: The 33 MODIS tiles (highlighted as red boxes) that were used for construct-
ing the evaluation dataset.

Radar Topography Mission’s (SRTM) Water Body Dataset (SWBD), which provides a

mapping of all water bodies for a large fraction of the Earth (60o S to 60oN) for a short

duration of 11 days around Feb 18, 2000 (the closest date at MODIS scale). The SWBD

dataset, publically available through the MODIS repository as the MOD44W product,

thus provides a label of land or water for every MODIS pixel at 500m for a single date,

Feb 18, 2000.

We consider a global set of 180 lakes collected from 33 different MODIS tile divi-

sions across the globe (highlighted in red in Figure 4.4) as our evaluation dataset. For

each lake, we created a buffer region of 20 pixels at 500m resolution around the periph-

ery of the water body, and used the buffer region as well as the interior of the water

body to construct the evaluation dataset. After removing instances at the immediate

boundaries of the water bodies for which the ground truth might not be accurate and

ignoring instances with missing values, the evaluation set comprised of ≈ 2.6 million

data instances, where every instance had an associated binary label of water (positive)

or land (negative). This dataset approximately had 2.8 times more negatives than the

positives. We randomly sampled 2000 positive instances and 2000 negatives instances

for training, while the remainder of the evaluation data was used for testing. We re-

peated this balanced random sampling procedure 10 times. The number of clusters used

to represent the multi-modality within the two classes was chosen as k = 10.
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Figure 4.5: Scatter plots of mean error rates at 180 lakes using SVM as the base classifier.
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Figure 4.6: Scatter plots of mean error rates at 180 lakes using decision trees as the
base classifier.

In order to compare the performance of classification algorithms at the level of

individual lakes, we computed the test error rate of each algorithm over every lake indi-

vidually. Figure 4.7 presents histograms of the mean error rates at every lake, averaged

over 10 iterations, using SVM (Figure 4.7(a)) and decision trees (Figure 4.7(b)). It can

be observed that a majority of lakes have error rates lower than 0.2 for both SVM and

decision trees. We thus explore differences between classification algorithms over lakes

with mean error rates lower than 0.2, using the scatter plots shown in Figure 4.5 and

Figure 4.6, using SVM and decision trees as base classifiers respectively. Every point

on a scatter plot involving algorithm i and algorithm j represents the mean error rate

of algorithm i and algorithm j at a particular lake. The red line in each of the scatter

plots shows the plot of y = x for ease of comparison.

It can be observed that BECOC and BOVO show better performance than single
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Figure 4.7: Histogram of mean error rates of 180 lakes, averaged over 10 iterations,
using Single SVM and Single Decision Tree.

classifiers over a majority of lakes, for both SVMs and decision trees. Further, the

improvements in performance of decision trees are smaller but more consistent than

SVMs, owing to the non-linear nature of decision trees that makes it better suited for

handling multi-modality within the classes. In order to assess the statistical significance

of the lake-wise differences between classification algorithms, we computed the p-value

of an Algorithm i showing lower mean error rates than Algorithm j over 180 lakes, by

using one-tailed Wilcoxon signed rank tests. We denote this as the p-value of Algorithm

i over Algorithm j, for different choices of (i, j) in Table 4.2, over a broad range of

base classifiers. Differences that are significant with a p-value lower than 0.06 have been

highlighted in bold.

BECOC can be seen to provide statistically significant improvements in the perfor-

mance of single classifiers over all choices of base classifiers. Its ability to improve the

performance of existing binary ensemble learning methods, such as AdaBoost, random

forests, and bagging, highlights the importance of using the multi-modal structure in

learning classifier ensembles. On the other hand, BOVO can be seen to provide bet-

ter performance than the single classifier for SVM, decision trees, and AdaBoost, but

shows poorer performance than the single classifier when used with random forests and

bagging. Furthermore, the performance of BOVO is significantly better than BECOC

for SVMs, but is worse than BECOC for decision trees, random forests, and bagging.
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This highlights that BOVO shows poor performance when the base classifier is complex,

while it is best suited for linear base classifiers. This phenomena has been discussed

in detail in Section 4.5, using an illustrative example. In contrast, BECOC is able to

provide robust improvements in the classification performance over a broad range of

base classifiers.

Base BECOC over BOVO over Single over Single over BECOC over BOVO over
Classifier Single Single BECOC BOVO BOVO BECOC

SVM 1.82× 10−8 4.34× 10−9 1 1 1 1.66× 10−7

Decision Trees 5.09× 10−29 3.88× 10−26 1 1 2.65× 10−23 1
AdaBoost 2.42× 10−19 7.87× 10−5 1 1 0.19 0.81
Random Forests 9.8× 10−4 1 1 1.43× 10−7 7.49× 10−14 1
Bagging 0.054 1 0.95 6.70× 10−8 1.61× 10−13 1

Table 4.2: Table of p-values for Algorithm i showing lower mean error rates than Algo-
rithm j over 180 lakes, represented as the p-value of Algorithm i over Algorithm j, for
different choices of the base classifier.

4.5 Discussion of Results

We present a discussion of the differences in classification algorithms using an illustrative

set of lakes. Figure 4.8 compares the performance of BOVO and single classifier using

SVM as the base classifier at Lake Lac La Loche in Saskatchewan, Canada. Figure

4.8(a) shows a false color composite (using the 7th, 5th, and 4th bands, as red, green

and blue colors respectively) of the test instances in the lake, while Figure 4.8(b) shows

the ground truth at this lake, where blue and green pixels represent water and land

classes respectively. The white pixels represent instances that were excluded from the

test set. Figures 4.8(c) and 4.8(d) respectively show the errors of BOVO and single

classifier as red pixels. It can be observed that some patches of land around the water

body are covered by snow, which appear to be visually similar to water in the false

color composite. This shows the presence of a variety in the land patches that leads to

the poor performance of a single SVM classifier. However, BOVO is able to take into

account the presence of multiple varieties of land and water bodies and is thus able to

provide significant reduction in the error rate as compared to the single classifier.

Figure 4.9 compares the performance of BECOC and single classifier using decision

trees as the base classifier at Walker Lake in Nevada, USA. It can be seen that the errors
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(a) False color composite (b) Ground truth

(c) Errors of BOVO (red) (d) Errors of Single (red)

Figure 4.8: Comparing the performance of BOVO and Single at Lac La Loche Lake,
Saskatchewan, Canada, using SVM as the base classifier. Error rate of BOVO = 0.05;
Error rate of Single = 0.32.

of the single decision tree are randomly distributed in space, indicating over-fitting of

decision trees. On the other hand, BECOC is able to provide a robust classification

performance with significantly fewer errors than the single classifier.

Since the BECOC approach benefits from the error-correcting properties of ECOC,

it is robust to the presence of noise or a small number of errors in the classification

responses. On the other hand, BOVO is more susceptible to the presence of noise in the

training data, especially when the base classifier is non-linear and complex. For example,

in the presence of a cluster in the training data that comprises of noisy instances, BOVO

would attempt to learn pair-wise classifiers to specifically discriminate the noisy cluster

from the other classes, and thus will be prone to over-fitting when the base classifier
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(a) False color composite (b) Ground truth

(c) Errors of BECOC (red) (d) Errors of Single (red)

Figure 4.9: Comparing the performance of BECOC and Single at Walker Lake, Nevada,
using Decision Trees as the base classifier. Error rate of BECOC = 0.01; Error rate of
Single = 0.05.

is complex. In contrast, the performance of BECOC is robust to the presence of a

few noisy instances, since every classifier discriminates between a subset of positive

and negative clusters. However, this results in a lower model capacity of BECOC in

discriminating between arbitrary pairs of positive and negative modes. Hence, it is

the trade-off between the model complexity and model capacity of BOVO and BECOC

that determines their suitability for different choices of base classifiers. This can be

illustrated by comparing the performance of BECOC and BOVO at Saint Lawrence

River in Montreal, Canada, shown in Figure 4.10, using bagging as the base classifier.

It can be seen that BOVO is making errors over a large patch of land that has a

darker signature in the false color composite than other land patches. In the presence

of noisy training instances with similar feature values labeled as water, it is quite likely
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(a) False color composite (b) Ground truth

(c) Errors of BECOC (red) (d) Errors of BOVO (red)

Figure 4.10: Comparing the performance of BECOC and BOVO at Saint Lawrence
River, Montreal, Canada, using Bagging as the base classifier. Error rate of BECOC =
0.03; Error rate of BOVO = 0.05.

for BOVO to learn pair-wise classifiers that discriminate between the cluster of noisy

training instances and other land classes, leading to poor classification performance.

4.6 Conclusions and Future Work

We study the importance of using information about the multi-modality within the two

classes in ensemble learning for binary classification. Inspired by the existing ensemble

learning approaches for multi-class classification, we develop ensemble learning methods

for binary classification that make use of the bipartite nature of the positive and negative

modes in the data. Constructing classifier ensembles using information about the the

multi-modal structure of the two classes, as opposed to using random samples, helps

in ensuring sufficient diversity among the classifiers and adequate representation of the

data modes in the learning of the classifier ensemble. We demonstrate the effectiveness

of the ensemble learning methods presented in this chapter in comparison with learning

a single classifier or using traditional ensemble learning techniques over a synthetic

dataset and a real-world application involving global lake monitoring.
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There are a number of aspects of the proposed ensemble learning methods that

need further investigation, presenting ample opportunities for future research. It can be

observed that BECOC shows better performance than BOVO when decision trees are

used as the base classifier, while BOVO shows better performance than BECOC when

SVM is used as the base classifier. The sensitivity of the ensemble classifiers on the choice

of the base classifier and the presence of noise in the training set needs to be theoretically

understood. The usability of the generic ensemble learning framework presented in this

chapter needs to be explored with varying choices of clustering techniques, number

of clusters, and base classifiers. Furthermore, applications of the proposed methods on

other real-world datasets involving heterogeneity within the classes need to be explored.



Chapter 5

Adapting Predictions using

Group-level Properties of Test

Instances

5.1 Introduction

As discussed in the previous chapter, a number of binary classification problems com-

monly experience population heterogeneity within the two classes, which is characterized

by the presence of multiple modes of each of the two classes in the feature space. Figure

5.1 shows a schematic illustration of a classification problem involving multiple modes

of the positive and negative classes. In such situations, different pairs of positive and

negative modes can show varying degrees of overlap in the feature space. This is rep-

resented in Figure 5.1 as edges with varying thickness, where the thickness of an edge

reflects the degree of overlap between the pair of modes. Learning a single classifier that

discriminates between all varieties of positive and negative modes is then challenging,

especially in the presence of highly overlapping pairs of modes. We denote this phe-

nomena as class confusion and the pair of modes participating in a class confusion as

confusing modes in the remainder of this chapter.

We consider binary classification problems where the classification has to be per-

formed over different test scenarios, and every test scenario involves only a subset of all

55
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Figure 5.1: A schematic illustration of multi-modality within the classes, where each
class comprises of three modes. Thickness of an edge shows the degree of overlap between
the pair of modes.

the positive and negative modes in the data. As an illustrative example, in the context

of classifying locations on the Earth as water or land, a test scenario would comprise of

instances observed in the vicinity of the same water body and at the same time-step. In

such a setting, different pairs of positive and negative modes may emerge or disappear

in different test scenarios, and even though some modes may be participating in class

confusion, the subset of modes appearing in a given test scenario can be considered

to be locally separable among each other. This shows a promise in using information

about the context of a test scenario for overcoming class confusion.

To illustrate the importance of using the local context of a test scenario in the

learning of a classifier, consider the toy dataset shown in Figure 5.2. This dataset

comprises of instances belonging to two classes where each class comprises of two distinct

modes, shown as colored circles in Figure 5.2. It can be observed that modes P1 and N1

are easily separable in the feature space, whereas modes P2 and N2 show class confusion.

Assuming that we have access to a training dataset with adequate representation from

every mode in the data, let us consider learning pair-wise classifiers, Ci,j , to distinguish

between every pair of positive and negative modes, Pi and Nj . This would result in

an ensemble of classifiers which can then be applied on any unlabeled instance in a

test scenario to estimate its class label. Now let us consider a test scenario involving

instances from P1 and N1, denoted by S1,1. Since P1 and N1 are easily separable in
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the feature space and both P1 and N1 do not participate in any class confusion, test

instances in S1,1 would be correctly labeled even by a single classifier that discriminates

between all positive and negative modes.

However, if we consider a test scenario S1,2 involving instances from P1 and N2,

we would notice that even though P1 and N2 are easily separable in the feature space,

the presence of class confusion between P2 and N2 would hamper the classification

performance at N2, since instances belonging to N2 can be easily misclassified to be

belonging to P2. To overcome this challenge, consider the following simplistic approach:

let us assign a relevance score to every pair-wise classifier, Ci,j , in accordance with

its likelihood of being used in the context of a test scenario. In particular, classifiers

that discriminate between modes having a higher likelihood of being observed given the

distribution of instances in a test scenario would receive higher relevance scores. Using

this approach, we can assign a relevance score to every pair-wise classifier for both test

scenarios, S1,1 and S1,2, and consider it to be either “Relevant” or “Not Relevant”,

as summarized in Table 5.1. For S1,1, the only relevant classifier would then be C1,1,

which would correctly label all test instances in S1,1. However, for S1,2, both C1,2 and

C2,2 would be considered as relevant, as the test instances in S1,2 would show high

likelihood for all the three modes, P1, P2, and N2. However, C2,2 would show poor

cross-validation accuracy on the training set, since it discriminates between a pair of

confusing modes, P2 and N2. C2,2 could thus be discarded from the set of relevant

classifiers, resulting in the only relevant classifier for S1,2 to be C1,2. C1,2 would then be

able to correctly label all test instances in S1,2, and thus avoid class confusion in this

particular situation. Note that the ability of the above simplistic scheme in overcoming

class confusion arises from the fact that the distribution of test instances belonging to

a test scenario contains reasonable information about its local context. We use this

property as a guiding principle for motivating our proposed approach.

We propose the Adaptive Heterogeneous Ensemble Learning (AHEL) algorithm that

takes into account the context of test instances belonging to a test scenario for over-

coming class confusion in certain scenarios. We demonstrate the effectiveness of our

approach in comparison with baseline approaches on a synthetic dataset and a real-

world application involving global water monitoring. The remainder of this chapter is

organized as follows: Section 5.2 provides a brief overview of related work. Section 5.3
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Figure 5.2: A toy dataset showing multi-modality within the classes, where P2 and N2

show class confusion.

Test Scenario

Classifier S1,1 S1,2
C1,1 “Relevant” “Not Relevant”
C1,2 “Not Relevant” “Relevant”
C2,1 “Not Relevant” “Not Relevant”
C2,2 “Not Relevant” “Relevant”

Table 5.1: Table summarizing whether a particular classifier, Ci,j is relevant for a par-
ticular test scenario or not.

presents the proposed approach. Section 5.4 presents experimental results. Section 5.5

includes concluding remarks and discusses directions for future work.

5.2 Related Work

The presence of multi-modality within the classes and its impact on classification perfor-

mance has been previously discussed in [52], where the concept of modes was introduced

as “small disjuncts”. The impact of overlapping modes on the performance of a classifier

has also been empirically analyzed in [53]. Furthermore, an ensemble learning approach

for binary classification was recently presented in [54], that made use of the heterogene-

ity within the classes for constructing ensembles, instead of using random partitions of
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the input data. It was shown that such an ensemble learning method is able to capture

the heterogeneity within the classes and thus result in improved classification perfor-

mance. However, none of these approaches are suitable for handling the phenomena of

class confusion by making use of the local context of a test scenario.

Existing approaches that make use of the context of test instances for adapting

its labeling decisions involve local learning algorithms, e.g. the k-Nearest Neighbor

(KNN) algorithm [55] and other concept-based local learning algorithms [56,57]. These

algorithms make use of training instances only in the local neighborhood of an individual

test instance for estimating its class label. However, none of these approaches are

designed to account for multi-modality within the classes and to incorporate information

about a group of instances belonging to a test scenario as opposed to using the locality

of an individual test instance. The use of unlabeled instances as a guide in the learning

process has also been explored by semi-supervised learning [20] and transductive learning

[58] approaches. The primary objective of such approaches is to address the paucity of

labeled data by making use of the structure in the test instances, e.g. using clustering

approaches [59]. This is different from our problem since our primary objective is to

use the unlabeled instances for inferring the classification context of a test scenario

involving confusing modes, even in the presence of sufficient training data. Another

body of research that considers adapting the learning of a classifier in the context of a

test scenario involves techniques for handling concept drift [60–62], and transfer learning

approaches [15]. However none of these approaches have explored the presence of multi-

modal distribution within each of the two classes, and are thus not directly relevant for

our problem.

5.3 Proposed Approach

Notations Let D = {(xi, yi)}n1 denote the training dataset with n labeled instances,

where xi ∈ Rd is a d-dimensional feature vector and yi ∈ {−1,+1} is its binary response

label. Let us assume that this training dataset comprises of n+ positively labeled

instances, denoted by X+ = {xi}n+

1 , and n− negatively labeled instances, denoted by

X− = {xi}n−
1 . Given this training dataset, our objective is to estimate the binary

response, y ∈ {−1, 1}, for every test instance, x, belonging to a test scenario, XS =
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{xi}s1.
We present the Adaptive Heterogeneous Ensemble Learning (AHEL) algorithm that

comprises of the following steps:

5.3.1 Learning the Multi-modality in Training Data

We assume that our training dataset, D, contains a variety of instances from all possible

positive and negative modes in the data, but explicit information about the multi-modal

structure of the two classes is not known and needs to be inferred. To achieve this, we

consider clustering the training instances belonging to each of the two classes separately,

similar to the approach used in [54]. This results in the decomposition of the positive

class, X+, into m+ clusters or modes and the negative class, X−, into m− clusters or

modes, respectively. The choice of the clustering algorithm and the number of clusters,

m+ and m−, used for representing the multi-modality within the classes depends on the

characteristics of the data. For every cluster label c, let Xc denote the set of training

instances with cluster label c, where c can either be one of the positive cluster labels,

P1 to Pm+ , or the negative cluster labels, N1 to Nm− .

We further consider every cluster label c to have an associated conditional probability

distribution, P(x|c), for every instance x ∈ Rd. This can either be available as a by-

product of the clustering algorithm or can be inferred from the distribution of instances

in Xc. As an example, we consider P(x|c) to follow a normal distribution in the feature

space with the sample mean, x̄c, as its center and with unit variance, whenever P(x|c)
is not explicitly available during the clustering process. However, it should be noted

that the choice of the probability distribution used for representing P(x|c) depends on

the target application and can be acquired via domain knowledge.

5.3.2 Constructing an Ensemble of Classifiers

We construct an ensemble of classifiers to discriminate between every pair of positive

and negative cluster labels in D, similar in essence to the Bipartite One-vs-One (BOVO)

ensemble construction strategy proposed in [54]. This ensures adequate representation

of every mode in the ensemble construction process, along with maintaining sufficient
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diversity among the classifiers. This can be contrasted with traditional ensemble learn-

ing approaches for binary classification, e.g. bagging, boosting, and random forests,

which make use of random partitions of the training data as opposed to using a strati-

fied sampling of the training instances in accordance with the multi-modal structure of

the two classes.

For every pair of positive and negative cluster labels, (Pi, Nj), we learn a classifier, fl,

to discriminate between XPi and XNj , using an appropriate choice of the base classifier.

This results in the learning of an ensemble of classifiers, {f1, . . . , fm?}, where m? =

m+ × m−. We further compute the cross-validation accuracy of every classifier, fl,

using 5-fold cross-validation on XPi and XNj , and use it as a measure of the accuracy

of fl, denoted by Acc(fl).

5.3.3 Assigning Adaptive Weights to Classifiers

For every classifier, fl, we assign it a weight, w(fl,XS), representing its importance of

being used for classification in the context of a test scenario, XS . In particular, we want

to assign higher weights to classifiers that discriminate between pairs of modes that

have a higher likelihood of being observed, given the distribution of instances in a test

scenario, XS . Such a weighting scheme is achieved as follows.

For every test instance x belonging to XS , we compute its probability of being

generated from a mode c as P(x|c). We can then assign a relevance score to every

mode c, denoted by R(c,XS), which indicates its likelihood of being observed given the

distribution of instances in XS , defined as:

R(c,XS) =
∑
x∈XS

P(x|c) (5.1)

For a classifier, fl, that discriminates between Pi and Nj , the relevance of using fl in

the context of XS , denoted by R(fl,XS), depends on the relevance of observing modes

Pi and Nj in XS , and can be estimated as:

R(fl,XS) = R(Pi,XS)×R(Nj ,XS) (5.2)
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R(fl,XS) ensures that classifiers receive high weights only if both the modes involved

in learning fl have a high likelihood of being observed in XS . Each classifier fl is

further assigned a score, α(fl), denoting its ability to differentiate between its pair of

participating modes. α(fl) can be computed as:

α(fl) =

 Acc(fl), if Acc(fl) > 0.6.

0, otherwise.

The weight of a classifier fl in the context of test scenario XS is then estimated as:

w(fl,XS) = α(fl)×R(fl,XS) (5.3)

To illustrate the usefulness of w(fl,XS) in choosing the appropriate set of classifiers,

especially in the presence of class confusion, consider a test scenario XS that involves

instances from Pc and Nnc, such that Pc shows class confusion with some other mode

Nc not present in XS . In such a situation, Pc, Nc, and Nnc would receive the highest

relevance scores in the context of XS . By taking the products of the relevance scores,

the two classifiers that would receive the highest relevance scores would then be the

ones that separate (Pc and Nc) and (Pc and Nnc). On the other hand, none of the

pair-wise classifiers separating Pc, Nc, and Nnc from some other mode, O, will have a

high relevance score, due to the low relevance score of O. The classifier separating (Pc

and Nc) will eventually receive a low weight owing to its poor cross-validation accuracy

and will be discarded. Thus, the classifier separating (Pc and Nnc) will be appropriately

selected with the highest weight, resulting in adequate classification performance even

in the presence of class confusion.

Note that our proposed weighting scheme inherently assumes that every test scenario

involves a subset of positive and negative modes that are separable among each other

but may show class confusion with other modes observed globally that are not present

in the current test scenario. It is also assumed that a test scenario involving a confusing

mode has instances from both the classes, thus requiring the use of a classifier in the

first place. Furthermore, the ability of the above weighting scheme in avoiding class

confusion hinges on the presence of atleast a single non-confusing mode in the test
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scenario, which can dominate the assignment of relevance scores to classifiers.

5.3.4 Combining Ensemble Responses

We apply the ensemble of classifiers on a test instance, x ∈ XS , to obtain a vector of

ensemble responses, f(x) = [f1(x), ..., fm?(x)]. For each ensemble response, fl(x), we

compute its loss w.r.t. a cluster label, c, as follows:

Loss(c, fl) =


L(+fl), if c = Pi.

L(−fl), if c = Nj .

0, otherwise.

where, Pi and Nj are the positive and negative cluster labels used for learning fl, and

L(z) is an appropriate loss function, e.g. the hinge loss function, L(z) = max{1− z, 0},
commonly used with support vector machines (SVMs) as base classifiers. The combined

loss of all ensemble responses w.r.t a cluster label c is then defined as:

Loss(c, f(x)) =

m?∑
l=1

w(fl,XS)Loss(c, fl) (5.4)

We choose ĉ as the cluster label which provides the minimum loss, ĉ = arg minc Loss(c, f(x)).

The test instance x is then classified as positive if ĉ is a positive cluster label, otherwise

it is classified as negative.

5.4 Experimental Results

We compared the performance of AHEL with the baseline approach of learning a single

non-linear classifier, termed as the GLOBAL approach. We also compared our results

with the Bipartite One-vs-One (BOVO) ensemble learning approach that was presented

in [54], which is able to handle heterogeneity within the classes but is unable to adapt its

learning using the local context of a test scenario. In order to compare our performance

with local learning algorithms, we considered the k-nearest neighbor (KNN) algorithm

with k = 5 as a baseline approach. Furthermore, in order to emphasize the importance

of using the distribution of an entire group of instances belonging to a test scenario as
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Figure 5.3: Synthetic dataset with 10 positive modes: P1 to P10, and 10 negative modes:
N1 to N10, with varying degrees of class confusion among pairs of modes.

opposed to an individual test instance, we considered a variant of our algorithm that

uses instance-specific information for assigning weights to ensemble classifiers, termed as

the Instance-specific Heterogeneous Ensemble Learning (IHEL) algorithm. Specifically,

IHEL considers the relevance of using a classifier fl on a test instance x as R(fl,x) =

max(P(x|Pi),P(x|Nj)), where fl discriminates between Pi and Nj . IHEL thus follows

the same formulation as AHEL, except for the fact that it uses R(fl,x) in place of

R(fl,XS).

We used support vector machines (SVMs) with radial basis function (RBF) kernel

as the base classifier for the GLOBAL approach and all ensemble learning methods used

in this chapter. The optimal hyper-parameters of SVM were chosen using 5- fold cross-

validation on the training set in every experiment. The number of positive and negative

clusters were kept equal in all experiments (m+ = m− = m). The classification error

rate was used as the evaluation metric for comparing the performance of classification

algorithms in every experiment.
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Figure 5.4: Comparing classification performance on synthetic dataset.

5.4.1 Results on Synthetic Dataset

We considered the synthetic dataset shown in Figure 5.3, which comprises of 10 positive

and 10 negative modes, where every mode is generated using a bi-variate Gaussian

distribution. Note that some pairs of modes in this dataset are easily separable (e.g. P7

and N7), while others show a high degree of class confusion (e.g. P1 and N1). These

synthetic modes are representative of the variety of positive and negative modes that are

experienced in real-world classification problems. We randomly sampled 200 instances

each from every positive and negative mode for constructing the global training dataset.

To simulate a variety of test scenarios, we randomly sampled 1000 instances each from

every pair of positive and negative modes, Pi and Nj , to construct 100 test scenarios,

Si,j . The random sampling procedure for obtaining the training and test sets was

repeated 10 times.

Figure 5.4 compares the error rates of competing classification algorithms on the

overall test set, comprising of instances from all possible 100 test scenarios. The bi-

secting K-means (BKM) algorithm [29] was used as the preferred clustering strategy

for BOVO, IHEL, and AHEL, with varying number of clusters, m. It can be seen that

both GLOBAL and BOVO have error rates close to 0.15, since they are unable to incor-

porate the local context of test scenarios for overcoming class confusion. Furthermore,

techniques that use instance-specific context of individual test instances, namely KNN
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Figure 5.5: Varying the clustering strategy used in AHEL.

and IHEL, show no significant improvement than GLOBAL. In contrast, AHEL shows

a significant reduction in the error rate for m ≥ 10 when compared with all the baseline

approaches, since it uses the overall distribution of instances belonging to a test scenario

for adapting its learning.

Figure 5.5 compares the performance of AHEL using varying clustering algorithms

and number of clusters (m) used to represent the multi-modality within the classes.

It can be seen that the performance of AHEL is initially poor for m = 5 because the

clustering is unable to capture the heterogeneity within the classes, resulting in under-

clustering, which degrades the performance of AHEL. However, as m is increased from 5

to 20, AHEL is able to adequately capture the heterogeneity within the classes and thus

show drastic improvements in classification performance for all clustering algorithms.

Note that the the performance of AHEL using Bisecting K-means is better than that

of AHEL using K-means and Gaussian Mixture Model (GMM) clustering for m ≥ 10,

due to the tendency of K-means and GMM clustering to merge larger clusters and

thus exhibit under-clustering. However, the performance of AHEL does not deteriorate

even in the presence of over-clustering as m is increased from 10 to 20. Instead, the

variance of the error rates of AHEL keeps decreasing as m is increased beyond 10,

demonstrating the robustness of AHEL even with a large number of ensemble classifiers.

Figure 5.5 also shows that the performance of AHEL is significantly better when a
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meaningful clustering strategy is used (e.g. BKM, K-means, and GMM), instead of using

an artificial partitioning of the data into random clusters, demonstrating the utility

of using information about the multi-modality within the two classes while learning

classifier ensembles.

5.4.2 Global Water Monitoring Results

We consider a real-world application of AHEL for monitoring water bodies at a global

scale using remote sensing variables. Monitoring water bodies is important for effective

water management and for understanding the impact of human actions and climate

change on water bodies. To this end, remote sensing variables capture a variety of

information about the Earth’s surface that can be used for labeling every location on

the Earth at a given time as water or land (binary classes). However, the presence of a

rich variety of land and water categories that exist at a global scale makes it challenging

to perform global water monitoring. There is an opportunity to overcome this challenge

by using the local context of a test scenario, involving test instances observed in the

vicinity of the same water body at the same time-step.

We used the seven reflectance bands collected by the MODerate-resolution Imaging

Spectoradiometer (MODIS) instruments onboard NASA’s satellites as the set of features

for classification, which are available at 500m resolution for every 8 days. Ground truth

information was obtained via the Shuttle Radar Topography Mission’s (SRTM) Water

Body Dataset (SWBD), which provides a mapping of all water bodies for a large fraction

of the Earth (60o S to 60oN), but for a single date: Feb 18, 2000. We considered a

diverse set of 99 lakes collected from different regions of the world for the purpose of

evaluation. For each lake, we created a buffer region of 20 pixels at 500m resolution

around the periphery of the water body, and used the buffer region as well as the interior

of the water body to construct the evaluation dataset. After removing instances at the

immediate boundaries of the water bodies and ignoring instances with missing values,

this evaluation dataset comprised of ≈ 1.3 million data instances, where every instance

had an associated binary label of water (positive) or land (negative). We randomly

sampled 2000 instances each from both classes to construct the global training dataset.

The remainder of the evaluation dataset was considered for testing. Since different pairs

of water and land categories appear together in different regions of the world and at
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different times, we needed to consider test scenarios involving different pairs of water

and land categories for the purpose of evaluation. To achieve this, we first clustered

the water and land classes in the test set into m = 15 clusters each using the Bisecting

K-means clustering algorithm. Every pair of water and land clusters, (Wi, Lj), was

then considered as a different test scenario, Si,j . We repeated the sampling procedure

for obtaining the training and test sets 10 times.
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Figure 5.6: Scatter plots of mean error rates of Global, BOVO, and AHEL across all
test scenarios.

Figure 5.6 presents scatter plots comparing the performance of AHEL with baseline

approaches individually across all 225 test scenarios. Every point on a scatter plot com-

pares the mean error rate of two classification algorithms on a particular test scenario,

where the red line in each scatter plot shows the plot of y = x for ease of comparison. It

can be seen that AHEL shows drastic improvements in classification performance than

GLOBAL and BOVO across a vast majority of test scenarios. In order to assess the

statistical significance of the differences in the classification performance, we computed

the p-value of AHEL showing lower mean error rate than GLOBAL and BOVO over all

225 test scenarios using one-tailed Wilcoxon signed rank tests, which came out to be

equal to 1.74× 10−25 and 2.02× 10−35 respectively. This shows that the improvements

in classification performance of AHEL are statistically significant.

We next analyze the differences in the performance of AHEL and baseline approaches

over two illustrative test scenarios, S5,1 and S10,1. Figure 5.7 compares the classification
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(a) False color composite image of water in Gariep
Dam, South Africa

(b) False color composite image of land
near Curonian Lagoon, Russia

(c) Errors of GLOBAL (shown in red) over
L1 (shown in white)

(d) Errors of AHEL (shown in red) over L1

(shown in white)

Figure 5.7: Comparing GLOBAL and AHEL at S5,1.

performance of GLOBAL and AHEL on the test scenario S5,1 involving W5 and L1.

Figure 5.7(a) shows the false color composite image (using the 7th, 5th, and 4th bands,

as red, green and blue colors respectively) of Gariep Dam in South Africa, which has

all its water instances coming from W5, shown in blue color. Figure 5.7(b) shows the

false color composite image of Curonian Lagoon in Russia, which has a portion of its

land from the land category L1, indicated as red and white pixels in Figures 5.7(c) and

5.7(d). For these instances belonging to category L1, Figures 5.7(c) and 5.7(d) show

the misclassifications (errors) of GLOBAL and AHEL respectively as red pixels. It can

be observed that GLOBAL is making errors over a large portion of L1 as compared to
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(a) False color composite image of water in
Lake Tana, Ethiopia

(b) False color composite image of land
near Burullus Lake, Egypt

(c) Errors of BOVO (shown in red) over L1

(shown in white)
(d) Errors of AHEL (shown in red) over L1

(shown in white)

Figure 5.8: Comparing BOVO and AHEL at S10,1.

AHEL. This is because L1 comprises of land instances that appear very close to shallow

water (see the false color in Figure 5.7(b)), resulting in its class confusion in the global

training set. However, the false color of W5 in Figure 5.7(a) can be seen to be very

different from that of L1 in Figure 5.7(b). Hence, in the local context of S5,1, AHEL is

able to handle the class confusion and thus show improved classification performance.

The mean error rates of GLOBAL and AHEL for S5,1 are 0.081 and 0.027 respectively.

Figure 5.8 presents a similar analysis of the performance of BOVO and AHEL for the

test scenario S10,1. The mean error rates of BOVO and AHEL for S10,1 are 0.07 and

0.019 respectively.
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5.5 Conclusions and Future Work

We consider binary classification problems where both classes show a multi-modal dis-

tribution in the feature space and the classification has to be performed over different

test scenarios, where every test scenario involves only a subset of all the positive and

negative modes in the data. We propose the Adaptive Heterogeneous Ensemble Learn-

ing (AHEL) algorithm that constructs an ensemble of classifiers to discriminate between

every pair of positive and negative modes, and uses the local context of test scenarios

for adaptively weighting the ensemble of classifiers. We demonstrate the effectiveness of

AHEL in comparison with baseline approaches on a synthetic dataset and a real-world

application involving global water monitoring. Future extensions of our work could

explore variants of our weighting scheme that can account for the imbalance among

the classes, commonly experienced in real-world classification problems. Future work

can also focus on studying the theoretical properties of AHEL, which can help in gen-

eralizing it to handle a broader family of class confusion scenarios in the presence of

multi-modality within the classes.



Chapter 6

Theory-guided Data Science

Many of the discussions in the previous chapters on learning with population hetero-

geneity was built around the use of physical knowledge to inform predictive learning

frameworks with the context of every data instance. This is part of a broader paradigm

of research explored in this thesis to systematically integrate scientific knowledge with

data science methods, for improved accuracy as well as physical consistency of the gen-

erated results. In this chapter, we build the foundations of this emerging paradigm,

termed as theory-guided data science, by describing several ways of combining scientific

knowledge with data science methods, that have started to gain attention in a variety

of scientific and engineering disciplines.

6.1 Introduction

As we enter into the era of “big data,” the scale and speed with which data science

methods are proliferating almost every application task is unprecedented. Apart from

transforming commercial industries such as retail and advertising, data science is also

beginning to play an important role in advancing scientific discovery. Historically, sci-

ence has progressed by first generating hypotheses (or theories) and then collecting data

to confirm or refute these hypotheses. However, in the big data era, ample data, which

is being continuously collected without a specific theory or hypothesis in mind, offers

further opportunity for discovering new knowledge. Indeed, the role of data science

in scientific disciplines is beginning to shift from providing simple analysis tools (e.g.,

72
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detecting particles in Large Hadron Collider experiments [63, 64]) to providing full-

fledged knowledge discovery frameworks (e.g., in bio-informatics [65] and climate sci-

ence [66,67]). Based on the success of data science in applications where Internet-scale

data is available (with billions or even trillions of samples), e.g., natural language trans-

lation, optical character recognition, object tracking, and most recently, autonomous

driving, there is a growing anticipation of similar accomplishments in scientific disci-

plines [68–70]. To capture this excitement, some have even referred to the rise of data

science in scientific disciplines as “the end of theory” [71], the idea being that the in-

creasingly large amounts of data makes it possible to build actionable models without

using scientific theories.

Unfortunately, this notion of black-box application of data science has met with

limited success in scientific domains (e.g., [72–74]). A well-known example of the perils

in using data science methods in a theory-agnostic manner is Google Flu Trends, where

a data-driven model was learned to estimate the number of influenza-related physician

visits based on the number of influenza-related Google search queries in the United

States [75]. This model was built using search terms that were highly correlated with

the flu propensity in the Center for Disease Control (CDC) data. Despite its initial

success, this model later overestimated the flu propensity by more than a factor of

two, as measured by the number of influenza-related doctor visits in subsequent years,

according to CDC data [73].

There are two primary characteristics of knowledge discovery in scientific disciplines

that have prevented data science models from reaching the level of success achieved in

commercial domains. First, scientific problems are often under-constrained in nature

as they suffer from paucity of representative training samples while involving a large

number of physical variables. Further, physical variables commonly show complex and

non-stationary patterns that dynamically change over time. For this reason, the limited

number of labeled instances available for training or cross-validation can often fail to

represent the true nature of relationships in scientific problems. Hence, standard meth-

ods for assessing and ensuring generalizability of data science models may break down

and lead to misleading conclusions. In particular, it is easy to learn spurious relation-

ships that look deceptively good on training and test sets (even after using methods

such as cross-validation), but do not generalize well outside the available labeled data.
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This was one of the main reasons behind the failure of Google Flu Trends, since the

data used for training the model in the first few years was not representative of the

trends in subsequent years [73]. The paucity of representative samples is one of the

prime challenges that differentiates scientific problems from mainstream problems in-

volving Internet-scale data such as language translation or object recognition, where

large volumes of labeled or unlabeled data have been critical in the success of recent

advancements in data science such as deep learning.

The second primary characteristic of scientific domains that have limited the success

of black-box data science methods is the basic nature of scientific discovery. While a

common end-goal of data science models is the generation of actionable models, the

process of knowledge discovery in scientific domains does not end at that. Rather, it

is the translation of learned patterns and relationships to interpretable theories and

hypotheses that leads to advancement of scientific knowledge, e.g., by explaining or

discovering the physical cause-effect mechanisms between variables. Hence, even if a

black-box model achieves somewhat more accurate performance but lacks the ability to

deliver a mechanistic understanding of the underlying processes, it cannot be used as

a basis for subsequent scientific developments. Further, an interpretable model, that is

grounded by explainable theories, stands a better chance at safeguarding against the

learning of spurious patterns from the data that lead to non-generalizable performance.

This is especially important when dealing with problems that are critical in nature and

associated with high risks (e.g., healthcare).

The limitations of black-box data science models in scientific disciplines motivate a

novel paradigm that uses the unique capability of data science models to automat-

ically learn patterns and models from large data, without ignoring the treasure of

accumulated scientific knowledge. We refer to this paradigm that attempts to inte-

grate scientific knowledge and data science as theory-guided data science (TGDS). The

paradigm of TGDS has already begun to show promise in scientific problems from di-

verse disciplines. Some examples include the discovery of novel climate patterns and

relationships [76, 77], closure of knowledge gaps in turbulence modeling efforts [78, 79],

discovery of novel compounds in material science [80–82], design of density functionals in

quantum chemistry [83], improved imaging technologies in bio-medical science [84, 85],

discovery of genetic biomarkers [86], and the estimation of surface water dynamics at
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a global scale [87, 88]. These efforts have been complemented with recent review pa-

pers [66,89–91], workshops (e.g., a 2016 conference on physics informed machine learn-

ing [92]) and industry initiatives (e.g., a recent IBM Research initiative on “physical

analytics” [93]).

This chapter attempts to build the foundations of theory-guided data science by pre-

senting several ways of bringing scientific knowledge and data science models together,

and illustrating them using examples of applications from diverse domains. A major

goal of this chapter is to formally conceptualize the paradigm of “theory-guided data

science”, where scientific theories are systematically integrated with data science models

in the process of knowledge discovery.

The remainder of this chapter is structured as follows. Section 6.2 provides an

introduction to the paradigm of theory-guided data science and presents an overview of

research themes in TGDS. Sections 6.3, 6.4, 6.5, 6.6, and 6.7 describe several approaches

in every research theme of TGDS, using illustrative examples from diverse disciplines.

Section 6.8 provides concluding remarks.

6.2 Summary of Paradigm

A common problem in scientific domains is to represent relationships among physical

variables, e.g., the combustion pressure and launch velocity of a rocket or the shape of

an aircraft wing and its resultant air drag. The conventional approach for representing

such relationships is to use models based on scientific knowledge, i.e., theory-based

models, which encapsulate cause-effect relationships between variables that have either

been empirically proven or theoretically deduced from first principles. These models

can range from solving closed-form equations (e.g. using Navier–Stokes equation for

studying laminar flow) to running computational simulations of dynamical systems (e.g.

the use of numerical models in climate science, hydrology, and turbulence modeling).

An alternate approach is to use a set of training examples involving input and output

variables for learning a data science model that can automatically extract relationships

between the variables.

As depicted in Figure 6.1, theory-based and data science models represent the two



76

Use of Data

U
s
e

 o
f 

S
c
ie

n
ti
fi
c

T
h

e
o

ry
-b

a
s
e

d
 M

o
d

e
ls

Data Science Models

Theory-guided

Data Science Models

Low High

High

Low

K
n

o
w

le
d

g
e

Figure 6.1: A representation of knowledge discovery methods in scientific applications.
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knowledge. Theory-guided data science explores the space of knowledge discovery that
makes ample use of the available data while being observant of the underlying scientific
knowledge.
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extremes of knowledge discovery, which depend on only one of the two sources of in-

formation available in any scientific problem, i.e., scientific knowledge or data. They

both enjoy unique strengths and have found success in different types of applications.

Theory-based models (see top-left corner of Figure 6.1) are well-suited for representing

processes that are conceptually well understood using known scientific principles. On

the other hand, traditional data science models mainly rely on the information contained

in the data and thus reside in the bottom-right corner of Figure 6.1. They have a wide

range of applicability in domains where we have ample supply of representative data

samples, e.g., in Internet-scale problems such as text mining and object recognition.

Despite their individual strengths, theory-based and data science models suffer from

certain deficiencies when applied in problems of great scientific relevance, where both

theory and data are currently lacking. For example, a number of scientific problems

involve processes that are not completely understood by our current body of knowledge,

because of the inherent complexity of the processes. In such settings, theory-based

models are often forced to make a number of simplifying assumptions about the physical

processes, which not only leads to poor performance but also renders the model difficult

to comprehend and analyze. We illustrate this scenario using the following example

from hydrological modeling.

Example 1 (Hydrological Modeling). One of the primary objectives of hydrology is

to study the processes responsible for the movement, distribution, and quality of water

across the planet. Some examples of such processes include the discharge of water

from the atmosphere via precipitation, and the infiltration of water underneath the

Earth’s surface, known as subsurface flow. Understanding subsurface flow is important

as it is intricately linked with terrestrial ecosystem processes, agricultural water use,

and sudden adverse events such as floods. However, our knowledge of subsurface flow

using state-of-the-art hydrological models is quite limited [94]. This is mainly because

subsurface flow operates in a regime that is difficult to measure directly using in-situ

sensors such as boreholes. In addition, subsurface flow involves a number of complex

sub-processes that interact in non-linear ways, which are difficult to encapsulate in

current theory-based models [95]. Due to these challenges, existing hydrological models

make use of a broad range of parameters in several weakly-informed physical equations.

Thus, global hydrological models tend to show poor predictive performance in describing
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subsurface flow processes [96]. In addition, they also lose physical interpretability due

to the large number of model parameters that are difficult to interpret meaningfully

with respect to the domain.

�

If we apply “black-box” data science models in scientific problems, we would notice

a completely different set of issues arising due to the inadequacy of the available data in

representing the complex spaces of hypotheses encountered in physical domains. Fur-

ther, since most data science models can only capture associative relationships between

variables, they do not fully serve the goal of understanding causative relationships in

scientific problems.

Hence, neither a data-only nor a theory-only approach can be considered sufficient

for knowledge discovery in complex scientific applications. Instead, there is a need

to explore the continuum between theory-based and data science models, where both

theory and data are used in a synergistic manner. The paradigm of theory-guided data

science (TGDS) attempts to address the shortcomings of data-only and theory-only

models by seamlessly blending scientific knowledge in data science models (see Figure

6.1). By integrating scientific knowledge in data science models, TGDS aims to learn

dependencies that have a sufficient grounding in physical principles and thus have a

better chance to represent causative relationships. TGDS further attempts to achieve

better generalizability than models based purely on data by learning models that are

consistent with scientific principles, termed as physically consistent models.

To illustrate the role of “consistency with scientific knowledge” in ensuring better

generalization performance, consider the example of learning a parametric model for

a predictive learning problem using a limited supply of labeled samples. Ideally, we

would like to learn a model that shows the best generalization performance over any

unseen instance. Unfortunately, we can only observe the model performance on the

available training set, which may not be truly representative of the true generalization

performance (especially when the training size is small). In recognition of this fact,

a number of learning frameworks have been explored to favor the selection of simpler

models that may have lower accuracy on the training data (compared to more complex

models) but are likely to have better generalization performance. This methodology,

that builds on the well-known statistical principle of bias-variance trade-off [97], can be
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described using Figure 6.2.

Truth

M1
M2

M3

Physically Inconsistent 

Models

Physically Inconsistent 

Models

Figure 6.2: Scientific knowledge can help in reducing the model variance by removing
physically inconsistent solutions, without likely affecting their bias.

Figure 6.2 shows an abstract representation of a succession of model families with

varying levels of complexity (shown as curved lines), where M1 represents the set of

least complex models while M3 contains highly complex models. Every point on the

curved lines represents a model that a learning algorithm can arrive at, given a particular

realization of training instances. The true relationship between the input and output

variables is depicted as a star in Figure 6.2. We can observe that the learned models

belonging to M3, on average, are quite close to the true relationship. However, even

a small change in the training set can bring about large changes in the learned models

of M3. Hence, M3 shows low bias but high variance. On the other hand, models

belonging to M1 are quite robust to changes in the training set and thus show low

variance. However, M1 shows high bias as its models are generally farther away from

the true relationship as compared to models ofM3. It is the trade-off between reducing

bias and variance that is at the heart of a number of machine learning algorithms [97–99].

In scientific applications, there is another source of information that can be used

to ensure the selection of generalizable models, which is the available scientific knowl-

edge. By pruning candidate models that are inconsistent with known scientific principles

(shown as shaded regions in Figure 6.2), we can significantly reduce the variance of mod-

els without likely affecting their bias. A learning algorithm can then be focused on the
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space of physically consistent models, leading to generalizable and scientifically inter-

pretable models. Hence, one of the overarching visions of TGDS is to include physical

consistency as a critical component of model performance along with training accuracy

and model complexity. This can be summarized in a simple way by the following revised

objective of model performance in TGDS:

Performance ∝ Accuracy + Simplicity + Consistency.

There are various ways of introducing physical consistency in data science models,

in different forms and capacities. While some approaches attempt to naturally incorpo-

rate physical consistency in existing learning frameworks of data science models, others

explore innovative ways of blending data science principles with theory-based models.

In the following sections, we describe five broad categories of approaches for combin-

ing scientific knowledge with data science, that are illustrative of emerging examples

of TGDS research in diverse disciplines. Note that many of these approaches can be

applied together in multiple combinations for a particular problem, depending on the

nature of scientific knowledge and the type of data science method. The five research

themes of TGDS can be briefly summarized as follows.

First, scientific knowledge can be used in the design of model families to restrict the

space of models to physically consistent solutions, e.g., in the selection of response and

loss functions or in the design of model architectures. These techniques are discussed in

Section 6.3. Second, given a model family, we can also guide a learning algorithm to fo-

cus on physically consistent solutions. This can be achieved, for instance, by initializing

the model with physically meaningful parameters, by encoding scientific knowledge as

probabilistic relationships, by using domain-guided constraints, or with the help of regu-

larization terms inspired by our physical understanding. These techniques are discussed

in Section 6.4. Third, the outputs of data science models can be refined using explicit

or implicit scientific knowledge. This is discussed in Section 6.5. Fourth, another way

of blending scientific knowledge and data science is to construct hybrid models, where

some aspects of the problem are modeled using theory-based components while other

aspects are modeled using data science components. Techniques for constructing hybrid

TGDS models are discussed in Section 6.6. Fifth, data science methods can also help
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in augmenting theory-based models to make effective use of observational data. These

approaches are discussed in Section 6.7.

6.3 Theory-guided Design of Data Science Models

An important decision in the learning of data science models is the choice of model

family used for representing the relationships between input and response variables. In

scientific applications, if the domain knowledge suggests a particular form of relationship

between the inputs and outputs, care must be taken to ensure that the same form of

relationship is used in the data science model. Here, we discuss two different ways

of using scientific knowledge in the design of data science models. First, we can use

synergistic combinations of response and loss functions (e.g. in generalized linear models

or artificial neural networks) that not only simplify the optimization process and thus

lead to low training errors, but are also consistent with our physical understanding and

hence result in generalizable solutions. Another way to infuse domain knowledge is by

choosing a model architecture (e.g. the placement of layers in artificial neural networks)

that is compliant with scientific knowledge. We discuss both these approaches in the

following.

6.3.1 Theory-guided Specification of Response

Many data science models provide the option for specifying the form of relationship used

for describing the response variable. For example, a generic family of models, which

can represent a broad variety of relationships between input and response variables, is

the generalized linear model (GLM). There are two basic building blocks in a GLM, the

link function g(.), and the probability distribution P (y|x). Using these building blocks,

the expected mean µ of the target variable y is determined as a function of the weighted

linear combination of inputs, x, as follows:

g(µ) = wTx + b, or equivalently,

µ = g−1(wTx + b), (6.1)

where w and b and the parameters of GLM to be learned from the data. Some common
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choices of link and probability distribution functions are listed in Table 6.1, resulting in

varying types of regression models.

To ensure the learning of GLMs that produce physically meaningful results, it is

important to choose an appropriate specification of the response variable that matches

with domain understanding. For example, while modeling response variables that show

extreme effects (highly skewed distributions), e.g., occurrences of unusually severe floods

and droughts, it would be inappropriate to assume the response variable to be Gaussian

distributed (the standard assumption used in linear regression models). Instead, a

regression model that uses the Gumbel distribution to model extreme values would be

more accurate and physically meaningful.

In general, the idea of specifying model response using scientific principles can be

explored in many types of learning algorithms. An example of theory-guided specifica-

tion of response can be found in the field of ophthalmology, where the use of Zernike

polynomials was explored by Twa et al. [100] for the classification of corneal shape using

decision trees.

6.3.2 Theory-guided Design of Model Architecture

Scientific knowledge can also be used to influence the architecture of data science models.

An example of a data science model that provides ample room for tuning the model

architecture is artificial neural networks (ANN), which has recently gained widespread

acceptance in several applications such as vision, speech, and language processing. There

are a number of design considerations that influence the construction of an effective

ANN model. Some examples include the number of hidden layers and the nature of

connections among the layers, the sharing of model parameters among nodes, and the

choice of activation and loss functions for effective model learning. Many of these design

Table 6.1: Table showing some commonly used combinations of link function and prob-
ability distribution functions in generalized linear models.

Name Link Function Probability Distribution

Linear µ Gaussian
Poisson log(µ) Poisson
Logistic log(µ/(1− µ)) Binomial
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considerations are primarily motivated to simplify the learning procedure, minimize the

training loss, and ensure robust generalization performance using statistical principles

of regularization.

There is a huge opportunity in informing these design considerations with our phys-

ical understanding of a problem, to obtain generalizable as well as scientifically inter-

pretable results. For example, in an attempt to build a model of the brain that learns

view-invariant features of human faces, the use of biologically plausible rules in ANN

architectures was recently explored in [101]. It was observed that along with preserving

view-invariance, such theory-guided ANN models were able to capture a known aspect

of human neurology (namely, the mirror-symmetric tuning to head orientation) that was

being missed by traditional ANN models. This made it possible to learn scientifically

interpretable models of human cognition and thus advance our understanding of the

inner workings of the brain. In the following, we describe two promising directions for

using scientific knowledge while constructing ANN models: by using a modular design

that is inspired by domain understanding, and by specifying the connections among the

nodes in a physically consistent manner.

Domain knowledge can be used in the design of ANN models by decomposing the

overall problem into modular sub-problems, each of which represents a different physical

sub-process. Every sub-problem can then be learned using a different ANN model,

whose inputs and outputs are connected with each other in accordance with the physical

relationships among the sub-processes. For example, in order to describe the overall

hydrological process of surface water discharge, we can learn modular ANN models

for different sub-processes such as the atmospheric process of rainfall and evaporation,

the process of surface water runoff, and the process related to groundwater seepage.

Every ANN model can be fed with appropriately chosen domain features at the input

and output layers. This will help in using the power of deep learning frameworks while

following a high-level organization in the ANN architecture that is motivated by domain

knowledge.

Domain knowledge can also be used in the design of ANN models by specifying

node connections that capture theory-guided dependencies among variables. A number

of variants of ANN have been explored to capture spatial and temporal dependencies

between the input and output variables. For example, recurrent neural networks (RNN)



84

are able to incorporate the sequential context of time in speech and language processing

[102]. RNN models have been recently explored to capture notions of long and short term

memory (LSTM) with the help of skip connections among nodes to model information

delay [103]. Such models can be used to incorporate time-varying domain characteristics

in scientific applications. For example, while surface water runoff directly influences

surface water discharge without any delay, groundwater runoff has a longer latency

and contributes to the surface water discharge after some time lag. Such differences in

time delay can be effectively modeled by a suitably designed LSTM model. Another

variant of ANN is the convolutional neural network (CNN) [104], which has been widely

applied in vision and image processing applications to capture spatial dependencies in

the data. It further facilitates the sharing of model parameters so that the learned

features are invariant to simple transformations such as scaling and transformation.

Similar approaches can be explored to share the parameters (and thus reduce model

complexity) over more generic similarity structures among the input features that are

based on domain knowledge.

6.4 Theory-guided Learning of Data Science Models

Having chosen a suitable model design, the next step of model building involves navigat-

ing the search space of candidate models using a learning algorithm. In the following,

we present four different ways of guiding the learning algorithm to choose physically

consistent models. First, we can use physically consistent solutions as initial points in

iterative learning algorithms such as gradient descent methods. Second, we can restrict

the space of probabilistic models with the help of theory-guided priors and relation-

ships. Third, scientific knowledge can be used as constraints in optimization schemes

for ensuring physical consistency. Fourth, scientific knowledge can be encoded as reg-

ularization terms in the objective function of learning algorithms. We describe each of

these approaches in the following.

6.4.1 Theory-guided Initialization

Many learning algorithms that are iterative in nature require an initial choice of model

parameters as a first step to commence the learning process. For such algorithms, an
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inferior initialization can lead to the learning of a poor model. Domain knowledge can

help in the process of model initialization so that the learning algorithm is guided at an

early stage to choose generalizable and physically consistent models.

An example of theory-guided initialization of model parameters includes a recent

matrix completion approach for plant trait analysis [105], where the rows of the matrix

correspond to plants from diverse environments while the columns correspond to plant

traits such as leaf area, seed mass, and root length. Since observations about plant

traits are sparsely available, such a plant trait matrix would be highly incomplete [106].

Filling the missing entries in a plant trait matrix can help us understand the charac-

teristics of different plant species and their ability to adapt to varying environmental

conditions. A traditional data science approach to this problem is to use matrix com-

pletion algorithms that have found great success in online recommender systems [107].

However, many of these algorithms are iterative in nature and use fixed or random val-

ues to initialize the matrix. In the presence of domain knowledge, we can improve these

algorithms by using the species mean of every attribute as initial values in the matrix

completion process. This relies on the basic principle that the species mean provides a

robust estimate of the average behavior across all organisms. This approach has been

shown to provide significant improvements in the accuracy of predicting plant traits over

traditional methods [105]. Changes from the species mean can also be learned using

subsequent matrix completion operations, which could be physically interpreted as the

effect of varying environmental conditions on plant traits.

One of the data science models that requires special efforts in choosing an appro-

priate combination of initial model parameters is the artificial neural network, which is

known to be susceptible to getting stuck at local minimas, saddle points, and flat regions

in the loss curve. In the era of deep learning, much progress has been made to avoid the

problem of inferior ANN initialization with the help of pretraining strategies. The basic

idea of these strategies is to train the ANN model over a simpler problem (with ample

availability of representative data) and use the trained model to initialize the learning

for the original problem. These pretraining strategies have made major impact on our

ability to learn complex hierarchies of features in several application domains such as

speech and image processing. However, they rely on plentiful amounts of unlabeled or

labeled data and hence are not directly applicable in scientific domains where the data
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sizes are small relative to the number of variables. One way to address this challenge

is by devising novel pretraining strategies where computational simulations of theory-

based models are used to initialize the ANN model. This can be especially useful when

theory-based models can produce approximate simulations quickly, e.g., approximate

model simulations of turbulent flow (see Example 5). Such pretrained theory-guided

ANN models can then be fine-tuned using expert-quality ground truth.

6.4.2 Theory-guided Probabilistic Models

Probabilistic graphical models provide a natural way to encode domain-specific rela-

tionships among variables as edges between nodes representing the variables. However,

manually encoding domain knowledge in graphical models requires a great deal of ex-

pert supervision, which can be cumbersome for problems involving a large number of

variables with complex interactions–a common feature of scientific problems. In the

presence of a large number of nodes, it is common to apply automated graph estimation

techniques such as the use of graph Lasso [108]. The basic objective of such techniques

is to estimate a sparse inverse covariance matrix that maximizes the model likelihood

given the data. To assist such techniques with scientific knowledge, a promising research

direction is to explore graph estimation techniques that maximize data likelihood while

limiting the search to physically consistent solutions.

Another approach to reduce the variance of model parameters (and thus avoid model

overfitting) is to introduce priors in the model space. An example of the use of theory-

guided priors is the problem of non-invasive electrophysiological imaging of the heart. In

this problem, the electrical activity within the walls of the heart needs to be predicted

based on the ECG signal measured on the torso of a subject. There are approximately

2000 locations in the walls of the heart where electrical activity needs to be predicted,

based on ECG data collected from approximately 100 electrodes on the torso. Given the

large space of model parameters and the paucity of labeled examples with ground-truth

information, a traditional black-box model that only uses the information contained

in the data is highly prone to learning spurious patterns. However, apart from the

knowledge contained in the data, we also have domain knowledge (represented using

electrophysiological equations) about how electrical signals are transmitted within the

heart via the myocardial fibre structure. These equations can be used to determine the
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spatial distribution of the electric signals in the heart at time t based on the predicted

electric signals at t− 1. Incorporating such theory-guided spatial distributions as priors

and using it along with externally collected ECG data in a hierarchical Bayesian model

has been shown to provide promising results over traditional data science models [84,85].

Another example of theory-guided priors can be found in the field of geophysics [109],

where the knowledge of convection-diffusion equations was used as priors for determining

the connectivity structure of subsurface aquifers.

6.4.3 Theory-guided Constrained Optimization

Constrained optimization techniques are extensively used in data science models for

restricting the space of model parameters. For example, support vector machines use

constraints for ensuring separability among the classes, while maximizing the margin

of the hyperplane. There is also a rich literature on constraint-based pattern min-

ing [110, 111] and clustering [112]. The use of constraints provides a natural way to

integrate domain knowledge in the learning of data science models. In scientific appli-

cations where theory-based constraints can be represented using linear equality or in-

equality conditions, they can be readily integrated in existing constrained optimization

formulations, which are known to provide computationally efficient solutions especially

when the objective function is convex.

However, many scientific problems involve constraints that are represented in com-

plex forms, e.g., using partial differential equations (PDE) or non-linear transformations

of variables, which are not easily handled by traditional constrained optimization meth-

ods. For example, the Naiver–stokes equation for momentum expresses the following

constraint between the flow velocity v and the fluid pressure p:

ρ
(∂u

∂t
+ u · ∇u

)
= −∇p+∇ · (µ(∇u + (∇u)T )− 2

3
µ(∇ · u)I),

where ρ is the fluid density, µ is the fluid dynamic viscosity, and ∇ represents the

gradient operator with respect to the spatial coordinates.

To utilize such complex forms of constraints in data science models, it is necessary

to develop constrained optimization techniques that can use common forms of partial

differential equations encountered in scientific disciplines. An example of a data-driven



88

approach that uses domain-driven PDEs can be found in a recent work in climate science

[113,114], where physically constrained time-series regression models were developed to

incorporate memory effects in time as well as the nonlinear noise arising from energy-

conserving interactions.

In the following, we present detailed discussions of two illustrative examples of the

use of theory-guided constraints. While Example 2 explores the use of constraints for

predicting electron density in computational chemistry, Example 3 explores the use of

elevation-based constraints among locations for mapping surface water dynamics.

Example 2 (Computational Chemistry). In computational chemistry, solving Schrödinger’s

equation is at the basis of all quantum mechanical calculations for predicting the prop-

erties of solids and molecules. Schrödinger’s equation can be expressed as

HΨ = EΨ, (6.2)

= (T + U + V)Ψ, (6.3)

where H is the electronic Hamiltonian operator, Ψ is the wavefunction that describes

the quantum state of the system, and E is the total energy consisting of three terms, the

kinetic energy, T, the electron-electron interaction energy, U, and the potential energy

arising due to external fields, V (e.g., due to positively charged nuclei). Since the

computational complexity in directly solving the Schrödinger’s equation grows rapidly

with the number of particles, N , it is infeasible for solving large many-particle systems

in practical applications.

To address this, a new class of quantum chemical modeling approaches was developed

by Hohenberg and Kohn in 1964 [115], which uses the electron density n(r) as a basic

primitive in all calculations, instead of the wavefunction Ψ . This has resulted in the rise

of density functional theory (DFT) methods, which have become a standard tool for

solving many-particle systems. In DFT, every variable can be expressed as a functional

of the electron density function n(r) (where a functional is a function of functions). For

example, the total energy E can be expressed in terms of functionals of n(r) as follows:

E[n] = T[n] + U[n] + V[n]. (6.4)
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The density, n0(r), that leads to the lowest total energy, E[n0], is known as the ground-

state density of the system, which is a critical quantity to determine.

However, obtaining n0(r) is challenging because of the interaction functional, U[n],

whose exact form is unknown. Different approximations of the interaction term have

been developed to solve for the ground-state density of a system, the most notable being

the class of Kohn-Sham (KS) DFT methods. However, their performance is sensitive to

the quality of approximation used in modeling the interactions. Also, KS DFT methods

have a computational complexity of O(N3), which makes them challenging to apply on

large systems.

To overcome the challenges in existing DFT methods, a recent work by Li et al. [83]

explored the use of data science models to approximate T[n], and use such approxima-

tions to predict the ground-state density, n0(r). In this work, kernel ridge regression

methods were used to model the kinetic energy, T[n], of a 4-particle system as a func-

tional of its electron density, n(r). Having learned T̂[n], we can obtain the ground-state

energy, n0(r), using the following Euler-Lagrangian equation:

δT̂[n0]

δn0(r)
= µ− v(r), (6.5)

where v(r) is the external potential and µ is an adjustable constant. This imposes a

theory-guided constraint on the model learning, such that T̂[n] must not only show

good performance in predicting the kinetic energy, but should also accurately estimate

the ground-state density, n0(r), using Equation 6.5. A functional that adheres to this

constraint can be called “self-consistent.”

It was shown in [83] that a regression model that only focuses on minimizing the

training error leads to highly inconsistent solutions of the ground-state density, and is

thus not useful for quantum chemical calculations. This inconsistency can be traced

to the inability of regression models in capturing functional derivative forms that are

used in Equation 6.5. In particular, the derivative of T̂[n] can easily leave the space

of densities observed in the training set, and thus arrive at ill-conditioned solutions

especially when the training size is small.

To overcome this limitation, a modified Euler-Lagrange constraint was proposed

in [83], which restricted the space of n0(r) to the density manifold observed in the
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training set. This helped in learning accurate as well as self-consistent ground-state

densities using the knowledge contained in the data as well as domain theories.

�

Example 3 (Mapping Surface Water Dynamics). Remote sensing data from Earth

observing satellites presents a promising opportunity for monitoring the dynamics of

surface water body extent at regular intervals of time. It is possible to build predictive

models that use multi-spectral data from satellite images as input features to classify

pixels of the image as water or land. However, these models are challenged by the poor

quality of labeled data, noise and missing values in remote sensing signals, and the

inherent variability of water and land classes over space and time [6, 116].

To address these challenges, there is an opportunity for improving the quality of

classification maps by using the domain knowledge that water bodies have a concave

elevation structure. Hence, locations at a lower elevation are filled up first before the

water level reaches locations at higher elevations. Thus, if we have access to elevation

information (e.g. from bathymetric measurements obtained via sonar instruments), we

can use it to constrain the classifier so that it not only minimizes the training error in the

feature space but also produces labels that are consistent with the elevation structure.

To illustrate this, consider an example of a two-dimensional training set shown in Figure

6.3(a), where the squares and circles represent training instances belonging to water and

land classes, respectively. Along with the features, we also have information about the

elevation of every instance, shown using the intensity of colored points in Figure 6.3(a).

If we disregard the elevation information and learn a linear classifier to simply min-

imize the training errors, we would learn the decision boundary shown using a dotted

line in Figure 6.3(a). This classifier would make some mistakes in the lower-left corner

of the feature space, where the class confusion is difficult to resolve using a linear sep-

arator. However, if we use the elevation information, we can see that the entire group

of instances in the lower lower-left corner has a higher elevation than the instances

shown on the right (labeled as land), and are thus less likely to be filled with water.

For example, notice that location A is at a higher elevation than both B and C (see

Figure 6.3(b)). Hence, if B is labeled as land, it would be inconsistent to classify A as

water and instead it should be classified as land. The use of such constraints can help

in learning a generalizable classification model even with poorly labeled training data.
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Figure 6.3: An illustrative example of the use of elevation-based ordering (domain
theory) for learning physically consistent classification boundaries of water and land.
Along with the distribution of training instances in the feature space, we also have
information about their elevation, as shown in Figure 6.3(a)). This information can be
used to learn an elevation-aware classification boundary that produces physically viable
labels, e.g. if B is labeled as land, then A must necessarily be labeled as land as it is at
a higher elevation, as shown in Figure 6.3(b).

�

6.4.4 Theory-guided Regularization

One way to constrain the search space of model parameters is to use regularization

terms in the objective function, which penalize the learning of overly complex models. A

number of regularization techniques have been explored in the data science community

to enforce different measures of model complexity. For example, minimizing the Lp

norm of model parameters has been extensively used for obtaining various effects of

regularization in parametric model learning. While the L2 norm has been used to

avoid overly large parameter values in ridge regression and support vector machines,

minimizing the L1 norm results in the Lasso formulation and the Dantzig selector, both
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of which encode sparsity in the model parameters.

However, these techniques are agnostic to the physical feasibility of the learned model

and thus can lead to physically inconsistent solutions. For example, while predicting

the elastic modulus using bond energy and melting point, Lasso may favor melting

point over bond energy even though a direct causal link exists between bond energy

and the modulus [89]. This can result in the elimination of meaningful attributes and

the selection of secondary attributes that are not directly relevant. Hence, there is a

need to devise regularization techniques that can incorporate scientific knowledge to

restrict the search space of model parameters. For example, instead of using the Lp

norm for regularization, we can find solutions on physically consistent sub-spaces of

models. The Gaussian widths of such sub-spaces can be used as a regularization term

in techniques such as the generalized Dantzig selector [117, 118]. In the following, we

describe two research directions for theory-guided regularization that have been explored

in different applications: using variants of Lasso to incorporate domain-specific structure

among parameters, and the use of multi-task learning formulations to account for the

heterogeneity in data sub-populations.

The group Lasso [119] is a useful variant of Lasso that has been explored in problems

involving structured attributes. It assumes the knowledge of a grouping structure among

the attributes, where only a small number of groups are considered relevant. As an

example in bio-marker discovery, the groups of attributes may correspond to sets of

bio-markers that are related via a common biological pathway. Group Lasso helps in

selecting physically meaningful groups of attributes in the data science models, and

various extensions of group Lasso have been explored for handling different types of

domain characteristics, e.g., overlapping group Lasso [120], tree-guided group Lasso

[121], and sparse group Lasso [122].

In recent work [123], applications of sparse group Lasso were explored to model the

domain characteristics of climate variables. In this work, climate variables observed

over a range of spatial locations were used to predict a climate phenomenon of interest.

By treating the set of variables observed at every location as a group, the use of group

Lasso ensured that if a location is selected, all of the climate variables observed at

that location will be used as relevant features. Such features thus represent meaningful

(spatially coherent) regions in space that can be studied to identify physical pathways
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of relationships in climate science.

Another example of Lasso-based regularization that encodes domain knowledge can

be found in the problem of discovering genetic markers for diseases. In this problem,

data-driven approaches such as elastic nets are traditionally used to determine the

relative importance of genetic markers in the context of a disease. However, geneticists

understand that the relevant markers typically are located in close proximity on the

genome sequence due to a property called linkage disequilibrium, which suggests that

genetic information that is closely located travels together between generations of the

population. This domain knowledge can be incorporated as a regularizer to ensure that

the discovered genetic markers are typically located in close proximity on the genome. In

fact, Liu and colleagues [86] introduced a smoothed minimax concave penalty to Lasso

that captured squared differences in regression coefficients between adjacent markers to

ensure that the difference in genetic effects between adjacent markers is small.

Domain knowledge can also be used to guide the regularization of a multi-task

learning (MTL) model, as explored for the problem of forest cover estimation in [7].

In the presence of heterogeneity in data sub-populations, different groups of instances

in the data show different relationships between the inputs and outputs. For example,

different types of vegetation (e.g. forests, farms, and shrublands) may show varying

responses to a target variable in remote sensing signals. MTL provides a promising

solution to handle sub-population heterogeneity in such cases, by treating the learning

at every sub-population as a different task. Further, by sharing the learning at related

tasks, MTL enforces a robust regularization on the learning across all tasks, even in the

scarcity of training data.

However, most MTL formulations require explicit knowledge of the composition of

every task and the similarity structure among the tasks, which is not always known in

practical applications. For example, the exact number and distribution of vegetation

types is often unavailable, and when they are known, they are available at varying gran-

ularties [6]. In recent work [7], the presence of heterogeneity due to varying vegetation

types was first inferred by clustering vegetation time series, which was then used to

induce similarity in the model parameters at related vegetation types. This resulted in

an MTL formulation where the task structure was inferred using contextual variables,

obtained using domain knowledge.
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6.5 Theory-guided Refinement of Data Science Outputs

Domain knowledge can also be used to refine the outputs of data science models so that

they are in compliance with our current understanding of physical phenomena. This

style of TGDS leverages scientific knowledge at the final stage of model building where

the outputs of any data science model are made consistent with domain knowledge.

In the following, we describe some of the approaches for refining data science outputs

using domain knowledge that is either explicitly known (e.g. in the form of closed-

form equations or model simulations) or implicitly available (e.g. in the form of latent

constraints).

6.5.1 Using Explicit Domain Knowledge

Data science outputs are often refined to reduce the effect of noise and missing val-

ues and thus improve the overall quality of the results. For example, in the analysis

of spatio-temporal data, there is a vast body of literature on refining model outputs

to enforce spatial coherence and temporal smoothness among predictions. Data sci-

ence outputs can also be refined to improve a quality measure, e.g., in the discovery of

frequent itemsets by pruning candidate patterns. Building on these methods, a promis-

ing direction is to develop model refinement approaches that make ample use of domain

knowledge, encoded in the form of scientific theories, for producing physically consistent

results.

An example of theory-guided refinement of data science outputs can be found in the

problem of material discovery, where the objective is to find novel materials and crystal

structures that show a desirable property, e.g., their ability to filter gases or to serve

as a catalyst. Traditional approaches for predicting crystal structure and properties

rely on ab initio calculations such as density functional theory methods. However,

since the space of all possible materials is extremely large, it is impractical to perform

computationally expensive ab initio calculations on every material to estimate their

structure and properties. Recently, a number of teams in material science have explored

the use of probabilistic graphical models for predicting the structure and properties of

a material, given a training database of materials with known structure and properties

[80–82]. This provided a computationally efficient approach to reduce the space of
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candidate materials that show a desirable property, using the knowledge contained in

the training data. The results of the data science models were then cross-checked using

expensive ab initio calculations to further refine the model outputs. This line of research

has resulted in the discovery of a hundred new ternary oxide compounds that were

previously unknown using traditional approaches [80], highlighting the effectiveness of

TGDS in advancing scientific knowledge.

6.5.2 Using Implicit Domain Knowledge

In scientific applications, the domain structure among the output variables may not

always be known in the form of explicit equations that can be easily integrated in existing

model refinement frameworks. This requires jointly solving the dual problem of inferring

the domain constraints and using the learned constraints to refine model outputs. We

illustrate this using an example in mapping surface water dynamics, where implicit

constraints among locations (based on a hidden elevation ordering) are estimated and

leveraged for refining classification maps of water bodies.

Example 4 (Post-processing using elevation constraints). As described in Example 3,

it is difficult to map the dynamics of surface water bodies by solely using the knowledge

contained in remote sensing data, and there is promise in using information about the

elevation structure of water bodies to assist classification models. However, such infor-

mation is seldom available at the desired granularity for most water bodies around the

world. Hence, there is a need to infer the latent ordering among the locations (based on

their elevation) so that they can be used to produce accurate and physically consistent

labels. One way to achieve this is by using the history of imperfect water/land labels

produced by a data science model at every location over a long period of time. In par-

ticular, a location that has been classified as water for a longer number of time-steps has

a higher likelihood of being at a deeper location than a location that has been classified

as water less frequently. This implicit elevation ordering, if extracted effectively, can

help in improving the classification maps by post-processing the outputs to be consis-

tent with elevation ordering. Further, the post-processed labels can help in obtaining

a better estimate of the elevation ordering, thus resulting in an iterative solution that



96

(a) (b) (c) (d)

Figure 6.4: Mapping the extent of Lake Abhe (on the border of Ethiopia and Djibouti in
Africa) using implicit theory-guided constraints. (a) Remote sensing image of the water
body (prepared using multi-spectral false color composites). (b) Initial classification
maps. (c) Elevation contours inferred from the history of classification labels. (d) Final
classification maps refined using elevation-based constraints.

simultaneously infers the elevation ordering and produces physically consistent classi-

fication maps. This approach was successfully used in [87, 88] to build global maps of

surface water dynamics. Figure 6.4 illustrates the effectiveness of this approach using an

example lake in Africa, where the post-processed classification map does not suffer from

the errors of the initial classification map and visually matches well with the remote

sensing image of the water body.

�

Other examples of the use of implicit constraints includes mapping urbanization [124]

and tree plantation conversions [125, 126], where hidden Markov models were used to

incorporate domain knowledge about the transitions among land covers.

6.6 Learning Hybrid Models of Theory and Data Science

One way to combine the strengths of scientific knowledge and data science is by creating

hybrid combinations of theory-based and data science models, where some aspects of the

problem are handled by theory-based components while the remaining ones are modeled

using data science components. There are several ways of fusing theory-based and data
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science models to create hybrid TGDS models. One way is to build a two-component

model where the outputs of the theory-based component are used as inputs in the data

science component. This idea is used in climate science for statistical downscaling of

climate variables [127], where the climate model simulations, available at coarse spatial

and temporal resolutions, are used as inputs in a statistical model to predict the climate

variables at finer resolutions. Theory-based model outputs can also be used to supervise

the training of data science models, by providing physically consistent estimates of the

target variable for every training instance.

An alternate way of creating a hybrid TGDS model is to use data science methods to

predict intermediate quantities in theory-based models that are currently being missed

or inaccurately estimated. By feeding data science outputs into theory-based models,

such a hybrid model can not only show better predictive performance but also amend

the deficiencies in existing theory-based models. Further, the outputs of theory-based

models may also be used as training samples in data science components [128], thus

creating a two-way synergy between them. Depending on the nature of the model and

the requirements of the application, there can be multiple ways of introducing data

science outputs in theory-based models. In the following, we provide an illustrative

example of this theme of TGDS research in the field of turbulence modeling.

Example 5 (Turbulence Modeling). One of the important problems in aerospace en-

gineering is to model the characteristics of turbulent flow, which consists of chaotic

changes in the flow velocity, and complex dissipation of momentum and energy. Tur-

bulence modeling is used in a number of applications such as the design and reliability

assessment of airfoils in aeroplanes and space vehicles. Key to the study of fluid dy-

namics is the Navier–Stokes equations, which describe the behavior of viscous fluids

under motion. Although the Navier–Stokes equations can be readily applied in simple

flow problems involving incompressible and irrotational flow, obtaining an exact repre-

sentation for turbulent flow requires computationally expensive solutions such as direct

numerical simulations (DNS) at fine spatial grids. The high computational costs of DNS

make it infeasible for studying practical turbulence problems in the industry, which are

typically solved using inexact but computationally cheap approximations. One such

approximation is the Reynolds–averaged Navier–Stokes (RANS) equations, which in-

troduces a term called as the Reynolds stress, τ , to represent the apparent stress due
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to fluctuations caused by turbulence. Since the exact form of the Reynolds stress is

unknown, different approximations of τ have been explored in previous studies, result-

ing in a variety of RANS models. Despite the continued efforts in approximating τ ,

current RANS models are still insufficient for modeling complex flows with separation,

curvature, or swirling. To overcome their limitations, recent work by Wang et al. [79]

explored the use of machine learning methods to assist RANS models and reduce their

discrepancies. In particular, the Reynolds stress was approximated as

τ = τRANS +∆τML, (6.6)

where τRANS is obtained from a RANS model while ∆τML is the model discrepancy

that is estimated using a random forest model. Although this approach can be used

with any generic RANS model to estimate its discrepancy, it does not alter the form of

approximation used in obtaining τRANS , since ∆τML is learned independently of τRANS .

In another work by Singh et al. [78], a machine learning component was used to directly

augment a RANS approximation in the following manner:

−τij = 2ρνS∗ij −
2

3
ρKδij , (6.7)

Dν

Dt
= β ×P−D + T, (6.8)

where Equation 6.7 is the standard Boussinesq equation relating the Reynolds stress τij

to the effective viscosity ν, and Equation 6.8 is a variant of the Spalart Allmaras model

that estimates ν as a function of a machine learning term, β (learned using an artificial

neural network), and other physical terms, P, D, and T, corresponding to production,

destruction, and transport processes, respectively. This class of modeling framework,

which integrates machine learning terms in theory-based models, has been called field

inversion and machine learning (FIML) [129].

Both these works illustrate the potential of coupling data science outputs with

theory-based models to reduce model discrepancies in complex scientific applications.

The exact choice of the data science model and its contribution to the theory-based

model can be explored in future investigations. Similar lines of TGDS research can be
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explored in other domains where current theory-based models are lacking, e.g., hydro-

logical models for studying subsurface flow [94].

�

6.7 Augmenting Theory-based Models using Data Science

There are many ways we can use data science methods to improve the effectiveness

of theory-based models. Data can be assimilated in theory-based models for improved

selection of model states in numerical models. Data science methods can also help

in calibrating the parameters of theory-based models so that they provide a better

realization of the physical system. We describe both these approaches in the following.

6.7.1 Data Assimilation in Theory-based Models

One of the long-standing approaches of the scientific community for integrating data in

theory-based models is to use data assimilation approaches, which has been widely used

in climate science and hydrology [130]. These domains typically involve dynamical sys-

tems, such as the progression of climate phenomena over time, which can be represented

as a sequence of physical states in numerical models. Data assimilation is a way to infer

the most likely sequence of states such that the model outputs are in agreement with

the observations available at every time-step. In data assimilation, the values of the

current state are constrained to depend on previous state values as well as the current

data observations. For example, if we use the Gaussian distribution to model the lin-

ear transition between consecutive states, this translates to a Kalman filter. However,

in general, the dependencies among the states in data assimilation methods are mod-

eled using more complex forms of distributions that are governed by physical laws and

equations. Data assimilation provides a promising step in the direction of integrating

data with theory-based models so that the knowledge discovery approach relies both on

scientific knowledge and observational data.

6.7.2 Calibrating Theory-based Models using Data

Theory-based models often involve a large number of parameters in their equations

that need to be calibrated in order to provide an accurate representation of the physical
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system. A näıve approach for model calibration is to try out every combination of pa-

rameter values, perhaps by searching over a discrete grid defined over the parameters,

and choose the combination that produces the maximum likelihood for the data. How-

ever, this approach is practically infeasible when the number of parameters are large

and every parameter takes many possible values. A number of computationally efficient

approaches have been explored in different disciplines for parsimoniously calibrating

model parameters with the help of observational data. For example, a seminal work on

model calibration in the field of hydrology is the Generalized Likelihood Uncertainty

Estimation (GLUE) technique [131]. This approach models the uncertainty associated

with every parameter combination using Monte Carlo approaches, and uses a Bayesian

formulation to incrementally update the uncertainties as new observations are made

available. At any given iteration, the parameter combination that shows maximum

agreement with the observations is employed in the model, the results of which are used

to update the uncertainties on the next iteration.

The problem of parameter selection has recently received considerable attention

in the machine learning community in the context of multi-armed bandit problems

[132–134]. The basic objective in these problems is to incrementally select parameter

values so that we can explore the space of parameter choices and exploit the parameter

choice that provides the maximum reward, using a limited number of observations.

Variants of these techniques have also been explored for settings where the parameters

take continuous values instead of discrete steps [135, 136]. These techniques provide

a promising direction for calibrating the high-dimensional parameters of theory-based

models.

6.8 Conclusion

In this chapter, we formally conceptualized the paradigm of theory-guided data science

(TGDS) that seeks to exploit the promise of data science without ignoring the treasure

of knowledge accumulated in scientific principles. We provided a taxonomy of ways in

which scientific knowledge and data science can be brought together in any application

with some availability of domain knowledge. These approaches range from methods that

strictly enforce physical consistency in data science models (e.g., while designing model
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architecture or specifying theory-based constraints) to methods that allow a relaxed

usage of scientific knowledge where our scientific understanding is weak (e.g., as priors

or regularization terms). We presented examples from diverse disciplines to illustrate

the various research themes of TGDS and also discussed several avenues of novel research

in this rapidly emerging field.

One of the central motivations behind TGDS is to ensure better generalizability of

models (even when the problem is complex and data samples are under-representative)

by anchoring data science algorithms with scientific knowledge. TGDS also aims at

advancing our knowledge of the physical world by producing scientifically interpretable

models. Reducing the search space of the learning algorithm to physically consistent

models may also have an additional benefit of reducing the computational cost of the

algorithm.

The TGDS research themes are not exhaustive and we anticipate the development

of novel TGDS themes in the future that explore innovative ways of blending scientific

theory with data science. While most of the discussion in this chapter focuses on

supervised learning problems, similar TGDS research themes can be explored for other

traditional tasks of data mining, machine learning, and statistics. For example, the

use of physical principles to constrain spatio-temporal pattern mining algorithms has

been explored in [137, 138] for finding ocean eddies from satellite data. The need to

explore TGDS models for uncertainty quantification is discussed in [91] in the context

of understanding and projecting climate extremes. Scientific knowledge can also be used

to advance other aspects of data science, e.g., the design of scientific work-flows [139,140]

or the generation of model simulations [141].
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Conclusion and Future Directions

This thesis introduced the problem of learning predictive models with heterogeneity in

populations of data instances. This problem commonly arises in several real-world ap-

plications of predictive learning where the underlying systems are comprised of multiple

data populations. Some examples include the heterogeneity in populations of human

subjects for medical diagnosis, the heterogeneity in observations of spatio-temporal vari-

ables across space and time, and the heterogeneity in characteristics of user interactions

on social networking websites. In the presence of population heterogeneity, a central

challenge is that the training data comprises of instances belonging from multiple pop-

ulations, and the instances in the test set may be from a different population than that

of the training instances. This limits the effectiveness of standard predictive learning

frameworks that are based on assumptions of population homogeneity, which are ideally

true only in simplistic settings.

A number of methods have been developed for addressing population heterogeneity

in predictive learning problems, although as isolated efforts in disparate applications,

lacking a concerted focus for a common objective. This thesis provided an over-arching

structure to the existing body of work on predictive learning with population hetero-

geneity, by building a common taxonomy for reviewing existing efforts in Chapter 2. In

particular, it introduced the concepts of explicit and implicit context of data instances

in different application settings, which can be used for inferring the nature of predictive

relationships at every instance in the presence of population heterogeneity.

This thesis presented several ways of using explicit as well as implicit context of data

102
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instances in predictive learning frameworks, for addressing the challenges associated

with population heterogeneity. It introduced a novel multi-task learning framework in

Chapter 3 for problems where we have access to some ancillary variables that can be

grouped using clustering methods to produce homogeneous partitions of data instances,

thus addressing the challenge of population heterogeneity. This thesis also introduced

a novel strategy for constructing ensembles in binary classification settings in Chapter

4, using information about the multi-modal structure of both classes arising due to the

heterogeneity in their populations. When the context of data instances is implicitly

defined such that the test data is known to comprise of contextually similar groups,

this thesis presented a novel framework for adapting classification decisions using the

group-level properties of test instances in Chapter 5, in the absence of incremental

labels.

An underlying theme of research in this thesis has been to incorporate physical

knowledge of the application domain in predictive learning frameworks, for addressing

the challenge of population heterogeneity. This thesis introduced a novel paradigm of

knowledge discovery in Chapter 6, termed as theory-guided data science, that aims

to pursue the broader goal of systematically integrating scientific knowledge, which is

often encoded as physics (or theory) based models, in data science frameworks. This

thesis builds the foundations of this emerging paradigm by reviewing a variety of ways

scientific knowledge can be combined with data science methods, which are gaining

prominence in diverse scientific and engineering disciplines.

There are several research directions in the rapidly advancing field of data science

that are enabled by the contributions presented in this thesis. First, the multi-task

learning framework presented in Chapter 3 can be generalized to problems where clus-

tering the ancillary variables may not be straight-forward. This will be especially useful

for problems where the ancillary variables are available in network representations (e.g.,

in social data mining problems), or are extremely high-dimensional (e.g., genetic profiles

in bioinformatics problems). Second, instead of treating the clustering of ancillary vari-

ables and the learning of predictive models at every cluster as two independent tasks,

joint frameworks that simultaneously create homogeneous partitions of data instances

and learn the predictive relationships at every partition need to be explored. Third,
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although the mode-specific ensembles presented in Chapter 4 have been shown to empiri-

cally provide better predictive performance than traditional ensemble learning methods,

a deeper theoretical analysis of its strengths and limitations needs to be investigated.

Fourth, in the problem of adapting the responses of mode-specific ensembles using the

group-level properties of test instances, the effect of noise in the training and test data,

presence of irrelevant attributes, and imbalance among the modes within a class (or

across different classes) needs to be thoroughly investigated. More advanced weighting

schemes than those presented in Chapter 5 can also be explored. In particular, we can

consider to use the statistical distance between the distribution of instances in a test

group and the subset of modes used for training an ensemble classifier for deciding its

adaptive weight. We can also explore weighting strategies that use priors on the joint

likelihood of subsets of modes to prune the set of ensemble classifiers relevant for a

group of test instances.

Finally, the paradigm of theory-guided data science, presented in Chapter 6 is ripe

with possibilities of future directions in this emerging field of research. We hope that

this thesis serves as a first step in building the foundations of theory-guided data sci-

ence and encourages follow-on work to develop in-depth theoretical formalizations of

this paradigm. While success in this endeavor will need significant innovations in our

ability to handle the diversity of forms in which scientific knowledge is represented and

ingested in different disciplines (e.g., differences in granularity and type of information,

degree of completeness, and uncertainty in knowledge), the concrete research approaches

presented in this thesis can be considered as a stepping stone in this ambitious jour-

ney. We anticipate the deep integration of theory-based and data science to become a

quintessential tool for scientific discovery in future research. The paradigm of theory-

guided data science, if effectively utilized, can help us realize the vision of the “fourth

paradigm” [142] in its full glory, where data serves an integral role at every step of

scientific knowledge discovery.
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