526 research outputs found

    New Graphical Model for Computing Optimistic Decisions in Possibility Theory Framework

    Get PDF
    This paper first proposes a new graphical model for decision making under uncertainty based on min-based possibilistic networks. A decision problem under uncertainty is described by means of two distinct min-based possibilistic networks: the first one expresses agent's knowledge while the second one encodes agent's preferences representing a qualitative utility. We then propose an efficient algorithm for computing optimistic optimal decisions using our new model for representing possibilistic decision making under uncertainty. We show that the computation of optimal decisions comes down to compute a normalization degree of the junction tree associated with the graph resulting from the fusion of agent's beliefs and preferences. This paper also proposes an alternative way for computing optimal optimistic decisions. The idea is to transform the two possibilistic networks into two equivalent possibilistic logic knowledge bases, one representing agent's knowledge and the other represents agent's preferences. We show that computing an optimal optimistic decision comes down to compute the inconsistency degree of the union of the two possibilistic bases augmented with a given decision

    Possibilistic Conditional Preference Networks

    Get PDF
    International audienceThe paper discusses the use of product-based possibilistic networks for representing conditional preference statements on discrete variables. The approach uses non-instantiated possibility weights to define conditional preference tables. Moreover, additional information about the relative strengths of symbolic weights can be taken into account. It yields a partial preference order among possible choices corresponding to a symmetric form of Pareto ordering. In the case of Boolean variables, this partial ordering coincides with the inclusion between the sets of preference statements that are violated. Furthermore, this graphical model has two logical counterparts in terms of possibilistic logic and penalty logic. The flexibility and the representational power of the approach are stressed. Besides, algorithms for handling optimization and dominance queries are provided

    Contextual and Possibilistic Reasoning for Coalition Formation

    Get PDF
    In multiagent systems, agents often have to rely on other agents to reach their goals, for example when they lack a needed resource or do not have the capability to perform a required action. Agents therefore need to cooperate. Then, some of the questions raised are: Which agent(s) to cooperate with? What are the potential coalitions in which agents can achieve their goals? As the number of possibilities is potentially quite large, how to automate the process? And then, how to select the most appropriate coalition, taking into account the uncertainty in the agents' abilities to carry out certain tasks? In this article, we address the question of how to find and evaluate coalitions among agents in multiagent systems using MCS tools, while taking into consideration the uncertainty around the agents' actions. Our methodology is the following: We first compute the solution space for the formation of coalitions using a contextual reasoning approach. Second, we model agents as contexts in Multi-Context Systems (MCS), and dependence relations among agents seeking to achieve their goals, as bridge rules. Third, we systematically compute all potential coalitions using algorithms for MCS equilibria, and given a set of functional and non-functional requirements, we propose ways to select the best solutions. Finally, in order to handle the uncertainty in the agents' actions, we extend our approach with features of possibilistic reasoning. We illustrate our approach with an example from robotics

    Towards a Practical Implementation of a Reasoner for Inconsistent Possibilistic Description Logic Programming Ontologies

    Get PDF
    This work reports on our e orts to implement a practical reasoner based on Dung-style argumentation semantics for potentially inconsistent possibilistic ontologies. Our Java-based implementation targets a subset of the description logic programming fragment that we codify in a Racer-like syntax suitably adapted for representing certainty degrees of both axioms and assertions. We introduce our approach with a running example, discuss implementation issues and present time complexity results.Sociedad Argentina de Informática e Investigación Operativa (SADIO

    On the Application of Argument Accrual to Reasoning with Inconsistent Possibilistic Ontologies

    Get PDF
    We present an approach for performing instance checking in a suitable subset of possibilistic description logic programming ontologies by using argument accrual. Ontologies are interpreted in possibilistic logic programming under Dung's grounded semantics. We present a reasoning framework with a case study and a Java-based implementation for enacting the proposed approach.XVII Workshop Agentes y Sistemas Inteligentes (WASI).Red de Universidades con Carreras en Informática (RedUNCI

    Preferential Query Answering in the Semantic Web with Possibilistic Networks

    Get PDF
    In this paper, we explore how ontological knowledge expressed via existential rules can be combined with possibilistic networks (i) to represent qualitative preferences along with domain knowledge, and (ii) to realize preference-based answering of conjunctive queries (CQs). We call these combinations ontological possibilistic networks (OP-nets). We define skyline and k-rank answers to CQs under preferences and provide complexity (including data tractability) results for deciding consistency and CQ skyline membership for OP-nets. We show that our formalism has a lower complexity than a similar existing formalism
    corecore