6,237 research outputs found

    Positivity for Gaussian graphical models

    Full text link
    Gaussian graphical models are parametric statistical models for jointly normal random variables whose dependence structure is determined by a graph. In previous work, we introduced trek separation, which gives a necessary and sufficient condition in terms of the graph for when a subdeterminant is zero for all covariance matrices that belong to the Gaussian graphical model. Here we extend this result to give explicit cancellation-free formulas for the expansions of nonzero subdeterminants.Comment: 16 pages, 3 figure

    Total positivity in exponential families with application to binary variables

    Full text link
    We study exponential families of distributions that are multivariate totally positive of order 2 (MTP2), show that these are convex exponential families, and derive conditions for existence of the MLE. Quadratic exponential familes of MTP2 distributions contain attractive Gaussian graphical models and ferromagnetic Ising models as special examples. We show that these are defined by intersecting the space of canonical parameters with a polyhedral cone whose faces correspond to conditional independence relations. Hence MTP2 serves as an implicit regularizer for quadratic exponential families and leads to sparsity in the estimated graphical model. We prove that the maximum likelihood estimator (MLE) in an MTP2 binary exponential family exists if and only if both of the sign patterns (1,1)(1,-1) and (1,1)(-1,1) are represented in the sample for every pair of variables; in particular, this implies that the MLE may exist with n=dn=d observations, in stark contrast to unrestricted binary exponential families where 2d2^d observations are required. Finally, we provide a novel and globally convergent algorithm for computing the MLE for MTP2 Ising models similar to iterative proportional scaling and apply it to the analysis of data from two psychological disorders

    On the Geometry of Message Passing Algorithms for Gaussian Reciprocal Processes

    Full text link
    Reciprocal processes are acausal generalizations of Markov processes introduced by Bernstein in 1932. In the literature, a significant amount of attention has been focused on developing dynamical models for reciprocal processes. Recently, probabilistic graphical models for reciprocal processes have been provided. This opens the way to the application of efficient inference algorithms in the machine learning literature to solve the smoothing problem for reciprocal processes. Such algorithms are known to converge if the underlying graph is a tree. This is not the case for a reciprocal process, whose associated graphical model is a single loop network. The contribution of this paper is twofold. First, we introduce belief propagation for Gaussian reciprocal processes. Second, we establish a link between convergence analysis of belief propagation for Gaussian reciprocal processes and stability theory for differentially positive systems.Comment: 15 pages; Typos corrected; This paper introduces belief propagation for Gaussian reciprocal processes and extends the convergence analysis in arXiv:1603.04419 to the Gaussian cas

    A Graphical Model Formulation of Collaborative Filtering Neighbourhood Methods with Fast Maximum Entropy Training

    Full text link
    Item neighbourhood methods for collaborative filtering learn a weighted graph over the set of items, where each item is connected to those it is most similar to. The prediction of a user's rating on an item is then given by that rating of neighbouring items, weighted by their similarity. This paper presents a new neighbourhood approach which we call item fields, whereby an undirected graphical model is formed over the item graph. The resulting prediction rule is a simple generalization of the classical approaches, which takes into account non-local information in the graph, allowing its best results to be obtained when using drastically fewer edges than other neighbourhood approaches. A fast approximate maximum entropy training method based on the Bethe approximation is presented, which uses a simple gradient ascent procedure. When using precomputed sufficient statistics on the Movielens datasets, our method is faster than maximum likelihood approaches by two orders of magnitude.Comment: ICML201

    The correlation space of Gaussian latent tree models and model selection without fitting

    Get PDF
    We provide a complete description of possible covariance matrices consistent with a Gaussian latent tree model for any tree. We then present techniques for utilising these constraints to assess whether observed data is compatible with that Gaussian latent tree model. Our method does not require us first to fit such a tree. We demonstrate the usefulness of the inverse-Wishart distribution for performing preliminary assessments of tree-compatibility using semialgebraic constraints. Using results from Drton et al. (2008) we then provide the appropriate moments required for test statistics for assessing adherence to these equality constraints. These are shown to be effective even for small sample sizes and can be easily adjusted to test either the entire model or only certain macrostructures hypothesized within the tree. We illustrate our exploratory tetrad analysis using a linguistic application and our confirmatory tetrad analysis using a biological application.Comment: 15 page

    Lower Bounds for Two-Sample Structural Change Detection in Ising and Gaussian Models

    Full text link
    The change detection problem is to determine if the Markov network structures of two Markov random fields differ from one another given two sets of samples drawn from the respective underlying distributions. We study the trade-off between the sample sizes and the reliability of change detection, measured as a minimax risk, for the important cases of the Ising models and the Gaussian Markov random fields restricted to the models which have network structures with pp nodes and degree at most dd, and obtain information-theoretic lower bounds for reliable change detection over these models. We show that for the Ising model, Ω(d2(logd)2logp)\Omega\left(\frac{d^2}{(\log d)^2}\log p\right) samples are required from each dataset to detect even the sparsest possible changes, and that for the Gaussian, Ω(γ2log(p))\Omega\left( \gamma^{-2} \log(p)\right) samples are required from each dataset to detect change, where γ\gamma is the smallest ratio of off-diagonal to diagonal terms in the precision matrices of the distributions. These bounds are compared to the corresponding results in structure learning, and closely match them under mild conditions on the model parameters. Thus, our change detection bounds inherit partial tightness from the structure learning schemes in previous literature, demonstrating that in certain parameter regimes, the naive structure learning based approach to change detection is minimax optimal up to constant factors.Comment: Presented at the 55th Annual Allerton Conference on Communication, Control, and Computing, Oct. 201
    corecore