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SUMMARY

We provide a complete description of possible distributions consistent with any Gaussian latent
tree model. This description consists of polynomial equations and inequalities involving covari-
ances between the observed variables. Testing inequality constraints can be done using the inverse
Wishart distribution and this leads to simple preliminary assessment of tree-compatibility. To test
equality constraints we employ general techniques of tetrad analyses. This approach is effective
even for small sample sizes and can be easily adjusted to test either entire models or just partic-
ular macrostructures of a tree. Our methods are simple to implement and do not require fitting
of the model. The versatility of the techniques is illustrated by performing exploratory and con-
firmatory tetrad analyses in linguistic and biological settings respectively.

Some key words: Gaussian distribution; Latent tree model; Tetrad analysis; Tree constraint; Tree quartet.

1. INTRODUCTION

Modelling with hidden variables is common in the framework of graphical models (Lauritzen,
1996; Koller & Friedman, 2009). When the observed variables are the leaves of a tree and the
unobserved variables are interior nodes, the model is called a latent tree model (Choi et al., 2011;
Wang et al., 2008). Such models are used in domains including sociology, biology and linguistics
(Eisenstein et al., 2010; Mourad et al., 2013; Zwiernik, 2016). Gaussian latent tree models lead
to popular visualisation techniques when considering high-dimensional data (Lawrence, 2004).
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Fig. 1. Quintet tree 75 relating five Romance languages.

Latent tree model selection techniques often presuppose that the data generating process is
driven by some latent tree model, so the appropriateness of any such model is assessed only
relative to other tree models. Knowing whether any latent tree model could adequately explain
what is observed is pertinent in phylogenetic settings where, for example, the effect of a pos-
sible horizontal gene transfer (Hao & Golding, 2008) makes any underlying such model dubi-
ous.

By characterizing the covariance space related to Gaussian latent tree models, we can better
assess the suitability of trees or the fit of a particular tree. In this paper we present the complete
description of this model class by relating a particular model parameterization to the space of
phylogenetic oranges (Engstrom et al., 2012; Gill et al., 2008; Kim, 2000; Moulton & Steel,
2004). Such a complete description had been known for a simple tree with only four leaves (Pearl
& Xu, 1987, Theorem 2) or for a star tree (Bekker & de Leeuw, 1987). For a general tree, only
the defining equations have been derived; see Sullivant (2008, Corollary 6-5).

Our method uses the description of Gaussian latent tree models in two scenarios. In the first
we are interested in whether any latent tree model is a possible explanation for a given dataset.
In the second we fix a latent tree model. In both scenarios the alternative hypothesis is the satu-
rated model. We illustrate these methods in § 5-3 where we perform an exploratory search across
language trees and in § 5-4 where we test whether a previously hypothesized phylogenetic tree
fits data for certain yeast species. In both applications it is contentious whether the class of phy-
logenetic trees is appropriate. This is addressed directly in our analyses without first fitting the
model.

Let Z = (Z,)ycu be a random vector whose components are indexed by the vertices of an
undirected tree 7 = (U, E) withedge set E C U x U. The tree 7 induces a Gaussian tree model
N(T) for Z, which is a Gaussian graphical model on 7 (Lauritzen, 1996, §5-2). For any two
nodes u, v € U, let ph(uv) denote the set of edges on the unique path between « and v in this
tree. Then the model N (7) is the collection of all multivariate normal distributions on R!Y! for
which Z, and Z, are conditionally independent given a subvector Z¢ whenever the set C C
U\{u, v} contains a node on ph(uv). For three nodes u, v, w € U, the conditional independence
of Z, and Z,, given Z, is equivalent to pyy = puvPuw- It follows that a normal distribution with
correlation matrix R = (p,y) belongs to N (7)) if and only if p,, = Heeph(uv) pe forallu,ve U,
where p. = p,y When e is the edge (u, v).

In this paper we study Gaussian latent tree models where we only observe the random vari-
ables associated with the tree’s leaves. We henceforth denote the set of leaves of this tree by V'
and associated leaf distributions as V'-marginal distributions. A typical such evolutionary tree,
of Romance languages, is displayed in Fig. 1, where the observable, extant languages are repre-
sented as its leaves.

DEFINITION 1. The Gaussian latent tree model M (T) for the subvector X = (Zy)yey is the
set of all V-marginal distributions of the distributions in N (7).

9T0Z ‘9z 1BNBNY U0 YoIMAA JO A1SBAIUN Te /BI0'S [euINO P10 X0 B0 Ig//:dNy WO ) PapeojuMod


http://biomet.oxfordjournals.org/

Correlation space of Gaussian latent tree models 3

The parameterization of M (7) is induced from the parameterization of N(7) and is

pij= [[ pe. isiev. ()
eeph(ij)

As the variances oy, for u € U\ V' never appear in this parameterization, without loss of gener-
ality, we can assume they are equal to 1.

2. SEMIALGEBRAIC DESCRIPTION OF THE LATENT TREE MODEL
2-1. Tree metrics and phylogenetic oranges

Let 7 = (U, E) be a tree with leaf set / C U. Associate to each edge a nonnegative number
d., which we interpret as the length of this edge. Then we can compute the distance between any
two leaves i, j € V as dij =} cpn(;j) de- 1t is easy to check that a collection of such distances
for all pairs u, v € V' forms a metric. The set of all metrics that arise in this way for all 7 with
leaves labelled by V' is called the space of tree metrics. We recall the following result.

THEOREM 1 (Buneman, 1974). A collection of positive numbers d;; for i, j € V forms a tree
metric if and only if for all, not necessarily distinct, i, j, k,l € V we have max(d;x + d;;, dij +
djx) = dij + dy. Equivalently, for any three sums dii + d;i, dij + djk, d;ij + di1, two are equal
and not less than the third. Moreover, if the tree metric inequalities hold, then generically T is
uniquely identified.

In Theorem 1 the term generically means that the statement holds outside a set of measure zero
corresponding to the vanishing of some edge lengths d.. A more precise statement is possible if
we allow semi-labelled trees; see Semple & Steel (2003, § 7). A careful analysis shows that this
generic tree is always binary, i.e., all its inner nodes have degree three. The triangle inequality
follows from setting i, j, k distinct and £ =/ in Theorem 1, which in turn implies that every tree
metric is a metric on V.

CoROLLARY 1. The space of tree metrics on a fixed tree T is the set of all metrics on V such
that for any four distinct leaves i, j, k, [ such thatph(i, j) Nph(k,]) =0, dix +dji =dij +djx >
dij + du.

Recall that ph(i, j) is the set of edges and hence, for example, for a star tree any four leaves
i, j,k, ! satisfy ph(i, j) Nph(k, ) =@. The condition ph(i, j) N ph(k, /) =@ implies that the
induced subtree over i, J, k, /, that is, the smallest connected subgraph of 7 containing i, j, k, [,
is a quartet tree as in Fig. 2(a). This also explains the conditions of Corollary 1.

Another closely related space defined over a tree is the space of phylogenetic oranges (Kim,
2000; Moulton & Steel, 2004). For a fixed tree 7 this is the same parameterization (1) as the
Gaussian latent tree model but where the edge correlations p, are non-negative. The set of all
points in R”"~1D/2 that arise in this way is denoted PO(7) and it forms a toric cube as defined
in Engstrom et al. (2012). The union of all PO(7) is denoted by PO(V).

Let PO, (7) and PO, (V) respectively denote the subsets of PO(7) and PO(V") for which
all coordinates are strictly positive; thus the corresponding edge correlations p, must be strictly
positive. The space of tree metrics on a fixed tree 7 is isomorphic to PO (7"), with the isomor-
phism given by d;; = — log p;;.
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(a) (b)
i : : k 1
J l 2 -A‘ 3
Fig. 2. (a) A quartet tree ij |kl. (b) Tripod tree.

THEOREM 2. Let R = (p;j)i,jev and suppose that p;; > 0 for alli, j € V. Then:

(a) R € PO(V) if and only if for every four not necessarily distinct elements i, j, k,l in V, at
least two out of three products pikp i, PilPjk Pij Pkl are equal and less than or equal to the third.
Moreover, if this holds then T with the property R € PO(T) is generically identified uniquely,

(b) for a fixed T, the space PO(T) has dimension |E|. This is described by the following
set of constraints. For any four distinct elements i, j, k, [ of V such that ph(i, j) Nph(k,[) =0,
PikPjl = PilPjk < pijPki- Moreover, for any three distinct leaves i, j, k, the triangle inequality
PijPik < Pjk holds.

2-2. Latent tree models and phylogenetic oranges

We are now ready to derive the semialgebraic description of the model M (7). Let Sy (V)
denote the space of all symmetric positive definite | V'] x |V |-matrices.

THEOREM 3. Let T be a tree and let R =[p;j] € S4(V) be a correlation matrix. Then
R e M(T) ifand only if R" =[|pij|] € PO(T) and pjjpirp i = 0 for any three distinct i, j, k€ V.

The proof is given in the Appendix.

Example 1. Let T be the tripod tree in Fig. 2(b). The space of correlation matrices in M (7)
is described by the inequalities

012013023 20, |p2psl <leal,  leipsl <lpisl,  |pizp2sl <lpial.

If p12, p13, p23 = 0 then by Theorem 2(b) the space described by the above inequalities cor-
responds to PO(7). There are three other sign patterns for pi2, p13, p23 that ensure that
p12p13023 = 0. For every such pattern we obtain a copy of PO(7"). Quite remarkably, the space
of the correlation matrices in M (7) looks exactly like the three-dimensional slice of the corre-
sponding binary latent class model; see Allman et al. (2015, Fig. 1). Such constraints cannot,
in general, be neglected. For example, simple calculations show that the ratio of the volume of
M (T) to the volume of all 3 x 3 correlation matrices is only 2/~ 0-2.

Based on Theorem 2(b) and Theorem 3 we formulate the following result.

ProrosiTION 1. If T is a fixed tree then the space M(T) has dimension |V|+ |E|. Let &
be a covariance matrix with no zeros. Then ¥ € M(T) if and only if for any three distinct
leaves i, j, k,

(okk0ij — 0ik0 i) (0}j0ik — 010 k)(0ii0 jk — 07j0ik) = 0, (2)
and for any four distinct elements i, j, k,l of V such that ph(i, j) N ph(k,]) =0,

OikOjl  Oi|0jk
I TR <., (3)
0ijOkl  0jjOk]
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This full algebraic and semialgebraic description can be viewed as a generalization of the main
results in Bekker & de Leeuw (1987) and Pearl & Xu (1987) from star trees to general trees. An
analogous description of the second order moments for binary latent tree models was given in
Zwiernik & Smith (2011). The similarity of both descriptions arises because the parameterization
of correlations in the binary latent tree model is precisely (1); see Zwiernik & Smith (2011,
Lemma 4-1).

3. USING SEMIALGEBRAIC CONSTRAINTS

We now describe how the semialgebraic constraints can be used to give an indication of tree-
compatibility. Here the constraints in (2), which hold for every tree topology, will be called tree-
compatibility constraints. A test based on these constraints can be used as an effective preliminary
assessment tool to inform whether it is legitimate to proceed to a more complex tetrad analysis
as described in § 5. For a fixed 7 we can further extend our test by including the inequality
constraints in (3). The resulting constraints are called 7 -compatibility constraints. A test of fit
based on such constraints is called a tree-compatibility or 7 -compatibility test as appropriate.

A straightforward but effective assessment of 7 -compatibility constraints can be obtained
from the posterior probabilities by applying an inverse Wishart prior on the sample covariance.
IfSisa sample covariance matrix based on a sample X of size n from N, (0, C), then the esti-
mated scatter matrix is calculated as S =n3 = X X', where X7 is the transpose of X, which is
Wishart distributed, S ~ W, (n, C) (Wishart, 1928). A common prior distribution for unknown
covariance C is inverse Wishart, W, Y(ng, Cp), e.g., Gelman et al. (2013), Carlin & Louis (2008)
and Roverato (2002). The inverse Wishart prior is conjugate, so the posterior density p(C | X) is
inverse Wishart W, Y(ng +n, Co + S). As in Roverato (2002), for Cy the identity matrix /|| can
be used and letting 79 = m ensures that the inverse Wishart prior density has a valid number of
degrees of freedom. Then covariance matrices can be sampled from the conditional distribution
of C given X and each draw standardized to form a correlation matrix and then tested against
the constraints. After N such draws from the posterior distribution, an estimate of the posterior
probability that C satisfies the positivity constraint can be obtained. Of course other choices of
families of priors could be chosen instead, for example the scaled inverse Wishart distribution
(O’Malley & Zaslavsky, 2008), or we could use a strategy that models correlation and covari-
ance separately (Barnard et al., 2000). However, these alternatives bring additional computational
cost and complexity. An entirely different approach focusing on Bayesian methods could involve
adapting the work on inequality-constrained hypotheses to assess tree-compatibility, see Van de
Schoot et al. (2012), Gu et al. (2014) and Gardner et al. (2014).

In Example 1, an estimate of the probability of C satisfying the semialgebraic structure of
M (T) can be constructed using indicator functions. For each draw / from the relevant inverse
Wishart posterior distribution for 3, the following identity is evaluated:

[ ~ o~ ~ o~ ~ o~ ~ o~ ~ o~ ~ o~
r13(X) = 1{(033012 — 013023) (022013 — 012023) (011023 — 012013) = 0}
where 0;; (i, j =1, 2, 3) are the covariances corresponding to covariance draw / of the posterior,

the index / being dropped for simplicity. The posterior probability of tree-compatibility is thus
estimated using

1Y .
Ris(3) =3 rin(3). )
=1
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For a tree with four variables such that ph(1, 2) and ph(3, 4) do not intersect, the remaining test
associated with the inequality constraints is

N

~ 1 L L L L ~
Ripp34(X) = v Z 1{014023 — 012034 < 0}1{013024 — 712034 < 0} H V,ij(z)-

1=1 1<i<j
<k<4

These sampling approaches do not extend to the algebraic constraints because the set of draws
from the posterior satisfying an equality constraint will have zero probability. Thus an alternative
approach is needed that uses sample distributions of the minors of a covariance matrix.

4. THE SAMPLE DISTRIBUTION OF ALGEBRAIC CONSTRAINTS

From § 3 and Theorem 2(b), the signs of tetrad constraints ;40 ;; — 07,0 i and other quadratic
binomials of the form o;;0 1 — 0;;0; provide essential information about whether a Gaussian
distribution lies in M (7). These types of constraints can be realized as minors of the covariance
submatrix X, that is det(X;; x;) and det(X;; ;x) where X;; j; denotes the 2 x 2 submatrix of X
with rows i and j and columns k£ and /. Let M, denote the set of all subsets of {1, ..., m} of
cardinality two. We now propose the following estimator of the value of det(C; ;) for I, J € My,

Or; = L det(S7,). (5)
nn-—1)
We note from Drton et al. (2008, Corollary 4-2) that Qs is an unbiased estimator of det(C;_ ;).
In what follows we provide the covariances between different Q; ;. For an m x m matrix
A, let A® denote the matrix with rows and columns indexed by elements M, whose (/, J)th
element is the corresponding minor det(A4;, ;). With this notation, the matrix whose elements are
the estimators Qy_ s is S@ /nn —1).
There is no simple explicit formula for covariances of various 2-minors, but they can be com-
puted if the true distribution C is known. From Drton et al. (2008, Proposition 3-3),

cov($?) = ()P @ (€% Peov(m D) (CVHP @ (c/H)P, (6)

where W has the standard Wishart distribution W, (n, I) and ® is the Kronecker product.

In the rest of this section we provide a complete description of the covariance matrix
cov(W@). Our discussion follows Drton et al. (2008, Example 4-6). This gives the same deriva-
tion for the case m = 4. We show below that the generalization to m > 4 is straightforward.

The matrix cov(#?) has many symmetries that we want to exploit. For all 7, J € M,
det Wy j=det W, 1, so

covidet(W; ), det(Wk 1)} = cov{det(W ), det(Wk )} = cov{det(Wg 1), det(W; j)}.

We can therefore, without loss of generality, consider only unordered pairs of sets (/, J), where
I={i, j}and J = {k, [} withi < j, k <[ and eitheri <k ori =k and j </.

Let AAB = (A\B) U (B\ 4) be the symmetric difference of two sets. We split the rows and
the columns of cov(#?) into blocks according to the values of /AJ and K AL. With this con-
vention, by Drton et al. (2008, Corollary 4.2 and Proposition 3.4), cov(W ?)) is a block-diagonal
matrix. Therefore, it is enough to describe its diagonal blocks. Since [/ AJ| € {0, 2, 4}, we have
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three types of blocks. We first describe the block corresponding to /AJ = K AL =}, or equiv-
alently / = J, K = L. This block forms a m(m — 1)/2 x m(m — 1)/2-matrix that satisfies:

0, IINK|=0,
covidet(Wy ;), det(Wk )} =< 2n(n — 1), INK|=1,
2n2n+ 1H)(n—-1), =K.

We now have m(m — 1)/2 blocks corresponding to /AJ =KAL ={i, j} for 1 <i < j<m.
Every such block is an (m — 2) x (m — 2) matrix, where I ={i, k}, J ={j, k}, K ={i, [},
L={j, I} forsome k </ e{l,...,m}\{i, j}. All of these matrices have two types of elements.
The diagonal entries, kK =1/, equal n(n + 2)(n — 1). The off-diagonal elements, k </, up to a
sign, are n(n — 1)2. The sign depends on the relative order of i, j, k, /. By Drton et al. (2008,
Theorem 4.5), the sign is positive if k <i < j < /. Now a simple sign analysis shows that the
sign is negative only if eitheri <k < j </ ork <i </ < j. This yields

nn+2)y(n—1), k=I,
covidet(Wik jx), det(Wi j))} = —n(n — 1), i<k<j<lork<i<lI<j,
nn — 1)2, otherwise.

Finally, there are m(m — 1)(m — 2)(m — 3)/24 blocks corresponding to IAJ ={i, j, k, [},
where 1 <i < j <k <[ <m. Each such block is a 3 x 3 matrix of the form

ij,kl ik, jl il,jk
a b —b
[ . a b ]
. . a
where a =2n(n — 1) and b=n(n — 1).

5. QUARTETS AND APPLICATIONS OF TETRAD ANALYSES
5-1. The method of quartets

For any four distinct leaves i, j, k, [ € V' we say that g;; 1 =ij|kl forms a quartet of 7 if the
paths ph(i, j) and ph(k, /) are disjoint, cf. Fig. 2(a). A binary tree 7 displays the set of quartets QO
if each quartet ¢ € Q is a quartet of 7. A set of quartets Q is said to determine 7 if 7 displays Q
and 7 is the unique tree displayed by Q (Semple & Steel, 2003); the set of all quartets displayed
by 7 is denoted by Q7. Quartets can be considered to be fundamental components of binary
trees; see Dress et al. (2012) for more details. A set Q7 is said to be minimal if there exists no
element ¢ € Q7 such that Q7\{q} determines 7. Griinewald et al. (2008, Theorem 2.4) provides
the minimum size of any Q7, i.e., the size of the smallest minimal defining quartet set, which
for a binary tree is just the number of internal edges of 7. Furthermore, Semple & Steel (2003,
Theorem 6.8.8) provide a quick method for constructing minimal defining sets of quartets that
define binary phylogenetic trees.

Let V' C U be such that V ={i, j, k, [}, where these elements are distinct. Consider three
random variables Qi j1, Qi jx and Q;j i as defined in (5). By Theorem 2, if a tree model
holds, then the mean of one of the three will be zero and the other two means will be equal up to
sign. So these Q7 ; can be used to test the algebraic constraints in Proposition 1.
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Here we focus on testing the vanishing tetrads, i.e., testing whether the quartet g;; 4 1s dis-
played in 7 given the data. To test a particular binary tree 7, a set Q7 is required, i.e., a set of
quartets Q that determines 7. The number of edges of 7 is 2m — 3 and so the Gaussian latent
tree model on 7 has codimension m(m — 1)/2 — (2m — 3). This means that to test a model, we
need to work with quartet systems Q7 of size quadratic in m. On the other hand if we believe
that the data come from a latent tree model, then to only find the corresponding tree 7 we can
work with any minimal quartet system determining 7, and these are of size m — 3, the number
of internal edges. This makes a big difference for larger trees.

In practice, one may wish to select Q7 such that it is minimal of size m(m — 1)/2 — 2m — 3),
i.e., it contains no redundant quartets, because otherwise the covariance of minors matrix may
be close to being singular; see Bollen & Ting (1993). However, there may be no obvious reason
to select one minimal defining quartet set Q7 over another. In such cases one approach is to
randomly select a number of sets to assess the robustness of the results; see Bollen & Ting (1993).
For each ¢;; 11 € Q7 consider the correspondmg Qij.k as in (5) and define Q7 =[Q;; x] to be

the vector of these Q;; 1. We write Q, .k for the sample means of the observations of Q, okl
Since QT is a consistent estimator of Q7 (Drton et al., 2007), as the sample size n tends to
infinity any tree 7 is uniquely identified by the i, j, k, [ such that £(Q;; 1) =0
To standardize the data we use the sample covariance matrix XA]QT which has dimension
=|Q7|, or we can use its proxy iQT, obtained by recycling cov(W ) computed in §4 and
replacing C in (6) with the sample covariance of original variables 3. The matrix fJQT can be

obtained much more efficiently than fIQT. An appropriate simultaneous test statistic (7) is pro-
vided in Bollen & Ting (1993),

7=0v3%, 07 (7)

As 7 is constructed with p algebraically independent quartets, its asymptotic distribution is
Xl%' Compare (7) with Bollen & Ting (1993, (20)) where their X;; is the covariance of n!/2Q.

Here the sample size n is incorporated implicitly through f)élT so (7) provides a significance
test for the equality constraints in (3), where the required moments of Q;, s are given in § 4. This
provides a quick method for assessing whether a Gaussian dataset appears consistent with the
algebraic constraints associated with any tree model.

In deriving the asymptotic distribution of (7) we implicitly assume that the true covariance
matrix is a sufficiently regular point of the given tree model. In practice, it is enough to assume
that the true covariance matrix contains no zeros; see Drton et al. (2016a) and Drton et al. (2016b,
§95).

Hypothesis testing for vanishing tetrads can be used for both confirmatory tetrad analysis
and for exploratory tetrad analysis. There are many algorithms for obtaining candidate trees, for
instance see Junker & Schreiber (2011) and Sung (2009) for surveys of methods. However, often
there is no way to assess the suitability of the final tree. Confirmatory tetrad analysis takes a
candidate tree and provides an absolute rather than relative value as to how well the data support
the purported tree.

In the case of a large tree it is infeasible to test all quartets at once, but it is straightforward
and very stable to test single quartets or a small subset of them. One advantage of this approach
is that it allows us to identify easily certain macrostructures of the tree which may lead to more
robust techniques for finding the underlying tree. We now illustrate confirmatory and exploratory
techniques for simulated data and some linguistics datasets.
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Fig. 3. Illustration of the simulations in § 5-2. One hundred observations are generated from a random
matrix in the tree model for the quintet tree 12|5|34 and the corresponding test statistic is computed.
This procedure is repeated 10 000 times. In each panel we compare the sample distribution of a test
statistic against its theoretical distribution. In (a) we test a single tetrad 12|34. In (b) we test a single
false tetrad 13|24. In (c) we test two tetrads 12|35, 15|34, and in (d) we test a minimal set of quartets
defining the true quintet tree. The solid lines are densities of Xlz, Xlz, ng, and X32 respectively.

5-2. Basic simulations for the method of quartets

In this section we provide a basic analysis of the methods discussed in the previous section.
The only difference from the previous applications of this method in other contexts is that in (7)
we explicitly replaced the sample covariance of the tetrads with EQT as explained in § 5-1. The
data in our simulations come from the quintet tree model 12|5|34; cf. Fig. 1.

We first randomly choose the true covariance matrix C by sampling the edge correlations uni-
formly from the interval [1/2, 1]. Given this random true covariance matrix, we can now repeat
the following evaluation procedure 10 000 times. We sample » = 100 points from the given distri-
bution C. In this scenario, standard packages that might be used to find the maximum likelihood
estimate, such as the sem package (Fox et al., 2014; R Development Core Team, 2016), are unsta-
ble. On the other hand any set of quartets can be easily tested, without fitting the model. Moreover,
the sample distribution of the test statistic is already very close to the asymptotic distribution,
even when the sample size is only about twice the dimension of the model, though of course the
power of the test will then be much lower.

In Fig. 3 we compare simulated values of test statistics of the form (7) with their asymptotic
distributions. Figure 3(a) depicts the statistic built on a single tetrad constraint for the quartet
12|34. This constraint holds for the data-generating distribution and therefore the test statistic
should have asymptotic x 12 distribution. The histogram is very close to the theoretical distribu-
tion. For comparison, Fig. 3(b) shows the sample distribution of the same test statistic for the
quartet 13]24. This constraint does not hold for the data-generating distribution and the sample
distribution of the corresponding test statistic is very far from Xlz. The test statistic can easily be
set up for any subset of quartets. In Fig. 3(c) we plot the test statistic to test two quartets 12|35
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and 15/|34. This is the minimal set of quartets that identifies the quintet tree 12|5]34. This means
that these two particular quartets will not be simultaneously satisfied for any other tree model.
Again, the sample distribution lies very close to the asymptotic Xzz distribution.

In Fig. 3(d) we test simultaneously a minimal set of quartets 12|34, 12|35, 15|34 defining
the quintet tree model. In this case the sample distribution of the test statistic also lies close
to X32 with a slightly smaller variance, because the true distribution is closer to a mixture of
x 2-distributions; thus the test based on our statistic is typically more conservative. To obtain a bet-
ter understanding of its performance we compare it with the structural expectation-maximization
algorithm (Friedman et al., 2002) as applied to Gaussian latent tree models. This algorithm tries
to find the tree that gives the maximum value of the likelihood function. However, like the stan-
dard expectation-maximization algorithm, it often gets stuck in a local maximum. In our sim-
ulations we generated 100 datasets from the given quintet model. If the sample size n = 60,
then for our particular choice of a correlation matrix with all edge correlations equal to 0-7, we
obtained the correct tree only 68 out of 100 times. On the other hand, our tetrad method always
confirms the correct tree for any significance level smaller than 0-1. If » =200 then the struc-
tural expectation-maximization algorithm was correct 99 out of 100 times, and again our quar-
tet method was always correct. We emphasize that in a less ideal situation, for example, when
some edge correlations are small, or in the presence of partial misspecification, the structural
expectation-maximization algorithm will perform poorly because the likelihood function is less
stable. In contrast, our computations show that the quartet method tends to be much more robust.

5-3. Exploratory tetrad analysis example: linguistics

Consider now the linguistic dataset from Shiers et al. (arXiv:1410.0813), which comprises
phonetic functional spectrogram data from French, Italian, Portuguese, and two forms of Span-
ish, namely American and Iberian. Acoustic data have provided new insights into language devel-
opment (Bouchard-Coté et al., 2013; Aston et al., 2010). Here the evolutionary dependencies
between spoken numbers are studied, with each extant language treated as a leaf vertex. The
high dimensional spectrogram data are projected from 8100 dimensions to 15 dimensions using
a variant of canonical variate analysis, see Shiers et al. (arXiv:1410.0813). Each of the 15 canon-
ical components projects the mean word data to obtain 15 new datasets referred to as canonical
scores. Each canonical component accounts for a particular combination of phonetic variation
and each set of canonical scores is considered independently. This gives us the flexibility to
hypothesize different evolutionary relationships for different aspects of the speech. For each set
of canonical scores a 5 x 5 covariance matrix is calculated between the five languages. Royston’s
multivariate normality test (Royston, 1983) does not reject Gaussianity at the 0-01 level for any
of these 15 sets of scores.

We sampled 10° covariance matrices from the inverse Wishart posterior for each of the sample
covariances 31, ..., 315. We then performed a tree-compatibility test with respect to the positiv-
ity constraint implied by the triangle inequalities in Theorem 2(b) for each canonical component.
We identify four such components, the first, fourth, sixth, and second, with high posterior prob-
abilities, respectively 1, 0-89, 0-77 and 0-74, which warrant further investigation.

For the quintet tree in Fig. 1, there are 15 different labelled binary trees to test. In order to
test a particular configuration of labels we construct a set of minimal defining quartets Q for the
quintet tree as referenced in § 5-1; in the case of the quintet tree this smallest minimal set is two.

For each of the four dimensions of interest, using the sampling distributions given in § 4 and
the test statistic (7) with two degrees of freedom, a p-value can be calculated for each of the
15 non-isomorphic trees with languages as leaves. To retain an overall significance rate of less
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Fig. 4. Quintet tree 75 of yeast species (Marcet-Houben & Gabaldon, 2009).

than 0-05 a Bonferroni correction (Dunn, 1961) is applied such that the significance level is set
at 0-05/15 ~ 0-0033 per test. If more than one tree is not rejected then the candidate tree pro-
posed by exploratory tetrad analysis is that with the highest p-value. We find that multiple trees
exceed the threshold for all four components. The highest p-values for the first, second, fourth
and sixth components were 0-524, 0-960, 0-775 and 0-902 respectively relating to the candidate
trees: 121435, 1315|124, 14/|2|35, and 23|1|45 respectively with coding 1 = French, 2 = Italian,
3 = Portuguese, 4 = American Spanish, 5 = Iberian Spanish.

For illustration we focus on the candidate tree for the second component, which is displayed in
Fig 1. It is known from the analysis and expert interpretation in Shiers et al. (arXiv:1410.0813)
that this component is likely to relate to variation in vowel sounds, nasality, and the lip rounding
of language speakers. By isolating these phonetic features and identifying a tree that fits the data
we can gain insights which may have otherwise been obscured. For example, from this particu-
lar analysis we could hypothesize that the differences in nasality of Italian and French evolved
independently conditional on the common ancestor of Spanish and Portuguese. In combination
with expert judgement, such statements can provide good starting points for further analyses of
these features in relation to a specified tree.

5-4. Confirmatory tetrad analysis example: biology

We next consider growth curves for five yeast species each observed in the same 96 envi-
ronments, each species with at least two replicates. The growth was recorded at approximately
six-minute intervals over a period of just over 26 hours. These species have been studied before
(Marcet-Houben & Gabaldon, 2009) and a phylogeny has been suggested as in Fig. 4. However,
Libkind et al. (2011) hypothesize that S. bayanus is a hybrid involving S. cerevisiae. This alter-
native hypothesis would violate the tree assumption. Previous research has indicated that for the
studied yeast species there is positive correlation between growth-related phenotypic variation
and genotypic phylogenetic relationships, e.g., Liti et al. (2009) and Warringer et al. (2011). This
leads us to consider the yeast growth-curve data to investigate evolutionary questions. We carried
out a confirmatory tetrad analysis to assess whether the proposed tree structure in Marcet-Houben
& Gabaldon (2009) was reflected in any aspects of the growth data.

To pre-process the data, a smoothed cubic spline basis was fitted to each growth vector, result-
ing in a set of functional data objects which were then regularly evaluated to obtain comparable
discretized representations. Mean vectors were then calculated for each species and environment
and then these were standardized to remove mean environmental effects. We then performed
a principal component analysis across species to identify the core variability of the growth
curves. The first four components account for over 99% of variability. More detailed analysis, not
reported here, can help interpret these components. For example, the first component relates only
to growth variation in hours 10 to 26, whereas the second component relates to growth variation
peaking at 12 hours with opposite growth variation from 18 hours onwards.

9T0Z ‘9z 1BNBNY U0 YoIMIAA JO A1SBAIUN Te /BI0'S euUINO [pI0 X0 B0 Ig//:dNy WO} P3P0 juUMod


http://biomet.oxfordjournals.org/

12 N. SHIERS, P. ZWIERNIK, J. A. D. ASTON AND J. Q. SMITH

For each of the mean species projections in these dimensions, the sample covariance matrix
was constructed. As a first step, the inverse Wishart approach specified in (4) was implemented.
Recall that the tripod constraints are tree-compatibility constraints and thus require no tailoring
to a specific 7. Hence, these can be used very simply to narrow the list of components to test
as part of a confirmatory tetrad analysis. The tree-compatibilities for the first four components
were 31%, 2%, 18%, and 3% respectively. Thus, we consider the first and third components
worth investigating further via confirmatory tetrad analysis for 7 -compatibility.

The results of the confirmatory tetrad analysis for 7s-compatibility, see Fig. 4, gave p-values
0-721 and 0-955 for the first and third components. To double-check these results we repeated the
test using the bootstrapping strategy outlined in Bollen & Stine (1992). The results were very sim-
ilar, with p-values of 0-729 and 0-921 respectively. The confirmatory tetrad analysis and inverse
Wishart simulation results both gave upper bounds on 7s-compatibility, but on balance we con-
cluded that the first and third components were 7s-compatible. Therefore, the class of Gaussian
latent tree models does appear suitable for modelling some aspects of these yeast species’ growth
curves. However, for features relating to components 2 and 4, there is some evidence to support
the exploration of a wider model class that could accommodate the hybrid hypothesis described
in Libkind et al. (2011).

6. DiscussioN

Understanding the complete description of the correlation space associated with Gaussian
latent tree models suggests a number of useful tools for assessing tree-compatibility either on a
class basis or for a specified tree. Some of the methods described in this paper are particularly use-
ful as part of an exploratory analysis for defining the relevant model search space, whereas others
are ideal as a final check of the conclusions of a model search. The complete semialgebraic struc-
ture of the correlation space has not been used elsewhere for assessing tree-compatibility of data,
though the positivity constraint has been used previously; see Shiers et al. (arXiv:1410.0813).
Incorporating a prior such as the inverse Wishart and sampling from the posterior distribution
allows probabilistic conclusions about the model. This provides a more nuanced answer than a
simple assessment of inequalities via the plugging in of covariance point estimates, and enables
two or more incompatible but plausible trees to be compared.

Although our results are focused on Gaussian models, they can be extended to more gen-
eral scenarios. Gaussian tree models can be thought of as linear structural equation models with
Gaussian errors. If the errors are instead non-Gaussian but with finite variance, the covariance
matrices will still obey the same constraints as in the Gaussian models. This means that our pro-
cedure can be used for basic model assessment also for non-Gaussian data given the second order
moments exist.

One important practical consideration is the scalability of these methods. Techniques
employing the semialgebraic constraints can be adapted to a larger number of variables reason-
ably well. For a confirmatory tetrad analysis the biggest computational cost is the calculation
of the covariance of minors, which for p observed random variables has dimension of order p*,
and can become prohibitive. For example, if §GB of RAM is allocated for a single matrix, the
limit of p is approximately 25 even if redundant rows and columns are removed from the matrix.
However, much larger p can be considered by calculating the relevant statistics for each quartet
marginally. Then the covariance matrix of minors has dimension only 36 and the memory can be
released once each quartet has been tested. In either case, the final memory requirement could
further be reduced with programming that takes advantage of symmetries and sparseness. In a
similar vein, to extend the scope of exploratory tetrad analysis to a greater number of variables,
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one strategy is to only assess single quartets in the first instance and use these results to reduce
the set of possible trees. Given the effectiveness of the quartet testing with even small sample
sizes, this approach seems sensible and to have significant advantages over methods that require
a whole model to be tested at once.
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APPENDIX
Proofs

Proof of Theorem 2. Assume first that all correlations p;; are strictly positive, that is R € PO, (V) or
R € PO, (7). We use the fact that PO (V') is isomorphic to the space of tree metrics, whose constraints
are given in Theorem 1 and Corollary 1. Translating these constraints via d;; = — log p;; gives exactly the
constraints in the proposed theorem. These constraints describe a closed set, which is the smallest closed
set containing PO, (V), so it is enough to show that the closure of PO (7)) is equal to PO(7). This follows
from the fact that PO(7) is a toric cube and, by Engstrom et al. (2012, Theorem 1), every toric cube is
equal to the closure of its interior. 0

Proof of Theorem 3. 1f R € M(T) then each p;; has representation (1). Thus |p;;| = Heeph([ ) |pel and
hence R’ also lies in PO(7T'). To show that p;; pix0,x = 0 consider the induced subtree over 7, j, k, that is,
the smallest connected subgraph of 7 containing vertices i, j, k. This subtree necessarily has a unique
vertex v that lies on the intersection of paths ph(ij), ph(ik) and ph(jk). Moreover, by (1),

pipipe= 1] pe T] pe T[ pe= II o2 II P2 ] Piz0

eeph(ij) eeph(ik) eeph(jk) eeph(iv) eeph(jv) eeph(kv)

To prove the reverse implication, we note that every correlation matrix in PO(7') has, after permuting rows
and columns, a block diagonal structure with strictly positive elements in each block. Consider first the case
when all elements of R are nonzero, that is, R’ has strictly positive entries. Distinguish one node in ¥ and
label it as 1. Let D be a diagonal matrix such that D;; = —1if p;; <0Oand D;; =1if p;; > 0. If R € M(T)
then also DRD lies in M(7) because M(7) is invariant with respect to all diagonal transformations.
Moreover, it holds that R’ = DR D because D1 D;;p1; = |p1;| for all i € V\{1} and D;; D;;p;; = |p;;| for
i, j € V\{1}. This last equality follows from our assumption that py; p1;0;; = 0 so that the sign of py; 01
is equal to the sign of p;;. Now, since R' € PO(7) C M(7) and R = DR’D we also have that R € M(7).
The analysis of the case when R is block diagonal will be omitted. O
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