85 research outputs found

    A realizability-preserving high-order kinetic scheme using WENO reconstruction for entropy-based moment closures of linear kinetic equations in slab geometry

    Full text link
    We develop a high-order kinetic scheme for entropy-based moment models of a one-dimensional linear kinetic equation in slab geometry. High-order spatial reconstructions are achieved using the weighted essentially non-oscillatory (WENO) method, and for time integration we use multi-step Runge-Kutta methods which are strong stability preserving and whose stages and steps can be written as convex combinations of forward Euler steps. We show that the moment vectors stay in the realizable set using these time integrators along with a maximum principle-based kinetic-level limiter, which simultaneously dampens spurious oscillations in the numerical solutions. We present numerical results both on a manufactured solution, where we perform convergence tests showing our scheme converges of the expected order up to the numerical noise from the numerical optimization, as well as on two standard benchmark problems, where we show some of the advantages of high-order solutions and the role of the key parameter in the limiter

    Spatial second-order positive and asymptotic preserving filtered PNP_N schemes for nonlinear radiative transfer equations

    Full text link
    A spatial second-order scheme for the nonlinear radiative transfer equations is introduced in this paper. The discretization scheme is based on the filtered spherical harmonics (FPNFP_N) method for the angular variable and the unified gas kinetic scheme (UGKS) framework for the spatial and temporal variables respectively. In order to keep the scheme positive and second-order accuracy, firstly, we use the implicit Monte Carlo linearization method [6] in the construction of the UGKS numerical boundary fluxes. Then, by carefully analyzing the constructed second-order fluxes involved in the macro-micro decomposition, which is induced by the FPNFP_N angular discretization, we establish the sufficient conditions that guarantee the positivity of the radiative energy density and material temperature. Finally, we employ linear scaling limiters for the angular variable in the PNP_N reconstruction and for the spatial variable in the piecewise linear slopes reconstruction respectively, which are shown to be realizable and reasonable to enforce the sufficient conditions holding. Thus, the desired scheme, called the PPFPNPPFP_N-based UGKS, is obtained. Furthermore, in the regime Ο΅β‰ͺ1\epsilon\ll 1 and the regime Ο΅=O(1)\epsilon=O(1), a simplified spatial second-order scheme, called the PPFPNPPFP_N-based SUGKS, is presented, which possesses all the properties of the non-simplified one. Inheriting the merit of UGKS, the proposed schemes are asymptotic preserving. By employing the FPNFP_N method for the angular variable, the proposed schemes are almost free of ray effects. To our best knowledge, this is the first time that spatial second-order, positive, asymptotic preserving and almost free of ray effects schemes are constructed for the nonlinear radiative transfer equations without operator splitting. Various numerical experiments are included to validate the properties of the proposed schemes

    A Finite Element Method for Angular Discretization of the Radiation Transport Equation on Spherical Geodesic Grids

    Full text link
    Discrete ordinate (SNS_N) and filtered spherical harmonics (FPNFP_N) based schemes have been proven to be robust and accurate in solving the Boltzmann transport equation but they have their own strengths and weaknesses in different physical scenarios. We present a new method based on a finite element approach in angle that combines the strengths of both methods and mitigates their disadvantages. The angular variables are specified on a spherical geodesic grid with functions on the sphere being represented using a finite element basis. A positivity-preserving limiting strategy is employed to prevent non-physical values from appearing in the solutions. The resulting method is then compared with both SNS_N and FPNFP_N schemes using four test problems and is found to perform well when one of the other methods fail.Comment: 24 pages, 13 figure

    Realizability-preserving discretization strategies for hyperbolic and kinetic equations with uncertainty

    Get PDF
    • …
    corecore