2,683 research outputs found

    Generalized Results on Monoids as Memory

    Full text link
    We show that some results from the theory of group automata and monoid automata still hold for more general classes of monoids and models. Extending previous work for finite automata over commutative groups, we demonstrate a context-free language that can not be recognized by any rational monoid automaton over a finitely generated permutable monoid. We show that the class of languages recognized by rational monoid automata over finitely generated completely simple or completely 0-simple permutable monoids is a semi-linear full trio. Furthermore, we investigate valence pushdown automata, and prove that they are only as powerful as (finite) valence automata. We observe that certain results proven for monoid automata can be easily lifted to the case of context-free valence grammars.Comment: In Proceedings AFL 2017, arXiv:1708.0622

    Sticker systems over monoids

    Get PDF
    Molecular computing has gained many interests among researchers since Head introduced the first theoretical model for DNA based computation using the splicing operation in 1987. Another model for DNA computing was proposed by using the sticker operation which Adlemanused in his successful experiment for the computation of Hamiltonian paths in a graph: a double stranded DNA sequence is composed by prolonging to the left and to the right a sequence of (single or double) symbols by using given single stranded strings or even more complex dominoes with sticky ends, gluing these ends together with the sticky ends of the current sequence according to a complementarity relation. According to this sticker operation, a language generative mechanism, called a sticker system, can be defined: a set of (incomplete) double-stranded sequences (axioms) and a set of pairs of single or double-stranded complementary sequences are given. The initial sequences are prolonged to the left and to the right by using sequences from the latter set, respectively. The iterations of these prolongations produce “computations” of possibly arbitrary length. These processes stop when a complete double stranded sequence is obtained. Sticker systems will generate only regular languages without restrictions. Additional restrictions can be imposed on the matching pairs of strands to obtain more powerful languages. Several types of sticker systems are shown to have the same power as regular grammars; one type is found to represent all linear languages whereas another one is proved to be able to represent any recursively enumerable language. The main aim of this research is to introduce and study sticker systems over monoids in which with each sticker operation, an element of a monoid is associated and a complete double stranded sequence is considered to be valid if the computation of the associated elements of the monoid produces the neutral element. Moreover, the sticker system over monoids is defined in this study

    Narrative Language as an Expression of Individual and Group Identity

    Get PDF
    Scientific Narrative Psychology integrates quantitative methodologies into the study of identity. Its methodology, Narrative Categorical Analysis, and its toolkit, NarrCat, were both originally developed by the Hungarian Narrative Psychology Group. NarrCat is for machine-made transformation of sentences in self-narratives into psychologically relevant, statistically processable narrative categories. The main body of this flexible and comprehensive system is formed by Psycho-Thematic modules, such as Agency, Evaluation, Emotion, Cognition, Spatiality, and Temporality. The Relational Modules include Social References, Semantic Role Labeling (SRL), and Negation. Certain elements can be combined into Hypermodules, such as Psychological Perspective and Spatio-Temporal Perspective, which allow for even more complex, higher level exploration of composite psychological processes. Using up-to-date developments of corpus linguistics and Natural Language Processing (NLP), a unique feature of NarrCat is its capacity of SRL. The structure of NarrCat, as well as the empirical results in group identity research, is discussed

    Integer Vector Addition Systems with States

    Full text link
    This paper studies reachability, coverability and inclusion problems for Integer Vector Addition Systems with States (ZVASS) and extensions and restrictions thereof. A ZVASS comprises a finite-state controller with a finite number of counters ranging over the integers. Although it is folklore that reachability in ZVASS is NP-complete, it turns out that despite their naturalness, from a complexity point of view this class has received little attention in the literature. We fill this gap by providing an in-depth analysis of the computational complexity of the aforementioned decision problems. Most interestingly, it turns out that while the addition of reset operations to ordinary VASS leads to undecidability and Ackermann-hardness of reachability and coverability, respectively, they can be added to ZVASS while retaining NP-completness of both coverability and reachability.Comment: 17 pages, 2 figure

    Interaction Grammars

    Get PDF
    Interaction Grammar (IG) is a grammatical formalism based on the notion of polarity. Polarities express the resource sensitivity of natural languages by modelling the distinction between saturated and unsaturated syntactic structures. Syntactic composition is represented as a chemical reaction guided by the saturation of polarities. It is expressed in a model-theoretic framework where grammars are constraint systems using the notion of tree description and parsing appears as a process of building tree description models satisfying criteria of saturation and minimality

    Viterbi Training for PCFGs: Hardness Results and Competitiveness of Uniform Initialization

    Get PDF
    We consider the search for a maximum likelihood assignment of hidden derivations and grammar weights for a probabilistic context-free grammar, the problem approximately solved by “Viterbi training.” We show that solving and even approximating Viterbi training for PCFGs is NP-hard. We motivate the use of uniformat-random initialization for Viterbi EM as an optimal initializer in absence of further information about the correct model parameters, providing an approximate bound on the log-likelihood.
    • 

    corecore