1,373 research outputs found

    Dynamical and radiative properties of astrophysical supersonic jets I. Cocoon morphologies

    Full text link
    We present the results of a numerical analysis of the propagation and interaction of a supersonic jet with the external medium. We discuss the motion of the head of the jet into the ambient in different physical conditions, carrying out calculations with different Mach numbers and density ratios of the jet to the exteriors. Performing the calculation in a reference frame in motion with the jet head, we can follow in detail its long term dynamics. This numerical scheme allows us also to study the morphology of the cocoon for different physical parameters. We find that the propagation velocity of the jet head into the ambient medium strongly influences the morphology of the cocoon, and this result can be relevant in connection to the origin and structure of lobes in extragalactic radiosources.Comment: 14 pages, TeX. Accepted for A&

    A Multidimensional Relativistic Hydrodynamics Code with a General Equation of State

    Full text link
    The ideal gas equation of state with a constant adiabatic index, although commonly used in relativistic hydrodynamics, is a poor approximation for most relativistic astrophysical flows. Here we propose a new general equation of state for a multi-component relativistic gas which is consistent with the Synge equation of state for a relativistic perfect gas and is suitable for numerical (special) relativistic hydrodynamics. We also present a multidimensional relativistic hydrodynamics code incorporating the proposed general equation of state, based on the HLL scheme, which does not make use of a full characteristic decomposition of the relativistic hydrodynamic equations. The accuracy and robustness of this code is demonstrated in multidimensional calculations through several highly relativistic test problems taking into account nonvanishing tangential velocities. Results from three-dimensional simulations of relativistic jets show that the morphology and dynamics of the relativistic jets are significantly influenced by the different equation of state and by different compositions of relativistic perfect gases. Our new numerical code, combined with our proposed equation of state is very efficient and robust, and unlike previous codes, it gives very accurate results for thermodynamic variables in relativistic astrophysical flows.Comment: 32 pages, 9 figures, accepted by ApJ

    Non-linear dynamics of Kelvin-Helmholtz unstable magnetized jets: three-dimensional effects

    Get PDF
    A numerical study of the Kelvin-Helmholtz instability in compressible magnetohydrodynamics is presented. The three-dimensional simulations consider shear flow in a cylindrical jet configuration, embedded in a uniform magnetic field directed along the jet axis. The growth of linear perturbations at specified poloidal and axial mode numbers demonstrate intricate non-linear coupling effects. The physical mechanims leading to induced secondary Kelvin-Helmholtz instabilities at higher mode numbers are identified. The initially weak magnetic field becomes locally dominant in the non-linear dynamics before and during saturation. Thereby, it controls the jet deformation and eventual breakup. The results are obtained using the Versatile Advection Code [G. Toth, Astrophys. Lett. Comm. 34, 245 (1996)], a software package designed to solve general systems of conservation laws. An independent calculation of the same Kelvin-Helmholtz unstable jet configuration using a three-dimensional pseudo-spectral code gives important insights into the coupling and excitation events of the various linear mode numbers.Comment: 10 (+7) pages, 6 figures, accepted for Phys. Plasmas 6, to appear 199

    RAM: A Relativistic Adaptive Mesh Refinement Hydrodynamics Code

    Full text link
    We have developed a new computer code, RAM, to solve the conservative equations of special relativistic hydrodynamics (SRHD) using adaptive mesh refinement (AMR) on parallel computers. We have implemented a characteristic-wise, finite difference, weighted essentially non-oscillatory (WENO) scheme using the full characteristic decomposition of the SRHD equations to achieve fifth-order accuracy in space. For time integration we use the method of lines with a third-order total variation diminishing (TVD) Runge-Kutta scheme. We have also implemented fourth and fifth order Runge-Kutta time integration schemes for comparison. The implementation of AMR and parallelization is based on the FLASH code. RAM is modular and includes the capability to easily swap hydrodynamics solvers, reconstruction methods and physics modules. In addition to WENO we have implemented a finite volume module with the piecewise parabolic method (PPM) for reconstruction and the modified Marquina approximate Riemann solver to work with TVD Runge-Kutta time integration. We examine the difficulty of accurately simulating shear flows in numerical relativistic hydrodynamics codes. We show that under-resolved simulations of simple test problems with transverse velocity components produce incorrect results and demonstrate the ability of RAM to correctly solve these problems. RAM has been tested in one, two and three dimensions and in Cartesian, cylindrical and spherical coordinates. We have demonstrated fifth-order accuracy for WENO in one and two dimensions and performed detailed comparison with other schemes for which we show significantly lower convergence rates. Extensive testing is presented demonstrating the ability of RAM to address challenging open questions in relativistic astrophysics.Comment: ApJS in press, 21 pages including 18 figures (6 color figures

    A Divergence-Free Upwind Code for Multidimensional Magnetohydrodynamic Flows

    Get PDF
    A description is given for preserving {\bmsy\nabla}\cdot{\vec B}=0 in a magnetohydrodynamic (MHD) code that employs the upwind, Total Variation Diminishing (TVD) scheme and the Strang-type operator splitting for multi-dimensionality. The method is based on the staggered mesh technique to constrain the transport of magnetic field: the magnetic field components are defined at grid interfaces with their advective fluxes on grid edges, while other quantities are defined at grid centers. The magnetic field at grid centers for the upwind step is calculated by interpolating the values from grid interfaces. The advective fluxes on grid edges for the magnetic field evolution are calculated from the upwind fluxes at grid interfaces. Then, the magnetic field can be maintained with {\bmsy\nabla}\cdot{\vec B}=0 exactly, if this is so initially, while the upwind scheme is used for the update of fluid quantities. The correctness of the code is demonstrated through tests comparing numerical solutions either with analytic solutions or with numerical solutions from the code using an explicit divergence-cleaning method. Also the robustness is shown through tests involving realistic astrophysical problems.Comment: 15 pages of text, 8 figures (in degraded gif format), to appear in The Astrophysical Journal (Dec. 10, 1998), original quality figures available via anonymous ftp at ftp://ftp.msi.umn.edu/pub/users/twj/mhddivb5.uu or ftp://canopus.chungnam.ac.kr/ryu/mhddivb5.u

    The Wisconsin Plasma Astrophysics Laboratory

    Full text link
    The Wisconsin Plasma Astrophysics Laboratory (WiPAL) is a flexible user facility designed to study a range of astrophysically relevant plasma processes as well as novel geometries that mimic astrophysical systems. A multi-cusp magnetic bucket constructed from strong samarium cobalt permanent magnets now confines a 10 m3^3, fully ionized, magnetic-field free plasma in a spherical geometry. Plasma parameters of Te5 T_{e}\approx5 to 2020 eV and ne1011n_{e}\approx10^{11} to 5×10125\times10^{12} cm3^{-3} provide an ideal testbed for a range of astrophysical experiments including self-exciting dynamos, collisionless magnetic reconnection, jet stability, stellar winds, and more. This article describes the capabilities of WiPAL along with several experiments, in both operating and planning stages, that illustrate the range of possibilities for future users.Comment: 21 pages, 12 figures, 2 table

    Dynamics and Structure of Three-Dimensional Trans-Alfvenic Jets. II. The Effect of Density and Winds

    Full text link
    Two three-dimensional magnetohydrodynamical simulations of strongly magnetized conical jets, one with a poloidal and one with a helical magnetic field, have been performed. In the poloidal simulation a significant sheath (wind) of magnetized moving material developed and partially stabilized the jet to helical twisting. The fundamental pinch mode was not similarly affected and emission knots developed in the poloidal simulation. Thus, astrophysical jets surrounded by outflowing winds could develop knotty structures along a straight jet triggered by pinching. Where helical twisting dominated the dynamics, magnetic field orientation along the line-of-sight could be organized by the toroidal flow field accompanying helical twisting. On astrophysical jets such structure could lead to a reversal of the direction of Faraday rotation in adjacent zones along a jet. Theoretical analysis showed that the different dynamical behavior of the two simulations could be entirely understood as a result of dependence on the velocity shear between jet and wind which must exceed a surface Alfven speed before the jet becomes unstable to helical and higher order modes of jet distortion.Comment: 25 pages, 15 figures, in press Astrophysical Journal (September

    Shocks in relativistic transverse stratified jets, a new paradigm for radio-loud AGN

    Full text link
    The transverse stratification of active galactic nuclei (AGN) jets is suggested by observations and theoretical arguments, as a consequence of intrinsic properties of the central engine (accretion disc + black hole) and external medium. On the other hand, the one-component jet approaches are heavily challenged by the various observed properties of plasmoids in radio jets (knots), often associated with internal shocks. Given that such a transverse stratification plays an important role on the jets acceleration, stability, and interaction with the external medium, it should also induce internal shocks with various strengths and configurations, able to describe the observed knots behaviours. By establishing a relation between the transverse stratification of the jets, the internal shock properties, and the multiple observed AGN jet morphologies and behaviours, our aim is to provide a consistent global scheme of the various AGN jet structures. Working on a large sample of AGN radio jets monitored in very long baseline interferometry (VLBI) by the MOJAVE collaboration, we determined the consistency of a systematic association of the multiple knots with successive re-collimation shocks. We then investigated the re-collimation shock formation and the influence of different transverse stratified structures by parametrically exploring the two relativistic outflow components with the specific relativistic hydrodynamic (SRHD) code AMRVAC. We were able to link the different spectral classes of AGN with specific stratified jet characteristics, in good accordance with their VLBI radio properties and their accretion regimes.Comment: 16 pages, 12 figures, accepted for publication in A&
    corecore