6 research outputs found

    International Workshop on MicroFactories (IWMF 2012): 17th-20th June 2012 Tampere Hall Tampere, Finland

    Get PDF
    This Workshop provides a forum for researchers and practitioners in industry working on the diverse issues of micro and desktop factories, as well as technologies and processes applicable for micro and desktop factories. Micro and desktop factories decrease the need of factory floor space, and reduce energy consumption and improve material and resource utilization thus strongly supporting the new sustainable manufacturing paradigm. They can be seen also as a proper solution to point-of-need manufacturing of customized and personalized products near the point of need

    Design and fabrication of precision carbon nanotube-based flexural transducers

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2011.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Cataloged from student submitted PDF version of thesis.Includes bibliographical references (p. 179-197).As mechanical devices move towards the nanoscale, smaller and more sensitive force and displacement sensors need to be developed. Currently, many biological, materials science, and nanomanufacturing applications could benefit from multi-axis micro- and nanoscale sensors with fine force and displacement resolutions. Unfortunately, such systems do not yet exist due to the limitations of traditional sensing techniques and fabrication procedures. Carbon nanotube-based (CNT) piezoresistive transducers offer the potential to overcome many of these limitations. Previous research has shown the potential for the use of CNTs in high resolution micro- and nanoscale sensing devices due to the high gauge factor and inherent size of CNTs. However, a better understanding of CNT-based piezoresistive sensors is needed in order to be able to design and engineer CNT-based sensor systems to take advantage of this potential. The purpose of this thesis is to take CNT-based strain sensors from the single element test structures that have been fabricated and turn them into precision sensor systems that can be used in micro- and nanoscale force and displacement transducers. In order to achieve this purpose and engineer high resolution CNT-based sensor systems, the design and manufacturing methods used to create CNT-based piezoresistive sensors were investigated. At the system level, a noise model was developed in order to be able to optimize the design of the sensor system. At the element level, a link was established between the structure of the CNT and its gauge factor using a theoretical model developed from quantum mechanics. This model was confirmed experimentally using CNT-based piezoresistive sensors integrated into a microfabricated test structure. At the device level, noise mitigation techniques including annealing and the use of a protective ceramic coating were investigated in order to reduce the noise in the sensor. From these investigations, best practices for the design and manufacturing of CNT-based piezoresistive sensors were established. Using these best practices, it is possible to increase the performance of CNT-based piezoresistive sensor systems by more than three orders of magnitude. These best practices were implemented in the design and fabrication of a multi-axis force sensor used to measure the adhesion force of an array of cells to the different material's surfaces for the development of biomedical implants. This force sensor is capable of measuring forces in the z-axis as well as torques in the [theta]x and [theta]y axis. The range and resolution of the force sensor were determined to be 84 [mu]N and 5.6 nN, respectively. This corresponds to a dynamic range of 83 dB, which closely matches the dynamic range predicted by the system noise model used to design the sensor. The accuracy of the force sensor is better than 1% over the device's full range.by Michael A. Cullinan.Ph.D

    Microfluidics and Nanofluidics Handbook

    Get PDF
    The Microfluidics and Nanofluidics Handbook: Two-Volume Set comprehensively captures the cross-disciplinary breadth of the fields of micro- and nanofluidics, which encompass the biological sciences, chemistry, physics and engineering applications. To fill the knowledge gap between engineering and the basic sciences, the editors pulled together key individuals, well known in their respective areas, to author chapters that help graduate students, scientists, and practicing engineers understand the overall area of microfluidics and nanofluidics. Topics covered include Finite Volume Method for Numerical Simulation Lattice Boltzmann Method and Its Applications in Microfluidics Microparticle and Nanoparticle Manipulation Methane Solubility Enhancement in Water Confined to Nanoscale Pores Volume Two: Fabrication, Implementation, and Applications focuses on topics related to experimental and numerical methods. It also covers fabrication and applications in a variety of areas, from aerospace to biological systems. Reflecting the inherent nature of microfluidics and nanofluidics, the book includes as much interdisciplinary knowledge as possible. It provides the fundamental science background for newcomers and advanced techniques and concepts for experienced researchers and professionals

    Positioning, Structuring and Controlling with Nanoprecision

    No full text
    Abstract. Key industries such as the automotive, electronic, medical and laboratory technical industries have continually rising demands for precise manufacturing, handling and control techniques. This is true for the manufacture of injection nozzles for engines as indeed also for the irradiation of extremely fine wafer structures and in the field of scanning probe microscopy

    Positioning, Structuring and Controlling with Nanoprecision

    No full text
    corecore