640 research outputs found

    Position-Based Beamforming Design for UAV Communications in LTE Networks

    Get PDF
    This is the author accepted manuscript. The final version is available from IEEE via the DOI in this recordUnmanned Aerial Vehicles (UAVs) have demonstrated exceptional capabilities in many real-world applications such as remote sensing, emergency medicine delivery and precision agriculture. LTE networks are regarded as key candidates to offer high performance broadband wireless services to support UAV applications and safe deployment. However, the unique features of aerial UAVs including high-altitude manipulation, three-dimension (3D) mobility and rapid velocity changes, pose challenging issues for optimising LTE wireless communications to support UAVs, especially under the severe inter-cell interference generated by UAVs in the sky. To deal with this issue, we propose a novel position-based robust beamforming algorithm to improve the performance of LTE networks to serve UAVs. For obtaining optimal weight vectors that could tolerate Direction-of-Arrival (DoA) estimation errors, we propose a hybrid method to integrate the channel information and UAV flight information to accurately estimate the DoA angle range. In order to validate the performance of the proposed robust beamforming algorithm, we conduct comprehensive simulation experiments under practical configurations. The results show that the proposed robust beamforming algorithm outperforms benchmark Linearly Constrained Minimum Variance (LCMV) beamforming and GPS-based beamforming algorithms.Huawei Innovation Research ProgramNational Natural Science Foundation of China (NSFC

    Experimental verification of multi-antenna techniques for aerial and ground vehicles’ communication

    Get PDF

    A Comprehensive Overview on 5G-and-Beyond Networks with UAVs: From Communications to Sensing and Intelligence

    Full text link
    Due to the advancements in cellular technologies and the dense deployment of cellular infrastructure, integrating unmanned aerial vehicles (UAVs) into the fifth-generation (5G) and beyond cellular networks is a promising solution to achieve safe UAV operation as well as enabling diversified applications with mission-specific payload data delivery. In particular, 5G networks need to support three typical usage scenarios, namely, enhanced mobile broadband (eMBB), ultra-reliable low-latency communications (URLLC), and massive machine-type communications (mMTC). On the one hand, UAVs can be leveraged as cost-effective aerial platforms to provide ground users with enhanced communication services by exploiting their high cruising altitude and controllable maneuverability in three-dimensional (3D) space. On the other hand, providing such communication services simultaneously for both UAV and ground users poses new challenges due to the need for ubiquitous 3D signal coverage as well as the strong air-ground network interference. Besides the requirement of high-performance wireless communications, the ability to support effective and efficient sensing as well as network intelligence is also essential for 5G-and-beyond 3D heterogeneous wireless networks with coexisting aerial and ground users. In this paper, we provide a comprehensive overview of the latest research efforts on integrating UAVs into cellular networks, with an emphasis on how to exploit advanced techniques (e.g., intelligent reflecting surface, short packet transmission, energy harvesting, joint communication and radar sensing, and edge intelligence) to meet the diversified service requirements of next-generation wireless systems. Moreover, we highlight important directions for further investigation in future work.Comment: Accepted by IEEE JSA
    • …
    corecore