124,668 research outputs found

    Go Static: Contextualized Logging Statement Generation

    Full text link
    Logging practices have been extensively investigated to assist developers in writing appropriate logging statements for documenting software behaviors. Although numerous automatic logging approaches have been proposed, their performance remains unsatisfactory due to the constraint of the single-method input, without informative programming context outside the method. Specifically, we identify three inherent limitations with single-method context: limited static scope of logging statements, inconsistent logging styles, and missing type information of logging variables. To tackle these limitations, we propose SCLogger, the first contextualized logging statement generation approach with inter-method static contexts. First, SCLogger extracts inter-method contexts with static analysis to construct the contextualized prompt for language models to generate a tentative logging statement. The contextualized prompt consists of an extended static scope and sampled similar methods, ordered by the chain-of-thought (COT) strategy. Second, SCLogger refines the access of logging variables by formulating a new refinement prompt for language models, which incorporates detailed type information of variables in the tentative logging statement. The evaluation results show that SCLogger surpasses the state-of-the-art approach by 8.7% in logging position accuracy, 32.1% in level accuracy, 19.6% in variable precision, and 138.4% in text BLEU-4 score. Furthermore, SCLogger consistently boosts the performance of logging statement generation across a range of large language models, thereby showcasing the generalizability of this approach.Comment: This paper was accepted by The ACM International Conference on the Foundations of Software Engineering (FSE 2024

    You Cannot Fix What You Cannot Find! An Investigation of Fault Localization Bias in Benchmarking Automated Program Repair Systems

    Get PDF
    Properly benchmarking Automated Program Repair (APR) systems should contribute to the development and adoption of the research outputs by practitioners. To that end, the research community must ensure that it reaches significant milestones by reliably comparing state-of-the-art tools for a better understanding of their strengths and weaknesses. In this work, we identify and investigate a practical bias caused by the fault localization (FL) step in a repair pipeline. We propose to highlight the different fault localization configurations used in the literature, and their impact on APR systems when applied to the Defects4J benchmark. Then, we explore the performance variations that can be achieved by `tweaking' the FL step. Eventually, we expect to create a new momentum for (1) full disclosure of APR experimental procedures with respect to FL, (2) realistic expectations of repairing bugs in Defects4J, as well as (3) reliable performance comparison among the state-of-the-art APR systems, and against the baseline performance results of our thoroughly assessed kPAR repair tool. Our main findings include: (a) only a subset of Defects4J bugs can be currently localized by commonly-used FL techniques; (b) current practice of comparing state-of-the-art APR systems (i.e., counting the number of fixed bugs) is potentially misleading due to the bias of FL configurations; and (c) APR authors do not properly qualify their performance achievement with respect to the different tuning parameters implemented in APR systems.Comment: Accepted by ICST 201

    FixMiner: Mining Relevant Fix Patterns for Automated Program Repair

    Get PDF
    Patching is a common activity in software development. It is generally performed on a source code base to address bugs or add new functionalities. In this context, given the recurrence of bugs across projects, the associated similar patches can be leveraged to extract generic fix actions. While the literature includes various approaches leveraging similarity among patches to guide program repair, these approaches often do not yield fix patterns that are tractable and reusable as actionable input to APR systems. In this paper, we propose a systematic and automated approach to mining relevant and actionable fix patterns based on an iterative clustering strategy applied to atomic changes within patches. The goal of FixMiner is thus to infer separate and reusable fix patterns that can be leveraged in other patch generation systems. Our technique, FixMiner, leverages Rich Edit Script which is a specialized tree structure of the edit scripts that captures the AST-level context of the code changes. FixMiner uses different tree representations of Rich Edit Scripts for each round of clustering to identify similar changes. These are abstract syntax trees, edit actions trees, and code context trees. We have evaluated FixMiner on thousands of software patches collected from open source projects. Preliminary results show that we are able to mine accurate patterns, efficiently exploiting change information in Rich Edit Scripts. We further integrated the mined patterns to an automated program repair prototype, PARFixMiner, with which we are able to correctly fix 26 bugs of the Defects4J benchmark. Beyond this quantitative performance, we show that the mined fix patterns are sufficiently relevant to produce patches with a high probability of correctness: 81% of PARFixMiner's generated plausible patches are correct.Comment: 31 pages, 11 figure

    Test Case Purification for Improving Fault Localization

    Get PDF
    Finding and fixing bugs are time-consuming activities in software development. Spectrum-based fault localization aims to identify the faulty position in source code based on the execution trace of test cases. Failing test cases and their assertions form test oracles for the failing behavior of the system under analysis. In this paper, we propose a novel concept of spectrum driven test case purification for improving fault localization. The goal of test case purification is to separate existing test cases into small fractions (called purified test cases) and to enhance the test oracles to further localize faults. Combining with an original fault localization technique (e.g., Tarantula), test case purification results in better ranking the program statements. Our experiments on 1800 faults in six open-source Java programs show that test case purification can effectively improve existing fault localization techniques

    Automatically Extracting Instances of Code Change Patterns with AST Analysis

    Get PDF
    A code change pattern represents a kind of recurrent modification in software. For instance, a known code change pattern consists of the change of the conditional expression of an if statement. Previous work has identified different change patterns. Complementary to the identification and definition of change patterns, the automatic extraction of pattern instances is essential to measure their empirical importance. For example, it enables one to count and compare the number of conditional expression changes in the history of different projects. In this paper we present a novel approach for search patterns instances from software history. Our technique is based on the analysis of Abstract Syntax Trees (AST) files within a given commit. We validate our approach by counting instances of 18 change patterns in 6 open-source Java projects.Comment: ICSM - 29th IEEE International Conference on Software Maintenance (2013

    Mining Fix Patterns for FindBugs Violations

    Get PDF
    In this paper, we first collect and track a large number of fixed and unfixed violations across revisions of software. The empirical analyses reveal that there are discrepancies in the distributions of violations that are detected and those that are fixed, in terms of occurrences, spread and categories, which can provide insights into prioritizing violations. To automatically identify patterns in violations and their fixes, we propose an approach that utilizes convolutional neural networks to learn features and clustering to regroup similar instances. We then evaluate the usefulness of the identified fix patterns by applying them to unfixed violations. The results show that developers will accept and merge a majority (69/116) of fixes generated from the inferred fix patterns. It is also noteworthy that the yielded patterns are applicable to four real bugs in the Defects4J major benchmark for software testing and automated repair.Comment: Accepted for IEEE Transactions on Software Engineerin

    Context for goal-level product line derivation

    Get PDF
    Product line engineering aims at developing a family of products and facilitating the derivation of product variants from it. Context can be a main factor in determining what products to derive. Yet, there is gap in incorporating context with variability models. We advocate that, in the first place, variability originates from human intentions and choices even before software systems are constructed, and context influences variability at this intentional level before the functional one. Thus, we propose to analyze variability at an early phase of analysis adopting the intentional ontology of goal models, and studying how context can influence such variability. Below we present a classification of variation points on goal models, analyze their relation with context, and show the process of constructing and maintaining the models. Our approach is illustrated with an example of a smarthome for people with dementia problems. 1
    • …
    corecore