607 research outputs found

    Proactive Highly Ambulatory Sensor Routing (PHASeR) protocol for mobile wireless sensor networks

    Get PDF
    This paper presents a novel multihop routing protocol for mobile wireless sensor networks called PHASeR (Proactive Highly Ambulatory Sensor Routing). The proposed protocol uses a simple hop-count metric to enable the dynamic and robust routing of data towards the sink in mobile environments. It is motivated by the application of radiation mapping by unmanned vehicles, which requires the reliable and timely delivery of regular measurements to the sink. PHASeR maintains a gradient metric in mobile environments by using a global TDMA MAC layer. It also uses the technique of blind forwarding to pass messages through the network in a multipath manner. PHASeR is analysed mathematically based on packet delivery ratio, average packet delay, throughput and overhead. It is then simulated with varying mobility, scalability and traffic loads. The protocol gives good results over all measures, which suggests that it may also be suitable for a wider array of emerging applications

    An Enhanced Table Driven Source Routing Protocol for Wireless Ad Hoc Networks

    Get PDF
    Analysis of MANETs led to the research on network layer. Different routing protocols were designed for numerous objectives and purposes. The way data packets are handled with in a multi-hop wireless network refers to Opportunistic data forwarding. During present research, we propose enhanced table-driven source routing protocol. This protocol maintains additional topology information which is different from Distance Vector (DV) routing protocol. The proposed approach will reduce overhead compared to the ancient Distance Vector based protocols. Base on the test results performed using Computer Simulator (Network Simulator 2) observed that the overhead in the proposed solution is just a fraction of the overhead of the standard proactive protocols. Performance of the current solution is better for transportation of higher information compared to existing proactive routing protocols

    Implementation and analysis of location-based routing protocols for manets

    Get PDF
    This thesis concerns routing protocols for MANETs with a particular focus on location-based ones. After a deep overview of the literature, one regular routing protocol, DYMO, and two location-based (LB) ones, DYMOselfwd and AODV-Line, have been selected for further study. To this end, they have been implemented and simulated with the OMNET++ simulator. The scenarios are chosen to evaluate the impact of the node density, the nodes' mobility behaviour and of the ping payload on the performance of the routing protocols, in terms of scalability and ability to recover from route disruptions in a mobile scenario. In addition, the impact of an error in the location information is also analysed in the case of the two LB protocols

    Opportunistic Networks: Present Scenario- A Mirror Review

    Get PDF
    Opportunistic Network is form of Delay Tolerant Network (DTN) and regarded as extension to Mobile Ad Hoc Network. OPPNETS are designed to operate especially in those environments which are surrounded by various issues like- High Error Rate, Intermittent Connectivity, High Delay and no defined route between source to destination node. OPPNETS works on the principle of “Store-and-Forward” mechanism as intermediate nodes perform the task of routing from node to node. The intermediate nodes store the messages in their memory until the suitable node is not located in communication range to transfer the message to the destination. OPPNETs suffer from various issues like High Delay, Energy Efficiency of Nodes, Security, High Error Rate and High Latency. The aim of this research paper is to overview various routing protocols available till date for OPPNETs and classify the protocols in terms of their performance. The paper also gives quick review of various Mobility Models and Simulation tools available for OPPNETs simulation

    A Survey on Multihop Ad Hoc Networks for Disaster Response Scenarios

    Get PDF
    Disastrous events are one of the most challenging applications of multihop ad hoc networks due to possible damages of existing telecommunication infrastructure.The deployed cellular communication infrastructure might be partially or completely destroyed after a natural disaster. Multihop ad hoc communication is an interesting alternative to deal with the lack of communications in disaster scenarios. They have evolved since their origin, leading to differentad hoc paradigms such as MANETs, VANETs, DTNs, or WSNs.This paper presents a survey on multihop ad hoc network paradigms for disaster scenarios.It highlights their applicability to important tasks in disaster relief operations. More specifically, the paper reviews the main work found in the literature, which employed ad hoc networks in disaster scenarios.In addition, it discusses the open challenges and the future research directions for each different ad hoc paradigm
    • …
    corecore