1,293 research outputs found

    View Synthesis from Image and Video for Object Recognition Applications

    Get PDF
    Object recognition is one of the most important and successful applications in computer vision community. The varying appearances of the test object due to different poses or illumination conditions can make the object recognition problem very challenging. Using view synthesis techniques to generate pose-invariant or illumination-invariant images or videos of the test object is an appealing approach to alleviate the degrading recognition performance due to non-canonical views or lighting conditions. In this thesis, we first present a complete framework for better synthesis and understanding of the human pose from a limited number of available silhouette images. Pose-normalized silhouette images are generated using an active virtual camera and an image based visual hull technique, with the silhouette turning function distance being used as the pose similarity measurement. In order to overcome the inability of the shape from silhouettes method to reonstruct concave regions for human postures, a view synthesis algorithm is proposed for articulating humans using visual hull and contour-based body part segmentation. These two components improve each other for better performance through the correspondence across viewpoints built via the inner distance shape context measurement. Face recognition under varying pose is a challenging problem, especially when illumination variations are also present. We propose two algorithms to address this scenario. For a single light source, we demonstrate a pose-normalized face synthesis approach on a pixel-by-pixel basis from a single view by exploiting the bilateral symmetry of the human face. For more complicated illumination condition, the spherical harmonic representation is extended to encode pose information. An efficient method is proposed for robust face synthesis and recognition with a very compact training set. Finally, we present an end-to-end moving object verification system for airborne video, wherein a homography based view synthesis algorithm is used to simultaneously handle the object's changes in aspect angle, depression angle, and resolution. Efficient integration of spatial and temporal model matching assures the robustness of the verification step. As a byproduct, a robust two camera tracking method using homography is also proposed and demonstrated using challenging surveillance video sequences

    Gait recognition and understanding based on hierarchical temporal memory using 3D gait semantic folding

    Get PDF
    Gait recognition and understanding systems have shown a wide-ranging application prospect. However, their use of unstructured data from image and video has affected their performance, e.g., they are easily influenced by multi-views, occlusion, clothes, and object carrying conditions. This paper addresses these problems using a realistic 3-dimensional (3D) human structural data and sequential pattern learning framework with top-down attention modulating mechanism based on Hierarchical Temporal Memory (HTM). First, an accurate 2-dimensional (2D) to 3D human body pose and shape semantic parameters estimation method is proposed, which exploits the advantages of an instance-level body parsing model and a virtual dressing method. Second, by using gait semantic folding, the estimated body parameters are encoded using a sparse 2D matrix to construct the structural gait semantic image. In order to achieve time-based gait recognition, an HTM Network is constructed to obtain the sequence-level gait sparse distribution representations (SL-GSDRs). A top-down attention mechanism is introduced to deal with various conditions including multi-views by refining the SL-GSDRs, according to prior knowledge. The proposed gait learning model not only aids gait recognition tasks to overcome the difficulties in real application scenarios but also provides the structured gait semantic images for visual cognition. Experimental analyses on CMU MoBo, CASIA B, TUM-IITKGP, and KY4D datasets show a significant performance gain in terms of accuracy and robustness

    Multi-set canonical correlation analysis for 3D abnormal gait behaviour recognition based on virtual sample generation

    Get PDF
    Small sample dataset and two-dimensional (2D) approach are challenges to vision-based abnormal gait behaviour recognition (AGBR). The lack of three-dimensional (3D) structure of the human body causes 2D based methods to be limited in abnormal gait virtual sample generation (VSG). In this paper, 3D AGBR based on VSG and multi-set canonical correlation analysis (3D-AGRBMCCA) is proposed. First, the unstructured point cloud data of gait are obtained by using a structured light sensor. A 3D parametric body model is then deformed to fit the point cloud data, both in shape and posture. The features of point cloud data are then converted to a high-level structured representation of the body. The parametric body model is used for VSG based on the estimated body pose and shape data. Symmetry virtual samples, pose-perturbation virtual samples and various body-shape virtual samples with multi-views are generated to extend the training samples. The spatial-temporal features of the abnormal gait behaviour from different views, body pose and shape parameters are then extracted by convolutional neural network based Long Short-Term Memory model network. These are projected onto a uniform pattern space using deep learning based multi-set canonical correlation analysis. Experiments on four publicly available datasets show the proposed system performs well under various conditions

    Statistical Analysis of Dynamic Actions

    Get PDF
    Real-world action recognition applications require the development of systems which are fast, can handle a large variety of actions without a priori knowledge of the type of actions, need a minimal number of parameters, and necessitate as short as possible learning stage. In this paper, we suggest such an approach. We regard dynamic activities as long-term temporal objects, which are characterized by spatio-temporal features at multiple temporal scales. Based on this, we design a simple statistical distance measure between video sequences which captures the similarities in their behavioral content. This measure is nonparametric and can thus handle a wide range of complex dynamic actions. Having a behavior-based distance measure between sequences, we use it for a variety of tasks, including: video indexing, temporal segmentation, and action-based video clustering. These tasks are performed without prior knowledge of the types of actions, their models, or their temporal extents

    LiveCap: Real-time Human Performance Capture from Monocular Video

    Full text link
    We present the first real-time human performance capture approach that reconstructs dense, space-time coherent deforming geometry of entire humans in general everyday clothing from just a single RGB video. We propose a novel two-stage analysis-by-synthesis optimization whose formulation and implementation are designed for high performance. In the first stage, a skinned template model is jointly fitted to background subtracted input video, 2D and 3D skeleton joint positions found using a deep neural network, and a set of sparse facial landmark detections. In the second stage, dense non-rigid 3D deformations of skin and even loose apparel are captured based on a novel real-time capable algorithm for non-rigid tracking using dense photometric and silhouette constraints. Our novel energy formulation leverages automatically identified material regions on the template to model the differing non-rigid deformation behavior of skin and apparel. The two resulting non-linear optimization problems per-frame are solved with specially-tailored data-parallel Gauss-Newton solvers. In order to achieve real-time performance of over 25Hz, we design a pipelined parallel architecture using the CPU and two commodity GPUs. Our method is the first real-time monocular approach for full-body performance capture. Our method yields comparable accuracy with off-line performance capture techniques, while being orders of magnitude faster
    • …
    corecore