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Object recognition is one of the most important and successful applications in

computer vision community. The varying appearances of the test object due to

different poses or illumination conditions can make the object recognition problem

very challenging. Using view synthesis techniques to generate pose-invariant or

illumination-invariant images or videos of the test object is an appealing approach

to alleviate the degrading recognition performance due to non-canonical views or

lighting conditions.

In this thesis, we first present a complete framework for better synthesis and

understanding of the human pose from a limited number of available silhouette

images. Pose-normalized silhouette images are generated using an active virtual

camera and an image based visual hull technique, with the silhouette turning



function distance being used as the pose similarity measurement. In order to

overcome the inability of the shape from silhouettes method to reconstruct concave

regions for human postures, a view synthesis algorithm is proposed for articulating

humans using visual hull and contour-based body part segmentation. These two

components improve each other for better performance through the correspondence

across viewpoints built via the inner distance shape context measurement.

Face recognition under varying pose is a challenging problem, especially when

illumination variations are also present. We propose two algorithms to address this

scenario. For a single light source, we demonstrate a pose-normalized face synthesis

approach on a pixel-by-pixel basis from a single view by exploiting the bilateral

symmetry of the human face. For more complicated illumination condition, the

spherical harmonic representation is extended to encode pose information. An

efficient method is proposed for robust face synthesis and recognition with a very

compact training set.

Finally, we present an end-to-end moving object verification system for airborne

video, wherein a homography based view synthesis algorithm is used to simultane-

ously handle the object’s changes in aspect angle, depression angle, and resolution.

Efficient integration of spatial and temporal model matching assures the robustness

of the verification step. As a byproduct, a robust two camera tracking method us-

ing homography is also proposed and demonstrated using challenging surveillance

video sequences.
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Chapter 1

Introduction

1.1 Motivation

Object recognition is one of the most important and successful applications in

computer vision. It is usually stated in the following form: Given a database of

training images (sometimes called a gallery set, or gallery images), the task of

object recognition is to recognize the object(s) in an incoming test image. Typi-

cally the training images in the database are obtained under controllable environ-

ments, under standard pose and illumination. In contrast, the test image may be

acquired in uncontrolled environments with different poses and illumination con-

ditions from the training images. The varying appearances of the test object can

make the recognition very challenging, and significantly degrade the recognition

performance. Therefore, a canonical view (e.g., the frontal view for face recogni-

tion, or the side view for gait recognition) or a standard illumination condition

(e.g., the frontal point light source) for the images or videos of the test object is

often required in existing recognition algorithms. However, these images or videos

are usually not available in practical applications.
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The most direct method to handle this scenario is to build a 3D model of the

test object and generate the novel image at the same pose or under the same

illumination condition as the training images. The problem of building 3D rep-

resentations from a video sequence (or several images from different viewpoints),

known as structure from motion problem, has been studied for more than twenty

years. Methods using flows of various kinds (optical, normal and image), discrete

features (points, lines and curves) have been considered. When frames from a sin-

gle camera are used, one obtains a relative depth map from which novel views can

be generated; estimates of absolute depth values can be obtained when multiple

cameras are used. Reviews and comparisons of different Structure from Motion

(SfM) methods can be found in [23, 46, 52]. Although many algorithms have been

developed, few give satisfactory performance in real applications. To develop ac-

ceptable estimates of 3-D structure, the following issues have to be considered:

observation noise (noise present in token correspondence or in computing opti-

cal flow), feature occlusion, motion/structure recovery ambiguities, mixed domain

sequences having both small and large baselines and mismatched tokens and/or

independently moving objects in the observed image frames. Being able to handle

these issues is critical for producing practical structure recovery algorithms. Al-

though recently, elegant methods have been reported in [32,93], much more needs

to be done in addressing these issues. Another critical issue in developing practical

SfM algorithms is accurate camera calibration, which itself poses some challenging

issues [101,117].

For some applications, it is not always necessary to explicitly reconstruct the

3D shape of the object being observed. Alternatively, we are more interested in

synthesizing the pose-invariant or illumination-invariant images/videos of the test

2



object using image rendering techniques. It provides an appealing approach to

alleviate the degrading recognition performance due to test images acquired in

non-canonical views or lighting conditions.

1.2 Background on View Synthesis and Image

based Rendering

View synthesis is the technique of visualizing and manipulating the appearance

of an object for a given viewing direction from several existing viewpoints. The

traditional approach for generating virtual views of an object or a scene is to ren-

der directly from an appropriately constructed 3D model. The 3D model can be

produced using a CAD modeler or from real data. More recently, image-based

rendering (IBR) has become an emerging and competing rendering paradigm. In

contrast to the traditional geometry-based rendering, IBR techniques rely on inter-

polation using the original set of input images, or pixel re-projection from source

images onto the target image in order to produce a novel view. A significant

advantage of IBR is that the speed of rendering is independent of the scene com-

plexity. Given an observing direction, the IBR technique is able to synthesize the

corresponding view of the object without recovering its 3D structure.

IBR techniques are classified into four distinct categories in [55]: non-physically

based image mapping, mosaicing, interpolation from dense sample, and geometrically-

valid pixel re-projection, wherein mosaicing and interpolation from dense sample

are not our goal in interactive rendering. Non-physically based image mapping uses

a training set of specific kinds of images to produce novel views, without consid-

ering 3D geometry in the pixel location computation. It was shown in [99, 100]
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that for linear object classes, linear transformations can be learned exactly from

a basis set of 2D prototypical views. Geometrically-valid pixel re-projection is a

more attractive method since it uses a relatively small number of input images and

does not need a training set. With multi view geometry constraints, the change

of each pixel location from the reference view to the desired view is determined

in a predictable way, which can be described by a 3D warping equation [84, 85],

a homography [54], or a trilinear tensor [5]. The trilinearities, which can be rep-

resented by a trilinear tensor, provide a general warping function from reference

images to novel synthesized images governed directly by the parameters of the

virtual camera. In [5], Avidan et al. derived a tensor operator that describes the

transformation from a given tensor of three views to a novel tensor of a new config-

uration of three views. The desired virtual view can then be created using this new

trilinear tensor. The illumination-based image synthesis method in [58], which does

not require the determination of point or line correspondences, can synthesize not

only novel viewpoints, but also novel illuminations conditions. These approaches

require that views must often be close enough so that correspondences across these

views are easy to establish. Also correspondences must be maintained over many

views which spans large changes. An alternative approach is based on constructing

the volumes or surfaces in 3D space that are consistent with input images. The

most common method to represent this volume is voxels which can be encoded

with a space-efficient octrees technique [94]. Given a set of silhouette images, a

generalized 3D cone within which the object must lie can be reconstructed using

shape from silhouette techniques [3, 73]. When the input images have additional

photometric information other than the silhouettes, shape from photo-consistency

methods [8, 57] can be used to improve the 3D reconstruction process. The space
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carving algorithm [60] uses a multi-plane-sweep approach to remove the non-photo-

consistent voxels to guarantee that the remaining shape is the photo hull. These

methods generally depend on calibrated cameras. A detailed review of volumetric

scene reconstruction from multiple views may be found in [29].

1.3 Thesis Overview and Contribution

In this thesis, we study how view synthesis technique can be used to boost the

performance of various object recognition applications.

Human activity (walking, carrying, throwing, etc.) carries much information

which can be used for recognition or (suspicious) activity analysis applications.

In order to achieve good performance for these applications, a monocular video

sequence is usually not enough for recognizing arbitrary human activities due to

possible acquisition in non-canonical view or self-occlusion. For example, face and

gait are often used as biometric signature for human identification. Usually face

recognition needs the frontal view of the human face, while gait recognition re-

quires the side view of the human silhouette. If the person does not walk parallel

to the image plane, the gait recognition rate will degrade seriously. Similarly, if

there is no frontal face images in the test video, the face recognition algorithm

will also have poor performance. A well controlled multi camera environment not

only has a larger coverage range and provides more information than a single cam-

era environment, but also makes it possible to render a novel image (video) for a

desired viewpoint, or even reconstruct the 3D shape. In Chapter 2, we propose

a complete framework which processes the images/video from a multi-camera en-

vironment, and produces a pose-invariant video sequence for human recognition

applications and body part segmentation results for a better understanding of the

5



human posture. It combines the active image based visual hull (IBVH) algorithm

and a contour-based human body part segmentation technique. They improve each

other for better performance by establishing the correspondence across viewpoints

built via the inner distance shape context (IDSC) measurement proposed in [62].

For decades, face recognition has been one of the most important applications

of image analysis and understanding. Face recognition under varying pose is a

challenging problem, especially when illumination variations are also present. We

propose two approaches in Chapter 3 and Chapter 4 in order to improve the recog-

nition performance degradation caused by the pose and illumination variations.

Specifically, when the test face image is taken under a single light source, we pro-

pose in Chapter 3 a pose-normalized face synthesis approach from a single view

by exploiting the bilateral symmetry of the human face. We show that given illu-

mination and pose estimation and the required correspondences, the mirror view

under the same illumination as the original view can be determined on a pixel-

by-pixel basis using the original view and its mirror image. Consequently the

pose-normalized view under the given illumination can be generated using view

morphing techniques.

For more complicated illumination conditions, we propose to address one of

the most challenging scenarios in face recognition. That is, to identify a subject

from a test image that is acquired under different pose and illumination condition

from the only one training sample of this subject in the database. For example,

the test image could be semi-frontal and under multiple lighting sources while

the corresponding training image is frontal under a single lighting source. Under

the assumption of Lambertian reflectance, the spherical harmonics representation

has proved to be effective in modeling illumination variations for a fixed pose. In
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Chapter 4, we extend the spherical harmonics representation to encode pose in-

formation. More specifically, we utilize the fact that 2D harmonic basis images at

different poses are related by close-form linear transformations, and give a more

convenient transformation matrix to be directly used for basis images. An immedi-

ate application is that we can easily synthesize a different view of a subject under

arbitrary lighting conditions by changing the coefficients of the spherical harmonics

representation. A more important application of this algorithm is an efficient face

recognition method, based on the orthonormality of the linear transformations, for

addressing the above-mentioned challenging scenario. Thus we directly project a

non-frontal view test image onto the space of frontal view harmonic basis images.

The impact of some empirical factors due to the projection is embedded in a sparse

warping matrix, and we prove that the recognition performance does not deterio-

rate after warping the test image to the front view. Very good recognition results

are obtained using this method for both synthetic and challenging real images.

Recently, analysis of airborne surveillance videos has drawn extensive attention

for both military and civilian applications, e.g. UAVs and police video. Target

tracking and object verification are two important problems for most of the air-

borne surveillance video. When the object of interest is at a great distance to

the camera (e.g., the vehicle in the airborne video sequence), its depth-relief is

small compared to the distance between the sensor and the object. Therefore, it

is difficult to reliably build the 3D structure of the object and perform tracking

or verification. However, in this case, it is reasonable to assume that the observed

object moves on a dominant plane (the ground plane) which induces a homography

relation between two views. In Chapter 5, we first present a robust two camera

tracking method which handles occlusions using the homography between the two
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views. An adaptive appearance model is incorporated in Sequential Monte Carlo

(SMC) framework to accomplish the single view tracking. Correct transformation

of the target in the occluded view can be inferred from the homography and the

tracking result of the un-occluded view. We then present an end-to-end verifica-

tion system for moving objects in airborne video. Lacking prior training data, the

object information is collected on the fly from a short real-time learning sequence.

Using a sample selection module, the system selects samples from the learning

sequence and stores them in an exemplar database. To handle appearance change

due to potentially large aspect angle variations, a homography-based view synthe-

sis method is used to generate a novel view of each image in the exemplar database

at the same pose as the query object in each frame of a query sequence. A spatial

match score is obtained using a Distance Transform to compare the novel view and

query object. After looping over all query frames, the set of match scores is passed

to a temporal analysis module to examine the behavior of the query object, and

calculate a final likelihood.

Finally, we draw conclusions and discuss some possible future directions in

Chapter 6.
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Chapter 2

View Synthesis for Articulating

Human Using Image-based Visual

Hull

Silhouette images from multiple views provide much information on the pose and

activity of a person being observed, and can be used in various applications. In the

absence of required number of cameras, the articulated human pose analysis from

silhouettes can be very ambiguous. In this chapter, we propose a complete frame-

work for a better synthesis and understanding of the human pose from a limited

number of available silhouette images [107]. It combines an active IBVH algorithm

and a contour based body part segmentation technique, and does not reconstruct

the 3D shape of the subject. Instead of solving a non-linear optimization problem,

we derive a simple, approximate algorithm to decide the extrinsic parameters of a

virtual camera. By doing so, we are able to synthesize the turntable image collec-

tion of the person using the IBVH algorithm by actively moving the virtual camera

on a properly computed circular trajectory around the person. Using the turning
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function distance as the silhouette similarity measurement, this approach can be

used to generate the desired pose-normalized images for recognition applications.

In order to overcome the inability of the visual hull (VH) method to reconstruct

concave regions, we propose a contour-based human body part localization algo-

rithm to segment the available and synthesized silhouette images into convex body

parts. The body parts in the virtual view are separately generated from the cor-

responding body parts in the input views and then assembled together for a more

accurate VH reconstruction. Furthermore, as the turntable image collection is ob-

tained, it helps to improve the body part segmentation and identification process.

By using the inner distance shape context (IDSC) measurement, we are able to

build the correspondence between the contours taken from two different viewpoints

which are not too far from each other, and therefore estimate the body part lo-

cations more accurately from a synthesized view where we can localize the body

part more confidently. Experiments show that the proposed algorithm can greatly

improve the body part segmentation and hence the shape reconstruction results.

Fig ?? shows the relationship among the components of the system.

2.1 Background and Previous Work

A significant body of work on human pose analysis from the 2D projections exists

in the literature. In one type of approach, 3D pose can be efficiently recovered

from the 2D video sequence [79, 95] by assuming some specific features, e.g. the

image locations of the center of each body joint, can be reliably detected and a

generic model of the human body articulation is available. Based on a training

set of synthesized motion capture data, Howe et al [44] recover the 3D pose from

the detected feature locations using a Bayesian learning framework. In [70], a
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Figure 2.1: The relationship among the components of the proposed system.

Figure 2.2: The formulation of image based visual hull.
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(a) input silhouettes (b) synthesized silhouette

(c) input images (d) synthesized image

Figure 2.3: An example of IBVH:(a) the silhouette images observed from four

static cameras. (b) The rendered silhouette image for a novel view obtained with

IBVH. (c) The original images captured from the four static cameras. (d) The

corresponding synthesized texture-mapped image for the novel view.
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shape context descriptor is used to estimate the feature locations against a set

of training images with pre-marked features. The 3D pose is then reconstructed

using the algorithm proposed in [79]. In [80], the mapping of a silhouette to 3D

pose is learned using multi-view training data. These techniques were successful,

but they mainly depend on reliable detection of feature (joint) locations. Another

type of approach directly learns the 3D pose from image measurements. In [17], a

dynamical manifold of human body configurations represented by a Hidden Markov

Model is learned using entropy minimization. Shakhnarovich et al [88] propose

Parameter-Sensitive Hashing, which finds approximate neighbors in time sublinear

in the number of examples, to rapidly find relevant examples in a large database of

training images and estimate the articulated human body pose using a local model

learned from those examples.

Shape from Contours (SFC) technique, which approximates the shape of an

object using silhouette images, has been an important and active research topic in

computer vision for over two decades. Estimating 3D shape using SFC has many

advantages. Silhouettes are readily and easily obtainable and the implementation

of the SFC algorithms is generally straightforward. As one of the most important

methods in SFC, Visual Hull (VH) [61] construction provides an upper bound

on the shape of the object. The VH of an object is the intersection of all the

extruded cone-like shapes that result from back-projecting the silhouettes in all

views. Hence, VH can be obtained by volume carving. It is possible to reduce

the computation of VH to 2D operations since it contains only points that project

onto the silhouettes. Image based visual hull (IBVH) [68] is a an effective and

fast method to compute the VH and view synthesis. It is shown that for each

pixel in the desired view, the epipolar line in each input view is intersected with
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the contour approximation, then the intersected 2D line segment is projected back

to 3D space to form the VH. IBVH is a view dependent algorithm. It ensures

the correctness of the generated image for the desired viewpoint (with the epipolar

constraints), with no need to explicitly build the VH in 3D space. Figure 2.2 shows

how IBVH is formulated. The algorithm is able to render a desired view of n2 pixels

in O(kn2) where k is the number of input views. After the VH is constructed,

its surface is texture mapped using the weighted sum of intensity values in the

input images [67]. Considering the visibility during the texture mapping process,

an occlusion-compatible warping ordering scheme [69] is used to solve the object

occlusion problem. An advantage of the IBVH technique is its tradeoff between

accuracy and efficiency. With the widely-positioned views as inputs, IBVH allows

us to produce the virtual view without finding the wide baseline correspondence.

It also provides information about the object’s 3D shape and location. Besides,

since the VH is formed by volume carving, the noise from input images is greatly

reduced in the intersecting process.

Researchers have proposed various methods to accomplish 3D reconstruction

from silhouettes [21,22] by utilizing the fact that the intersection of the generalized

cones associated with a set of cameras define a volume of scene space containing

the object. However, most silhouette-based reconstruction encloses the true volume

and only approximates the true 3D shape, depending on the number of views, the

positions of the viewpoints, and the complexity of the object. In particular, the

concave patches are not observable in any silhouette. Fig 2.3 shows an example

of view synthesis with IBVH. We can observe from Fig 2.3 that the person stands

with a 3D concave posture which is formed by the stretching arms and the torso.

Although the rendered silhouette image shown in Fig 2.3 (b) is correct due to the
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fact that human eyes can be fooled into perceiving convex and concave regions

with only silhouette images, the error coming from the concave regions can be

easily observed on the texture-mapped chest part in Fig 2.3 (d). [61] stated that

the VH of an object depends not only on the object itself but also on the region

allowed to the viewpoint. The external visual hull is related to the convex hull,

and the internal visual hull can not be observed from any viewpoint outside the

convex hull.

2.2 Pose Normalized View Synthesis from Sil-

houettes

The varying appearances due to different poses can make the human recognition

problem very challenging. Some promising results have been reported for inte-

grated gait and face recognition from multiple views [87]. A strong assumption

they made is that the person is moving forward. Under this assumption, the per-

son’s motion trajectory is easy to estimate and the virtual camera can be placed

accordingly. This approach will not work if the motion trajectory is hard to esti-

mate, or not available (e.g., turning around).

With IBVH technique and an active virtual camera, images from different view-

points can be generated to give us a better understanding of the object. In this

section, we show how to generate a collection of the object’s images (named the

turntable image collection) which are captured by a camera moving around the

object, with the optical axis parallel to the plane that the object stands on. Using

a small number of widely-placed views as input, the turntable image collection can

be rendered quickly and efficiently with the IBVH technique [104]. Using this syn-
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Figure 2.4: The coordinate system being used coincides with the world coordinate

system, so the trajectory of the virtual camera should be the dotted circle C which

is parallel to the X-Z plane.

thesized image collection, we are able to produce a pose-invariant video sequence

by using the turning function distance [43] as the similarity measurement of the

silhouette images [105].

2.2.1 Turntable Image Collection Rendering With IBVH

We propose to render the turntable image collection captured by a virtual camera

moving around the person, with the optical axis parallel to the plane on which the

person is in a standing position. We derive a method to align the camera calibration

coordinate system and the world coordinate system if they do not coincide with

each other, with which the virtual camera’s position on the trajectory can be

accurately decided.

In order to generate the turntable image collection, we have to move a virtual
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camera along a properly computed circular trajectory on the view sphere, where

the view sphere of an object is a sphere which is centered at the object and has a

fixed radius [6]. Assuming that the virtual camera’s intrinsic parameters are known

(they can be assumed same as the available real cameras’ parameters), its extrinsic

parameters at each position on the circular trajectory needs to be determined. We

use the same coordinate system as the one in which the real cameras are calibrated,

except that the origin of the coordinate system is set as the 3D centroid O of the

computed VH. Apparently, this is not a static coordinate system because the origin

changes with the centroid of the VH from frame to frame. All the world coordinates

are mapped to this coordinate system. Here the world coordinate system refers to

the one with Y -axis perpendicular to the ground plane. Suppose we start from the

initial position of the virtual camera at P (Xp, Yp, Zp), the view sphere is set up

around O with radius R = ‖~P − ~O‖. The extrinsic parameters to be determined

include the translation vector [Tx, Ty, Tz] and the rotation angles [φ, θ, ψ] (pitch,

yaw and roll, respectively) around the X, Y , and Z-axes respectively.

There are two cases to be considered. If the real cameras are calibrated in a

coordinate system which coincides with the world coordinate system, resulting in

the X-Z plane being parallel to the ground plane, then the virtual camera’s motion

trajectory is a circle parallel to the X-Z plane, as the dotted circle C shown in Fig

2.4. This case is trivial. Starting from the initial position P , the virtual camera’s

circular trajectory is centered at (0, Yp, 0), and with radius r =
√

R2 − Y 2
p . Since

the circle is parallel to the X-Z plane, Yp, φ and ψ do not change at each position

along the circle. Given θ, we can uniquely determine X and Z coordinates if r is

fixed. Hence, θ is the only parameter we need to control. Let ∆θ be the step size

for θ. Fig 2.5 shows the example of deriving the changes in X and Z coordinates

17



θ lies in the 4th quadrant θ lies in the 1st quadrant

θ lies in the 2nd quadrant θ lies in the 3rd quadrant

Figure 2.5: The example of deriving the changes in X and Z coordinates from θ

and ∆θ if the virtual camera’s motion is clockwise.

from θ and ∆θ if the virtual camera’s motion is clockwise, where Xn and Zn denote

the X and Z coordinates for the n-th position of the virtual camera, and α is an

auxiliary angle. The counter clockwise motion case is similar.

If θ lies in the 4th quadrant, ∆θ/2− π/2 ≤ θ ≤ ∆θ/2,

α =





π/2− |θ| −∆θ/2 if θ ≤ 0

π/2 + |θ| −∆θ/2 if θ ≥ 0

(2.1)

Xn+1 = Xn − 2rsin(∆θ/2)cos α (2.2)

Zn+1 = Zn − 2rsin(∆θ/2)sin α (2.3)
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If θ lies in the 1st quadrant, ∆θ ≤ θ ≤ π/2 + ∆θ/2,

α = |θ| −∆θ/2 (2.4)

Xn+1 = Xn + 2rsin(∆θ/2)sin α (2.5)

Zn+1 = Zn − 2rsin(∆θ/2)cos α (2.6)

If θ lies in the 2nd quadrant, ∆θ + π/2 ≤ θ ≤ π or θ ≤ −π + ∆θ/2,

α =





3π/2− |θ| −∆θ/2 if θ ≤ 0

−π/2 + |θ| −∆θ/2 if θ ≥ 0

(2.7)

Xn+1 = Xn + 2rsin(∆θ/2)cos α (2.8)

Zn+1 = Zn + 2rsin(∆θ/2)sin α (2.9)

If θ lies in the 3rd quadrant, ∆θ − π/2 ≤ θ ≤ −π + ∆θ/2,

α = π − |θ| −∆θ/2 (2.10)

Xn+1 = Xn − 2rsin(∆θ/2)sin α (2.11)

Zn+1 = Zn + 2rsin(∆θ/2)cos α (2.12)

If the real cameras are calibrated in a coordinate system whose X-Z plane

is not parallel to the ground plane, then the virtual camera’s motion trajectory

should be a circle perpendicular to the person’s principal axis Y ′, as the shaded

circle C ′ shown in Fig 2.6. This case often happens when some accurate calibration

hardware is utilized to facilitate strong calibration of the camera system, such as

the Peak Performance calibration frame [26] shown in Fig 2.7. In this case, the

person’s vertical principal axes is along the direction of Y ′ which has an unknown

angle ω with the Y -axis. If the turntable image collection of the object is obtained
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Figure 2.6: The coordinate system being used does not coincide with the world

coordinate system, so the circular trajectory of the virtual camera should be the

shaded C ′ which is not parallel to the X-Z plane.

along the circle C parallel to the X-Z plane, we can observe that the object keeps

moving upward in the first half circle and downward in the second half. Also the x-

coordinate of the object’s 2D centroid does not remain fixed. To solve this problem,

we need to align the coordinate system X ′-Y ′-Z ′ with the world coordinate system

X-Y -Z.

Assuming that the person being observed stands upright on the ground plane,

we can use his/her vertical principal axis in each input image as the corresponding

2D line and estimate ω by solving an optimization problem. Here we propose an-

other feasible solution with which neither the solution to the optimization problem

nor extra computational cost are needed.

Let pn = (xn, yn) be the 2D centroid of the image observed by the virtual

camera at position n, and ∆yn and ∆xn the change of yn and xn from position n

to position n+1 respectively. Then we have ∆yn = yn+1−yn and ∆xn = xn+1−xn.
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Figure 2.7: The Peak Performance calibration frame used in [26] for more accurate

camera calibrations.

We try to approximate the circle C ′ with the observed ∆yn and ∆xn, as shown in

Fig 2.8.

Let ∆Yn be the change along the Y direction from position n to position n+1.

From the theorem on triangle similarity we have

∆yndpy

∆Yn

=
f

R
(2.13)

where dpy is the size of each pixel along the y direction and f is the camera’s focal

length. Similarly,

∆xndpx

∆Dn

=
f

R
(2.14)

where dpx is the size of each pixel along the x direction and ∆Dn is the translation

adjustment on the circle C in order to keep xn+1 = xn. ∆Dn can be compensated

by adjusting θ accordingly. Since ∆Dn is very small compared to the sphere radius

R, the adjusting angle ∆θ can be approximated as ∆θ = 2 arctan
∆Dn

2R
.

In order to keep the object’s principal axes perpendicular and parallel to the

ground plane respectively, the roll angel ψ also has to be modified. At position n,

the eigenvector [~ex, ~ey] of the silhouette image is computed and we have ψn+1 =
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Figure 2.8: With the silhouette centroid observed for the previous position, the

circle C ′ can be approximated by adjusting the Y coordinate of the virtual camera.

ψn + arctan ex1/ex2, where (ex1, ex2) is the element of ~ex.

Since the view sphere radius R has to remain constant, X and Z coordi-

nates have to be further adjusted based on ∆Yn, as shown in Fig 2.9. De-

note r′ =
√

R2 − (Yn + ∆Yn)2 and ∆r = |r − r′|, then ∆Xn = ∆r cos |θ| and

∆Zn = ∆r sin |θ|. We consider the virtual camera’s clockwise motion again as

mentioned before.

If θ lies in the 4th quadrant,





Xn+1 = Xn −∆X, Zn+1 = Zn + ∆Z, if Yn ·∆Yn ≥ 0

Xn+1 = Xn + ∆X, Zn+1 = Zn −∆Z, otherwise

(2.15)

If θ lies in the 1st quadrant,





Xn+1 = Xn −∆X, Zn+1 = Zn −∆Z, if Yn ·∆Yn ≥ 0

Xn+1 = Xn + ∆X, Zn+1 = Zn + ∆Z, otherwise

(2.16)
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Figure 2.9: Adjust the X and Z coordinates according to the value of ∆Y .

If θ lies in the 2nd quadrant,





Xn+1 = Xn + ∆X, Zn+1 = Zn −∆Z, if Yn ·∆Yn ≥ 0

Xn+1 = Xn −∆X, Zn+1 = Zn + ∆Z, otherwise

(2.17)

If θ lies in the 3rd quadrant,





Xn+1 = Xn + ∆X, Zn+1 = Zn + ∆Z, if Yn ·∆Yn ≥ 0

Xn+1 = Xn −∆X, Zn+1 = Zn −∆Z, otherwise

(2.18)

The active virtual camera positioning algorithm is summarized as follows:

1. Choose the extrinsic parameters of the virtual camera as the average of any

two real cameras’ parameters. Usually this is a good position to start with.

Select the step size ∆θ for θ.

2. Get the silhouette image at the current position n, and compute the 2D

centroid changes ∆xn and ∆yn from the silhouette image at the previous

position. Compute the eigenvector [~ex, ~ey] of the current silhouette image.
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Figure 2.10: The synthesized turntable silhouette image collection. Top: the turn-

ing and pointing sequence taken at the Keck Lab in UMD. Bottom: walking se-

quence collected at MIT AI lab.

3. Compute ∆Yn and ∆Dn as in (13) and (14), then compute ∆θ with ∆Dn.

Let ψn+1 = ψn + arctan (ex1/ex2).

4. Modify X and Z coordinates through (15)-(18) with the ∆Yn obtained in

the previous step.

5. Move the virtual camera to the next position as in (1)-(12), and let θn+1 =

θn + ∆θ.

6. Repeat steps 2 through 5 until the virtual camera comes back to the original

position.

This algorithm was implemented and tested on several sequences. The input

is the synchronized perspective 4-view silhouette sequences for a person, with the

cameras fully calibrated. The output is the rendered turntable image collection

of the person for each frame. The turning and pointing sequence was taken at

the Keck Lab at University of Maryland. The person’s motion is mainly turning
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Table 2.1: Virtual camera position and rotation angles for the turning and pointing

sequence.

position 4 8 10 16 19

Cx(m) 3.827 4.881 3.288 -2.585 -2.502

Cy(m) 0.086 1.208 1.990 1.752 0.479

Cz(m) 3.866 -0.608 -2.333 -0.618 2.884

φ(rad) 2.825 2.825 2.825 2.825 2.825

θ(rad) 0.624 1.860 2.479 -2.082 -1.134

ψ(rad) -0.213 -0.228 -0.136 0.230 0.234

motion, so the trajectory information is hard to extract from the sequence. The

top row of Fig 2.10 is the result for the pointing and turning sequence, with Table

1 showing the virtual camera’s 3D position (Cx, Cy, Cz) and its rotation angles

(φ, θ, ψ). The normal walking sequence was collected at MIT AI lab. The tra-

jectory information can be estimated from the 3D centroid coordinates of the VH

as mentioned in [87]. Our algorithm also works well as shown in the bottom row

of Fig 2.10, with Table 2 showing the virtual camera’s 3D position (Cx, Cy, Cz)

and its rotation angles (φ, θ, ψ). In both sequences, ∆θ = 0.3 rad, so there are 21

positions on the whole circle around the person. We can observe from (Cx, Cy, Cz)

in Table 1 and Table 2 that for both sequences the virtual cameras’ trajectories

are circles not parallel to the X-Z planes. Fig 2.10 shows that the circle approxi-

mation approach gives satisfactory results.
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Table 2.2: Virtual camera position and rotation angles for the normal walking

sequence.

position 1 4 10 13 16

Cx(m) 2.481 4.800 -1.138 -4.350 -4.219

Cy(m) 2.927 0.918 -1.591 -0.543 1.851

Cz(m) 3.617 -0.145 -4.084 -1.831 2.275

φ(rad) 3.682 3.682 3.682 3.682 3.682

θ(rad) 0.669 1.636 -2.870 -2.032 -1.003

ψ(rad) 1.867 2.068 1.574 1.160 1.093

2.2.2 Desired Viewpoint Selection

Computation of good viewpoints is important in computational geometry, visual

servoing, robot motion, graph drawing, etc. It is rapidly becoming a key issue

in image based rendering. Much work has been done on this topic. In [66], the

image-based virtual camera motion approach is presented. The method is based

on the visual servoing approach and consists of positioning a camera according to

the information perceived in the image, with the model of the scene being fully

known. To be able to react automatically to modifications of the environment, the

introduction of constraints into the control is also considered. A method for visual

understanding of a scene by efficient automatic movement of a camera is presented

in [6]. The purpose is to choose a trajectory for a virtual camera, allowing the user

to have a good knowledge of the scene at the end of minimal exploration. Start-

ing from a good view point, the virtual camera moves on the surface of a sphere

surrounding the scene, combining good views, a smooth camera movement and dis-
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tance from the starting point based heuristics. Similarly, [78] presents an approach

to selecting a minimal number of views that allow each object face to be adequately

viewed according to specified constraints on viewpoints and other features. With

the CAD boundary representation model of the object of interest, and a descrip-

tion of the visibility of each of the object faces, the planner can select viewpoints

suitable for a variety of machine vision tasks in two stages: viewpoint planning

and viewpoint selection. In [98], the quality of a viewpoint is measured with the

information it gives about the scene, and the authors designed an algorithm to au-

tomatically explore objects or scenes with this viewpoint entropy measure. shape

from silhouette with equally distributed viewpoints is an often used reconstruction

technique for computer animation applications, but is not suitable for arbitrary

shaped objects. For this reason, a camera viewpoint control is introduced in [71],

which purposefully rotates a turntable with the 3D object depending on the trace

of the silhouette contour points over the rotation angle. It is reported that the

remaining 3D reconstruction error is greatly reduced. Kutulakos and Dyer [59]

present an approach for recovering surface shape from the occluding contour using

an active observer, which is based on a relation between the geometries of a sur-

face in a scene and its occluding contour. They have shown that there is a simple

and efficient viewing strategy, depending on only curvature measurements on the

occluding contour, that allows the observer to align the viewing direction with one

of the two principal directions for a point on the surface.

In order to select the desired view from the turntable image collection, we need

to compare the turntable images with the knowledge base of silhouettes associated

with known poses. In [39] a template matching method is proposed to estimate

the human pose from silhouettes, where a body posture is represented by the
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normalized horizontal and vertical projection histograms, the median coordinate,

and the major axis of its silhouette. The extracted silhouette is compared with the

projection templates using the sum of absolute difference method to estimate the

main posture. While this method is simple and fast, it produces some ambiguities.

A distance which can measure the similarity of two silhouettes more robustly is

needed. According to [4], this distance should satisfy a number of properties,

including that 1) it should be a metric, 2) it should be invariant under translation,

rotation and change-of-scale, 3) it should be reasonably easy to compute, and 4) it

should match our intuition. To compare a shape A, which is stored as a model (in

our case, the knowledge base of silhouettes associated with known pose s), with a

shape B, which is found to exist in an image (in our case, the turntable images),

the distance between the turning functions ΘA(s) and ΘB(s) is an efficient measure

of similarity.

The turning function ΘA(s) measures the angle of the counterclockwise tangent

as a function of the arc-length s measured from some reference point O on A’s

boundary. ΘA(s) keeps track of the turning that takes place, increasing with left-

hand turns and decreasing with right-hand turns. The turning function measures

the turning that takes place as we move along the perimeter. Mathematically, if

κ(s) is the curvature function of a curve then Θ(s) =
∫

κ(s).

In [4], the distance function between two polygons A and B is formally defined

as the Lp distance between their two turning functions ΘA(s) and ΘB(s), minimized

with respect to rotation and choice of reference points,

dp(A,B) = ( min
θ∈<,t∈[0,1]

∫ 1

0

|ΘA(s + t)−ΘB(s) + θ|pds)
1
p

= ( min
θ∈<,t∈[0,1]

DA,B
p (t, θ))

1
p ,

where DA,B
p (t, θ) =

∫ 1

0
|ΘA(s + t) − ΘB(s) + θ|pds. If the L2 metric is used, the
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authors proved that the distance d2(A,B) between two polygons A and B (with

m and n vertices) can be computed exactly in time O(mn log mn).

The turning function metric has been shown to correlate well with the human

notion of shape similarity [83]. Howe [43] used both the turning function and the

Chamfer distance for silhouette lookup for automatic tracking of poses. In imple-

menting the turning function distance, we use the method mentioned in [83], where

dynamic programming is used to account for warpings that may exist between the

query object and database object that result in stretching and compression. It is

quite possible that the matching between the points along the border of shape A

and the points along the border of shape B is not one-to-one, but one-to-many or

many-to-one. It computes the global best match between ΘA(s) and ΘB(s) in the

sense that it pairs up each element of ΘA(s) with an element of ΘB(s)(and vice

versa), but the matching must proceed monotonically through both sets. Thus it

computes two sequences i1, i2, . . . , ik and j1, j2, . . . , jk such that either it+1 = it or

it+1 = it+1 (similarly for j), by normalizing the distance between matched turning

angle points: D =
∑

t=1,2,...,k |it − jt|.
The knowledge base of silhouettes consists of the turning functions ΘAi

(s)

of the silhouettes for some canonical poses, e.g. the 5 standard stances for the

human walking activity. By definition, the turning function is invariant under

translation and scaling of the polygon Ai. Therefore the normalization is not

necessary in building the knowledge base. The turning function ΘBj
(s) of the

silhouette at current viewing direction is calculated and the distance functions

d2(Ai, Bj) between ΘAi
(s) and ΘBj

(s) are computed. In addition to the silhouette

Bj at the current viewing direction, we can get an auxiliary silhouette Cj by

placing the virtual camera at the position where the angle around the Y -axis has
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Figure 2.11: The view selection result comparison for the turning and pointing

sequence, with the blue curve indicating the view selection result using the turning

function distance, and the red curve indicating the ground truth.

π/2 difference with the current position. Consider the example that the desired

view is a side view, let d2(SAi, Bj) be the turning function distance between Bj

and the standard stances SAi for the side view, and d2(FAi, Cj) be the distance

between Cj and the standard stances FAi for the frontal view, then the final

decision measurement is S(i, j) = d2(SAi, Bj) + d2(FAi, Cj). The view with the

minimal distance not only gives the side view, but also gives the stance at which

the person stands for the current frame. With this method, the desired view is
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(a)

(b)

Figure 2.12: (a) The side view ground truth for the Keck Lab sequence. (b) The

rendered side view for the Keck Lab sequence.

selected only when it has a small distance in matching the side view stance and

its auxiliary silhouette has a small distance in matching the frontal view stance at

the same time. This greatly reduces the possible ambiguities when considering the

side view stance alone.

Usually there will be no abrupt change from one frame to the next, so we

do not need to generate all the virtual views around the person for each frame.

Only a small number of neighboring positions of the selected view in the previous

frame are synthesized and compared. Experiments show that the results are good

enough while the speed is much faster compared to generating all the virtual views

around the person for each frame. As can be seen from Fig 2.11, which shows

the view selection result for the turning and pointing sequence using the turning

function distance, the selected view follows the ground truth quite well for most

of the frames. Although some error still exists for several frames, it disappears in
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(a)

(b)

Figure 2.13: (a) The side view ground truth for the MIT sequence. (b) The

rendered side view for the MIT sequence.

the next 2-3 frames. Fig. 2.12 and Fig. 2.13 show the virtual side views for the

turning and pointing sequence and the the normal walking sequence respectively,

which demonstrates the efficiency of the proposed pose-normalized view synthesis

algorithm from silhouettes.

2.3 Articulating Object Synthesis Using Visual

Hull

Although the VH technique is a fast and efficient volumetric scene reconstruction

method, like all the SFC algorithms, it still suffers from the inability of recon-

structing the concave region for human postures. In order to overcome the in-

ability of the SFC method to reconstruct concave regions for human postures, in

this section we propose a simple and robust contour-based body part segmentation
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algorithm [106].

Observing that in many cases the concave human posture is formed due to

the position of arms, we are inspired to explore the possibility of body part based

view synthesis with IBVH. Several methods have been proposed for human body

part segmentation from silhouette (contour). The work in [39] gives a silhouette-

based human body labeling template by using topological order-constraints of body

parts for different postures. A contour-based body part localization method was

presented in [118] with a probabilistic similarity measure which combines the local

shape and global relationship constraints to guide body part identification. More

recently, a hierarchical model fitting method to estimate the 3D shape with den-

sity fields was proposed in [16]. The body parts of the human can be described

accurately with the estimated parameters. We use the work in [118] for body part

segmentation because of its simplicity and robustness, where the short-cut rule

and the saliency requirement are combined to constrain the other end of a cut,

and several computationally efficient strategies are used to reduce the effects of

noise. Using this method, the silhouette image in each input view is partitioned

into arms and torso (with legs) so that each human part is a convex object. All

the parts are separately processed with IBVH, and assembled together to get the

final result. It is possible that the final view has some disconnected or squeezed

regions since it is obtained by assembling the separately processed body parts. To

prevent this problem, a silhouette image for the desired viewing direction is first

generated without segmenting the body parts.
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2.3.1 Contour-Based Body Part Segmentation

Human body parts segmentation and identification are important and challenging

problems in computer vision. Contours are the common features used to overcome

inconsistent texture; parts based approaches can effectively handle occlusion and

articulated motion. We segment a human body into parts at negative minima of

curvature so that the decomposed parts are convex regions. Hoffman and Singh

[41] noted that when boundary points can be joined in more than one way to

decompose a silhouette, human vision prefers the partitioning scheme which uses

the shortest cuts ( A cut is the boundary between a part and the rest of the

silhouette). They further restrict a cut to cross a symmetry axis in order to avoid

short but undesirable cuts. However, most symmetry axes are very sensitive to

noise and are expensive to compute. In contrast, we use the constraint on the

saliency of a part to avoid short but undesirable cuts. According to Hoffman and

Singh’s [41] study, there are three factors that affect the saliency of a part: the size

of the part relative to the whole object, the degree to which the part protrudes,

and the strength of its boundaries. Among these three factors, the computation

of a part’s protrusion (the ratio of the perimeter of the part (excluding the cut) to

the length of the cut) is more efficient and robust to noise and partial occlusion of

the object. Thus, we employ the protrusion of a part to evaluate its saliency; the

saliency of a part increases as its protrusion increases.

In summary, we combine the short-cut rule and the saliency requirement to

constrain the other end of a cut. For example in Fig 2.14, let S be a silhouette, C

be the boundary of S, P be a point on C with negative minima of curvature, and

Pm be a point on C so that P and Pm divide the boundary C into two curves Cl,

Cr of equal arc length. Then two cuts are formed passing through point P : PPl,

34



P
l P

r

C
l

C
r

P
m

P

Figure 2.14: Computing the cuts passing through point P.

PPr such that points Pl and Pr lies on Cl and Cr, respectively. The ends Pl and

Pr of the two cuts are located as follows:

Pl = arg min
P ′
‖PP ′‖s.t. ‖P̂P ′‖

‖PP ′‖ > Tp, P
′ ∈ Cl, PP ′ ∈ S (2.19)

Pr = arg min
P ′
‖PP ′‖s.t. ‖P̂P ′‖

‖PP ′‖ > Tp, P
′ ∈ Cr, PP ′ ∈ S (2.20)

where P̂P ′ is the smaller part of boundary C between P and P ′, ‖P̂P ′‖ is the arc

length of P̂P ′, and ‖P̂P ′‖
‖PP ′‖ is the saliency of the part bounded by curve P̂Pl and cut

PPl.

Eq. (2.19) means that point Pl is located so that the cut PPl is the shortest

one among all cuts sharing the same end P , lying within the silhouette with the

other end lying on contour Cl, and resulting in a significant part whose salience
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is above a threshold Tp. The other point Pr is located in the same way using Eq.

(2.20). It is possible that only one cut is selected if the other cut does not satisfy

the saliency requirement.

Since negative minima of curvature are obtained by local computation, their

computation is not robust in real digital images. We take several computationally

efficient strategies to reduce the effects of noise. First, a B-spline approximation

is used to moderately smooth the boundary of a silhouette, since the B-spline

representation is stable and easy to manipulate locally without affecting the re-

maining part of the silhouette. Second, the negative minima of curvatures with

small magnitudes are removed to avoid parts due to noise or small local deforma-

tions. However, the curvature is not scale invariant (e.g. its value doubles if the

silhouette shrinks by half). One way to transform curvature into a scale-invariant

quantity is to first find the chord joining the two closest inflections which bound

the point, then multiply the curvature at the point by the length of this chord.

The resulting normalized curvature does not change with scale — if the silhouette

shrinks to half size, the curvature doubles but the chord halves, so the product

remains a constant.

2.3.2 View Synthesis of Articulating Humans

Having segmented each input image into convex body parts, we need to render

the image for each body part in the given viewing direction and assemble them

together. In order to generate each body part separately for the desired view, we

have to use the corresponding body part in each input image. Since the body

part localization method in previous section does not give such corresponding

relationship between views, we can not tell which body part is left arm and which
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one is right arm from the input silhouette images. In the assembling process, it is

possible that the ”stitched” final view has unconnected or squeezed regions because

the separately-generated virtual parts are not guaranteed to match each other.

To solve these two problems, a virtual silhouette image corresponding to the

given viewing direction is first generated using the image based visual hull com-

puted from the input silhouette images. In this process, we only need to decide

whether each pixel in the virtual view belongs to the foreground or the background.

If a pixel’s corresponding 3D ray intersection in the visual hull formulation process

is not null, the pixel is marked as a foreground pixel and the intersection coordi-

nates are stored in a table for later use. Each input image is segmented into left

arm, right arm and torso (with legs). The rendered silhouette image can also be

segmented into body parts in the same way. Since the visual hull of the person has

been built, the 3D centroid for each body part can be roughly approximated with

the center of gravity of the body part’s visual hull. By projecting the 3D centroid

to each input image, we are able to locate the corresponding body part in each

input image for the rendered body part in the synthetic image.

To map the texture for the foreground pixels in the desired view, a nearest

neighbor scheme is used [68]. For each foreground pixel, the 3D closet frontal

point is retrieved from the stored table and projected onto each input view. The

intensity value P for the desired view pixel is a weighted sum of intensity values

Pi of the corresponding pixels in the input views, P =
∑

Pi cos θi, where θi is

the angle between the 3D ray from the desired view foreground pixel and the

3D ray from the corresponding pixel in input view i if the closet frontal point is

visible in this view. If the concave regions are not considered in the formulation

of the visual hull, the pixels in the desired view projected by the points inside the
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Figure 2.15: Two examples of human body part segmentation results: (1.a) and

(2.a) are the body part segmentation results for input views. (1.b) and (2.b) are

the body part segmentation result for the rendered silhouette images.

concavities will have erroneous 3D closet frontal points and their intensity values

will be wrong. In order to obtain correct visual hull and texture mapping results,

the human body part segmentation method is used in the reconstruction process.

For the desired view, each foreground pixel in a segmented body part will have its

epipolar line intersected with the corresponding body part contour in each input

view. These 2D line intersections are projected back into 3D space and intersect

with the retrieved 3D ray starting from the pixel in the desired view. If the pixel

is the projection of a 3D point which lies on the concave region, the new 3D ray

intersection will be shorter compared to the previously-stored intersection because

the epipolar line only intersects with the corresponding body part instead of the

whole body contour. Hence, the 3D closet frontal points for these pixels are closer

to their correct positions so that their intensity values can be decided with the

corresponding pixels in the input views. For the pixels corresponding to the 3D

points which do not lie on concave regions, the 3D ray intersections are same as the

stored ones. In this way, even if the epipolar line of a pixel in a desired view body
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(a) (b) (c)

(d) (e) (f)

Figure 2.16: Two examples of view synthesis of articulating humans with visual

hull: (a) and (d) are the input views. (b) and (e) are the texture mapping results

without using body part segmentation method. (c) and (f) are the texture mapping

results using body part segmentation method.

part has no intersection with the corresponding body part contour in the input

views, this pixel is still marked as a foreground pixel and has its intensity value

decided using the nearest neighboring scheme. Therefore, no unconnected region

will be observed in the assembled view. Since the independently processed body

parts are segmented from the previously generated silhouette image, no region will

be squeezed together in the assembled view.

The body part segmentation results for four input views and the rendered

silhouette image are shown in Fig 2.15. The texture mapping results obtained

with and without using the body part segmentation method are compared in Fig

2.16. The hole on the chest part of Fig 2.16 (b) is because the concave region formed

by the arms and the torso is treated as a convex region. Since the desired viewing

direction is from above the concave region while the input viewing directions are
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either from below the concave region or make the concave region occluded, so the

front-most points corresponding to these pixels are not visible in any of the input

views and marked as invisible. From Fig 2.16 (c) and Fig 2.16 (f) we observe that

the texture mapping results are greatly improved when body part based method

is used. It should be mentioned that if the desired viewing direction makes the

rendered image have self occlusion between the limbs and the torso, the rendered

image has no obvious improvement compared to the result obtained without using

the body part based method.

2.4 Improved Body Part Segmentation For Turntable

Image Collection

As mentioned in Section 2.3, the body part segmentation result depends both on

the contour and the viewing direction. When the person is not observed from

a good viewpoint, the body part segmentation result can be very unreliable due

to self-occlusion or the difficulty in detecting the negative minima of curvature,

as shown in Fig. 2.17(a) and Fig. 2.18(a). It is not unreasonable to conclude

that if we have the images of the person observed from all the viewing directions

around him or her (the turntable image collection), we can improve the body part

segmentation results effectively as in some views we may better localize the body

part positions than in other views. Although the actual available views (the input

views) are beyond our control, we are still able to generate the turntable image

collection using IBVH technique as we have shown in Section 2.2.1. After obtaining

the more reliable body part segmentation points from some virtual views with the

algorithm in Section 2.3.1, we have to link them back to the actual available views.
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This requires us to find the correspondence of the segmentation points across views,

which is not a trivial problem especially for the contour images. This is due to

the fact that some points on the contour in one view may be occluded in another

view and thus not lie on the contour (boundary). Therefore, the re-projection from

the foremost point on the already-computed VH from the available views to the

new view may result in the line segment which does not have intersection with the

contour.

In order to find the correspondence on the contour points across views, we

reexamine the fact that human body is an articulation of rigid body parts. In

[62], Ling and Jacobs propose to use the inner distance to build shape descriptors

that are robust to articulation and capture part structure. The inner distance is

defined as the length of the shortest path between sample points within the shape

silhouette. It can be computed using the shortest path algorithm with O(n3) time

complexity for n sample points along the contour. Since the human body can

be decomposed into rigid body parts connected by the joints which are assumed

very small compared to the parts they connect, the shortest path sample points

can be divided into segments within each part. The authors show that the inner

distance is articulation insensitive and more effective at capturing part structures

than the Euclidean distance. This suggests that the inner-distance can be used

as a replacement for the Euclidean distance to build more accurate descriptors for

complex shapes, especially for those with articulated parts like a human body.

We need to find the correspondence of the segmentation points from the ”good”

virtual view to the actual available views. Although only these sparse segmentation

points are of our interest, we have to consider all the sample points along the

whole contour considering the point ordering constraint. Therefore, it is actually a
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contour matching problem which is usually stated as follows: Two given contours O

and S are described by the sample point sequences, o1, o2, ...,n for O with n points,

and s1, s2, ..., sm for D with m points. We seek to match O to S through the

mapping M which is from 1, 2, ..., n to 0, 1, 2, ..., m, where oi is matched to sM(i)

if M(i) 6= 0 and otherwise left unmatched. M must minimize the match score

defined as C(M) =
∑

1≤i≤n c(i,M(i)) where c(i, 0) is the penalty for unmatched

pi, and c(i, j) is the cost of matching oi to sj for 1 ≤ j ≤ m. Let hO,i and hS,j

be the shape context histograms of oi and sj respectively, the cost of matching

is measured using the χ2 statistics c(i, j) ≡ 1
2

∑
1≤k≤K

[hO,i(k)−hS,j(k)]2

hO,i(k)+hS,j(k)
, where K is

the number of histogram bins. By replacing the Euclidean distance with the inner

distance in the definition of shape context [11], the inner distance shape context

can be used to accomplish contour mapping through dynamic programming (DP)

which is widely used to solve the contour matching problem.

This algorithm works the best for matching contours of the same articulated

object at different postures but observed from the same viewing direction. Some

matching examples for the contours of a person taken at different time instants

from the same video sequence were shown in [62] to demonstrate the effective-

ness of the proposed algorithm. It is yet to explore how the algorithm works for

matching the contours across viewpoints. We conducted experiments on the very

challenging turning and pointing sequence, the results of which are shown in Fig.

2.17 and Fig. 2.18. Fig. 2.17(a) shows the contour image that has poor body

part segmentation, and (b) shows the contour image with the good body part seg-

mentation of the same person observed from another viewpoint, which is actually

generated using the algorithm shown in Section 2.2.1. We seek to improve the

body part segmentation results on (a) by finding the corresponding points of the
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marked body part segmentation points on the contour image in (b). In order to

match these two contours, we use the IDSC+DP technique described in [62]. From

the experiments, we found that within a certain range of viewing angles (usually

in the neighborhood of 20 degrees from the actual available views), we are able

to match the contours quite well. The reason behind this is that to some extent,

the structure of the shape does not change dramatically following the change of

the viewing direction. Therefore the IDSC descriptor can still capture the main

posture of the articulated object (the person in our case). Fig. 2.17(c) shows the

contour matching result at body part segmentation points, and Fig. 2.17 (d) shows

the improved body part segmentation result for the same contour image as in Fig.

2.17 (a). Another example is shown in Fig. 2.18 with similar performance. As

we can observe from the figures, the body part segmentation results are greatly

improved.

For the contours observed from the viewing directions beyond this range, the

matching errors become large. The main error comes from self-occlusion and fore-

shortening effects because of different viewing directions. It is still an open topic

to match two contours across large viewpoint changes without building a 3D shape

or using a generic 3D model.

2.5 Summary and Future Work

We have presented a complete framework combining the active image based visual

hull algorithm and a contour based body part segmentation technique for a better

synthesis and understanding of the human pose from a limited number of available

silhouette images. No 3D body model is explicitly reconstructed. The turntable

image collection of the object can be obtained by properly moving a virtual camera
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on a circular trajectory. We showed how to derive the virtual camera’s translation

and rotation at each position on the trajectory. The silhouette turning function

distance is measured against the pre-stored silhouette images with known poses to

get the pose-normalized views for recognition applications. In order to overcome

the inability of the visual hull method to reconstruct concave regions, a contour-

based human body part localization algorithm is proposed to segment the input

silhouette images and the rendered virtual silhouette image into convex body parts.

The body parts in the virtual view are generated separately from the corresponding

body parts in the input views and then assembled together for a more accurate

VH reconstruction. Furthermore, the two components mentioned above improve

each other for better performance through the correspondence across viewpoints

built via the inner distance shape context measurement.

The original SFC formulation assumes that all of the silhouette images are

captured either at the same time or while the object is static. This assumption

is violated when the object moves or changes shape. Hence the use of SFC with

moving objects has been restricted to treating each time instant sequentially and

independently. The temporal continuity of the input video stream has not been

fully utilized to reduce the computation burden or capture the motion information.

For a moving object, since the motion between the nearby frames is usually small,

it is possible to improve the shape approximation by combining multiple silhouette

images captured across time. Recall in Section 2.3 we have segmented the input

silhouettes into convex body parts. By tracking these body parts in each input

view, their motion in the desired view can be inferred under the multi view geom-

etry constraints. In [89] a stochastic body part tracking method is proposed in a

Bayesian framework. For initialization, a simple generic 3D human body model
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can be aligned to be consistent with the given views. For the desired view, after

deriving the motion for each body part, we need to estimate the motion for the

articulation points. Since these points lie on both the body parts they connect to,

they must satisfy the motion equations for both the body parts. With this pro-

posed approach, we should be able to not only dynamically synthesize the desired

view, but also catch the motion information for each body part and hence analyze

the human activity.
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Figure 2.17: (a) The contour image in the example with poor body part segmen-

tation. (b) the contour image with a good body part segmentation of the same

person observed from another viewpoint. (c) the contour matching result using the

IDSC+DP technique, with the body part segmentation points explicitly marked.

(d) the improved body part segmentation result for the same contour image as in

(a).
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Figure 2.18: (a) The contour image for the case of bad body part segmentation.

(b) the contour image for the case of good body part segmentation of the same

person observed from another viewpoint. (c) the contour matching result using the

IDSC+DP technique, with the body part segmentation points explicitly marked.

(d) the improved body part segmentation result for the same contour image as in

(a).
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Chapter 3

Pose-Normalized View Synthesis

for Face Recognition Using a

Single Image

3.1 Challenges and Prior Art On Face Recogni-

tion

Face recognition is one of the most successful applications of image analysis and

understanding [121]. Given a database of training images (sometimes called a

gallery set, or gallery images), the task of face recognition is to determine the facial

ID of an incoming test image. Face recognition under varying pose is a challenging

problem, especially when illumination variations are also present. Built upon the

success of earlier efforts, recent research has focused on robust face recognition to

handle the issue of significant difference between a test image and its corresponding

training images (i.e., they belong to the same subject). As pointed out in [121]
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and many references cited therein, pose and/or illumination variations can cause

serious performance degradation to many existing face recognition systems. A

review of these two problems and proposed solutions can be found in [121]. Despite

significant progress, robust face recognition under varying lighting and different

pose conditions remains to be a challenging problem. The problem becomes even

more difficult when only one training image per subject is available.

Most earlier methods focused on either illumination or pose alone. For ex-

ample, an early effort to handle illumination variations is to discard the first few

principal components that are assumed to pack most of the energy caused by illu-

mination variations [9]. To handle complex illumination variations more efficiently,

spherical harmonics representation has been proposed independently by Basri et

al. [7] and Ramamoorthi [75]. It has been shown that the set of images of a convex

Lambertian face object obtained under a wide variety of lighting conditions can be

approximated by a low-dimensional linear subspace. The basis images spanning

the illumination space for each face can be rendered from a 3D scan of the face [7].

Following the statistical learning scheme in [91], Zhang et al. [115] showed that

the basis images spanning this space can be recovered from just one image taken

under arbitrary illumination conditions for a fixed pose.

To handle the pose problem, a template matching scheme was proposed in

[12] that needs many different views per person and no lighting variations are

allowed. Approaches for face recognition under pose variations [72] [33] avoid the

strict correspondence problem by storing multiple normalized images at different

poses for each person. View-based eigenface methods [72] explicitly code the pose

information by constructing an individual eigenface for each pose. [33] treats face

recognition across poses as a bilinear factorization problem and facial identity and
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head pose are the two factors.

To handle the combined pose and illumination variations, researchers have pro-

posed several methods. The synthesis method in [34] can handle both illumination

and pose variations by reconstructing the face surface using the illumination cone

method under a fixed pose and rotating it to the desired pose. The proposed

method essentially builds illumination cones at each pose for each person. [120]

presented a symmetric shape-from-shading (SFS) approach to recover both shape

and albedo for symmetric objects. This work was extended in [28] to recover the

3D shape of a human face using a single image. In [119], a unified approach was

proposed to solve the pose and illumination problem. A generic 3D model was

used to establish the correspondence and estimate the pose and illumination di-

rection. [123] extended the photometric stereo algorithms to recover albedos and

surface normals from one image illuminated by an unknown single distant illumi-

nation source.

Building upon the highly successful statistical modeling of 2D face images [24],

the authors in [103] propose a 2D + 3D AAM scheme to enhance AAM in handling

3D effects to some extent. A sequence of face images (900 frames) is tracked using

AAM and a 3D shape model is constructed using Structure-From-Motion (SFM)

algorithms. As camera calibration and 3D reconstruction accuracy can be severely

affected when the camera is far away from the subjects, the authors imposed

these 3D models as soft constraints for the 2D AAM fitting procedure and showed

convincing tracking and image synthesis results on a set of five subjects. However,

this is not a true 3D approach with accurate shape recovery and does not handle

occlusion.

A 3D morphable face model has been proposed in [15] to handle both pose and
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illumination variations, where the shape and texture of each face is represented as a

linear combination of a set of 3D face exemplars and the parameters are estimated

by fitting a morphable model to the input image. By far the most impressive face

synthesis results were reported in [15] accompanied by very high recognition rates.

One drawback of this approach is that it does not handle complex illumination

problem since a single light source is assumed. In order to effectively handle both

illumination and pose, a recent work [116] combines spherical harmonics and the

morphable model. It works by assuming that shape and pose can be first solved by

applying the morphable model and illumination can then be handled by building

spherical harmonic basis images at the resolved pose. Most of the 3D morphable

model approaches are computationally intense because of the large number of

parameters that need to be estimated.

3.2 Pose-Normalized Face Synthesis from a Sin-

gle Image

The bilateral symmetry of human face has been used by some researchers [120] for

3D modeling and subsequent novel view synthesis. We propose a pose-normalized

face synthesis approach from a single view by exploiting the bilateral symmetry

of the human face [108]. Given a test image, with different pose and illumination

from the training images, we suppose that the pose is obtained by rotating the

head about the Y -axis by θ. The mirror image of the original view can be thought

of as the head rotated about the Y -axis by −θ and is under the opposite lighting

direction in the X-direction. We show that given pose, illumination parameters

and the required correspondence, the mirror view under the same illumination
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as the original view can be determined on a pixel-by-pixel basis using the original

view and its mirror image. Consequently the pose-normalized view under the given

illumination can be generated using view morphing techniques [84].

3.2.1 Derivations of Key Equations

Let (p, q) be the partial derivatives of the depth map z[x, y] for the frontal view of

the given image and −~L = (Ps, Qs, 1) be the opposite direction of the single light

source. The light source can also be represented by two angles, slant α (the angle

between the negative ~L and the positive Z-axis) and tilt τ (the angle between the

negative ~L and the x− z plane), and the following expression holds:

Ps = k sin α cos τ, Qs = k sin α sin τ (3.1)

where k is the length of vector ~L. The Lambertian model we use here is commonly

used in the shape from shading literature, with the standard equation [120]

I(x, y) = ρ
1 + pPs + qQs√

1 + p2 + q2
√

1 + P 2
s + Q2

s

(3.2)

where ρ is the composite albedo.

The partial derivatives (p[x, y], q[x, y]) become (pθ[x
′, y′], qθ[x

′, y′]) after rotating

θ about the Y -axis and they are related by [119]





pθ[x
′, y′] = tan (θ + θ0)

qθ[x
′, y′] = q[x,y] cos θ0

cos (θ+θ0)

(3.3)

where tan θ0 = p[x, y].

By reversing the pixel order on each row of the original view I, we obtain the

mirror image M . M can be thought as the head rotated about the Y -axis by −θ
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under illumination direction (−Ps, Qs, 1). So the partial derivatives (p[x, y], q[x, y])

become (p−θ[x
′, y′], q−θ[x

′, y′]) after the rotation and they are related by





p−θ[x
′, y′] = tan (−θ + θ0)

q−θ[x
′, y′] = q[x,y] cos θ0

cos (−θ+θ0)

(3.4)

The mirror view, denoted as S, is the view with the same pose as M but under

the same lighting condition as I. We are interested in finding out how S relates to

I and M .

If the pose θ and the illumination direction (α, τ) have been estimated and the

correspondence between I and M has been established, then we have

I(x, y) = ρ
1 + pθPs + qθQs√

1 + p2
θ + q2

θ

√
1 + P 2

s + Q2
s

(3.5)

and

M(x, ym) = ρ
1− p−θPs + q−θQs√

1 + p2
−θ + q2

−θ

√
1 + P 2

s + Q2
s

(3.6)

where (x, ym) is the corresponding point in M for pixel (x, y) in I.

By substituting (3.3) and (3.4) into (3.5) and (3.6) we have

I(x, y) = ρ
cos (θ + θ0) + sin (θ + θ0)Ps + q cos θ0Qs√

1 + q2 cos2 θ0

√
1 + P 2

s + Q2
s

(3.7)

and

M(x, ym) = ρ
cos (−θ + θ0)− sin (−θ + θ0)Ps + q cos θ0Qs√

1 + q2 cos2 θ0

√
1 + P 2

s + Q2
s

(3.8)

From (3.7) and (3.8) we obtain

I(x, y) + M(x, ym) = 2ρ
cos θ0(cos θ + Ps sin θ) + q cos θ0Qs√

1 + q2 cos2 θ0

√
1 + P 2

s + Q2
s

(3.9)

I(x, y)−M(x, ym) = 2ρ
sin θ0(Ps cos θ − sin θ)√

1 + q2 cos2 θ0

√
1 + P 2

s + Q2
s

(3.10)
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Since the mirror view S has the same pose as M , it has the same correspon-

dences with I as M has. S only differs from M in illumination direction (Ps, Qs, 1).

So we have

S(x, ym) = ρ
1 + p−θPs + q−θQs√

1 + p2
−θ + q2

−θ

√
1 + P 2

s + Q2
s

= ρ
cos (−θ + θ0) + sin (−θ + θ0)Ps + q cos θ0Qs√

1 + q2 cos2 θ0

√
1 + P 2

s + Q2
s

= ρ
cos θ0(cos θ − Ps sin θ + qQs)√

1 + q2 cos2 θ0

√
1 + P 2

s + Q2
s

+ ρ
sin θ0(sin θ + Ps cos θ)√

1 + q2 cos2 θ0

√
1 + P 2

s + Q2
s

(3.11)

From (3.9) and (3.10) we obtain





cos θ0√
1+q2 cos2 θ0

√
1+P 2

s +Q2
s

= I(x,y)+M(x,ym)
2ρ(cos θ+Ps sin θ+qQs)

sin θ0√
1+q2 cos2 θ0

√
1+P 2

s +Q2
s

= I(x,y)−M(x,ym)
2ρ(Ps cos θ−sin θ)

.

(3.12)

Substitution of (3.12) into (3.11) yields

S(x, ym) =
(I(x, y) + M(x, ym))(cos θ − Ps sin θ + qQs)

2(cos θ + Ps sin θ + qQs)

+
(I(x, y)−M(x, ym))(Ps cos θ + sin θ)

2(Ps cos θ − sin θ)

(3.13)

In order to estimate the illumination direction (Ps, Qs, 1), i.e., (α, τ), the illu-

mination estimation method in [122] is used. We present a method for estimating

the head pose and the correspondence between I and M in Section 3.3. Having

the pose, the illumination and the correspondence between I and M , we are able

to synthesize the mirror view S pixelwise using the intensities of I and M . The

frontal view of the given probe image under the same lighting condition can be

easily rendered with view morphing techniques [84]. And the recognition task can

be accomplished using the methods in [10,50] since the pose is now fixed.
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3.2.2 Some Discussions

(3.13) is composed of two terms. The first term is (I(x, y) + M(x, ym))/2 times a

coefficient in which the unknown surface normal component q plays a limited role.

Since Ps is usually less than 1 if the length of ~L is normalized to 1, and sin θ is

very small when θ is small, Ps sin θ is small compared to cos θ + qQs and so can

be neglected. Actually for each pixel (x, y), q(x, y) is the partial derivative of the

depth in the y direction and usually in a very small range for most of the human

face points. So the coefficient of (I(x, y)+M(x, ym))/2 is close to 1, or we can use

a reasonable constant to replace q(x, y) for every pixel (x, y). Experimental results

show that different constants selected for q(x, y) do not make much difference as

long as they are in reasonable range of values for a human face. This first term

actually captures the common part in S and I, which is not significantly affected

by the pose but by the illumination, especially by Qs.

The second term in (3.13) is (I(x, y) −M(x, ym))/2 times a coefficient which

depends only on θ and Ps and is a constant for every pixel (x, ym) in S. This

term actually captures the difference caused by the pose and opposing lighting

conditions. One thing to mention here is that this method will be very sensitive to

noise if Ps is close to tan θ. From (18) we can see that the coefficient of this term

has the denominator (Ps cos θ − sin θ). If Ps is close to tan θ, this denominator

will be close to zero. So any small noise in I(x, y) − M(x, ym) will be enlarged

by the denominator lowering the quality of the synthesized view S. When Ps is

close to tan θ, it means that the illumination is frontal with respect to the rotated

pose θ. Thus when the mirror image M is obtained, the opposite lighting source

in X direction is also frontal to the mirror pose. Therefore the intensity for the

corresponding pixels in the two views are same for all the pixels, which means in
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(3.13) the second term is zero for all the pixels and does not contribute to the

synthesis.

Note for each pixel pair in I and M , there are only two observations I(x, y)

and M(x, ym) but three unknowns ρ(x, y), [p(x, y), q(x, y)]. It is impossible to

solve them explicitly. In (3.13), q(x, y) is approximated with a reasonable constant

because it varies least among the three unknowns. Compared with the existing

single view based synthesis methods [14,33,77,119], the one proposed here is view

based and only uses the information from the given image. Neither a 3D model

nor a linear combination of other faces is needed.

3.3 Finding Correspondence and Pose Estima-

tion

3.3.1 Finding Correspondence

For the pose normalized view synthesis method, we need to build the correspon-

dence between I and M . Establishing automatic correspondence is always a chal-

lenging problem. Recently, promising results have been shown by using the 4

planes, 4 transitions stereo matching algorithm described in [25]. The disparity

map can be reliably built for a pair of images of the same person taken under the

same lighting conditions, even with some occlusions. We conducted some exper-

iments using this technique on both synthetic and real images. Reasonably good

correspondence maps were achieved, even for cross-subject images. This technique

has been used for 2D face recognition across pose [18]. However, like all the other

stereo methods, the pixel intensities across views are assumed to be same, which

does not hold if the images are taken under different lighting conditions. For
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arbitrary face recognition application, the lighting condition of the test image is

uncontrollable. Therefore, currently this stereo method can not be directly used

to build the correspondence between I and M . Further investigations are being

done for dense stereo with illumination variations compensated.

Although a necessary component of the algorithm, finding correspondence is not

the main focus of our research. Like most approaches that handle pose variations,

we use sparse main facial features to build the dense cross-pose or cross-subject

correspondence [115]. Although automatic facial feature detection/selection tech-

niques are available, but most of them are not robust enough to reliably detect the

facial features from images at arbitrary poses and taken under arbitrary lighting

conditions. For now we manually pick sixty three designated feature points (eye-

brows, eyes, nose, mouth and the face contour) on I at the arbitrary pose. These

feature points are selected in a bilateral symmetric manner so that no extra work

needs to be done on the mirror image M . Triangular meshes on both faces were

constructed and barycentric interpolation inside each triangle was used to find the

dense correspondence. Using this method, the corresponding point (x, ym) in M

for pixel (x, y) in I is easily built. The number of feature points needed in our

approach is comparable to the 56 manually picked feature points in [115] to de-

form the 3D model. Fig. 3.1 illustrates the selected facial feature points and the

constructed triangular meshes to build the dense correspondence map.

3.3.2 Head Pose Estimation

Estimating head pose from a single face image is an active research topic in com-

puter vision. Either a generic 3D face model or several main facial features are

utilized to estimate the head pose. Since we already have the feature points to
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(a) The selected feature points (b) The constructed triangular mesh

Figure 3.1: Designated facial feature points are selected to build the correspon-

dence between I and M . (a) The selected feature points. (b) The constructed

triangular mesh.

build the correspondence across views, it is natural to use these feature points for

pose estimation. In [42], five main facial feature points (four eye corners and the tip

of the nose) are used to estimate the 3D head orientation. The approach employs

the projective invariance of the cross-ratios of the eye corners and anthropometric

statistics to determine the head yaw, roll and pitch angles. The focal length f

is assumed to be known, which is not always available for the uncontrollable test

image. In order to remove this requirement, we first calculate an average face at

the frontal pose using images generated from Vetter’s 3D face database [1], with

the main facial feature points selected. We then re-size this frontal view average

face and the facial features to the same scale as I and M . Next we estimate the

head pose without knowing f . All notations follow those in [42].

Let (u2, u1, v1, v2) be the image coordinates of the four eye corners, and D and

D1 denote the width of the eyes and half of the distance between the two inner

eye corners respectively. From the well known projective invariance of the cross

ratios we have I1 =
(u2 − u1)(v1 − v2)

(u2 − v1)(u1 − v2)
=

D2

(2D1 + D)2
which yields D1 =

DQ

2
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where Q =
1√

I1 − 1
. In order to recover the yaw angle θ (around the Y -axis),

it is easy to have, as shown in [42], that θ = arctan
f

(S + 1)u1

, where f is the

focal length and S is the solution to the equation
∆u

∆v
= −(S − 1)(S − (1 + 2/Q))

(S + 1)(S + 1 + 2/Q)

where ∆u = u2 − u1 and ∆v = v1 − v2. Assume that uf
1 is the inner corner of

one of the eyes for the front-view mean face. With perspective projection, we have

uf
1 =

fD1

Z
and u1 =

fX1

Z + Z1

=
fD1 cos θ

Z + D1 sin θ
. Thus,

f = (S + 1)u1 tan θ (3.14)

Then we have S =
u1

uf
1

(S + 1)

cos θ
, which gives

θ = arccos
(S + 1)

S

u1

uf
1

(3.15)

In [42], the pitch β (around the X-axis) is shown to be β = arcsin(E) with

E =
f

p0(p2
1 + f 2)

[p2
1±

√
(p2

0p
2
1−f 2p2

1+f 2p2
0)], where p0 denotes the projected length

of the bridge of the nose when it is parallel to the image plane, and p1 denotes the

observed length of the bridge of the nose at the unknown pitch β. Anthropometric

statistics is employed in [42] to get p0. With the facial features on the mean face

at the front-view available, we do not need the anthropometric statistics. p0 is just

the length between the upper mid-point of the nose and the tip of the nose for the

front-view mean face. So we can directly use this value and the estimated focal

length f in (3.14) to get the pitch angle β.

The head pose estimation algorithm is tested on both synthetic and real images.

For synthetic images, we use Vetter’s 3D face database. The 3D face model for

each subject is rotated to the desired angle and projected onto the 2D image plane.

Four eye corners and the tip of the nose are used to estimate the head pose. The

mean and standard deviation of the estimated poses are listed in Table 3.1. For
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Table 3.1: The mean and standard deviation (Std) of the estimated pose for images

from Vetter’s database.

Rotation angles (θ = 30o,β =

0o)

(θ = 30o,β =

−20o)

(θ = −30o,β =

0o)

(θ = −30o,β =

20o)

Mean of the esti-

mated pose

(θ = 28o,β =

2o)

(θ = 31o,β =

−23o)

(θ = −32o,β =

1o)

(θ = −33o,β =

22o)

Std of the esti-

mated pose

(3.2o,3.1o) (3.9o,4.2o) (3.4o,2.7o) (4.2o,4.5o)

real images, we use the CMU-PIE [90] database which contains face images of 68

subjects at 13 different poses and under 43 different illumination conditions. The

ground truth of the head pose can be obtained from the available 3D locations of

the head and the cameras. The experiments are conducted for all 68 subjects in

the CMU-PIE database at six different poses, illustrated in Fig 3.2 with the ground

truth of the pose shown beside each pose index. The mean and standard deviation

of the estimated poses are listed in Table 3.2. Overall the pose estimation results

are satisfactory and we believe that the relatively large standard deviation is due

to some unavoidable error in selecting the facial features.

3.4 Experimental Results

The pose normalized view synthesis algorithm has been implemented and tested on

the face images of 50 different subjects from Vetter’s database, each under various

illuminations and with pose −10◦. The unknown surface normal component q(x, y)

is set to −0.5 for all pixels. Good synthesis results have been observed as shown in
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Table 3.2: The mean and standard deviation (Std) of the estimated pose for images

from the CMU-PIE database.

Pose index c05 c07 c09 c11 c29 c37

Mean of the

estimated

pose

θ = 15o β = 11o β =

−15o

θ =

−36o

θ =

−17o

θ = 35o

Std of the es-

timated pose

4.1o 3.8o 4.0o 6.2o 3.3o 5.4o

c05 c07 c09 c11 c29 c37

(θ = 16o) (β = 13o) (β = −13o) (θ = −32o) (θ = −17o) (θ = 31o)

Figure 3.2: An illustration of the pose variation in part of the CMU-PIE database,

with the ground truth of the pose shown beside each pose index. Four of the

cameras (c05, c11, c29, and c37) sweep horizontally, and the other two are above

(c09) and below (c07) the central camera respectively.
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Fig. 3.3 and Fig. 3.4. In both figures, the first row shows the given probe image,

under the illumination of (α = 30, τ = 30), (α = 60, τ = 30), (α = 60, τ = 60),

(α = 30, τ = 150), (α = 60, τ = 120), and (α = 60, τ = 165) for each column

respectively. The second row is the ground truth for the mirror view of the given

image, to be compared with the third row which shows the synthesized mirror view.

The fourth and fifth rows present the ground truth and the synthesized frontal view

under the given illumination respectively. In Table 3.3 we give the average PSNR

of the synthesis results, with the first column showing the illumination condition,

the second and third column showing the average PSNR of the synthesized mirror

view and frontal view respectively. We can see from Table 3.3 that the proposed

approach gives decent synthesis results, considering only one probe image is given

for each illumination condition. The synthesized frontal views have higher PSNRs

than the synthesized mirror views because the frontal views are obtained using view

morphing techniques by linearly interpolating the given images and the synthesized

mirror views. As another example, Fig. 3.5 and Fig. 3.6 show the synthesis results

for images taken under various illuminations and with pose −30◦. Better synthesis

results are expected if more accurate self-correspondences can be established.

3.5 Summary and Future Work

We have described a pose-normalized object synthesis method, which handles both

non-frontal pose and non-frontal illumination, from a single image. It is a pixelwise

view-based synthesis scheme and easy to implement. Experimental results show

that the proposed method is good under various illuminations.

The quality of the synthesized view using the proposed method highly depends

on the accuracy of pose estimation result. Four eye corners have to be extracted
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Figure 3.3: The pose-normalized view synthesis results. First row: the given probe

image with pose 10◦, under the illumination of (α = 30, τ = 30), (α = 60, τ = 30),

(α = 60, τ = 60), (α = 30, τ = 150), (α = 60, τ = 120), and (α = 60, τ = 165)

for each column respectively. Second and third row: the ground truth and the

synthesized mirror view respectively. Fourth and fifth row: the ground truth and

the synthesized frontal view under the given illumination.
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Figure 3.4: The pose-normalized view synthesis results. First row: the given probe

image with pose 10◦, under the illumination of (α = 30, τ = 30), (α = 60, τ = 30),

(α = 60, τ = 60), (α = 30, τ = 150), (α = 60, τ = 120), and (α = 60, τ = 165)

for each column respectively. Second and third row: the ground truth and the

synthesized mirror view respectively. Fourth and fifth row: the ground truth and

the synthesized frontal view under the given illumination.
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Table 3.3: The average PSNR of the synthesis results, with the first column showing

the illumination condition, the second and third column showing the average PSNR

of the synthesized mirror view and frontal view respectively.

Illumination Average PSNR (mir-

ror view)

Average PSNR

(frontal view)

(α = 30, τ = 30) 24.881 db 27.612 db

(α = 30, τ = 45) 24.908 db 27.669 db

(α = 30, τ = 60) 25.380 db 27.975 db

(α = 30, τ = 75) 26.016 db 28.362 db

(α = 60, τ = 30) 26.359 db 28.391 db

(α = 60, τ = 45) 26.098 db 28.408 db

(α = 60, τ = 60) 25.216 db 28.156 db

(α = 60, τ = 75) 26.321 db 28.901 db

(α = 30, τ = 120) 29.170 db 29.799 db

(α = 30, τ = 135) 28.839 db 29.644 db

(α = 30, τ = 150) 28.560 db 29.473 db

(α = 30, τ = 165) 28.415 db 29.338 db

(α = 60, τ = 120) 28.024 db 29.924 db

(α = 60, τ = 135) 27.006 db 29.390 db

(α = 60, τ = 150) 26.489 db 28.978 db

(α = 60, τ = 165) 26.430 db 28.783 db
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Figure 3.5: The pose-normalized view synthesis results. First row: the given probe

image with pose 30◦, under various illumination conditions. Second and third rows:

the ground truth and the synthesized mirror view respectively.
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Figure 3.6: The pose-normalized view synthesis results. First row: the given probe

image with pose 30◦, under various illumination conditions. Second and third rows:

the ground truth and the synthesized frontal view under the given illumination.
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accurately to estimate the head pose, which is not easy to achieve especially for

images taken in poorly illuminated environments. Robust facial feature detection

algorithms are being sought for a better pose estimation. In order to build the dense

correspondence between the given image and its mirror image more accurately,

we will further investigate the dense stereo algorithm in [25] to compensate for

illumination variations for images under arbitrary lighting condition.
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Chapter 4

Pose-Encoded Spherical

Harmonics for Robust Face

Recognition Using a Single Image

Recently, methods have been proposed to handle the combined pose and illumina-

tion problem when only one training image is available, for example, the methods

based on morphable models [15] and their extensions [116] that propose to han-

dle complex illumination problem by integrating spherical harmonics representa-

tion [7, 75]. In these methods, either arbitrary illumination conditions cannot be

handled [15] or expensive computations of harmonics basis images is required for

each pose per subject [116].

Under the assumption of Lambertian reflectance, the spherical harmonics rep-

resentation has proved to be effective in modeling illumination variations for a

fixed pose. In this chapter, we propose to extend the harmonics representation to

encode pose information. We utilize the fact that all the harmonic basis images of

a subject at various poses are related to each other via closed-form linear transfor-
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mations [48,76], and give a more convenient transformation matrix to analytically

synthesize basis images of a subject at various poses from just one set of basis

images at a fixed pose, say, the frontal view. We prove that the given transforma-

tion matrix is consistent with the general rotation matrix of spherical harmonics.

According to the theory of spherical harmonics representation [7, 75], this implies

that we can easily synthesize from one image under a fixed pose and lighting to

any images under different poses and arbitrary lightings. Moreover, these linear

transformations are orthonormal. This suggests that recognition methods based

on projection onto fixed-pose harmonic basis images [7] for test images under the

same pose can be easily extended to handle test images under various poses and

illuminations. In other words, our method does not require the time-consuming

procedure of building a new set of basis images at the same pose as that of the

test image. Instead, we can warp the test image to the same pose as that of the

existing basis images and perform recognition. The impact of some empirical fac-

tors (i.e., correspondence and interpolation) due to the warping is embedded in a

sparse transformation matrix, and we prove that the recognition performance is

not adversely affected after warping to the front view [109,110].

Briefly, we propose an efficient face synthesis and recognition method that

needs only one single training image per subject for novel view synthesis and

robust recognition of faces under variable illuminations and poses. The flow chart

of our face recognition system is shown in Fig. 4.1. We have a single training

image at the frontal pose for each subject in the training set. The basis images

for each training subject are recovered using a statistical learning algorithm [115]

with the aid of a bootstrap set consisting of 3D face scans. For a test image at a

rotated pose and under an arbitrary illumination condition, we first establish the
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image correspondence between the test image and a mean face image at the frontal

pose. The frontal view image is then synthesized from the test image. A face is

identified for which there exists a linear reconstruction based on basis images that is

the closest to the test image. Furthermore, the user is given the option to visualize

the recognition result by viewing the images of the chosen subject at the same pose

as the test image. Specifically, we can generate novel images of the chosen subject

at the same pose as the test image by using the close-form linear transformation

between the harmonic basis images of the subject across poses. The pose of the

test image is estimated from a few manually selected facial features. The novel

image of the chosen subject is then easily synthesized for any given transformation

coefficients.

We present results of our face recognition method on both synthetic and real

images. For synthetic images, we generate the training images at the frontal pose

and under various illumination conditions, and the test images at different poses,

under arbitrary lighting conditions, all using Vetter’s 3D face database [1]. For real

images, we use the CMU-PIE [90] database. The test images are at six different

poses and under twenty one different lighting sources. High recognition rates are

achieved on both synthetic and real test images using the proposed algorithm.

4.1 Pose-Encoded Spherical Harmonics

The spherical harmonics are a set of functions that form an orthonormal basis

for the set of all square-integrable functions defined on the unit sphere [7]. Let L

denote the distant lighting distribution. By neglecting the cast shadows and near-

field illumination, the irradiance E is then a function of the surface normal n only,

and is given by an integral over the upper hemisphere Ω : E(n) =
∫

L(ω)(n ·ω)dω.
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Figure 4.1: The flow chart of the proposed face recognition system.

We then scale E by the surface albedo λ to find the radiosity I, which corresponds

to the image intensity directly: I(p; n) = λ(p)E(n).

Any image of a Lambertian object under certain illumination conditions is a

linear combination of a series of spherical harmonic basis images {blm}. In order to

generate the basis images for the object, 3D information is required. The harmonic

basis image intensity of a point p with surface normal n = (nx, ny, nz) and albedo λ

can be computed as the combination of the first nine spherical harmonics, shown

in (1), where nx2 = nxnx. ny2 , nz2 , nxy, nxz, nyz are defined similarly. λ. ∗ t

denotes the component-wise product of λ with any vector t. The superscripts e

and o denote the even and the odd components of the harmonics respectively.

b00 =
1√
4π

λ, b10 =

√
3

4π
λ. ∗ nz, be

11 =

√
3

4π
λ. ∗ nx, bo

11 =

√
3

4π
λ. ∗ ny,
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b20 =
1

2

√
5

4π
λ. ∗ (2nz2 − nx2 − ny2), be

21 = 3

√
5

12π
λ. ∗ nxz, bo

21 = 3

√
5

12π
λ. ∗ nyz,

be
22 =

3

2

√
5

12π
λ. ∗ (nx2 − ny2), bo

22 = 3

√
5

12π
λ. ∗ nxy (4.1)

Given a bootstrap set of 3D models, the spherical harmonics representation

has proved to be effective in modeling illumination variations for a fixed pose, even

when only one training image per subject is available [115]. In the presence of both

illumination and pose variations, two possible approaches can be taken. One is to

use a 3D morphable model to reconstruct the 3D model from a single training image

and then build spherical harmonic basis images at the pose of the test image [116].

Another approach is to require multiple training images at various poses in order

to recover the new set of basis images at each pose. However, multiple training

images are not always available and a 3D morphable model-based method could

be computationally expensive. As for efficient recognition of a rotated test image,

a natural question to ask is: can we represent the basis images at different poses

using one set of basis images at a given pose, say, the frontal view? The answer is

yes, as the 2D harmonic basis images at different poses are related by close-form

linear transformations. This enables an analytic method for generating new basis

images at poses different from that of the existing basis images.

Rotations of spherical harmonics have been studied by researchers [48,76] and

it can be shown that rotations of spherical harmonic with order l are linearly com-

posed entirely of other spherical harmonics of the same order. In terms of group

theory, the transformation matrix is the (2l + 1)-dimensional representation of

the rotation group SO(3) [76]. Let Yl,m(γ, φ) be the spherical harmonic, the gen-

eral rotation formula of spherical harmonic can be written as Yl,m(Rθ,α,β(γ, φ)) =

∑l
m′=−l D

l
mm′(θ, α, β)Yl,m′(γ, φ). This means that for each order l, Dl is a matrix

that tells us how a spherical harmonic transforms under rotation. The transfor-
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mation is found to have the following block diagonal sparse form:




Y ′
0,0 = D0

00Y0,0


Y ′
1,−1

Y ′
1,0

Y ′
1,1




=




D1
−1,−1 D1−1, 0 D1−1, 1

D1
0,−1 D1

0,0 D1
0,1

D1
1,−1 D1

1,0 D1
1,1







Y1,−1

Y1,0

Y1,1







Y ′
2,−2

Y ′
2,−1

Y ′
2,0

Y ′
2,1

Y ′
2,2




=




D2
−2,−2 D2

−2,−1 D2
−2,0 D2

−2,1 D2
−2,2

D2
−1,−2 D2

−1,−1 D2
−1,0 D2

−1,1 D2
−1,2

D2
0,−2 D2

0,−1 D2
0,0 D2

0,1 D2
0,2

D2
1,−2 D2

1,−1 D2
1,0 D2

1,1 D2
1,2

D2
2,−2 D2

2,−1 D2
2,0 D2

2,1 D2
2,2







Y2,−2

Y2,−1

Y2,0

Y2,1

Y2,2




(4.2)

The analytic formula is rather complicated, and is presented as equation 7.48

in [48].

Assuming that the test image Itest is at a different pose (e.g., a rotated view)

from the training images (usually at the frontal view), we look for the basis images

at the rotated pose from the basis images at the frontal pose. It will be more con-

venient to use the basis image form as in (4.1), rather than the spherical harmonics

form Yl,m(γ, φ). The general rotation can be decomposed into three concatenated

Euler angles around the X, Y and Z axes, namely elevation, azimuth and roll,

respectively. Roll is an in-plane rotation that can be handled much easily and will

not be discussed here. The following proposition gives the linear transformation

matrix from the basis images at the frontal pose to the basis images at the rotated

pose for orders l = 0, 1, 2, which capture 98% of the energy [7].

Proposition 1 Assume that a rotated view is obtained by rotating a front-view

head with an azimuth angle −θ. Having the correspondence between the frontal
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view and the rotated view built, the basis images B′ at the rotated pose are related

to the basis images B at the frontal pose as,





b′00 = b00


b′10

b
′e
11

b
′o
11




=




cos θ − sin θ 0

sin θ cos θ 0

0 0 1







b10

be
11

bo
11







b′20

b
′e
21

b
′o
21

b
′e
22

b
′o
22




=




1− 3
2
sin2 θ −√3 sin θ cos θ 0

√
3

2
sin2 θ 0

√
3 sin θ cos θ cos2 θ − sin2 θ 0 − cos θ sin θ 0

0 0 cos θ 0 − sin θ

√
3

2
sin2 θ cos θ sin θ 0 1− 1

2
sin2 θ 0

0 0 sin θ 0 cos θ







b20

be
21

bo
21

be
22

bo
22




(4.3)

Further, if there is also an elevation angle −β, the basis images B′′ for the

newly rotated view are related to B′ in the following linear form:
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



b′′00 = b′00


b′′10

b
′′e
11

b
′′o
11




=




cos β 0 sin β 0

0 1 0

− sin β 0 cos β







b′10

b
′e
11

b
′o
11







b′′20

b
′′e
21

b
′′o
21

b
′′e
22

b
′′o
22




=




1− 3
2
sin2 β 0

√
3 sin β cos β −√3

2
sin2 β 0

0 cos β 0 0 sin β

−√3 sin β cos β 0 cos2 β − sin2 β − cos β sin β 0

−√3
2

sin2 β 0 cos β sin β 1− 1
2
sin2 β 0

0 − sin β 0 0 cos β







b′20

b
′e
21

b
′o
21

b
′e
22

b
′o
22




(4.4)

A direct proof (rather than deriving from the general rotation equations) of

this proposition is shown below.

Proof:

Assume that (nx, ny, nz) and (n′x, n
′
y, n

′
z) are the surface normals of point p at the

frontal pose and the rotated view respectively. (n′x, n
′
y, n

′
z) is related to (nx, ny, nz)

as 


n′x

n′y

n′z




=




cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ







nx

ny

nz




(4.5)

where −θ is the azimuth angle.

By replacing (n′x, n
′
y, n

′
z) in (4.5) with (nz sin θ+nx cos θ, ny, nz cos θ−nx sin θ),

and assuming that the correspondence between the rotated view and the frontal
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view has been built, we have

b′00 =
1√
4π

λ, b′10 =

√
3

4π
λ. ∗ (nz cos θ − nx sin θ),

b
′e
11 =

√
3

4π
λ. ∗ (nz sin θ + nx cos θ), b

′o
11 =

√
3

4π
λ. ∗ ny,

b′20 =
1

2

√
5

4π
λ. ∗ (2(z cos θ − nx sin θ)2 − (nz sin θ + nx cos θ)2 − n2

y),

b
′e
21 = 3

√
5

12π
λ. ∗ (nz sin θ + nx cos θ) ∗ (nz cos θ − nx sin θ),

b
′o
21 = 3

√
5

12π
λ. ∗ ny(nz cos θ − nx sin θ),

b
′e
22 =

3

2

√
5

12π
λ. ∗ ((nz sin θ + nx cos θ)2 − n2

y),

b
′o
22 = 3

√
5

12π
λ. ∗ (nz sin θ + nx cos θ)ny (4.6)

Rearranging, we get

b′00 = b00, b′10 = b10 cos θ − be
11 sin θ, b

′e
11 = be

11 cos θ + b10 sin θ, b
′o
11 = b11,

b′20 = b20 −
√

3 sin θ cos θbe
21 −

√
5

4π

3

2
sin2 θ(n2

z − n2
x),

b
′e
21 = (cos2 θ − sin2 θ)be

21 + 3

√
5

12π
sin θ cos θ(n2

z − n2
x),

b
′o
21 = bo

21 cos θ − bo
22 sin θ,

b
′e
22 = be

22 + cos θ sin θbe
21 +

√
5

12π

3

2
sin2 θ(n2

z − n2
x),

b
′o
22 = bo

22 cos θ + bo
21 sin θ. (4.7)

As shown in (4.7), b′00, b
′
10, b

′e
10, b

′o
11, b

′o
21 and b

′o
22 are linear combinations of the

basis images at the frontal pose. For b′20,b
′e
21 and b

′e
22, we need to have (n2

z − n2
x)

which is not known. From [7], we know that if the sphere is illuminated by a

single directional source in a direction other than the z direction, the reflectance

obtained would be identical to the kernel, but shifted in phase. Shifting the phase

of a function distributes its energy between the harmonics of the same order n

(varying m), but the overall energy in each order n is maintained. The quality of
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the approximation, therefore, remains the same. This can be verified by noting that

b
′2
10+b

′e2
11 +b

′o2
11 = b2

10+be2
11+bo2

11 for the order n = 1. Noticing that b
′o2
21 +b

′o2
22 = bo2

21+bo2
22,

we still need b
′2
20 + b

′e2
21 + b

′e2
22 = b2

20 + be2
21 + be2

22 to preserve the energy for the order

n = 2.

Let G = 3
√

5
12π

sin2 θ(n2
z − n2

x) and H = 3
√

5
12π

sin θ cos θ(n2
z − n2

x), we have

b′20 = b20 −
√

3 sin θ cos θbe
21 −

√
3

2
G,

b
′e
21 = (cos2 θ − sin2 θ)be

21 + H,

b
′e
22 = be

22 + cos θ sin θbe
21 +

1

2
G. (4.8)

Then

b
′2
20 + b

′e2
21 + b

′e2
22

= b2
20 + be2

21 + be2
22 +

3G2

4
− 2

√
3 sin θ cos θb20b

e
21 −

√
3b20G + 3 sin θ cos θG + H2

+2(cos2 θ − sin2 θ)be
21H +

G2

4
+ 2 sin θ cos θbe

22b
e
21 + be

22G + sin θ cos θG

= b2
20 + be2

21 + be2
22 + G2 + 4 sin θ cos θbe

21G + (be
22 −

√
3b20)(G + 2 sin θ cos θbe

21)

+H2 + 2(cos2 θ − sin2 θ)be
21H

Having b
′2
20 + b

′e2
21 + b

′e2
22 = b2

20 + be2
21 + be2

22 and H = G cos θ
sin θ

, we get

G2 + 2 sin θ cos θbe
21G + (be

22 −
√

3b20)(G sin2 θ + 2 sin θ cos θbe
21) = 0

and then (G + 2 sin θ cos θbe
21)(G + sin2 θ(be

22 −
√

3b20)) = 0.

The two possible roots of the polynomial are G = −2 sin θ cos θbe
21 or G =

− sin2 θ(be
22 −

√
3b20). Taking G = −2 sin θ cos θbe

21 into (4.9) gives b′20 = b20, b
′e
21 =

−be
21, b

′e
22 = be

22, which is incorrect. Therefore, we have G = − sin2 θ(be
22 −

√
3b20)

and H = − cos θ sin θ(be
22 −

√
3b20). Substituting them in (4.9) we get

b′20 = b20 −
√

3 sin θ cos θbe
21 +

√
3

2
sin2 θ(be

22 −
√

3b20),
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b
′e
21 = (cos2 θ − sin2 θ)be

21 − cos θ sin θ(be
22 −

√
3b20),

b
′e
22 = be

22 + cos θ sin θbe
21 −

1

2
sin2 θ(be

22 −
√

3b20). (4.9)

Using (4.7) and (4.9), we can write the basis images at the rotated pose in the

matrix form of the basis images at the frontal pose, as shown in (4.3).

Assuming that there is an elevation angle −β after the azimuth angle −θ and

denoting by (n′′x, n
′′
y, n

′′
z) the surface normal for the new rotated view, we have




n′′x

n′′y

n′′z




=




1 0 0

0 cos β − sin β

0 sin β cos β







n′x

n′y

n′z




(4.10)

Repeating the above derivation easily leads to the linear equations in (4.4) which

relates the basis images at the new rotated pose to the basis images at the old

rotated pose.

The above proposition can be shown to be consistent with the general rota-

tion matrix of spherical harmonics. If we use a ZY Z formulation for the general

rotation, we have Rθ,α,β = Rz(α)Ry(θ)Rz(β), the dependence of Dl on α and β

is simple, Dl
m,m′(θ, α, β) = dl

m,m′(θ)eimαeim′β where dl is a matrix that defines

how a spherical harmonic transforms under rotation about the Y -axis. We can

further decompose it into a rotation of 90o about the X-axis, a general rotation θ

about the Z-axis followed finally by a rotation of −90o about the X-axis [35]. Since
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X∓90 =




1 0 0 0 0 0 0 0 0

0 0 ±1 0 0 0 0 0 0

0 ∓1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 ±1 0

0 0 0 0 0 −1 0 0 0

0 0 0 0 0 0 −1/2 0 −√3/2

0 0 0 0 ∓1 0 0 0 0

0 0 0 0 0 0 −√3/2 0 1/2




and

Zθ =




1 0 0 0 0 0 0 0 0

0 cos θ 0 sin θ 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 − sin θ 0 cos θ 0 0 0 0 0

0 0 0 0 cos 2θ 0 0 0 sin 2θ

0 0 0 0 0 cos θ 0 sin θ 0

0 0 0 0 0 0 1 0 0

0 0 0 0 1 − sin θ 0 cos θ 0

0 0 0 0 − sin 2θ 0 0 0 cos 2θ




,

it is easy to show that RY (θ) is exactly the same as shown in (4.3) by taking

the above equations into RY (θ) = X−90ZθX+90 and re-organizing the order of the

spherical harmonics Yl,m. Since (4.4) is derived similarly as (4.3), the rotation

around X axis can be proved to be the same as (4.4). This can also be verified

by taking the rotation angle β = ∓90o into (4.4) which gives the same X∓90o as

shown above.
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(A) Subject 1: the basis images at the frontal pose generated from the 3D scan

(B) Subject 1: the basis images at the rotated pose synthesized from (A)

(C) Subject 1: the ground truth of the basis images

at the rotated pose generated from the 3D scan

(D) Subject 2: the basis images at the frontal pose generated from the 3D scan

(E) Subject 2: the basis images at the rotated pose synthesized from (D)

(F) Subject 2: the ground truth of the basis images

at the rotated pose generated from the 3D scan

Figure 4.2: (A)-(C) present the results of the synthesized basis images for subject 1,

where (A) shows the basis images at the frontal pose generated from the 3D scan, (B)

the basis images at a rotated pose synthesized from (A), and (C) the ground truth of

the basis images at the rotated pose. (D)-(E) present the results of the synthesized basis

images for subject 2, with (D) showing the basis images at the frontal pose generated

from the 3D scan, (E) the basis images at a rotated pose synthesized from (D), and (F)

the ground truth of the basis images at the rotated pose.
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We synthesized the basis images at arbitrary rotated pose from those at the

frontal pose using (4.3) and (4.4), and compared them with the ground truth

generated from the 3D scan in Fig. 4.2. The first three rows present the results for

subject 1, with the first row showing the basis images at the frontal pose generated

from the 3D scan, the second row showing the basis images at the rotated pose

(azimuth angle θ = −30o, elevation angle β = 20o) synthesized from the images

at the first row, and the third row, the ground truth of the basis images at the

rotated pose generated from the 3D scan. Rows four through six present the

results for subject 2, with the fourth row showing the basis images at the frontal

pose generated from the 3D scan, the fifth row, the basis images for another rotated

view (azimuth angle θ = −30o, elevation angle β = −20o) synthesized from the

images at the fourth row, and the last row the ground truth of the basis images

at the rotated pose generated from the 3D scan. As we can see from Fig. 4.2,

the synthesized basis images at the rotated poses are quite close to the ground

truth. Note in Fig. 4.2 and the figures in the sequel, the dark regions represent

the negative values of the basis images.

Given that the correspondence between the rotated-pose image and the frontal-

pose image is available, a consequence of the existence of such linear transformation

is that the procedure of first rotating objects and then recomputing basis images at

the desired pose can be avoided. The block diagonal form of the transformation ma-

trices preserves the energy on each order l = 0, 1, 2. Moreover, the orthonormality

of the transformation matrices helps to further simplify the computation required

for recognition of the rotated test image as shown in Section 4.2.2. Although in

theory new basis images can be generated from a rotated 3D model inferred by

the existing basis images (since basis images actually capture the albedo (b00) and
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the 3D surface normal (b10, b
e
11, b

o
11) of a given human face), the procedure of such

3D recovery is not trivial in practice, even if computational cost is taken out of

consideration.

4.2 Face Recognition Using Pose-Encoded Spher-

ical Harmonics

In this section we present an efficient face recognition method using pose-encoded

spherical harmonics. Only one training image is needed per subject and high

recognition performance is achieved even when the test image is at a different pose

from the training image and under an arbitrary illumination condition.

4.2.1 Statistical Models of Basis Images

We briefly summarize a statistical learning method to recover the harmonic ba-

sis images from only one image taken under arbitrary illumination conditions, as

shown in [115].

We build a bootstrap set with fifty 3D face scans and corresponding texture

maps from Vetter’s 3D face database [1], and generate nine basis images for each

face model. For a novel d-dimensional vectorized image I, let B be the d×9 matrix

of basis images, α a 9 dimensional vector and E a d-dimensional error term. We

have I = Bα + E. It is assumed that the probability density function (pdf)’s

of B are Gaussian distributions. The sample mean vectors µb(x) and covariance

matrixes Cb(x) are estimated from the basis images in the bootstrap set. Figure

4.4 shows the sample mean of the basis images estimated from the bootstrap set.

The problem of estimating the basis images B and the illumination coefficients
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b00 b10 b11e b11o b20 b21e b21o b22e b22o

Figure 4.3: The sample mean basis images estimated from the bootstrap set.

α is a coupled estimation problem because of its bilinear form. It is simplified

by estimating α in a prior step with kernel regression and using it consistently

across all pixels to recover B. K bootstrap images {Jk}K
k=1 with known coefficients

{αk}K
k=1 are generated from the 3D face scans in the bootstrap set. Given a new

image itra, the coefficients αtra can be estimated as

αtra =

∑K
k=1 wkαk∑K

k=1 wk

(4.11)

where wk = exp[−1
2
(D(i, Jk)/σk)

2] and D(i, Jk) = ‖i − Jk‖2, σk is the width of

the k-th Gaussian kernel which controls the influence of Jk on the estimation of

αtra. All {σk}K
k=1 are pre-computed in a way such that ten percent of the bootstrap

images are within 1 × σk at each σk. The sample mean µe(x, α) and the sample

variance σ2
e(x, α) of the error term E(α) are also estimated using kernel regression,

similar to (4.11).

Given a novel face image i(x), with the estimated coefficients α, the correspond-

ing basis images b(x) at each pixel x are recovered by computing the maximum a

posteriori (MAP) estimate, bMAP (x) = argmaxb(x)(P (b(x)|i(x))). Using the Bayes

rule:

bMAP (x) = argmaxb(x)P (i(x)|b(x))P (b(x))

= argmaxb(x)

{N (
b(x)T α + µe, σ

2
e

)×N (µb(x), Cb(x))
}

(4.12)

Taking logarithm, and setting the derivatives of the right hand side of (4.12)
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21 be
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22

Figure 4.4: The sample mean of the basis images estimated from the bootstrap

set [1].

(w.r.t b(x)) to 0, we get A∗ bMAP = T , where A = 1
σ2

e
ααT +C−1

b and T = (i−µe)
σ2

e
α+

C−1
b µb. By solving this linear equation, b(x) of the subject can be recovered.

In Fig. 4.5 we illustrate the procedure for generating the basis images at

a rotated pose (azimuth angle θ = −30o) from a single training image at the

frontal pose. In Fig. 4.5, rows one through three show the results of the recovered

basis images from a single training image, with the first column showing different

training images I under arbitrary illumination conditions for the same subject and

the remaining nine columns showing the recovered basis images. We can observe

from the figure that the basis images recovered from different training images of

the same subject look very similar. Using the basis images recovered from any

training image in row one through three, we can synthesize basis images at the

rotated pose, as shown in row four. As a comparison, the fifth row shows the

ground truth of the basis images at the rotated pose generated from the 3D scan.

Our experiments on the CMU-PIE [90] database used the images of each sub-

ject at the frontal pose (c27) as the training set. One hundred 3D face models

from Vetter’s database [1] were used as the bootstrap set. The training images

were first re-scaled to the size of the images in the bootstrap set. The statistics of

the harmonic basis images was then learnt from the bootstrap set and the basis

images B for each training subject were recovered. Fig. 4.6 shows two exam-

ples of the recovered basis images from the single training image, with the first
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(A)

(B)

(C)

Figure 4.5: The first column in (A) shows different training images I under arbitrary

illumination conditions for the same subject and the remaining nine columns in (A) show

the recovered basis images from I. We can observe that the basis images recovered from

different training images of the same subject look very similar. Using the basis images

recovered from any training image I in (A), we can synthesize basis images at the rotated

pose, as shown in (B). As a comparison, (C) shows the ground truth of the basis images

at the rotated pose generated from the 3D scan.
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I b00 b10 b11e b11o b20 be
21 bo

21 be
22 bo

22

Figure 4.6: The first column shows the training images I for two subjects in the

CMU-PIE database and the remaining nine columns show the reconstructed basis

images.

column showing the training images I and the remaining 9 columns showing the

reconstructed basis images.

4.2.2 Recognition

For recognition, we follow a simple yet effective algorithm given in [7]. A face is

identified for which there exists a weighted combination of basis images that is the

closest to the test image. Let B be the set of basis images at the frontal pose, with

size N × r, where N is the number of pixels in the image and r = 9 is the number

of basis images used. Every column of B contains one spherical harmonic image.

These images form a basis for the linear subspace, though not an orthonormal one.

A QR decomposition is applied to compute Q, a N × r matrix with orthonormal

columns, such that B = QR where R is an r × r upper triangular matrix.

For a vectorized test image Itest at an arbitrary pose, let Btest be the set of

basis images at that pose. The orthonormal basis Qtest of the space spanned by

Btest can be computed by QR decomposition. The matching score is defined as the

distance from Itest to the space spanned by Btest: stest = ‖QtestQ
T
testItest − Itest‖.
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However, this algorithm is not efficient overall because the set of basis images Btest

has to be generated for each training subject at the pose of an arbitrarily rotated

test image.

We propose to warp the test image Itest at the arbitrary (rotated) pose to its

front-view image If to perform the recognition. In order to warp Itest to If , we

have to find the point correspondence between these two images, which can be

embedded in a sparse N ×N warping matrix K, i.e., If = KItest. The positions of

the non-zero elements in K encode the 1-to-1 and many-to-1 correspondence cases

(the 1-to-many case is same as 1-to-1 case for pixels in If ) between test and If ,

and the positions of 0’s on the diagonal line of K encode the no-correspondence

case. More specifically, if pixel If (i) (the i− th element in vector If ) corresponds

to pixel Itest(j) (the j − th element in vector Itest), then K(i, j) = 1. There

might be cases that there are more than one pixels in Itest corresponding to the

same pixel If (i), i.e., there are more than one 1’s in the i-th row of K and the

column indices of these 1’s are the corresponding pixel indices in Itest. For this case,

although there are several pixels in Itest mapping to the same pixel If (i), it can only

have one reasonable intensity value. We compute a single ”virtual” corresponding

pixel in Itest for If (i) as the centroid of If (i)’s real corresponding pixels in Itest,

and assign it the average intensity. The weight for each real corresponding pixel

Itest(j) is proportional to the inverse of its distance to the centroid, and this weight

is assigned as the value of K(i, j). If there is no correspondence in Itest for If (i)

which is in the valid facial area and should have a corresponding point in Itest, it

means that K(i, i) = 0. This is often the case that the corresponding ”pixel” of

If (i) falls in the sub-pixel region. Thus interpolation is needed to fill the intensity

for If (i). Barycentric coordinates are calculated with the pixels which have real
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corresponding integer pixels in Itest as the triangle vertices. These Barycentric

coordinates are assigned as the values of K(i, j) where j is the column index for

each vertex of the triangle.

We now have the warping matrix K which encodes the correspondence and

interpolation information in order to generate If from Itest. It provides a very

convenient tool to analyze the impact of some empirical factors in image warping.

Note that due to the self-occlusion, If does not cover the whole area, but only a

sub-region, of the full frontal face of the subject it belongs to. The missing facial

region due to the rotated pose is filled with zeros in If . Assume that Bf is the

basis images for the full front-view training images and Qf is its orthonormal basis,

and let b be the corresponding basis images of If and q its orthonormal basis. In

b, the rows corresponding to the valid facial pixels in If is a submatrix of the rows

in Bf corresponding to the valid facial pixels in the full frontal face images. For

recognition, we can not directly use the orthonormal columns in Qf because it is

not guaranteed that all the columns in q are still orthonormal.

We study the relationship between the matching score for the rotated view

stest = ‖QtestQ
T
testItest − Itest‖ and the matching score for the frontal view sf =

‖qqT If − If‖. Assume subject a is the one that has the minimum matching score

at the rotated pose, i.e., sa
test = ‖QtestaQ

T
testaItest−Itest‖ ≤ sl

test = ‖QtestlQ
T
testl

Itest−
Itest‖,∀l ∈ [1, 2, ...L] where L is the number of training subjects. If a is the

correct subject for the test image Itest, warping Qtesta to qa undertakes the same

warping matrix K as warping Itest to If , i.e., the matching score for the frontal

view sa
f = ‖qaqaT If − If‖ = ‖KQtestaQ

T
testaK

T KItest −KItest‖. Note here we only

consider the correspondence and interpolation issues. Due to the orthonormality of

the transformation matrices as shown in (4.3) and (4.4), the linear transformation
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from Btest to b does not affect the matching score. For all the other subjects

l ∈ [1, 2, ...L], l 6= a, the warping matrix K l for Ql
test is different from that for Itest,

i.e., sl
f = ‖K lQl

testQ
lT
testK

lTKItest −KItest‖. We will show that warping Itest to If

does not deteriorate the recognition performance, i.e., given sa
test ≤ sl

test, we have

sa
f ≤ sl

f .

In terms of K, we consider the following cases: Case 1: K =




Ek 0

0 0


,

where Ek is the k-rank identity matrix. It means that K is a diagonal matrix and

the first k elements on the diagonal line are 1, all the rest are zero. This is the case

that Itest is at the frontal pose. The difference between Itest and If is that there

are some missing (non-valid) facial pixels in If than in Itest, and all the valid facial

pixels in If are packed in the first k elements. Since Itest and If are at the same

pose, Qtest and q are also at the same pose. In this case, for subject a, the missing

(non-valid) facial pixels in q are at the same locations as in If since they have the

same warping matrix K. On the other hand, for any other subject l, the missing

(non-valid) facial pixels in q are not at the same locations as in If since K l 6= K.

Apparently the 0’s and 1’s on the diagonal line of K l has different positions from

that of K, thus K lK has more 0’s on the diagonal line than K.

Assume K =




Ik 0

0 0


 and V = QtestQ

T
test =




V11 V12

V21 V22


 where V11

is a (k × k) matrix. Similarly, let Itest =
(

I1
I2

)
where I1 is a (k × 1) vector.

Then KQtestQ
T
testK

T =




V11 0

0 0


, KItest =

(
I1
0

)
and KQtestQ

T
testK

T KItest −

KItest =
(

V11I1
0

) − (
I1
0

)
=

(
(V11−Ek)I1

0

)
. Therefore, sa

f = ‖(V11 − Ek) I1‖. Similarly,

K lQtestQ
T
testK

lT =




V l
11 0

0 0


 where V l

11 is also a (k × k) matrix that might con-
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tain rows with all 0’s, depending on the locations of the 0’s on the diagonal line of

K l. We have K lQtestQ
T
testK

lT KItest −KItest =
(

V l
11I1
0

)− (
I1
0

)
=

((V l
11−Ek)I1

0

)
. Thus

sl
f =

∥∥(
V l

11 − Ek

)
I1

∥∥.

If V l
11 has rows with all 0’s in the first k rows, these rows will have −1’s at

the diagonal positions for V l
11 − Ek, which will increase the matching score sl

f .

Therefore, sa
f ≤ sl

f .

Case 2: K is a diagonal matrix with rank k, however, the k 1’s are not neces-

sarily the first k elements on the diagonal line.

We can use some elementary transformation to reduce this case to the previous

case. That is, there exists a orthonormal matrix P , such that, K̂ = PKP T =


Ik 0

0 0


.

Let Q̂test = PQtestP
T and Îtest = PItest. Then sa

f =
∥∥P

(
KQtestQ

T
testK

T KItest −KItest

)∥∥

=
∥∥∥K̂Q̂testQ̂

T
testK̂

T K̂Îtest − K̂Îtest

∥∥∥. Note that elementary transformation does not

change the norm. Hence, it reduces to the previous case. Similarly, we have sl
f

stays the same as in case 1. Therefore, sa
f ≤ sl

f still holds.

In the general case, 1’s in K can be off-diagonal. This means that Itest and If

are at different poses. There are three sub-cases we need to discuss for a general

K.

Case 3.1: 1-to-1 correspondence between Itest and If . If pixel Itest(j) has only

one corresponding point in If , denoted as If (i), then K(i, j) = 1 and there are

no 1’s in both the i-th row and the j-th column in K. Suppose there are only k

columns of the matrix K contains 1. Then, by some elementary transformation

again, we can left-multiply and right-multiply K by an orthonormal transforma-

tion matrix P 1 and P 2 respectively, such that K̃ = P 1KP 2. If we define Q1
test =

P 2T QtestP
1 and I1 = P 2T Itest, then sa

f =
∥∥KQtestQ

T
testK

T KItest −KItest

∥∥ =
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∥∥P 1
(
KQtestQ

T
testK

T KItest −KItest

)∥∥

=
∥∥P 1KP 2P 2T QtestP

1P 1T QT
testP

2P 2T KT P 1T P 1KP 2
(
P 2T Itest

)− P 1KP 2
(
P 2T Itest

)∥∥

=
∥∥∥K̃Q1

testQ
1T
testK̃

T K̃XI1 − K̃I1

∥∥∥ Under K̃, it reduces to case 2, which can be fur-

ther reduced to case 1 by the aforementioned technique. Similarly, we have sl
f

stays the same as in case 2. Therefore, sa
f ≤ sl

f still holds.

In all the cases discussed up to now, the correspondence between Itest and If

is 1-to-1 mapping. For such cases, the following lemma shows that the matching

score stays the same before and after the warping.

Lemma 1 Given the correspondence between a rotated test image Itest and

its geometrically synthesized front-view image If is 1-to-1 mapping, the matching

score stest of Itest based on the basis images Btest at that pose is the same as the

matching score sf of If based on the basis images b.

Let C be the transpose of the combined coefficient matrices in (4.3) and (4.4),

we have b = BtestC = QtestRC by QR decomposition. Applying QR decomposition

again to RC, we have RC = q̃r̃ where q̃r×r is an orthonormal matrix and r̃ is an

upper triangular matrix. We now have b = Qtestq̃r̃ = qr̃ by assuming q = Qtestq̃.

Since Qtestq̃ is the product of two orthonormal matrices, it forms a valid orthnormal

basis for b. Hence the matching score is sf = ‖Qtestq̃q̃
T QT

testItest − Itest‖. Now

qqT = Qtestq̃q̃
T QT

test = QtestQ
T
test since q̃ is orthonormal. Hence the final matching

score is ‖QtestQ
T
testItest − Itest‖ = stest.

Case 3.2: many-to-1 correspondence between Itest and If .

Case 3.3: There is no correspondence for If (i) in Itest.

For case 3.2 and 3.3, since the 1-to-1 correspondence assumption does not hold

any more, it becomes more complicated to analytically discuss the relationship

between stest and sf . This is due to the effects of fortshortening and interpolation.
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Consider the same actual 3D facial area, it may contribute more in the rotated

view recognition but contribute less in the frontal view recognition (or vice versa)

because of the fortshortening. The increased (or decreased) information comes

from the interpolation, and the assigned weight for each interpolated pixel is not

guaranteed to be the same as that before the warping. Therefore, the relation-

ship between stest and sf relies on each specific K, which may vary significantly

depending on the variation of the head pose. Instead of theoretical analysis, the

empirical error bound between stest and sf is sought to give a general idea of how

the warping affects the matching scores. We conducted experiments using the Vet-

ter’s database. For the fifty subjects which are not used in the bootstrap set, we

generate images at various poses and get their basis images at each pose. For each

pose, stest and sf are compared, and the mean of the relative error and the relative

standard deviation for some poses are listed in the following table.

Pose (θ = 30o,β =

0o)

(θ = 30o,β =

−20o)

(θ = −30o,β =

0o)

(θ = −30o,β =

20o)

mean(
sf − sr

sr

) 3.4% 3.9% 3.5% 4.1%

std(
sf − sr

sr

) 5.0% 5.2% 4.9% 5.1%

We can see from the experimental results that although sr and sf are not exactly

the same, the difference between sr and sf is very small. We examined the ranking

of the matching scores before and after warping. The following table shows the

percentage that the top one pick before warping still remains as the top one after

warping.
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Pose (θ = 30o,β =

0o)

(θ = 30o,β =

−20o)

(θ = −30o,β =

0o)

(θ = −30o,β =

20o)

percentage of

the top one

pick keeps its

position

98.4% 97.6% 99.2% 97.9%

Thus warping the test image Itest to its front-view image If does not adversely af-

fect the recognition performance. We now have a very efficient solution for face

recognition to handle both pose and illumination variations as only one image If

needs to be synthesized. We also wish to point out that the experimental results

also verified Lemma 1: The matching scores before and after warping is exactly

the same if we only consider the pixels with 1-to-1 correspondence.

Now the only remaining problem is that the correspondence between Itest and

If has to be built. An average face calculated from training images at the frontal

pose and the corresponding feature points were used to build the correspondence

between Itest and If . Then we can use the same method as presented in 3.3.1. Fig.

4.7 shows an example of building dense correspondence between the rotated view

and the frontal view using sparse features.

4.2.3 View Synthesis

To verify the recognition results, the user is given the option to visually compare the

chosen subject and the test image Itest by generating the face image of the chosen

subject at the same pose and under the same illumination condition as Itest. The

desired N -dimensional vectorized image Ides can be synthesized easily as long as

we can generate the basis images Bdes of the chosen subject at that pose by using
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Figure 4.7: Building dense correspondence between the rotated view and the

frontal view using sparse features. The first and second images show sparse fea-

tures and the constructed meshes on the mean face at the frontal pose. The third

and fourth images show the picked features and the constructed meshes on the

given test image at the rotated pose.

Ides = Bdesαtest. Assuming that the correspondence between Itest and the frontal

pose image has been built as described in Section 3.3.1, Bdes can be generated

from the basis images B of the chosen subject using (4.3) and (4.4) given that the

pose (θ, β) of Itest can be estimated as described in Section 3.3.2. We also need

to estimate the 9 dimensional lighting coefficient vector αtest. Assuming that the

chosen subject is the correct one, and thus Btest = Bdes, we have Itest = Bdesαtest

by substituting Btest = Bdes into Itest = Btestαtest. Recall that Bdes = QdesRdes, we

have Itest = QdesRdesαtest and then QT
desItest = QT

desQdesRdesαtest = Rdesαtest due

to the orthonormality of Qdes. Therefore, αtest = R−1
desQ

T
desItest.

Having both Bdes and αtest available, we are ready to generate the face image

of the chosen subject at the same pose and under the same illumination condition

as Itest using Ides = Bdesαtest. The only unknown is the pose (θ, β) of Itest, which

can be estimated as described in 3.3.2.

Having the head pose estimated, we can now perform face synthesis. Fig.

4.8 shows the comparison of the given test image Itest and some synthesized face
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(a)

(b)
Figure 4.8: View synthesis results for (a) synthetic images from the Vetter’s 3D

database and (b) real images in the CMU-PIE database. Columns from left to

right show: the training images, the synthesized images at the same pose as the

test images using direct warping, the synthesized images at the same pose as the

test images from Bdes and αtr, the synthesized images at the same pose as the test

images from Bdes and αtest, and the given test images Itest.
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images at the same pose as Itest from the chosen subject, where (a) is for the

synthetic images in Vetter’s 3D database and (b) is for real images in the CMU-

PIE database. Column one shows the training images. Column two shows the

synthesized images at the same pose as Itest by direct warping. Column three

shows the synthesized images using the basis images Bdes from the chosen subject

and the illumination coefficients αtr of the training images. A noticeable difference

between column two and three is the lighting change. By direct warping, we obtain

the synthesized images by not only rotating the head pose, but also rotating the

lighting direction at the same time. By using αtr, we only rotate the head pose to

get the synthesized images, while the lighting condition stays same as the training

images. Column four shows the synthesized images using the basis images Bdes

from the chosen subject and the same illumination coefficients αtest of Itest. As

a comparison, column five shows the given test image Itest. Overall, the columns

from left to right in Fig. 4.8 show the procedure migrating from the training images

to the given test images.

4.2.4 Recognition Results

We first conducted recognition experiments on Vetter’s 3D face model database.

There are totally one hundred 3D face models in the database, from which fifty

were used as the bootstrap set and the other fifty were used to generate training

images. We synthesized the training images under a wide variety of illumination

conditions using the 3D scans of the subjects. For each subject, only one frontal

view image was stored as a training image and used to recover the basis images B

using the algorithm presented in Section 4.2.1. We generated the test images at

different poses from the training images by rotating the 3D scans and illuminated
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Table 4.1: The correct recognition rates at two rotated pose under various light-

ing conditions for synthetic images generated from the Vetter’s 3D face model

database.

lighting\pose f2f Pose θ = −30o, β = 0o Pose θ = −30o, β = 20o

r2f r2r r2f r2r

(γ = 90o, τ = 10o) 100 100 96 84 80

(γ = 30o, τ = 50o) 100 100 100 100 100

(γ = 40o, τ = −10o) 100 100 100 100 100

(γ = 70o, τ = 40o) 100 100 100 94 88

(γ = 80o, τ = −20o) 100 100 98 88 84

(γ = 50o, τ = 30o) 100 100 100 100 96

(γ = 20o, τ = −70o) 94 86 64 80 68

(γ = 20o, τ = 70o) 100 100 80 96 76

(γ = 120o, τ = −70o) 92 84 74 74 64

(γ = 120o, τ = 70o) 96 90 64 82 70

mean 98 96 88 90 83

std 3 6.6 15 9.5 13

them with various lighting conditions (represented by the slant angle γ and tilt

angle τ). Some examples are shown in Fig. 4.9(a)-(b) and (c)-(d). For a test image

Itest at an arbitrary pose, the frontal pose image If was synthesized by warping

Itest, as shown in Fig. 4.9 (e)-(f) and (g)-(h).

The recognition score was computed as ‖qqT If−If‖ where q is the orthonormal

basis of the space spanned by B. The first column (f2f) of Table 4.1 lists the

recognition rates when both the testing images and the training images are from

the frontal view. The correct recognition rates using the proposed method are
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.9: (a) shows the test images of a subject at azimuth θ = −30o under

different lighting conditions ((γ = 90o, τ = 10o), (γ = 30o, τ = 50o), (γ = 40o, τ =

−10), (γ = 20o, τ = 70o), (γ = 80o, τ = −20o) and (γ = 50o, τ = 30o) from

left to right). The test images of the same subject under some extreme lighting

conditions ((γ = 20o, τ = −70o), (γ = 20o, τ = 70o), (γ = 120o, τ = −70o) and

(γ = 120o, τ = −70o) from left to right) are shown in (b). (c) and (d) show the

generated frontal pose images from the test images in (a) and (b) respectively. The

test images at another pose (with θ = −30o and β = 20o) of the same subject are

shown in (e) and (f), with the generated frontal pose images shown in (g) and (h)

respectively.
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(c05) (c07) (c09) (c11) (c29) (c37)

Figure 4.10: The first and third rows show the test images of two subjects in the

CMU-PIE database at six different poses, with the pose numbers shown above

each column. The second and fourth rows show the corresponding frontal view

images generated by directly warping the given test images.
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listed in columns (r2f) of Table 4.1. As a comparison, we also conducted the

recognition experiment on the same test images assuming that the training images

at the same pose are available. By recovering the basis images B at that pose

using the algorithm in Section 4.2.1 and computing ‖Q̃Q̃T Itest−Itest‖, we achieved

the recognition rates as shown in columns (r2r) of Table 4.1. As we can see, the

recognition rates using our approach are comparable to those when the training

images at the rotated pose are available. The last two rows of Table 4.1 show the

mean and standard deviation of the recognition rates for each pose under various

illumination conditions. We believe that relatively larger standard deviation is due

to the images under some extreme lighting conditions, as shown in Fig. 4.9 (b)

and (f).

We also conducted experiments on real images from the CMU-PIE database.

For testing, we used images at six different poses, as shown in the first and third

rows in Fig. 4.10, and under twenty one different illuminations. Examples of the

generated frontal view images are shown in the second and fourth rows of Fig.

4.10.

Similar to Table 4.1, Table 4.2 lists the correct recognition rates under all these

poses and illumination conditions, where column (f2f) is the front-view testing im-

age against front-view training images, columns (r2r) are the rotated testing image

against the same pose training images, and columns (r2f) are the rotated testing

image against the front-view training images. The last two rows of 4.2 show the

mean and standard deviation of the recognition rates for each pose under various

illumination conditions. As we can see, the recognition rates using our approach

are comparable to those when the training images at the rotated pose are available.

The reason is that the training images of different subjects at the same rotated

101



pose are actually at slightly different poses. Therefore, the 2D-3D registration of

the training images and the bootstrap 3D face models are not perfect, producing

slightly inferior basis images recovery than the frontal pose case.

For the Lambertian model, spherical harmonics representation has proved to

be effective in modelling illumination variations, even when the Lambertian object

is under multiple light sources. In order to verify the effectiveness of the proposed

method to handle complex illumination conditions, we randomly generated the test

images under multiple light sources by adding the face images at the same pose but

under different single lighting conditions (we call them the component images) and

taking the average. The recognition performance remains almost same as that for

cases when the test images are under a single light source, as shown in Table 4.3,

which demonstrates the effectiveness of the proposed method to handle complex

illumination conditions.

We have to mention that although colored basis images are recovered for vi-

sualization purpose, all the recognition experiments are performed on grayscale

images for faster speed. We are now investigating how color information affects

the recognition performance.

4.3 Summary and Future Work

We have presented an efficient face synthesis and recognition method to handle

arbitrary pose and illumination from a single training image per subject using

pose-encoded spherical harmonics. With a pre-built 3D face bootstrap set, we use

a statistical learning method to obtain the spherical harmonic basis images from a

single training image. For a test image at a different pose from the training images,

recognition is accomplished by comparing the distance from a warped version of

102



Table 4.2: The correct recognition rates under various poses and illuminations for 68

subjects in the CMU-PIE database, with L being the illumination and P the pose index.

L \ P f2f c05 c07 c09 c11 c29 c37

(r2f) (r2r) (r2f) (r2r) (r2f) (r2r) (r2f) (r2r) (r2f) (r2r) (r2f) (r2r)

f02 86 84 80 84 82 82 80 82 76 82 80 80 76

f03 95 94 90 95 92 94 92 92 84 92 88 90 84

f04 97 96 94 97 95 97 94 94 90 97 94 92 88

f05 98 98 94 98 96 96 96 94 90 96 94 92 90

f06 100 100 99 100 100 100 100 98 96 100 99 98 94

f07 98 98 96 100 100 100 98 94 94 97 95 92 92

f08 97 96 94 97 95 97 94 92 90 96 94 92 88

f09 100 100 98 100 99 100 98 100 96 100 98 99 96

f10 100 100 98 100 100 100 100 96 94 100 98 92 92

f11 100 100 100 100 100 100 100 98 96 100 100 98 96

f12 96 94 92 94 94 95 95 90 88 92 92 90 86

f13 98 96 92 96 94 94 94 92 88 94 92 90 88

f14 100 100 98 100 100 100 100 98 94 99 96 96 92

f15 100 100 100 100 100 100 100 100 97 100 98 98 96

f16 98 97 95 98 96 98 96 96 92 97 95 95 90

f17 95 94 92 95 95 95 95 92 88 94 90 90 86

f18 92 90 88 92 90 90 88 86 82 90 86 86 80

f19 96 95 90 94 92 92 92 90 86 94 90 84 82

f20 96 95 92 96 94 95 94 92 88 94 90 90 84

f21 97 97 97 97 96 97 95 94 92 95 95 94 90

f22 97 97 95 96 95 95 95 94 90 95 94 92 90

mean 97 96 94 96 95 96 95 93 90 95 93 92 89

std 3.2 3.8 4.6 3.7 4.2 4.2 4.6 4.3 5.1 4.2 4.7 4.6 5.2
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Table 4.3: The correct recognition rates at six rotated poses under multiple light

sources for 68 subjects in the CMU-PIE database, where L is the lighting condition

and N is the number of component images.

L \N 2 3 4 5 6 7 8

c05 96% 96% 96% 97% 98% 97% 100%

c07 92% 94% 97% 97% 97% 100% 98%

c09 94% 96% 94% 98% 92% 96% 97%

c11 98% 97% 95% 92% 94% 97% 96%

c29 97% 99% 100% 96% 97% 95% 98%

c37 96% 94% 96% 95% 96% 98% 95%

the test image to the space spanned by the basis images of each model. The

impact of some empirical factors (i.e., correspondence and interpolation) due to

the warping is embedded in a sparse transformation matrix, and we prove that

the recognition performance is not affected after warping the test image to the

frontal view. Experimental results on both synthetic and real images show that

high recognition rates can be achieved when the test image is at a different pose

and under arbitrary illumination condition. Furthermore, the recognition results

can be better verified by easily generated face image of the chosen subject at the

same pose as the test image, using the linear transformation between the spherical

harmonic basis images across poses.

In scenarios where only one training image is available, finding the cross-

correspondence between the training images and the test image is inevitable. Un-

fortunately, automatic computation of these correspondences is not a trivial task
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and manual operation is required in existing methods. We are looking into possible

solutions to this challenging problem.
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Chapter 5

Homography-based View

Synthesis and Robust Tracking

for Surveillance Video

Target tracking and object verification from airborne video is of great importance

for both military and civilian applications. Due to the distance between the camera

and the observed object, all the visible points on the object are coplanar leading

to structure degeneracy. Thus the image data do not contain enough information

to recover the epipolar geometry. Consequently, it is not possible to compute

the 4 × 4 projective transformation between two sets of 3D points if the only

correspondences available are coplanar. This will cause difficulties in being able

to design accurate and stable target tracking and object verification algorithms.

However, in this case, it is reasonable to assume the observed object moves on a

dominant plane (the ground plane) which induces a homography relation between

two views. In this chapter, we present a robust two camera tracking method and an

end-to-end verification system for moving objects, both utilizing the homography
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relation induced by the dominant plane.

5.1 Introduction to Homography

Suppose P is a scene point lying on a plane π. Let p and p′ be the projections of

P in view 1 and view 2 respectively. Then there exists a 3×3 matrix Hπ such that

p′ ∼= Hπp where Hπ is the homography matrix of the plane π [40]. For simplicity

we will omit the subscript of Hπ if there is no confusion in the following sections.

5.1.1 Homography Estimation

Given a set of corresponding points xi ↔ x′i, where xi come from view 1 and x′i

come from view 2, and writing x′i = (x′i, y
′
i, ω

′
i)

T with homogeneous coordinate, we

can estimate the homography H between the two views using x′i ×Hxi = 0 [40].

For each pair of corresponding points, three linear equations are written as




0T −ω′ixi
T −y′ixi

T

ω′ixi
T 0T −x′ixi

T

y′ixi
T x′ixi

T 0T







h1

h2

h3




= 0 (5.1)

where hi, i = 1, 2, 3 is a 3× 1 vector made up of the entries in the ith row of H.

By stacking the coordinates of all the corresponding points into a coefficient

matrix A as shown in (5.1), H is the solution to the linear equation Ah = 0 where

h = (h1
T ,h2

T ,h3
T )T . For a more accurate result, robust estimation methods

like RANSAC [31] or LMedS [30] estimation can be used. Before feeding into

the linear equation, the coordinates of all the points are normalized such that the

centroid of the points is the coordinate origin (0, 0)T , and their average distance

from the origin is
√

2.
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5.2 Homography Based Robust Two View Track-

ing

Multi-view tracking has the obvious advantage over single-view tracking because

of its wide coverage range. When a scene is viewed from different viewpoints, there

are often regions which are occluded in some views but visible in other views. A

visual tracking system must be able to track objects which are partially or even

fully occluded. In this section we present a wide baseline, two-view visual tracking

method which handles occlusions using the homography relation between the two

views. An adaptive appearance model is incorporated in Sequential Monte Carlo

(SMC) framework to accomplish the single view tracking. Occlusion is detected

using robust statistics. When occlusion is detected in one view, the homography

between the two views is estimated from previous tracking results. Correct trans-

formation of the target in the occluded view can be inferred with the homography

and the tracking result of the un-occluded view [111].

Some work has been done in handling occlusion for both single view tracking

[86, 102] and multi view tracking [13, 20, 27]. In [86], an appearance model is

used to accomplish tracking. When occlusion is detected, the ”disputed” pixels

are classified using a maximum likelihood classifier to infer the depth order of

the objects, and update the appearance model accordingly. In [102], a dynamic

Bayesian network which accommodates an extra hidden process for occlusion is

used to cope with occlusion. Both [86] and [102] assume that the target is occluded

by a known object, which gives a clue to infer the depth ordering or compute

the observation likelihood. [13] presents a multi view tracking method using a

set of calibrated cameras. A Kalman filter is used to track each object in 3D
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world coordinates and 2D image coordinates. In [20], the correlation of visual

information between different cameras is learnt using Support Vector Regression

and Hierarchical PCA to estimate the subject appearance across cameras. When

occlusion is detected for one camera, correspondences across cameras are built

using the appearance models acquired during training, and different cues are fused

based on the Bayes’s theorem to make a final tracking report. [27] uses a Bayesian

network to fuse the independent observations from multiple cameras and produce

the most likely 3D state estimates.

The method we propose in this section uses the homography relation between

two views to infer the transformation for the occluded view. Even when the target

is partially or fully occluded by an unknown object, the tracker still can follow the

target as long as it is visible from another view. No complicated inference scheme

is used to fuse the multiple camera observations, nor 3D information needs to

be explicitly recovered. The homogrphy can be robustly estimated from previous

tracking results, and the motion inference for the target in the occluded view

is also estimated robustly by utilizing all the points inside the tracking region.

The computation is simple and fast. The result is satisfactory as shown in the

experimental results.

5.2.1 Single View Appearance Tracking

We first present an appearance model-based tracking system for a single view. The

system processes the video frames captured under one single view and produces the

tracking parameters for later use. The task of an appearance tracker is to infer the

deformation (or tracking) parameter best describing the differences between the

observed appearances and the appearance model. To accommodate the dynamics
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embedded in the video sequence, we employ a state space time series model.

Suppose {Y1, ..., Yt, ...} are the observed video frames containing the appear-

ances of the object to be tracked. We use an affine transformation T parameter-

ized by θt and denote the appearance model by At. Our time series model is fully

defined by (a) a state transition equation and (b) an observation equation.

(a) θt = θt−1 + Ut, (b) Zt
.
= T {Yt; θt} = At + Vt, (5.2)

where Ut is the system noise and Vt is the observation noise. Our goal is to compute

the posterior probability p(θt|Y1:t), which is used to estimate the ‘best’ parameter

θ̂t. Because this model is nonlinear (e.g. the affine transformation part), we use

SMC techniques [56,64] to approximate p(θt|Y1:t) using a set of particles. We now

specify the actual model choices.

The appearance model At is crucial in a tracker. If a fixed template, say

At ≡ A0, is used, it is difficult to handle appearance changes in the video. On the

other hand, one could use a rapidly changing model, say At = Ẑt
.
= T {Yt; θ̂t}, i.e.,

the ’best’ patch of interest in the previous frame, but this is susceptible to drift.

Thus, it is necessary to have a model which is a compromise between these two

cases. Mixture models are used in [53, 124]. In this chapter, we simply adapt the

appearance model to the changing appearances at a moderate pace.

We assume that (i) the appearance model At is associated with a mean image µt

(the actual At in (5.2)) and a variance image σ2
t (included in Vt in (5.2)), and (ii) At

summarizes the past observations under an exponential envelop with a forgetting

factor α. When the appearance in the current frame has been tracked, i.e. Ẑt is

ready, we compute an updated appearance model At+1 and use it to track in the

next frame. Using the maximum likelihood (ML) principle, one can show that µt+1
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and σ2
t+1 can be updated in the following manner:

µt+1 = αµt + (1− α)Ẑt; σ2
t+1 = ασ2

t + (1− α)(Ẑt − µt)
2. (5.3)

Notice that in the above equations, all µ’s and σ2’s are vectorized and the op-

eration is element-wise. Also, Vt is distributed as a multivariate normal density

N (0, D(σ2
t )), where D(σ2

t ) denotes a diagonal matrix with diagonal elements σ2
t .

The system noise Ut constrains the particle coverage. It is ideal to draw particles

such that they are close to the object. In addition, the particle coverage should

also accommodate the extent of clutter in the observation. To this end, we use

Ut ∼ N (νt, rtI), where νt is the ‘instantaneous’ velocity in the tracking parameter,

rt is the noise variance measuring the extent of clutter, and I is an identity matrix.

However, we have no knowledge of νt and rt. We use a linear prediction scheme

to estimate them. This prediction scheme is in spirit similar to finding an affine

flows for the current ‘best’ patch in the next frame. Refer to [124] for details. As

a consequence, the prediction scheme produces an estimate of νt and a prediction

error εt. We take rt as a monotone function of εt. Also, we vary the number of

particles according to rt.

When occlusion happens in one view, we need a mechanism to detect it. We

assume that occlusions produce large image differences which can be treated as

’outliers’. Outlier pixels cannot be explained by the underlying process. If a pixel

x satisfies |Ẑt(x)−µt(x)|/σt(x) > c (we take c = 0.75), we declare the pixel to be an

outlier. This actually corresponds to using a robust statistics [47]. If the number

of the outlier pixels in Ẑt, say dout, exceeds a certain threshold, i.e., dout > λdtotal

(we take λ = 0.13), we declare an occlusion. Once occlusion is declared, we

stop updating the appearance model and estimating the motion velocity and start

using the information derived from other views to maintain tracking. To cancel
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the occlusion alert, we compare the image warped from the other views with our

observation till the error is consistently small. Tracking is then resumed.

5.2.2 Occlusion Handling With Homography

We consider a wide baseline two view tracking system. In order to estimate the

homography, we have to build the correspondence between the two views, which

is always challenging especially for wide baseline views. Although H can be es-

timated from at least 4 pairs of corresponding points (the more we can find, the

more robust H will be) in the initial frame, it is more robust to utilize the cor-

responding points in all frames. Assuming that the object moves on the same

dominant plane for all the frames, it is clear that the corresponding points in all

frames will contribute in estimating H. Suppose n pairs of corresponding points

xi ↔ x′i, i = 1, 2, . . . , n on the object were picked in the initial frame, then their

corresponding relation is kept for all the frames (through the inter-frame affine

transformation T ’s known from the tracking result) and can be used to estimate

H. One assumption used here is that for the corresponding points in the previous

frames, after taking the affine transformations in both views for the current frame

(i.e., we have yi ↔ y′i where yi = T1xi,y
′
i = T2x

′
i), they are still linked to each

other with the same homography H as in previous frames. This assumption usu-

ally will not hold since an affine transformation concatenated with a homography

gives another homography instead of another affine transformation. Considering

this, we do not directly assume yi ↔ y′i as the true corresponding points. Instead,

after getting yi’s in view 1, we do a random local search around y′i’s in view 2

to find the correct corresponding points for yi’s. Nevertheless, since the tracker

works well enough in our experiment, which means the difference between the two
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Figure 5.1: Two view tracking result with the target partially occluded by an

unknown object, with the appearance model At shown at the upper right corner.

Top row: tracking result for the unoccluded view. Middle row: tracking result

for the partially occluded view without occlusion handling. Bottom row: tracking

result for the partially occluded view with occlusion handling

frames can be satisfactorily described with an affine transformation, we can always

find the correct correspondences in a very close neighborhood around y′i’s.

5.2.3 Transformation inference for the occluded view

Suppose at frame j occlusion is detected for view 2, but not for view 1. Denote T j
1

and T j
2 as the affine transformations from frame j − 1 to frame j for view 1 and

view 2, respectively. We need to derive T j
2 from H and T j

1 . Let xj−1 and x′j−1 be

a pair of corresponding points at frame j − 1 for view 1 and view 2 respectively.

Then we have

xj = T j
1 xj−1; x′j = T j

2 x′j−1
, (5.4)

and

x′j−1
= Hxj−1; x′j = Hxj. (5.5)
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Knowing H and T j
1 , it is easy to derive from (5.4) and (5.5) that

T j
2 = HT j

1 H−1. (5.6)

Although (5.6) gives a theoretically correct solution for T j
2 , it gives a homog-

raphy while the sought solution is an affine transformation in accordance with the

tracker. Practically T j
2 can be obtained from x′j−1’s and the inferred x′j’s. Writing

x′k = (x′k, y′k, 1)T , k = j − 1, j, and T j
2 =




α1 α2 tx

α3 α4 ty

0 0 1




, we have




x′j

y′j


 =




x′j−1 y′j−1 0 0 1 0

0 0 x′j−1 y′j−1 0 1







α1

α2

α3

α4

tx

ty




. (5.7)

A minimum of 3 pairs of corresponding points is needed to solve for T j
2 from

(5.7). To get a more robust solution, we want to use all the points inside the

tracking region to form an over constrained linear equation and seek the least

square estimate. To this end, we have to infer the coordinates for all the points

inside the tracking region at frame j. Given 3 non-collinear points pi, i = 1, 2, 3

on the image of an object, the relation between pi
′s and any other image point

q on the object stays invariant under affine transformation T , i.e., if q − p1 =

β1(q−p2)+β2(q−p3), then we have T (q−p1) = β1T (q−p2)+β2T (q−p3). Recall

that up until frame j we have stored n(j−1) pairs of corresponding points in order

to estimate H. With H and xi
j, i = 1, 2, . . . , n, we can compute x′i

j, i = 1, 2, . . . , n
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Figure 5.2: Two view tracking result with the target fully occluded by an unknown

object, with the appearance model At shown at the upper right corner. Top row:

tracking result for the un-occluded view. Middle row: tracking result for the fully

occluded view without occlusion handling step included. Bottom row: tracking

result for the fully occluded with occlusion handling step included.

with (5.5). Then the coordinates for all the other points inside the tracking region

can be obtained accordingly. Here the number of initially picked correspondence

pairs n can be as few as 3 if they are non-collinear, so the difficulty of finding the

required number of corresponding points in the initial frame is greatly reduced.

5.2.4 Experimental Results

Experiments were conducted on the PETS2001 test sequence [2]. Figure 5.1 shows

the sequence where three walking humans are visible in all the frames for view 1,

and are partially occluded by an incoming vehicle in some frames and reappear

afterwards for view 2. The appearance model At is shown at the upper right

corner of each frame. The top row of Figure 5.1 shows the tracking result for view

1 (the un-occluded view). The middle row shows the tracking result for view 2
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(the partially occluded view) without using homography to handle occlusion. We

see that the appearance model keeps updating even when there is occlusion, and

the tracker stays with the vehicle instead of the walking humans. The bottom row

of Figure 5.1 shows the tracking result for view 2 using homography and occlusion

handling step included. If there is no occlusion detected, the two views are tracked

independently. When occlusion is detected in view 2, the appearance model is not

updated, and the affine transformation is inferred from the tracking result for view

1 and the computed H. It is clear that the tracker in view 2 still tracks the walking

people even when they are partially occluded by the vehicle and regains control as

soon as they fully reappear.

Figure 5.2 shows similar experiment results, except that the to-be-tracked walk-

ing person is fully occluded by the tree in view 2. The tracking results for view 1

(un-occluded view), view 2 ( occluded view) without using occlusion handling step,

and view 2 using homography to handle occlusion are shown in the top, middle

and bottom rows of Figure 5.2, respectively. We can see from the bottom row that

the tracker can track the person even though he/she is fully occluded by the tree,

while the tracker stays where the tree is when the occlusion is not handled (as

shown in the middle row).

5.3 Moving Object Verification from Airborne

Video

Object verification differs from the Automatic Target Recognition (ATR) problem

in that it does not seek to identify the observed object, only to confirm that it is

the same object that has been observed recently, and thus does not require prior
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training data. Verification remains challenging due to the potentially large changes

of the object’s pose, illumination, or occlusion between initial and subsequent

observations. Appearance characteristics of the object must be captured during

the initial observation and stored for later verification. A typical application for

a verification system is within vehicle trackers; verification is required after the

vehicle is obscured for a while or leaves the field of view.

The problem of object verification of vehicles, which is the objects of interest

in this section, has received intense attention in recent years. The scale-invariant

feature transform (SIFT) method [65] represents an image by a collection of fea-

tures that are invariant to image scaling, translation, and rotation, and partially

invariant to illumination changes and affine or 3D projection. It is very effective in

high-resolution videos where the features can be extracted reliably, but does not

work well in airborne videos with lower resolution. In the detection and classifi-

cation method by Gupta et al. [38], vehicles are modeled as rectangular patches

with certain dynamic behavior. This method is based on the establishing corre-

spondences between regions and vehicles, and only deals with stationary cameras.

In [63], a classification metric, together with a temporal consistency constraint,

is applied to classify all moving blobs into human, vehicle or background clutter.

Sivic et al. [92] proposed a method for automatically associating image patches

from frames of a movie shot into object-level groups. Multiple parts of an object

can be matched from many different frames using the patch-based multi-view fea-

ture grouping. Inspired by this approach, Guo et al. [37] customized the alignment

and flexible matching components to suit the resolution constraints as well as the

goal of exact matching. A good review can be found in [45] on the recent devel-

opments and the processing framework of visual surveillance in dynamic scenes,
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Figure 5.3: An overview of the proposed object verification system. The learning

and query processes are independent but share the examplar database.

including modeling of environments, detection of motion, classification of moving

objects, human identification, and fusion of data from multiple cameras.

In this section we present an end-to-end verification system for moving vehicles

in airborne video. The system has separate learning and verification (or query)

functions that share a common database. The flow chart of the proposed system

is shown in Fig. 5.3. Key contributions of the proposed system include: 1) a

homography-based view synthesis method to handle the varying appearance of an

object due to changing viewpoints between the learning exemplar and the query

image; and 2) the use of both spatial and temporal models to match how an
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object looks and how it behaves, respectively. Spatial models describe the color

or grayscale variations, texture, and geometric features of the object. Temporal

models describe an object’s expected behavior.

Since it is impossible to know in advance which objects will be verified, models

must be generated on the fly from real-time video. Objects are typically selected

and segmented by a tracker or other modules which request the verification. To

learn, the system is provided a short video, referred to as a learning message

(usually around 1 second long), containing the object of interest, the associated

metadata, and an arbitrary identification (ID) number for later reference. This

is all the information the system uses to build a model of the object. Samples

from the learning message are selected and stored in an exemplar database for use

during verification. The collection of samples (exemplars) for a given object are

referred to as the object model. A sample selection module is exploited to reduce

the number of exemplars by saving only those that differ appreciably from the

existing ones. Because of the short learning message, the database will typically

be sparse which is another major difference from traditional ATR systems.

For verification, the system is provided another short video, called a query

message (usually 0.5 second long), containing the object to verify, the associated

metadata, and a set of model ID numbers to verify it against. Due to the sparse

nature of the database, it is unlikely that an exemplar will exist with the desired

viewpoint and resolution for matching. Thus, a homography-based view synthesis

method is used to generate a novel view of the object with the necessary viewpoint

and resolution.

Novel view synthesis can be accomplished by recovering the 3D information of

the object from the available images using SfM techniques and projecting to the
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desired view. When the object to be synthesized is at a great distance from the

camera, its depth-relief is negligible, and it is a reasonable approximation to as-

sume the object moves on a dominant plane (the ground plane). According to [96],

if all the visible scene points are coplanar (i.e., structure degeneracy), the image

data does not contain enough information to recover the epipolar geometry. Con-

sequently, it is not possible to compute a 4× 4 projective transformation between

two sets of 3D points if the only correspondences available are coplanar. Therefore,

SfM methods, which essentially need the projective transformation between the 3D

scene and the images, may not be accurate or stable. For the same reason, the

”Plane + Parallax” approach [49] do not apply here since the object of interest

is approximately a flat scene and the 3D structure can not be reliably estimated.

Alternatively, image-based rendering techniques can be used, which rely on view

interpolation or pixel reprojection and do not explicitly build a 3D model. In order

to accomplish the view synthesis task for moving objects in airborne video, we re-

sort to homography induced by the ground plane. The region of interest (ROI, in

our case, the moving object) is tracked with the appearance based visual tracking

method described in Section 5.2.1. The on-object point correspondence is built

from the tracking parameters and used to estimate the homography induced by

the ground plane for each pair of frames. With known camera focal length, the

surface normal to the ground plane and the camera motion between the frame pair

are factored out from the homography using Singular Value Decomposition (SVD),

as shown in [97]. With the tracking result across multiple frames and the esti-

mated rotation between each frame pair available, a rank one constraint is applied

to decompose a matrix that contains the homographies from multiple frame pairs

[81] to ensure robust surface normal estimation. Given a desired viewing direction,
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the novel image of the object is generated by warping the reference frame using

the new homography between the desired viewpoint and the reference frame.

Efficient integration of spatial and temporal model matching assures the robust-

ness of the verification step. A color matcher is also employed which incorporates

color co-occurrence histograms described in [19] to compare colors and color ad-

jacency. A rotationally invariant color matcher can be achieved by measuring the

color adjacency without respect to any direction. The spatial matcher extracts fea-

tures from the query image chip, and compares them (type and location) against

features extracted from the novel view. Feature locations are compared using the

Distance Transform [51]. The color matcher and the spatial matcher scores are

combined using a weighted average rule.

Temporal analysis enforces consistency over time by applying a temporal model

that requires the object’s orientation to vary smoothly with time. Temporal models

are a distribution on the probability that an object will rotate a given amount

between frames. The temporal model is based on physics, and on expected object

size and operating conditions. Spatial matches to an incorrect object tend to

match at random orientations, which are interpreted within the temporal analysis

as erratic behavior; correct matches appear to have a smooth behavior consistent

with the temporal model. Because temporal analysis can distinguish between these

cases, the system quickly converges to a decision even when the underlying spatial

matches are weak.

5.3.1 The System

In this section, we describe in detail the components of the proposed moving vehicle

verification system for airborne video in detail [36, 113,114].
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Image Normalization

Consistent and comparable image statistics are desired to optimize color and spa-

tial features for matching. Considerable differences in image statistics occur be-

tween the learning and the query messages due to changing backgrounds, and to

the time gap between them. Statistics can also change within a learning or query

message due to glints and shadows that cause the sensor’s automatic gain control

(AGC) to adjust. Consequently we apply a normalization process to all image data

in the learning and the query messages to accommodate for these variations.

An adaptive histogram stretching method is used to redistribute the brightness

of the images, enhancing and normalizing their contrast characteristics. For color

images, histogram stretching is applied only to the Y component (luminance) of

YUV color images (images are converted to YUV from other formats). For infrared

(IR) images, histogram stretching is applied to the single grayscale component.

The adaptive nature of the algorithm spreads the majority of values to 80% of

the luminance range while compressing the highest and lowest values through the

use of pivotal points in the histogram stretch mapping function. The lowest and

highest luminance values primarily represent dark shadows and glints; compressing

them minimizes their impact. This adjustment leads to more consistently defined

edges for spatial matching while maintaining the color information. Fig. 5.4 shows

several examples before and after normalization.

Sample Selection

We wish to restrict the number of exemplars saved in an object model for two

reasons. First, the storage and processing requirements grow as a function of the

number of exemplars. Second, exemplars with very similar appearance do not
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Figure 5.4: Normalization provides consistent image statistics for downstream pro-

cessing. Top row: the images before normalization. Bottom row: results after

normalization .

necessarily increase the model fidelity. Since the appearance of an object does

not change considerably between consecutive frames, this provides a convenient

way to restrict the number of exemplars retained. We choose to retain exemplars

only if the collection geometry or appearance changes considerably. Changes in

collection geometry are derived from the metadata provided with each learning

message. It contains the location and the extent of the object in the frame, an

aspect angle on the ground (usually the direction of velocity as determined by

a tracker), the observation angle from the sensor, and other camera parameters.

We arbitrarily segment the exemplar database into 5-degree bins for both aspect

and elevation angles. As each frame within a learning message is processed, an

exemplar is always saved if its collection geometry falls within an empty bin. If
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the bin is not empty, then the new exemplar is saved only if its appearance is

different from those already in that bin. Differences in appearance may result from

illumination, focus, or background changes; atmospheric effects; or the presence

of nearby objects within the defined extent. Similarity in appearance is measured

using a rotationally variant version of the color matcher described later. A simple

threshold on the match score determines the similarity.

Each frame within a learning message is considered only with respect to exem-

plars already in the database. Thus, the system can process additional learning

messages as an object is tracked or otherwise observed over time. This allows the

fidelity of an object model to increase as additional exemplars are collected.

Color Matching

Being an important component of the proposed target verification system, the

color matching algorithm is based on a technique proposed by Chang and Krumm

[19] that utilizes a color co-occurrence histogram to recognize objects in images.

It has been adapted to work with either color images or IR images.

The foundation of the Color Matching algorithm lies in the generation of high-

quality color co-occurrence matrices (CCMs). Creation of CCMs is accomplished

by examining how colors in the image are distributed in relation to each other. The

CCM is n×n×nDist where n is the number of colors and nDist is the number of

distances. Each cell contains the number of times that a particular color (specified

by the row index) is at a given distance away (specified by the nDist index) from

another color (specified by the column index). If all eight directions from a pixel

are counted, then the CCM will enable a rotationally invariant match. If only a

single direction is counted, say to the right, then some geometric information is
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also captured and rotation dependent matches are made. To reduce the obvious

computational complexity involved in examining all colors at all distances the

image is first quantized down to a manageable number of colors. Quantization is

accomplished by thresholding and clustering RGB color bands into discrete groups.

For IR images, grayscale values are dynamically quantized into eight discrete levels.

Next, an empirically defined distance measure is set that manages the extent of

the search area from the reference pixel to sample pixels. This distance measure

is dynamically set according to the resolution of the image.

The intersection between a pair of CCMs is calculated to determine the color

match score. This score provides a qualitative metric to gage the difference between

two images. Each CCM is normalized so that its elements sum to one. The

intersections of the diagonal and non-diagonal matrix elements are determined

separately and then combined in a weighted sum. The diagonal elements for a

given distance represent areas of uniform color in the image. Given a CCM for

the query (qCCM) and for the exemplar (lCCM), the intersection of the diagonal

elements is given by: diag =
∑nDist

k

∑n
i min(qCCMk

ii, lCCMk
ii).

The non-diagonal matrix elements represent areas where different colors are

adjacent to each other. This typically occurs at the boundaries of different areas of

the image, thus providing a measure of image texture. The intersection of the non-

diagonal elements is given by: ndiag =
∑nDist

k

∑n
i

∑n
j min(qCCMk

ij, lCCMk
ij), i 6=

j.

To calculate a final color score, the diagonal and nondiagonal intersection values

are combined in a weighted average. Proper selection of the weight for the diagonal

intersection (dWt) and the weight for the non-diagonal intersection (ndWt) allows

emphasis of one feature over the other. The final color score is calculated as:
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Figure 5.5: The color model is a set of square co-occurrence matrices whose di-

mensions are the number of quantized colors.

d = 1.0 − (dWt · diag) + (ndWt · ndiag)

nDist · (dWt + ndWt)
. Since the CCMs were normalized, the

color score ranges from zero to one. The weighted average is subtracted from one

to force a lower-is-better score. An example development of a CCM is shown in

Fig. 5.5.

Exemplar Selection

The spatial and color matchers perform best when the viewpoints of the selected

exemplar and the object to be verified (the query object) are the same. For spatial

matching, view synthesis is used to create a novel view with the required viewpoint

from exemplars in the database. However, a homography-based view synthesis (in

Section 5.3.2) can only modify the viewpoint of those parts of the object already

appearing in the exemplar. That is, parts of the object not observed in the exem-

plar cannot be projected to the novel view. Thus, the exemplar with the closest

collection geometry to that of the query object is selected from the database. We

also assume symmetry between the left and right sides of the object. This selection

metric ensures the greatest overlap of the observed parts between the exemplar and

the query object.
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Notice that more effective selection method could be employed since multiple

exemplars are stored within a geometry bin if they do not appear similar. Cur-

rently, collection geometry is the only criteria used. A different method might

select the newest exemplar within a bin, the one with the closest sun angle, or

some other measure. This is an issue for future investigation.

Spatial Feature Extraction

The spatial matcher compares the spatial features of two objects. These features

typically describe the extent, shape, distinguishing characteristics, or textures on

the object. We chose to use the horizontal and vertical ridges because they are

relatively stable with respect to small rotations, project well into novel views,

and capture both the object’s outline and surface characteristics (lines, points,

segments). Thus, discontinuities in color or texture are captured, such as those

between the windshield and the hood, or the line between doors. Other features,

such as the circular Laplacian of Gaussians (LoG) were found to give little or no

improvement for the added computational complexity and processing time.

Ridges are defined as either a dark-to-light or light-to-dark transition. Hori-

zontal ridges are extracted using a sliding 1× 3 window. If the difference between

the center pixel and either side pixel is greater than a threshold, then a ridge is

detected. The value of the threshold is selected to accommodate image noise and

to set the minimum strength of the ridge. We also use a threshold of zero to

capture clean edges. The location of the feature is retained using a binary repre-

sentation to indicate if the feature is present at that pixel location. Vertical ridges

are extracted in a similar manner using a 3× 1 window and retained in a separate

binary plane. Locations of each feature type are independently retained so that
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Figure 5.6: The Distance Transform provides a similarity measure between two

point patterns.

only similar features can be matched.

Spatial Matcher

Spatial matching operates by determining the similarity of the extracted feature

locations between the query object and a novel view. We use a spatial matcher

based on the Distance Transform (DT) [82]. It provides a convenient method for

measuring a difference between two feature sets.

An example of using the DT for matching a single feature type is shown in

Fig. 5.6. Let feature set A(p) have the value 1 at each pixel location pi = (xi, yi)

where a feature was extracted from the novel view, and zero otherwise. Similarly,

let feature set B(p) be a binary representation of the feature locations from the

query object. Then the DT of feature set B, represented by DB(p), specifies the

distance from each pixel to the nearest feature location in B. Larger distances

appear as a whiter gray in the example shown in Fig. 5.6.

A quantitative measure for the strength of the match is obtained by pixel-

wise multiplication of feature set A with DB and summing over the entire range.

Intuitively, this can be thought of as overlaying feature set A on DB and summing

the DT values at each feature location in A. Smaller values indicate a better match

with zero indicating a perfect match. Because the different collection geometry and
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Figure 5.7: Matching the query to the novel view and vice versa increases the

match robustness when either the query or the examplar is partially obscured.

segmentation of each view will slightly vary the location of extracted features, we

slide A over DB until a best fit (minimum match score) is obtained. Algebraically,

for N pixels in the region to be matched the score SAB is given by

SAB =
N∑
i

DB(pi)A(pi − u) (5.8)

where u = (∆x, ∆(y)) is an arbitrary translational offset used to minimize SAB.

Typical values for SAB range from 0.5 to 2.0.

Missing feature points in feature set A, possibly due to occlusion, will decrease

the score and indicate a better match. Likewise, additional points, generally due to

noise, will increase the score. But matching can be performed in either the forward

direction (comparing feature set A against DB) or the reverse direction (comparing
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Figure 5.8: The DT matcher easily distinguishes between two similar trucks (left

graph) and between two similar sedans (right graph). Performance degradation is

graceful as the orientation changes.

feature set B against DA). To increase robustness to noise and occlusion, both

the forward and reverse matches are performed and the final match score is the

average of the two. Fig. 5.7 illustrates the complete two-way spatial matching

procedure.

Two examples in Fig. 5.8 show the typical behavior of the spatial matcher.

Samples of four vehicles (two trucks, a 2-door sedan, and a 4-door sedan) were

obtained at approximately 5-degree intervals. In each example, a single aspect

angle of one of the vehicles was selected as the query object and matched against

all four vehicles at each aspect angle. The graphs plot the match scores as a

function of the aspect angle where the match occurred. For the example on the

left, the selected query object was vehicle 1 (a truck) at 215 degrees. The red

line shows the match scores between this query object and itself; it is zero to

indicate a perfect match when the object is matched against itself at the same

aspect angle. Within this neighborhood, the query object always matches to itself

better than to other objects. Notice that the match to the other truck is better
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than to either sedan; this is a desirable feature that similar vehicles match better

than dissimilar ones. Outside the neighborhood, all matches are poor. For the

example on the right, the selected query object was vehicle 3 (the 2-door sedan) at

210 degrees. Again, the graph indicates a perfect score when the query object is

matched against itself at the same aspect angle. In this example, the two sedans

are almost identical and appear nearly the same in the picture, yet the spatial

matcher detects a measurable difference between them. Notice in both examples

how the match scores degrade gracefully as the difference in aspect angle increases

or the similarity of vehicles decreases.

View Synthesis

To successfully match the spatial features of two objects, both objects must be

viewed with the same perspective and have the same resolution. That is, they

must have the same collection geometry. Because this system is trained on the

fly using short learning messages, the exemplar database typically contains only

a sparse set of samples that are closely bunched around one collection geometry.

Thus it is unlikely that an existing exemplar will have the same collection geometry

as the query object.

The objective of view synthesis is to create a novel view from object exemplars

that will simulate the collection geometry of the query object. Features extracted

from the novel view should then be at the correct locations for a robust spatial

match. In our application, as the distance from the camera to the object is much

greater than the height of the object, we use a homography to create a novel

view from the selected exemplar. The homography implements a full projective

transform to simultaneously handle changes in aspect angle, depression angle, and
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resolution. Details of view synthesis are presented in Section 5.3.2.

Temporal Analysis

Temporal Analysis combines the spatial matching with an object’s temporal be-

havior. The behavior, by which we mean the object’s rate of rotation over time,

is tracked using a Dynamic Bayesian Net (DBN); a separate DBN is used for each

reference model that the query object is compared against. For each video frame,

or one observation in time, the DBN has 72 states representing the orientations

of every 5 degrees in aspect angle. The value in each state is the probability that

the query object is at that aspect angle, given the previous observations up to the

current frame. The probability is updated for each frame based on the current

match score, state probabilities from the previous frame, and a set of transition

probabilities called the temporal model.

The temporal model is a probabilistic description of how fast an object can

reasonably be expected to rotate based on physics and the frame rate. It represents

the probability that the query object will rotate from orientation j at frame f − 1

to orientation i at frame f . We use a discrete probability distribution defined as

Aji =





0.6 if j = i

0.2 if |j − i| = 1

0.0 otherwise

(5.9)

The temporal model can easily accommodate skipped frames by convolving Aji

with itself once for each skipped frame.

For use in the DBN, the individual raw match scores must first be converted to

likelihoods. As described earlier, a lower match score indicates a better match, and

a score of zero indicates a perfect match. Therefore we choose an exponential decay
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as an appropriate model for the probability density of match scores. If Si,f is the

raw match score at orientation i during frame f , then we model the likelihood as

p(Si,f |θi) = e−Si,f . Let SF = (S1,1, S2,1, . . . , S72,1, S1,F , S2,F , . . . , S72,F ) be the set of

scores for all 72 orientations up to frame F , and pi,f (SF |θi) be the state probability

in the DBN of the observed scores up through frame F = f given that the query

object is currently at orientation i. With each new frame, the state probabilities are

recursively updated using those from the previous frame, the current match scores

Si,f , and the temporal model. The forward algorithm [74] provides a convenient

approach to the calculation pi,f (SF |θi) =
∑

j pj,f−1(SF−1|θj)Aj,ie
−Si,f .

The forward algorithm needs to be initialized for the first frame. Since we have

no information about the orientation of the query object prior to the first time it

was observed (i.e., the first frame), we assume that the object has equal probability

of being in any of the 72 orientations. Thus we define pi,0(S0|θi) = 1/72 where

S0 = ø. Other definitions for pi,0 also can be made, for example, we can assume

that the object’s orientation immediately prior to being observed is the same as

that provided by the tracker for frame 1.

Once the state probabilities are calculated for a given frame, the likelihood

that the query object is the same type as the reference model it is being compared

to, is simply the sum of the probabilities for all orientations. This likelihood will

decrease with each added frame as the probabilities are multiplied. To overcome

this, we use the geometric average of the likelihood over the number of frames.

That is pfSF = (
∑

i pi,f (SF |θi))
1/F .

The DBN improves the overall performance by requiring temporal consistency

of an object’s orientation. In practice, an incorrect reference model either matches

well at erratic orientations (implying erratic behavior), or matches poorly at all
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orientations. Thus its likelihood will decrease rapidly over time in the DBN. A

correct reference model will have a strong match at the correct orientation and

somewhat weaker matches at the orientations on either side (i.e., at ±5 degrees);

its likelihood will decrease at a much slower rate. Fig. 5.9 shows the comparison

of the temporal models for the incorrect and correct matches, indicating that the

temporal analysis helps the system to assure the robustness of the verification.

Ideally a novel view is created at each of the 72 aspect angles and matched

against the query object. In a practical application, the aspect angle provided

by a tracker is derived from the forward velocity of the object; thus it will be

close to the true orientation. To reduce the computational load, matches are only

performed at ±20 degrees about the orientation of the query object, reducing the

number of matches from 72 to 9. We assume that match scores for the remaining

states will be poor and arbitrarily give them a correspondingly large match score

of 5.0.

5.3.2 A Homography-based View Synthesis Method

The objective of view synthesis is to generate the novel view for each image in the

exemplar database that has the same pose as the query object in each frame. The

transformation which links the on-object points across frames can be approximated

by a homography.

Establishing point correspondence is always challenging, especially for unsta-

bilized video without rich texture. We use the appearance based visual tracking

method in Section 5.2.1 to build the point correspondence. The inter-frame trans-

formation we obtain from the tracking algorithm captures the combined motion

of the object and the camera. Without loss of generality, we pick the first frame
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(a): Spatial matches to an incorrect object tend to match at random orientations,

which are interpreted as erratic behavior.

(b): Correct matches have smooth behavior consistent with the temporal model.

Figure 5.9: Temporal models describe how an object behaves over time, and help

the system to assure the robustness of the verification.

as the reference frame wherein the object of interest is specified by the user and

tracked through the entire video sequence. Because of the rigidity of the object, all

pixels on the object undergo the same transformation so the point correspondence

across frames can be found using some sampling techniques.

Two tracking results are shown in Figure 5.10 and Figure 5.11.

Plane Function Estimation

For a specified viewing direction [Rnew|tnew] relative to the reference frame, the

homography Hnew between the reference frame and the desired viewpoint induced
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Figure 5.10: The appearance based visual tracking result, with the ROI marked

as a black box in each frame.

Figure 5.11: Another visual tracking result, with the ROI marked as a black box

in each frame and the top right corner showing the appearance model updated at

each frame.
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by the ground plane is given by

Hnew = Knew(Rnew − tnewnT )K1
−1 (5.10)

where Knew is the camera calibration matrix for the desired view, K1 is the camera

calibration matrix for the reference frame, and nT is the surface normal to the

ground plane in the coordinate system of the reference frame. Therefore, the on-

object points pi’s in the reference frame and the corresponding points p′i’s in the

desired view are related by p′i = Hnewpi, which can be used to generate the desired

image by warping the points from the reference frame.

In order to get Hnew, we need to know K1, Knew, and nT . By assuming that

the principal point of the camera is at the center of the image and there is no

skewing effect, the camera calibration matrix solely relies on the focal length f .

As suggested in [40], f can be estimated using the inter-frame homographies Hk’s

and two imaged circular points cj, j = 1, 2 in the reference frame if the calibration

matrix is assumed to be constant (Kk = K1) throughout the video sequence. In

this chapter, we simply obtain the focal length f from the metadata comes with

the surveillance video.

It is not possible to get the ground plane information nT from only one view.

Triggs [97] gives an SVD based factorization method to decompose a calibrated

homography Ĥ = K2
−1HK1 into the plane normal nT and the relative orientation

between the two cameras R(I3×3|−t). In the coordinate system of the first camera

(P1 = (I3×3|0)), let the 3D plane be n × x = z = 1/ζ, where z = 1/ζ > 0

is the inverse distance to the plane. Let the matrix of the second camera be

P2 = R(I3×3| − t) where t is the inter camera translation and R the inter camera

rotation. Then the homography from image 1 to image 2 is Ĥ = RĤ1 where Ĥ1 =

I3×3− ζtnT . For a 3D point x on the plane Ĥx = R(x− ζtnT ) = R(x− t) ≈ P2x,
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since ζnTx = 1 there. Treating x as a point in image 1 changes only the overall

scale factor. Only the product ζtnT is recovered, so we normalize to ‖t‖ = ‖n‖ = 1

and use visibility tests to work out the allowable signs. The detailed decomposition

of Ĥ can be found in appendix 1 of [97]. For a distant plane ζ → 0 as in an

airborne video, the estimated nT and t might be unreliable but R is still accurate.

The inaccuracy of nT and t is compensated using multiple image pairs, and the

accurate R is used to compute the infinite homography H∞.

Fusion Scheme

Every other frame, together with the reference frame, gives an estimate to the plane

function nT in the coordinate system of the reference frame. However, for a distant

plane, the estimated nT for each pair of frames is not reliable as pointed in [97].

Also, the information from the whole video sequence has not been fully utilized.

Therefore, a suitable fusion scheme that can fuse available two-view estimates is

needed to achieve a robust estimate of nT .

In [81], a rank one constraint is applied to factorize a matrix, which stacks the

planar homographies between the reference frame and all the other frames, into

plane functions and camera motions. This is a good fit to our problem as a fusion

scheme. The only information that is needed other than the inter-frame homog-

raphy Hk is the infinite homography H∞
k for each pair of frames. As mentioned

before, for a distant plane the estimate to the camera rotation Rk is still accurate.

Thus the infinite homography H∞
k is computed as H∞

k = KkRkK1
−1 [40]. A block

matrix W is constructed by stacking all the transformed inter-frame homographies

Ĥk as in (5.11). By applying the constraint that W has rank at most 1, W can

be factored into the camera center vector [t̄k] and the ground plane surface normal
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nT using SVD:

W =




Ĥ2

Ĥ3

...

Ĥn




=




t̄2

t̄3

...

t̄n




nT , (5.11)

where Ĥk = λ−1H∞
k Hk − I3×3. The scale λ for Ĥk is computed from the double

eigenvalues of the planar homology H∞−1
k Hk.

Having the robust estimate of nT , we can use (5.10) to compute Hnew and then

the points on the object in the reference frame are warped to the desired viewpoint.

A cubic interpolation is used to get the final synthesis result. With the metadata

available, we can simply assume that the camera calibration matrix Knew = Kk

because mostly the desired image is in a comparable range of the available images,

which relaxes the requirement that the focal length f be constant throughout the

whole video sequence.

The advantages of the proposed method include (i) avoiding the degeneracy

in estimating the perspective projection relation across views. (ii) the desired

viewpoint [Rnew|tnew] is easy to be incorporated in the framework as shown in

(5.10). (iii) the rank one constraint fusion scheme can help to improve the ground

plane function estimation and view synthesis by using the information from the

whole video sequence. (iv) no dense point correspondences are needed for view

synthesis. (v) the computation is simple and fast. Refer to [112] for detail.

Two examples of the view synthesis results are shown in Fig. 5.12. In both

figures, the center image is the reference frame with the object inside the bounding

box, and the surroundings are the synthesized images w.r.t. different viewing

directions. As we can observe from the figures, the synthesized images are very
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Figure 5.12: View synthesis results. The center image is the reference frame with

the object inside the bounding box, and the surroundings are the synthesized

images corresponding to different viewing directions.

good in following the changing viewpoints although it is not easy to see the fine

details because of the large distance between the camera and the scene.

5.3.3 Experimental Results

The verification system was designed to operate non-interactively, but a graphical

display was created for testing and evaluation. Fig. 5.13 shows an example of

the graphic output for a typical trial. On the far left is the current query frame;

the query target is displayed at the top with the spatial and color models directly

below it. To the right of the query are the five learned models it is being compared

against. The novel views created by view synthesis are displayed at the top with

the spatial and color models directly below. At the bottom of the screen are the

spatial and color match scores for the current frame, and the cumulative likelihood

for the trial. The winning color match, spatial match and likelihood are highlighted

in green.
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Figure 5.13: Graphical display for monitoring the operation of the CID module.

The Query frame on the left is currently being compared against the five targets

on the right.

Several thousands trials were conducted to test the verification performance of

the proposed system. Each trial compared one query vehicle against five different

vehicle IDs. The system was given five learning messages, one for each of the five

known vehicle IDs, followed by a query message. In all cases the query vehicle

ID matched one of the five learned vehicle IDs. For each of the five matches, the

system returned a likelihood that the query vehicle was the same as the vehicle

it was matched against. If the highest likelihood was associated with the correct

vehicle ID, then the trial succeeded, otherwise it failed.

Trial parameters were chosen to mimic a real operational scenario. The five

vehicle IDs for each trial were randomly chosen from a pool of over 100, and

the query vehicle ID was randomly chosen from these five. A number of video

sequences, averaging approximately 1 second (30 frames) in length, were selected

in advance for each of the 100 vehicles in the pool. One of these sequences was
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Figure 5.14: The comparison of ROC curves for EO trials with color matching

only, spatial matching only and both.
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Figure 5.15: The comparison of ROC curves for IR trials with color matching only,

spatial matching only and both.
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Figure 5.16: The verfication performance scored after the specified number of

frames in the query message for both EO and IR imagery, which demonstrates the

improvement by using the temporal processing.
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randomly selected as the learning message for each of the five known targets. The

query sequence was selected from this set to have parameters consistent with a

10-second gap after the learning sequence, and modified to average about half a

second (14 frames) in length.

On visible band (EO) imagery, the system correctly matched the query vehicle

for 97.5% of 2289 trials. On IR imagery, the system correctly matched 95.0% of

1723 trials. To determine the individual contribution of each matcher, the same set

of trials were run under three conditions: color matcher only, spatial matcher only,

and both. Receiver Operating Characteristic (ROC) curves for each condition are

shown in Fig. 5.14 and Fig. 5.15 for EO and IR imagery respectively. A clear

distinction between the matchers is visible in the ROC curves for the EO imagery.

For IR imagery, the distinction is not as clear. Initially the color matcher performs

much better, most likely due to the typically lower resolution and lack of sharp

edges in IR imagery that are needed for the spatial matcher. Additionally, the

thermal characteristics, corresponding to color, do not change significantly over

the short time between learning and query, thus the color matcher can perform

well. However, glints and strong shadows do change over that short time, creating

phantom features that confuse the spatial matcher. Accommodating these is an

area for further research.

The advantage of temporal processing can be seen in Fig. 5.16. The same

EO trials described above were processed, but the results were scored after the

specified number of frames in the query message. Performance improves steadily

for the first five frames and then levels off. Additional frames provide no significant

improvement for EO imagery, but continue to gradually improve the performance

for IR imagery.
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Processing time for the system was measured on a 2.8GHz Pentium P4 running

Red Hat Linux. Average execution time is 3.35 seconds per trial for EO imagery

and 1.25 seconds per trial for IR. The longer time for the EO trials is a result of

warping three bands (red, green, and blue) to create a novel view instead of the

single band for IR imagery. Most of the time per trial was consumed during the

query process. Improvements in processing time are possible, making it very likely

that real-time processing can be achieved.

5.4 Summary and Future Work

We have described a two view tracking approach which uses the homography re-

lation between two views to handle occlusions. An adaptive appearance model is

used in a particle filter to accomplish single view tracking. We showed how to

robustly estimate the homography with the previous tracking results and how to

infer the correct transformation for the occluded view with the estimated homog-

raphy and the tracking result for the un-occluded view. Experimental results show

that the proposed multiple view tracking method can follow the target when it is

partially or fully occluded by an unknown object.

In addition, an end-to-end verification system for moving objects in airborne

video has been presented in this section. The object information is collected on the

fly from a short real-time learning sequence to avoid the requirement for prior train-

ing data. The components of the system have been described in detail, including

image normalization, exemplar selection, feature extraction, spatial matching, a

homography-based view synthesis method and temporal analysis. The key contri-

butions of novel view synthesis method and the integration of spatial and temporal

models have been demonstrated by the experimental results. Very good verifica-
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tion performance is achieved in thousands of trials for both EO and IR sequences

using the proposed system.

One problem encountered at the verification stage was that the vehicle was not

tightly segmented from the background. This caused the system to match back-

ground in addition to the vehicle itself. Moderate to severe illumination changes

also caused the performance to decrease. Our future work will integrate automatic

object detection and shadow removal modules into the system to make it more

robust. We will also conduct some experiments on simultaneous verification and

tracking from video to video for airborne sequences.
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Chapter 6

Conclusions and Future Research

In this dissertation, we have presented a number of view synthesis algorithms

from image and video to improve the object recognition performance for various

applications.

We first presented a complete framework combining the active image based

visual hull algorithm and a contour based body part segmentation technique for

a better synthesis and understanding of the human pose from a limited number

of available silhouette images. No 3D body model needs to be explicitly recon-

structed. Pose normalized silhouette images are generated using an active virtual

camera and an image based visual hull technique, with the silhouette turning func-

tion distance being used as the pose similarity measurement. In order to overcome

the inability for visual hull technique to reconstruct concave regions, we utilized a

contour-based human body part localization algorithm to segment the input silhou-

ette images into convex body parts, and then assembled the separately processed

body parts for a better visual hull reconstruction. Furthermore, these two com-

ponents improve each other for better performance through the correspondence

across viewpoints built via the inner distance shape context measurement.
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We then examined the most challenging scenarios in face recognition. That

is, to identify a subject from a test image that is acquired under different pose

and illumination condition from the only one training sample of this subject in

the database. Two cases on the lighting condition are considered. When the test

face image is taken under a single light source, we presented a pose-normalized

face synthesis approach on a pixel-by-pixel basis from a single view by exploiting

the bilateral symmetry of the human face. For a more general illumination con-

dition, we extended the spherical harmonics representation, which has proved to

be effective in modeling illumination variations for a fixed pose, to encode pose

information by utilizing the fact that 2D harmonic basis images at different poses

are related by close-form linear transformations. Very efficient face recognition

and synthesis algorithms were proposed based on the orthonormality of the linear

transformations.

Furthermore, we investigated a robust two view tracking problem for airborne

video. The homography relation induced by the dominant plane (ground plane) is

used to handle the structure degeneracy caused by the distance from the camera to

the object. We showed that when occlusion happens in one view, the inter-frame

transformation in the occluded view can be reliably inferred from the homography

and the tracking result in the un-occluded view. We also proposed an end-to-end

moving object verification system for airborne video, wherein a homography based

view synthesis algorithm was used to simultaneously handle the object’s changes

in aspect angle, depression angle, and resolution. Efficient integration of spatial

and temporal model matching assures the robustness of verification step.
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6.1 Suggestion for Future Research

Image/video based view synthesis has been an active research topic in computer vi-

sion for decades. Despite the recent progress, there are still many more interesting

research directions that need to be further investigated.

First, in almost all image based view synthesis techniques except volume carv-

ing methods, dense correspondence is needed to warp the image from the available

view to the desired view. Finding correspondence has long been a challenging fun-

damental problem for computer vision community. Various stereo algorithms have

been proposed. Most of them used the intensity-invariant assumption and few

considered the occlusion due to the viewpoint change. Recently, promising results

have been shown by using the 4 planes, 4 transitions stereo matching algorithm

described in [25]. The disparity map can be reliably built for a pair of images of the

same object taken under the same lighting condition, even with some occlusions.

We plan to further study this algorithm to make it work for images taken under

different lighting conditions by utilizing the bilateral symmetry between a given

image and its mirror image. In addition, we are in the process of extending this

stereo algorithm to build the disparity map for a pair of images at arbitrary pose,

where the epipolar lines are not necessarily the horizontal scanlines.

Secondly, temporal information has not been fully exploited in video based

view synthesis methods. Instead, these methods have been restricted to treating

each time instant sequentially and independently. For a moving object, since the

motion between the nearby frames is usually small, it is possible to generate the

virtual view using the motion information with less effort/time than to generate

it independently at each time instant. Therefore, it is beneficial to use motion

information to reduce the computation burden for video base view synthesis algo-
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rithms. We will take efforts towards efficient view synthesis techniques which fully

utilize the spatial/temporal information.

Finally, there are always empirical factors to be considered for each image/video

based view synthesis technique, depending on the specific object recognition ap-

plication it serves. For example, the shadows and severe illumination changes may

cause the virtual images generated from homography based view synthesis method

do not look like the images taken from the real scene, thus seriously degrading

the object verification performance; or the accuracy of the 2D-3D registration pro-

cedure may determine the quality of model-based image rendering results. View

synthesis techniques offer great help to boost the performance of object recognition

applications, and extra care must be paid for the related practical issues when we

deal with each specific view synthesis technique.

151



BIBLIOGRAPHY

[1] 3dfs-100 3 dimensional face space library (2002 3rd version). University of
Freiburg, Germany.

[2] http://www.cvg.cs.rdg.ac.uk/pets2001/pets2001-dataset.html.

[3] N. Ahuja and J. Veenstra. Generating octrees from object silhouettes in
orthographic views. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 11(2):137–149, Feb. 1989.

[4] E. Arkin, L. Chew, D. Huttenlocher, K. Kedem, and J. Mitchell. An ef-
ficiently computable metric for comparing polygonal shapes. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 13(3):209–216, Mar.
1991.

[5] S. Avidan and A. Shashua. Novel view synthesis by cascading trilinear ten-
sors. IEEE Transactions on Visualization and Computer Graphics, 4(4):293–
306, 1998.

[6] P. Barral, G. Dorme, and D. Plemenos. Visual understanding of a scene by
automatic movement of a camera. International Conference GraphiCon’99,
Moscow, Russia, Aug. 26 - Sep. 3 1999.

[7] R. Basri and D. Jacobs. Lambertian reflectance and linear subspaces. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 25(2):218–233,
Feb. 2003.

[8] P. Beardsley, P. Torr, and A. Zisserman. 3d model acquisition from ex-
tended image sequence. Proc. European Conference on Computer Vision,
Cambridge, UK, Volume 2:683–695, Apr. 1996.

[9] P. Belhumeur, J. Hespanha, and D. Kriegman. Eigenfaces vs. fisherfaces:
Recognition using class specific linear projection. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 19(7):711–720, Jul. 1997.

[10] P. Belhumeur and D. Kriegman. What is the set of images of an object under
all possible lighting conditions. Proc. Conference on Computer Vision and
Pattern Recognition, San Francisco, CA, pages 270–277, Jun. 1996.

152



[11] S. Belongie J. Malik and J. Puzicha. Shape matching and object recognition
using shape context. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 24(4) 509–522, Apr. 2002.

[12] B. Beyme. Face recognition under varying pose. Technical Report 1461, MIT
AI Lab, 1993.

[13] J. Black, T. Ellis, and P. Rosin. Multi view image surveillance and tracking.
Proc. the Workshop on Motion and Video Computing, Orlando, FL, pages
169–174, Dec. 2002.

[14] V. Blanz and T. Vetter. Morphable model for the synthesis of 3d faces. Proc.
SIGGRAPH, Los Angeles, CA, pages 187–194, Aug. 1999.

[15] V. Blanz and T. Vetter. Face recognition based on fitting a 3d morphable
model. IEEE Transactions on Pattern Analysis and Machine Intelligence,
25(9): 1063–1074, Sep. 2003.

[16] E. Borovikov and L. Davis. 3d shape estimation based on density driven
model fitting. Proc. 1st International Symposium on 3D Data Processing, Vi-
sualization and Transmission (3DPVT), Padova, Italy, pages 116–125, Jun.
2002.

[17] M. Brand. Shadow puppetry. Proc. International Conference on Computer
Vision, Corfu, Greece, pages 1237–1244, Sep. 1999.

[18] C. Castillo and D. Jacobs. Using stereo matching for 2-d face recognition
across pose. Proc. Conference on Computer Vision and Pattern Recognition,
Minneapolis, MN, Jun. 2007.

[19] P. Chang and J. Krumm. Object recognition with color co-occurrence his-
tograms. Proc. Conference on Computer Vision and Pattern Recognition,
Fort Collins, CO, pages 498–504, Jun. 1999.

[20] T. Chang, S. Gong, and E. Ong. Tracking multiple people under occlusion
using multiple cameras. Proc. British Machine Vision Conference, Cardiff,
UK, pages 566–575, Sep. 2002.

[21] G. Cheung, S. Baker, and T. Kanade. Shape-from-silhouette of articulated
objects and its use for human body kinematics estimation and motion cap-
ture. Proc. Conference Computer Vision and Pattern Recognition, Madison,
WI, pages 77–84, Jun. 2003.

[22] G. Cheung, S. Baker, and T. Kanade. Visuall hull alignment and refinement
across time: A 3d reconsturcion algorithm combing shape-from-silhouette
with stereo. Proc. Conference on Computer Vision and Pattern Recognition,
Madison, WI, pages 375–382, Jun. 2003.

153



[23] A. Chowdhury and R. Chellappa. Robust estimation of depth and motion
using stochastic approximation. Proc. International Conference on Image
Processing, Thessaloniki, Greece, pages 642–645, Oct. 2001.

[24] T. Cootes, G. Edwards, and C. Taylor. Active appearance models. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 23(6):681–685,
Jun. 2001.

[25] A. Criminisi, J. Shotton, A. Blake, C. Rother, and P. Torr. Efficient dense
stereo with occlusion for new view synthesis by four-state dynamic program-
ming. International Journal of Computer Vision, 71(1):89–110, Jan. 2007.

[26] L. Davis, E. Borovikov, R. Cutler, D. Harwood, and T. Hoprasert. Multi-
perspective analysis of human action. Proc. International Workshop on Co-
operative Distributed Vision, Kyoto, Japan, Nov. 1999.

[27] S. Dockstader and A. Tekalp. Multiple camera fusion for multi-object track-
ing. Proc. IEEE Workshop on Multi-Object Tracking, Vancouver, Canada,
pages 95–102, Jul. 2001.

[28] R. Dovgard and R. Basri. Statistical symmetric shape from shading for 3d
structure recovery of faces. Proc. European Conference on Computer Vision,
Prague, Czech Republic, pages 99–113, May 2004.

[29] C. Dyer. Foundations of Image Understanding. The Kluwer International
Series in Engineering and Computer Science, ISBN 0-7923-7457-6, 2001.

[30] J. Erickson, S. Harpeled, and D. Mount. On the least median square problem.
Discrete and Computational Geometry, pages 593–607, Dec. 2006.

[31] M. Fischler and R. Bolles. Random sample consensus: A paradigm for model
fitting with applications to image analysis and automated cartography. Com-
munication of the ACM, 24(6):381–395, 1981.

[32] D. Forsyth, S. Ioffe, and J. Haddon. Bayesian structure from motion. Proc.
International Conference on Computer Vision, pages 660–665, Sep. 1999.

[33] W. Freeman and J. Tenenbaum. Learning bilinear models for two-factor
problems in vision. Proc. Conference Computer Vision and Pattern Recog-
nition, San Juan, Puerto Rico, pages 554–560, Jun. 1997.

[34] A. Geoghiades, P. Belhumeur, and D. Kriegman. Illumination-based image
synthesis: Creating novel images of human faces under differing pose and
lighting. Proc. Workshop on Multi-View Modeling and Analysis of Visual
Scenes, Fort Collins, CO, pages 47–54, Jun. 1999.

154



[35] R. Green. Spherical harmonic lighting: The gritty details. Game Developers’
Conference, San Jose, CA, Mar. 2003.

[36] D. Guarino, B. Walls, and E. Miles, Confirmatory Identification of Targets in
Video, VIVID Automated Video Processing for Unmanned Aircraft, Edited
by T. Strat and L. Hollan, DARPA, 2005.

[37] Y. Guo, S. Hsu, Y. Shan, H. Sawhney, and R. Kumar. Vehicle fingerprinting
for reacquisition and tracking in videos. Conference Computer Vision and
Pattern Recognition, San Diego, CA, pages 761–768, Jun. 2005.

[38] S. Gupte, O. Masoud, R. Martin, , and N. Papanikolopoulos. Detection and
classification of vehicles. IEEE Transations on Intelligent Transportation
Systems, 3(1):37–47, Mar. 2002.

[39] I. Haritaoglu, D. Harwood, and L. S. Davis. Ghost: A human body part
labeling system using silhouettes. Proc. International Conference on Pattern
Recognition, Brisbane,Australia, pages 77–82, Aug. 1998.

[40] R. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision.
Cambridge University Press, 2000.

[41] D. Hoffman and W. Richards. Salience of visual parts. Cognition, 63(1):
29–78, Jan. 1997.

[42] T. Horprasert, Y. Yacoob, and L. Davis. Computing 3-d head orientation
from a monocular image sequence. Proc. International Conference on Auto-
matic Face and Gesture Recognition, Killington, VT, pages 77–82, 1996.

[43] N. Howe. Silhouette lookup for automatic pose tracking. IEEE Workshop on
Articulated and Nonrigid Motion, Washington DC, pages 15–22, Jun. 2004.

[44] N. Howe, M. Leventon, and W. Freeman. Bayesian reconstruction of 3d
human motion from single-camera video. Advances in Neural Information
Processing Systems, Volume 12, pages 820–826, 1999.

[45] W. Hu, T. Tan, L. Wang, and S. Maybank. A survey on visual surveillance
of object motion and behaviors. IEEE Transactions on Systems, Man and
Cybernetics, 34(3):334–352, Mar. 2004.

[46] T. Huang and A. Netravali. Motion and structure from feature correspon-
dences: A review. Proc. IEEE, 82(2):252–268, Feb. 1994.

[47] P. Huber. Robust Statistics. Wiley, 1981.

[48] T. Inui, Y. Tanabe, and Y. Onodera. Group Theory and its Applications in
Physics.

155



[49] M. Irani, P. Anandan, and M. Cohen. Direct recovery of planar-parallax
from multiple frames. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 24(11):1528–1534, Nov. 2002.

[50] D. Jacobs, P. Belhumeur, and R. Basri. Comparing images under variable
illumination. Proc. Conference on Computer Vision and Pattern Recognition,
Santa Barbara, CA, pages 610–617, Jun. 1998.

[51] A. Jain. Fundamentals of Digital Image Processing. Prentice-Hall, 1989.

[52] T. Jebara, A. Azarbayejani, and A. Pentland. 3-d structure from 2-d motion.
IEEE Signal Processing Magazine, 16(3): 66–84, May 1999.

[53] A. Jepson, D. Fleet, and T. El-Maraghi. Robust online appearance model for
visual tracking. Proc. Conference on Computer Vision and Pattern Recog-
nition, Kauai, HI, pages 415–422, Dec. 2001.

[54] B. Johansson. View synthesis and 3d reconstruction of piecewise planar
scenes using intersection lines between the planes. Proc. International Con-
ference on Computer Vision, Corfu, Greece, pages 54–59, Sep. 1999.

[55] S. Kang. A survey of image-based rendering techniques. Proc. SPIE 3641,
pages 2–16, 1999.

[56] G. Kitagawa. Monte carlo filter and smoother for non-gaussian nonlinear
state space models. Journal of Computational and Graphical Statistics, 5(1):
1–25, Jan. 1996.

[57] R. Koch, M. Pollefeys, and V. Van Gool. Multi viewpoint stereo from uncal-
ibrated video sequences. Proc. European Conference on Computer Vision,
Freiburg, Germany, pages 55–71, Jun. 1998.

[58] D. Kriegman, P. Belhumeur, and A. Georghiades. Shape and enlightenment:
Reconstruction and recognition under variable illumination. International
Symposium on Robotics Research, Snowbird, UT, pages 79–88, Oct. 1999.

[59] K. Kutulakos and C. Dyer. Recovering shape by purposive viewpoint adjust-
ment. International Journal of Compuater Vision, 12(2-3): 113–136, Apr.
1994.

[60] K. Kutulakos and S. Seitz. A theory of shape by space carving. International
Journal of Compuater Vision, 38(3): 199–218, Jun. 2000.

[61] A. Laurentini. The visual hull concept for silhouette-based image under-
standing. IEEE Transactions on Pattern Analysis and Machine Intelligence,
16(2): 150–162, Feb. 1994.

156



[62] H. Ling and D. Jocobs. Shape classification using the inner-distance. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 29(2): 286–299,
Feb. 2007.

[63] A. Lipton, H. Fujiyoshi, and R. Patil. Moving target classfication and track-
ing from real-time video. IEEE Workshop Applications of Computer Vision,
Princeton, NJ, pages 8–14, Nov. 1998.

[64] J. Liu and R. Chen. Sequential monte carlo for dynamic systems. Journal
of the American Statistical Association, 93(443): 1031–1041, 1998.

[65] D. Lowe. Object recognition from local scale-invariant features. Proc. Inter-
national Conference on Computer Vision, Corfu, Greece, pages 1150–1157,
Sep. 1999.

[66] E. Marchand and N. Courty. Image-based virtual camera motion strategies.
Proc. Graphics Interface Conference, Montreal, Quebec, pages 69–76, May
2000.

[67] W. Matusik, C. Buehler, and L. McMillan. Polyhedral visual hulls for
real-time rendering. Proc. Eurographics Workshop on Rendering, Manch-
ester,UK, pages 115–125, Jun. 2001.

[68] W. Matusik, C. Buehler, R. Raskar, S. J. Gortler, and L. McMillan. Image-
based visual hulls. Proc. SIGGRAPH, New Orleans, LA, pages 369–374, Jul.
2000.

[69] L. McMillan. An image-based approach to three-dimensional computer
graphics. Ph. D Dissertation, University of North Carolina, 1997.

[70] G. Mori and J. Malik. Estimating human body configurations using shape
context matching. Proc. European Conference on Computer Vision, Copen-
hagen, Denmark, pages 666–680, May 2002.

[71] W. Niem and M. Steinmetz. Camera viewpoint control for the automatic
reconstruction of 3d objects. Proc. International Conference on Image Pro-
cessing, Lausanne, Switzerland, pages 655–658, Sep. 1996.

[72] A. Pentland, B. Moghaddam, and T. Starner. View-based and modular
eigenspaces for face recognition. Proc. Conference on Computer Vision and
Pattern Recognition, Seattle, WA, pages 84–91, Jun. 1994.

[73] M. Potmesil. Generating octree models of 3d objects from their silhouettes
in a sequence of images. Computer Vision, Graphics and Image Processing,
40(1): 1–20, Jan. 1987.

157



[74] L. Rabiner. A tutorial on hidden markov models and selected applications
in speech recognition. Proc. of IEEE, 77(2): 257–286, Feb. 1989.

[75] R. Ramamoorthi. Analytic pca construction for theoretical analysis of light-
ing variability in images of a lambertian object. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 24(10): 1322–1333, Oct. 2002.

[76] R. Ramamoorthi and P. Hanrahan. A signal processing framework for re-
flection. ACM Transactions on Graphics, 24(4): 1004–1042, Oct. 2004.

[77] T. Raviv and A. Shashua. The quotient image: Class based re-rendering
and recognition with varying illuminations. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 23(2): 129–139, Feb. 2001.

[78] D. Roberts and A. Marshall. Viewpoint selection for complete surface cover-
age of three dimentional objects. Proc. British Machine Vision Conference,
Southampton, UK, pages 740–750, Sep. 1998.

[79] R. Ronfard, C. Schmid, and B. Triggs. Learning to parse pictures of people.
Proc. European Conference on Computer Vision, Copenhagen, Denmark,
pages 700–714, May 2002.

[80] R. Rosales and S. Sclaroff. Specialized mappings and the estimation of body
pose from a single image. IEEE Workshop on Human Motion, Austin, TX,
pages 19–24, Dec. 2000.

[81] C. Rother, S. Carlsson, and D. Tell. Projective factorization of planes and
cameras in multiple views. Proc. International Conference on Pattern Recog-
nition, Quebec City, Canada, pages 737–740, Aug. 2002.

[82] T. Ryan. Mstar indexing final report. Prepared for DARPA and AFRL,
Contract F33615-95-C-1642, Wright-Patterson Air Force Base, 2000.

[83] B. Scassellati, S. Alexopoulos, and M. Flickner. Retrieving images by 2d
shape: A comparison of computation methods with human perceptual jude-
ments. Storage and Retrieval for Image and Video Databases (SPIE), pages
2–14, 1994.

[84] S. Seitz and C. Dyer. Physically-valid view synthesis by image interpolation.
Proc. Workshop on Representations of Visual Scenes, Cambridge, MA, pages
18–25, Jun. 1995.

[85] S. Seitz and C. Dyer. View morphing. Proc. SIGGRAPH, New Orleans, LA,
pages 21–30, Aug. 1996.

158



[86] A. Senior, A. Hampapur, Y. Tian, L. Brown, S. Pankanti, and R. Bolle.
Appearance models for occlusion handling. 2nd IEEE Workshop on Perfor-
mance Evaluation of Tracking and Surveillance, Kauai, HI, Dec. 2001.

[87] G. Shakhnarovich, L. Lee, and T. Darrell. Integrated face and gait recogni-
tion from multiple views. Proc. Conference on Computer Vision and Pattern
Recognition, Kauai, HI, pages 439–446, Dec. 2001.

[88] G. Shakhnarovich, P. Viola, and T. Darrell. Fast pose estimation with param-
eter sensitive hashing. Proc. International Conference on Computer Vision,
Nice, France, Oct. 2003.

[89] H. Sidenbladh, M. Black, and D. Fleet. Stochastic tracking of 3d human
figures using 2d image motion. Proc. European Conference on Computer
Vision, Dublin, Ireland, pages 702–718, Jun. 2000.

[90] T. Sim, S. Baker, and M. Bsat. The cmu pose, illumination, and expression
(pie) database of human faces. Proc. International Conference on Automatic
Face and Gesture Recognition, Washington DC, pages 46–51, May 2002.

[91] T. Sim and T. Kanade. Illuminating the face. Tech. Report CMU-RI-TR-
01-31, Robotics Institute, CMU, 2001.

[92] J. Sivic, F. Schaffalitzky, and A. Zisserman. Object level grouping for video
shots. Proc. European Conference on Computer Vision, Prague, Czech Re-
public, pages 85–98, May, 2004.

[93] S. Soatto and R. Brockett. Optimal structure from motion: Local ambiguities
and global estimation. Proc. Conference on Computer Vison and Pattern
Recognition, pages 282–288, Jun. 1998.

[94] R. Szeliski. Rapid octree construction from image sequences. Compuater Vi-
sion, Graphics and Image Processing: Image Understanding Archive, 58(1):
23–32, Jul. 1993.

[95] C. Taylor. Reconstruction of articulated objects from point correspondences
in a single uncalibrated image. Computer Vision and Image Understanding,
80(3): 349–363, Dec. 2000.

[96] P. Torr, A. Fitzgibbon, and A. Zisserman. The problem of degeneracy in
structure and motion recovery from uncalibrated image sequences. Interna-
tional Journal of Computer Vision, 32(1): 27–44, Aug. 1999.

[97] W. Triggs. Autocalibration from planar scenes. Proc. European Conference
on Computer Vision, Freiburg, Germany, pages 89–105, Jun. 1998.

159



[98] P. Vazquez, M. Feixas, M. Sbert, and W. Hendrich. Viewpoint selection
using viewpoint entropy. Proc. Vision, Modeling, and Visualization, pages
273–280, 2001.

[99] T. Vettor, M. Jones, and T. Poggio. A bootstrapping algorithm for learn-
ing linear models of object classes. Technical Report, Artificial Intelligence
Laboratory and Center for Biological and Computer Learning, MIT, 1997.

[100] T. Vettor and T. Poggio. Linear object classes and image synthesis from a
single example image. IEEE Transactions on Patter Analysis and Machine
Intelligence, 19(7): 733–742, Jul. 1997.

[101] Y. Wexler. Tensor methods for vision and graphics with applications to
dynamic morphing. Ph. D Dissertation, University of Maryland, College
Park, 2000.

[102] Y. Wu, T. Yu, and G. Hua. Tracking appearances with occlusions. Proc. Con-
ference on Computer Vision and Pattern Recognition, Madison, WI, pages
785–795, Jun. 2003.

[103] J. Xiao, S. Baker, I. Matthews, and T. Kanade. Real-time combined 2d+3d
active appearance models. Proc. Conference on Computer Vision and Pat-
tern Recognition, Washington DC, pages 535–542, Jun. 2004.

[104] Z. Yue and R. Chellappa. Pose-Invariant view synthesis using image-based
visual hull. Proc. 7th Joint Conf. on Info. Sciences, pages 781–784, Cary,
NC, Sep. 2003.

[105] Z. Yue and R. Chellappa. Pose-normalized view synthesis from silhouettes.
IEEE Intl. Conf. on Acoustics, Speech, and Signal Processing, Philadelphia,
PA, Mar. 2005.

[106] Z. Yue, L. Zhao and R. Chellappa. View synthesis of articulating humans
using visual hull. Proc. Intl. Conf. on Multimedia and Expo , Volume 1,
pages 489-492, Baltimore, MD, Jul. 2003.

[107] Z. Yue and R. Chellappa. View synthesis for articulated humans from sil-
houettes. IEEE Transactions on Multimedia, under review.

[108] Z. Yue and R. Chellappa. Pose-normalized view synthesis of a symmetric
object using a single image. Proc. 6th Asian Conference on Computer Vision,
Jeju City, South Korea, pages 915–920, Jan. 2004.

[109] Z. Yue, W Zhao and R. Chellappa. Pose-encoded spherical harmonics for
robust face recognition using a single image. IEEE International Workshop
on Analysis and Modeling of Faces and Gestures, Beijing, China, Oct. 2005.

160



[110] Z. Yue, W Zhao and R. Chellappa. Pose-encoded spherical harmonics for
robust face recognition using a single image. EURASIP Journal on Advances
in Signal Processing, to appear, Jan. 2008.

[111] Z. Yue, S Zhou and R. Chellappa. Robust two-camera visual tracking with
homography. IEEE Intl. Conf. on Acoustics, Speech, and Signal Processing,
Montreal, Canada, May, 2004.

[112] Z. Yue and R. Chellappa. Synthesis of novel views of moving objects in
airborne video. Proc. British Machine Vision Conference, Oxford, UK, pages
290–299, Sep. 2005.

[113] Z. Yue, D. Guarino and R. Chellappa. Moving Objects verification in air-
borne video. IEEE International Conference on Computer Vision System,
New York, NY, Jan. 2006.

[114] Z. Yue, D Guarino and R. Chellappa. Moving objects verification in airborne
video. IEEE Transactions on Circuits and Systems for Video Technology,
under review.

[115] L. Zhang and D. Samaras. Face recognition under variable lighting using har-
monic image examplars. Proc. Conference on Computer Vision and Pattern
Recognition, Madison, WI, pages 19–25, Jun. 2003.

[116] L. Zhang, S. Wang, and D. Samaras. Face recognition from a single image
under arbitrary unknown lighting using spherical harmonics. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 28(3): 351–363, Mar.
2006.

[117] Z. Zhang. A flexible new technique for camera calibration. Technical Report,
Microsoft Research, 1998.

[118] L. Zhao. Dressed human modeling, detection, and parts localization. Ph. D
Dissertation, Carnegie Mellon University, 2001.

[119] W. Zhao and R. Chellappa. Sfs based view synthesis for robust face recogni-
tion. Proc. International Conference on Automatic Face and Gesture Recog-
nition, Grenoble, France, pages 285–292, 2000.

[120] W. Zhao and R. Chellappa. Symmetric shape-from-shading using self-ratio
image. International Journal of Computer Vision, 45(1): 55–75, Oct. 2001.

[121] W. Zhao, R. Chellappa, J. Phillips, and A. Rosenfeld. Face recognition: A
literature survey. ACM Computing Surveys, 35(4): 399–458, 2003.

161



[122] Q. Zheng and R. Chellappa. Estimation of illumination direction, albedo, and
shape from shading. IEEE Transaction on Pattern Analysis and Machine
Intelligence, 13(7): 680–702, Jul. 1991.

[123] S. Zhou, R. Chellappa, and D. Jacobs. Characterization of human faces under
illumination variations using rank, integrability, and symmetry constraints.
Proc. European Conference on Computer Vision, Prague, Czech Republic,
pages 588–601, May 2004.

[124] S. Zhou, R. Chellappa, and B. Moghaddam. Visual tracking and recognition
using appearance-based modeling in particle filters. IEEE Transactions on
Image Processing, Vol. 11, pages 1491–1506, Nov. 2004.

162


