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Object recognition is one of the most important and successful applications in
computer vision community. The varying appearances of the test object due to
different poses or illumination conditions can make the object recognition problem
very challenging. Using view synthesis techniques to generate pose-invariant or
illumination-invariant images or videos of the test object is an appealing approach
to alleviate the degrading recognition performance due to non-canonical views or
lighting conditions.

In this thesis, we first present a complete framework for better synthesis and
understanding of the human pose from a limited number of available silhouette
images. Pose-normalized silhouette images are generated using an active virtual

camera and an image based visual hull technique, with the silhouette turning



function distance being used as the pose similarity measurement. In order to
overcome the inability of the shape from silhouettes method to reconstruct concave
regions for human postures, a view synthesis algorithm is proposed for articulating
humans using visual hull and contour-based body part segmentation. These two
components improve each other for better performance through the correspondence
across viewpoints built via the inner distance shape context measurement.

Face recognition under varying pose is a challenging problem, especially when
illumination variations are also present. We propose two algorithms to address this
scenario. For a single light source, we demonstrate a pose-normalized face synthesis
approach on a pixel-by-pixel basis from a single view by exploiting the bilateral
symmetry of the human face. For more complicated illumination condition, the
spherical harmonic representation is extended to encode pose information. An
efficient method is proposed for robust face synthesis and recognition with a very
compact training set.

Finally, we present an end-to-end moving object verification system for airborne
video, wherein a homography based view synthesis algorithm is used to simultane-
ously handle the object’s changes in aspect angle, depression angle, and resolution.
Efficient integration of spatial and temporal model matching assures the robustness
of the verification step. As a byproduct, a robust two camera tracking method us-
ing homography is also proposed and demonstrated using challenging surveillance

video sequences.
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Chapter 1

Introduction

1.1 Motivation

Object recognition is one of the most important and successful applications in
computer vision. It is usually stated in the following form: Given a database of
training images (sometimes called a gallery set, or gallery images), the task of
object recognition is to recognize the object(s) in an incoming test image. Typi-
cally the training images in the database are obtained under controllable environ-
ments, under standard pose and illumination. In contrast, the test image may be
acquired in uncontrolled environments with different poses and illumination con-
ditions from the training images. The varying appearances of the test object can
make the recognition very challenging, and significantly degrade the recognition
performance. Therefore, a canonical view (e.g., the frontal view for face recogni-
tion, or the side view for gait recognition) or a standard illumination condition
(e.g., the frontal point light source) for the images or videos of the test object is
often required in existing recognition algorithms. However, these images or videos

are usually not available in practical applications.



The most direct method to handle this scenario is to build a 3D model of the
test object and generate the novel image at the same pose or under the same
illumination condition as the training images. The problem of building 3D rep-
resentations from a video sequence (or several images from different viewpoints),
known as structure from motion problem, has been studied for more than twenty
years. Methods using flows of various kinds (optical, normal and image), discrete
features (points, lines and curves) have been considered. When frames from a sin-
gle camera are used, one obtains a relative depth map from which novel views can
be generated; estimates of absolute depth values can be obtained when multiple
cameras are used. Reviews and comparisons of different Structure from Motion
(SfM) methods can be found in [23,46,52]. Although many algorithms have been
developed, few give satisfactory performance in real applications. To develop ac-
ceptable estimates of 3-D structure, the following issues have to be considered:
observation noise (noise present in token correspondence or in computing opti-
cal flow), feature occlusion, motion/structure recovery ambiguities, mixed domain
sequences having both small and large baselines and mismatched tokens and/or
independently moving objects in the observed image frames. Being able to handle
these issues is critical for producing practical structure recovery algorithms. Al-
though recently, elegant methods have been reported in [32,93], much more needs
to be done in addressing these issues. Another critical issue in developing practical
StfM algorithms is accurate camera calibration, which itself poses some challenging
issues [101,117].

For some applications, it is not always necessary to explicitly reconstruct the
3D shape of the object being observed. Alternatively, we are more interested in

synthesizing the pose-invariant or illumination-invariant images/videos of the test



object using image rendering techniques. It provides an appealing approach to
alleviate the degrading recognition performance due to test images acquired in

non-canonical views or lighting conditions.

1.2 Background on View Synthesis and Image
based Rendering

View synthesis is the technique of visualizing and manipulating the appearance
of an object for a given viewing direction from several existing viewpoints. The
traditional approach for generating virtual views of an object or a scene is to ren-
der directly from an appropriately constructed 3D model. The 3D model can be
produced using a CAD modeler or from real data. More recently, image-based
rendering (IBR) has become an emerging and competing rendering paradigm. In
contrast to the traditional geometry-based rendering, IBR techniques rely on inter-
polation using the original set of input images, or pixel re-projection from source
images onto the target image in order to produce a novel view. A significant
advantage of IBR is that the speed of rendering is independent of the scene com-
plexity. Given an observing direction, the IBR technique is able to synthesize the
corresponding view of the object without recovering its 3D structure.

IBR techniques are classified into four distinct categories in [55]: non-physically
based image mapping, mosaicing, interpolation from dense sample, and geometrically-
valid pixel re-projection, wherein mosaicing and interpolation from dense sample
are not our goal in interactive rendering. Non-physically based image mapping uses
a training set of specific kinds of images to produce novel views, without consid-

ering 3D geometry in the pixel location computation. It was shown in [99, 100]



that for linear object classes, linear transformations can be learned exactly from
a basis set of 2D prototypical views. Geometrically-valid pixel re-projection is a
more attractive method since it uses a relatively small number of input images and
does not need a training set. With multi view geometry constraints, the change
of each pixel location from the reference view to the desired view is determined
in a predictable way, which can be described by a 3D warping equation [84, 85],
a homography [54], or a trilinear tensor [5]. The trilinearities, which can be rep-
resented by a trilinear tensor, provide a general warping function from reference
images to novel synthesized images governed directly by the parameters of the
virtual camera. In [5], Avidan et al. derived a tensor operator that describes the
transformation from a given tensor of three views to a novel tensor of a new config-
uration of three views. The desired virtual view can then be created using this new
trilinear tensor. The illumination-based image synthesis method in [58], which does
not require the determination of point or line correspondences, can synthesize not
only novel viewpoints, but also novel illuminations conditions. These approaches
require that views must often be close enough so that correspondences across these
views are easy to establish. Also correspondences must be maintained over many
views which spans large changes. An alternative approach is based on constructing
the volumes or surfaces in 3D space that are consistent with input images. The
most common method to represent this volume is voxels which can be encoded
with a space-efficient octrees technique [94]. Given a set of silhouette images, a
generalized 3D cone within which the object must lie can be reconstructed using
shape from silhouette techniques [3,73]. When the input images have additional
photometric information other than the silhouettes, shape from photo-consistency

methods [8,57] can be used to improve the 3D reconstruction process. The space



carving algorithm [60] uses a multi-plane-sweep approach to remove the non-photo-
consistent voxels to guarantee that the remaining shape is the photo hull. These
methods generally depend on calibrated cameras. A detailed review of volumetric

scene reconstruction from multiple views may be found in [29].

1.3 Thesis Overview and Contribution

In this thesis, we study how view synthesis technique can be used to boost the
performance of various object recognition applications.

Human activity (walking, carrying, throwing, etc.) carries much information
which can be used for recognition or (suspicious) activity analysis applications.
In order to achieve good performance for these applications, a monocular video
sequence is usually not enough for recognizing arbitrary human activities due to
possible acquisition in non-canonical view or self-occlusion. For example, face and
gait are often used as biometric signature for human identification. Usually face
recognition needs the frontal view of the human face, while gait recognition re-
quires the side view of the human silhouette. If the person does not walk parallel
to the image plane, the gait recognition rate will degrade seriously. Similarly, if
there is no frontal face images in the test video, the face recognition algorithm
will also have poor performance. A well controlled multi camera environment not
only has a larger coverage range and provides more information than a single cam-
era environment, but also makes it possible to render a novel image (video) for a
desired viewpoint, or even reconstruct the 3D shape. In Chapter 2, we propose
a complete framework which processes the images/video from a multi-camera en-
vironment, and produces a pose-invariant video sequence for human recognition

applications and body part segmentation results for a better understanding of the



human posture. It combines the active image based visual hull (IBVH) algorithm
and a contour-based human body part segmentation technique. They improve each
other for better performance by establishing the correspondence across viewpoints
built via the inner distance shape context (IDSC) measurement proposed in [62].

For decades, face recognition has been one of the most important applications
of image analysis and understanding. Face recognition under varying pose is a
challenging problem, especially when illumination variations are also present. We
propose two approaches in Chapter 3 and Chapter 4 in order to improve the recog-
nition performance degradation caused by the pose and illumination variations.
Specifically, when the test face image is taken under a single light source, we pro-
pose in Chapter 3 a pose-normalized face synthesis approach from a single view
by exploiting the bilateral symmetry of the human face. We show that given illu-
mination and pose estimation and the required correspondences, the mirror view
under the same illumination as the original view can be determined on a pixel-
by-pixel basis using the original view and its mirror image. Consequently the
pose-normalized view under the given illumination can be generated using view
morphing techniques.

For more complicated illumination conditions, we propose to address one of
the most challenging scenarios in face recognition. That is, to identify a subject
from a test image that is acquired under different pose and illumination condition
from the only one training sample of this subject in the database. For example,
the test image could be semi-frontal and under multiple lighting sources while
the corresponding training image is frontal under a single lighting source. Under
the assumption of Lambertian reflectance, the spherical harmonics representation

has proved to be effective in modeling illumination variations for a fixed pose. In



Chapter 4, we extend the spherical harmonics representation to encode pose in-
formation. More specifically, we utilize the fact that 2D harmonic basis images at
different poses are related by close-form linear transformations, and give a more
convenient transformation matrix to be directly used for basis images. An immedi-
ate application is that we can easily synthesize a different view of a subject under
arbitrary lighting conditions by changing the coefficients of the spherical harmonics
representation. A more important application of this algorithm is an efficient face
recognition method, based on the orthonormality of the linear transformations, for
addressing the above-mentioned challenging scenario. Thus we directly project a
non-frontal view test image onto the space of frontal view harmonic basis images.
The impact of some empirical factors due to the projection is embedded in a sparse
warping matrix, and we prove that the recognition performance does not deterio-
rate after warping the test image to the front view. Very good recognition results
are obtained using this method for both synthetic and challenging real images.
Recently, analysis of airborne surveillance videos has drawn extensive attention
for both military and civilian applications, e.g. UAVs and police video. Target
tracking and object verification are two important problems for most of the air-
borne surveillance video. When the object of interest is at a great distance to
the camera (e.g., the vehicle in the airborne video sequence), its depth-relief is
small compared to the distance between the sensor and the object. Therefore, it
is difficult to reliably build the 3D structure of the object and perform tracking
or verification. However, in this case, it is reasonable to assume that the observed
object moves on a dominant plane (the ground plane) which induces a homography
relation between two views. In Chapter 5, we first present a robust two camera

tracking method which handles occlusions using the homography between the two



views. An adaptive appearance model is incorporated in Sequential Monte Carlo
(SMC) framework to accomplish the single view tracking. Correct transformation
of the target in the occluded view can be inferred from the homography and the
tracking result of the un-occluded view. We then present an end-to-end verifica-
tion system for moving objects in airborne video. Lacking prior training data, the
object information is collected on the fly from a short real-time learning sequence.
Using a sample selection module, the system selects samples from the learning
sequence and stores them in an exemplar database. To handle appearance change
due to potentially large aspect angle variations, a homography-based view synthe-
sis method is used to generate a novel view of each image in the exemplar database
at the same pose as the query object in each frame of a query sequence. A spatial
match score is obtained using a Distance Transform to compare the novel view and
query object. After looping over all query frames, the set of match scores is passed
to a temporal analysis module to examine the behavior of the query object, and
calculate a final likelihood.

Finally, we draw conclusions and discuss some possible future directions in

Chapter 6.



Chapter 2

View Synthesis for Articulating

Human Using Image-based Visual

Hull

Silhouette images from multiple views provide much information on the pose and
activity of a person being observed, and can be used in various applications. In the
absence of required number of cameras, the articulated human pose analysis from
silhouettes can be very ambiguous. In this chapter, we propose a complete frame-
work for a better synthesis and understanding of the human pose from a limited
number of available silhouette images [107]. It combines an active IBVH algorithm
and a contour based body part segmentation technique, and does not reconstruct
the 3D shape of the subject. Instead of solving a non-linear optimization problem,
we derive a simple, approximate algorithm to decide the extrinsic parameters of a
virtual camera. By doing so, we are able to synthesize the turntable image collec-
tion of the person using the IBVH algorithm by actively moving the virtual camera

on a properly computed circular trajectory around the person. Using the turning



function distance as the silhouette similarity measurement, this approach can be
used to generate the desired pose-normalized images for recognition applications.
In order to overcome the inability of the visual hull (VH) method to reconstruct
concave regions, we propose a contour-based human body part localization algo-
rithm to segment the available and synthesized silhouette images into convex body
parts. The body parts in the virtual view are separately generated from the cor-
responding body parts in the input views and then assembled together for a more
accurate VH reconstruction. Furthermore, as the turntable image collection is ob-
tained, it helps to improve the body part segmentation and identification process.
By using the inner distance shape context (IDSC) measurement, we are able to
build the correspondence between the contours taken from two different viewpoints
which are not too far from each other, and therefore estimate the body part lo-
cations more accurately from a synthesized view where we can localize the body
part more confidently. Experiments show that the proposed algorithm can greatly
improve the body part segmentation and hence the shape reconstruction results.

Fig 7?7 shows the relationship among the components of the system.

2.1 Background and Previous Work

A significant body of work on human pose analysis from the 2D projections exists
in the literature. In one type of approach, 3D pose can be efficiently recovered
from the 2D video sequence [79,95] by assuming some specific features, e.g. the
image locations of the center of each body joint, can be reliably detected and a
generic model of the human body articulation is available. Based on a training
set of synthesized motion capture data, Howe et al [44] recover the 3D pose from

the detected feature locations using a Bayesian learning framework. In [70], a

10



Active image
based visual
hull

Correspondence
ACTOSS V1eWs

using IDSC

Contour based
human body
part segmentation

Better shape
reconstruction

Figure 2.1: The relationship among the components of the proposed system.

[ o

Desired

»
Reference 2

Figure 2.2: The formulation of image based visual hull.

11



(b) synthesized silhouette

(c) input images (d) synthesized image
Figure 2.3: An example of IBVH:(a) the silhouette images observed from four
static cameras. (b) The rendered silhouette image for a novel view obtained with
IBVH. (¢) The original images captured from the four static cameras. (d) The

corresponding synthesized texture-mapped image for the novel view.
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shape context descriptor is used to estimate the feature locations against a set
of training images with pre-marked features. The 3D pose is then reconstructed
using the algorithm proposed in [79]. In [80], the mapping of a silhouette to 3D
pose is learned using multi-view training data. These techniques were successful,
but they mainly depend on reliable detection of feature (joint) locations. Another
type of approach directly learns the 3D pose from image measurements. In [17], a
dynamical manifold of human body configurations represented by a Hidden Markov
Model is learned using entropy minimization. Shakhnarovich et al [88] propose
Parameter-Sensitive Hashing, which finds approximate neighbors in time sublinear
in the number of examples, to rapidly find relevant examples in a large database of
training images and estimate the articulated human body pose using a local model
learned from those examples.

Shape from Contours (SFC) technique, which approximates the shape of an
object using silhouette images, has been an important and active research topic in
computer vision for over two decades. Estimating 3D shape using SFC has many
advantages. Silhouettes are readily and easily obtainable and the implementation
of the SFC algorithms is generally straightforward. As one of the most important
methods in SFC, Visual Hull (VH) [61] construction provides an upper bound
on the shape of the object. The VH of an object is the intersection of all the
extruded cone-like shapes that result from back-projecting the silhouettes in all
views. Hence, VH can be obtained by volume carving. It is possible to reduce
the computation of VH to 2D operations since it contains only points that project
onto the silhouettes. Image based visual hull (IBVH) [68] is a an effective and
fast method to compute the VH and view synthesis. It is shown that for each

pixel in the desired view, the epipolar line in each input view is intersected with

13



the contour approximation, then the intersected 2D line segment is projected back
to 3D space to form the VH. IBVH is a view dependent algorithm. It ensures
the correctness of the generated image for the desired viewpoint (with the epipolar
constraints), with no need to explicitly build the VH in 3D space. Figure 2.2 shows
how IBVH is formulated. The algorithm is able to render a desired view of n? pixels
in O(kn?) where k is the number of input views. After the VH is constructed,
its surface is texture mapped using the weighted sum of intensity values in the
input images [67]. Considering the visibility during the texture mapping process,
an occlusion-compatible warping ordering scheme [69] is used to solve the object
occlusion problem. An advantage of the IBVH technique is its tradeoff between
accuracy and efficiency. With the widely-positioned views as inputs, IBVH allows
us to produce the virtual view without finding the wide baseline correspondence.
It also provides information about the object’s 3D shape and location. Besides,
since the VH is formed by volume carving, the noise from input images is greatly
reduced in the intersecting process.

Researchers have proposed various methods to accomplish 3D reconstruction
from silhouettes [21,22] by utilizing the fact that the intersection of the generalized
cones associated with a set of cameras define a volume of scene space containing
the object. However, most silhouette-based reconstruction encloses the true volume
and only approximates the true 3D shape, depending on the number of views, the
positions of the viewpoints, and the complexity of the object. In particular, the
concave patches are not observable in any silhouette. Fig 2.3 shows an example
of view synthesis with IBVH. We can observe from Fig 2.3 that the person stands
with a 3D concave posture which is formed by the stretching arms and the torso.

Although the rendered silhouette image shown in Fig 2.3 (b) is correct due to the
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fact that human eyes can be fooled into perceiving convex and concave regions
with only silhouette images, the error coming from the concave regions can be
easily observed on the texture-mapped chest part in Fig 2.3 (d). [61] stated that
the VH of an object depends not only on the object itself but also on the region
allowed to the viewpoint. The external visual hull is related to the convex hull,
and the internal visual hull can not be observed from any viewpoint outside the

convex hull.

2.2 Pose Normalized View Synthesis from Sil-
houettes

The varying appearances due to different poses can make the human recognition
problem very challenging. Some promising results have been reported for inte-
grated gait and face recognition from multiple views [87]. A strong assumption
they made is that the person is moving forward. Under this assumption, the per-
son’s motion trajectory is easy to estimate and the virtual camera can be placed
accordingly. This approach will not work if the motion trajectory is hard to esti-
mate, or not available (e.g., turning around).

With IBVH technique and an active virtual camera, images from different view-
points can be generated to give us a better understanding of the object. In this
section, we show how to generate a collection of the object’s images (named the
turntable image collection) which are captured by a camera moving around the
object, with the optical axis parallel to the plane that the object stands on. Using
a small number of widely-placed views as input, the turntable image collection can

be rendered quickly and efficiently with the IBVH technique [104]. Using this syn-
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Figure 2.4: The coordinate system being used coincides with the world coordinate
system, so the trajectory of the virtual camera should be the dotted circle C' which

is parallel to the X-Z plane.

thesized image collection, we are able to produce a pose-invariant video sequence
by using the turning function distance [43] as the similarity measurement of the

silhouette images [105].

2.2.1 Turntable Image Collection Rendering With IBVH

We propose to render the turntable image collection captured by a virtual camera
moving around the person, with the optical axis parallel to the plane on which the
person is in a standing position. We derive a method to align the camera calibration
coordinate system and the world coordinate system if they do not coincide with
each other, with which the virtual camera’s position on the trajectory can be
accurately decided.

In order to generate the turntable image collection, we have to move a virtual

16



camera along a properly computed circular trajectory on the view sphere, where
the view sphere of an object is a sphere which is centered at the object and has a
fixed radius [6]. Assuming that the virtual camera’s intrinsic parameters are known
(they can be assumed same as the available real cameras’ parameters), its extrinsic
parameters at each position on the circular trajectory needs to be determined. We
use the same coordinate system as the one in which the real cameras are calibrated,
except that the origin of the coordinate system is set as the 3D centroid O of the
computed VH. Apparently, this is not a static coordinate system because the origin
changes with the centroid of the VH from frame to frame. All the world coordinates
are mapped to this coordinate system. Here the world coordinate system refers to
the one with Y-axis perpendicular to the ground plane. Suppose we start from the
initial position of the virtual camera at P(X,,Y,, Z,), the view sphere is set up
around O with radius R = ||P — OJ|. The extrinsic parameters to be determined
include the translation vector [T}, T,,T,] and the rotation angles [¢,6,v] (pitch,
yaw and roll, respectively) around the X, Y and Z-axes respectively.

There are two cases to be considered. If the real cameras are calibrated in a
coordinate system which coincides with the world coordinate system, resulting in
the X-Z plane being parallel to the ground plane, then the virtual camera’s motion
trajectory is a circle parallel to the X-Z plane, as the dotted circle C' shown in Fig
2.4. This case is trivial. Starting from the initial position P, the virtual camera’s
circular trajectory is centered at (0,Y},0), and with radius r = \/WYPQ. Since
the circle is parallel to the X-Z plane, Y,, ¢ and ¢ do not change at each position
along the circle. Given 6, we can uniquely determine X and Z coordinates if r is
fixed. Hence, 0 is the only parameter we need to control. Let Af be the step size

for 6. Fig 2.5 shows the example of deriving the changes in X and Z coordinates
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Figure 2.5: The example of deriving the changes in X and Z coordinates from 6

and A#@ if the virtual camera’s motion is clockwise.

from 6 and A#@ if the virtual camera’s motion is clockwise, where X,, and Z,, denote
the X and Z coordinates for the n-th position of the virtual camera, and « is an
auxiliary angle. The counter clockwise motion case is similar.

If 0 lies in the 4" quadrant, AG/2 — 7/2 < 0 < A§/2,

7/2—10] —A0/2 ifH<0

a = (2.1)
/240 —Af/2 it >0

Xpy1 = X, — 2rsin(A0/2)cos « (2.2)

Zn1 = Zp — 2rsin(A0/2)sin « (2.3)
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If 6 lies in the 1°* quadrant, A8 < 0 < 7/2+ A6/2,

a=|0] —Af/2 (2.4)
Xnt1 = X, + 2rsin(A0/2)sin « (2.5)
Zny1 = Zn — 2rsin(A0/2)cos a (2.6)

If 0 lies in the 2"¢ quadrant, A0+ 7/2 <0 < mor § < —7m + Af/2,

3n/2—10|—A0/2 it <0
a= (2.7)
—m/2+10] —A0/2 if6>0
X1 = Xy, + 2rsin(A6/2)cos (2.8)
Zns1 = Zn + 2rsin(A0/2)sin « (2.9)

If 6 lies in the 3™ quadrant, A§ — /2 < 0 < —7 + Af/2,

a=m—|0] —AbH/2 (2.10)
Xp+1 = X, — 2rsin(A6/2)sin (2.11)
Zns1 = Zp + 2rsin(A0/2)cos a (2.12)

If the real cameras are calibrated in a coordinate system whose X-Z plane
is not parallel to the ground plane, then the virtual camera’s motion trajectory
should be a circle perpendicular to the person’s principal axis Y’, as the shaded
circle C’ shown in Fig 2.6. This case often happens when some accurate calibration
hardware is utilized to facilitate strong calibration of the camera system, such as
the Peak Performance calibration frame [26] shown in Fig 2.7. In this case, the
person’s vertical principal axes is along the direction of Y/ which has an unknown

angle w with the Y-axis. If the turntable image collection of the object is obtained
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Figure 2.6: The coordinate system being used does not coincide with the world
coordinate system, so the circular trajectory of the virtual camera should be the

shaded C” which is not parallel to the X-Z plane.

along the circle C' parallel to the X-Z plane, we can observe that the object keeps
moving upward in the first half circle and downward in the second half. Also the -
coordinate of the object’s 2D centroid does not remain fixed. To solve this problem,
we need to align the coordinate system X’-Y’-Z" with the world coordinate system
X-Y-Z.

Assuming that the person being observed stands upright on the ground plane,
we can use his/her vertical principal axis in each input image as the corresponding
2D line and estimate w by solving an optimization problem. Here we propose an-
other feasible solution with which neither the solution to the optimization problem
nor extra computational cost are needed.

Let p, = (xn,yn) be the 2D centroid of the image observed by the virtual
camera at position n, and Ay, and Ax, the change of y, and z, from position n

to position n+ 1 respectively. Then we have Ay, = y,11 —y, and Ax,, = 2,11 —2,.
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Figure 2.7: The Peak Performance calibration frame used in [26] for more accurate

camera calibrations.

We try to approximate the circle C’ with the observed Ay, and Ax,, as shown in
Fig 2.8.
Let AY,, be the change along the Y direction from position n to position n+ 1.

From the theorem on triangle similarity we have

Ayndp,  f
AY. = R (2.13)

where dp, is the size of each pixel along the y direction and f is the camera’s focal

length. Similarly,
Azndp, |

D= (2.14)

where dp,, is the size of each pixel along the x direction and AD,, is the translation

adjustment on the circle C' in order to keep x, 1 = x,. AD,, can be compensated

by adjusting 6 accordingly. Since AD,, is very small compared to the sphere radius

2R
In order to keep the object’s principal axes perpendicular and parallel to the

R, the adjusting angle Af can be approximated as Af = 2 arctan

ground plane respectively, the roll angel 1) also has to be modified. At position n,

the eigenvector [€;, é,] of the silhouette image is computed and we have 9,11 =
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Figure 2.8: With the silhouette centroid observed for the previous position, the

circle C’ can be approximated by adjusting the Y coordinate of the virtual camera.

ty, + arctan e, /e,o, where (e,1, €,2) is the element of €.
Since the view sphere radius R has to remain constant, X and Z coordi-

nates have to be further adjusted based on AY,, as shown in Fig 2.9. De-

note ' = /R2 — (Y, + AY,)? and Ar = |r — /|, then AX,, = Arcos|f| and
AZ, = Arsin|f|. We consider the virtual camera’s clockwise motion again as
mentioned before.

If 6 lies in the 4" quadrant,

X1 = Xn — AX, Zyor = Zn + AZ, it Y, - AY, >0

(2.15)
Xon1 =X +AX, Z,01 = Z, — AZ, otherwise
If  lies in the 1% quadrant,
X1 = Xo — AX, Zosr = Zn — AZ, it Y, - AY, > 0
(2.16)

X1 =Xo+AX, Z,01 = Z, + AZ, otherwise
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Figure 2.9: Adjust the X and Z coordinates according to the value of AY'.
If 6 lies in the 2" quadrant,

X1 = Xn + AX, Zoir = Zn — AZ, it Y, - AY, >0

(2.17)
Xoi1=X,—-AX, Z,.1 = Z, + AZ, otherwise
If 6 lies in the 3" quadrant,
Xoi1 =X, +AX, Z, 1 =2,+AZ ifY,-AY, >0
(2.18)

X1 =X, — AX, Z,11 = Z, — AZ, otherwise
The active virtual camera positioning algorithm is summarized as follows:
1. Choose the extrinsic parameters of the virtual camera as the average of any

two real cameras’ parameters. Usually this is a good position to start with.

Select the step size A6 for 6.

2. Get the silhouette image at the current position n, and compute the 2D
centroid changes Az, and Ay, from the silhouette image at the previous

position. Compute the eigenvector [€;, €,] of the current silhouette image.
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Figure 2.10: The synthesized turntable silhouette image collection. Top: the turn-
ing and pointing sequence taken at the Keck Lab in UMD. Bottom: walking se-
quence collected at MIT Al lab.

3. Compute AY,, and AD,, as in (13) and (14), then compute Af with AD,,.

Let ¥pn11 = ¥, + arctan (e;1/ey2).

4. Modify X and Z coordinates through (15)-(18) with the AY,, obtained in

the previous step.

5. Move the virtual camera to the next position as in (1)-(12), and let 6,4, =

0, + A0

6. Repeat steps 2 through 5 until the virtual camera comes back to the original

position.

This algorithm was implemented and tested on several sequences. The input
is the synchronized perspective 4-view silhouette sequences for a person, with the
cameras fully calibrated. The output is the rendered turntable image collection
of the person for each frame. The turning and pointing sequence was taken at

the Keck Lab at University of Maryland. The person’s motion is mainly turning
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Table 2.1: Virtual camera position and rotation angles for the turning and pointing

sequence.
position 4 8 10 16 19
Cr(m) 3.827 4.881 3.288 -2.585 -2.502
Cy(m) 0.086 1.208 1.990 1.752 0.479
C.(m) 3.866 -0.608 -2.333 -0.618 2.884
o(rad) 2.825 2.825 2.825 2.825 2.825
0(rad) 0.624 1.860 2.479 -2.082 -1.134
Y(rad) -0.213 -0.228 -0.136 0.230 0.234

motion, so the trajectory information is hard to extract from the sequence. The
top row of Fig 2.10 is the result for the pointing and turning sequence, with Table
1 showing the virtual camera’s 3D position (C,,Cy,C,) and its rotation angles
(¢,6,1). The normal walking sequence was collected at MIT AT lab. The tra-
jectory information can be estimated from the 3D centroid coordinates of the VH
as mentioned in [87]. Our algorithm also works well as shown in the bottom row
of Fig 2.10, with Table 2 showing the virtual camera’s 3D position (C,,C,,C.)
and its rotation angles (¢,6,v). In both sequences, A8 = 0.3 rad, so there are 21
positions on the whole circle around the person. We can observe from (C,, C,, C)
in Table 1 and Table 2 that for both sequences the virtual cameras’ trajectories
are circles not parallel to the X-Z planes. Fig 2.10 shows that the circle approxi-

mation approach gives satisfactory results.
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Table 2.2: Virtual camera position and rotation angles for the normal walking

sequence.
position 1 4 10 13 16
Cr(m) 2.481 4.800 -1.138 -4.350 -4.219
Cy(m) 2.927 0.918 -1.591 -0.543 1.851
C.(m) 3.617 -0.145 -4.084 -1.831 2.275
o(rad) 3.682 3.682 3.682 3.682 3.682
0(rad) 0.669 1.636 -2.870 -2.032 -1.003
Y(rad) 1.867 2.068 1.574 1.160 1.093

2.2.2 Desired Viewpoint Selection

Computation of good viewpoints is important in computational geometry, visual
servoing, robot motion, graph drawing, etc. It is rapidly becoming a key issue
in image based rendering. Much work has been done on this topic. In [66], the
image-based virtual camera motion approach is presented. The method is based
on the wvisual servoing approach and consists of positioning a camera according to
the information perceived in the image, with the model of the scene being fully
known. To be able to react automatically to modifications of the environment, the
introduction of constraints into the control is also considered. A method for visual
understanding of a scene by efficient automatic movement of a camera is presented
in [6]. The purpose is to choose a trajectory for a virtual camera, allowing the user
to have a good knowledge of the scene at the end of minimal exploration. Start-
ing from a good view point, the virtual camera moves on the surface of a sphere

surrounding the scene, combining good views, a smooth camera movement and dis-
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tance from the starting point based heuristics. Similarly, [78] presents an approach
to selecting a minimal number of views that allow each object face to be adequately
viewed according to specified constraints on viewpoints and other features. With
the CAD boundary representation model of the object of interest, and a descrip-
tion of the visibility of each of the object faces, the planner can select viewpoints
suitable for a variety of machine vision tasks in two stages: wviewpoint planning
and viewpoint selection. In [98], the quality of a viewpoint is measured with the
information it gives about the scene, and the authors designed an algorithm to au-
tomatically explore objects or scenes with this viewpoint entropy measure. shape
from silhouette with equally distributed viewpoints is an often used reconstruction
technique for computer animation applications, but is not suitable for arbitrary
shaped objects. For this reason, a camera viewpoint control is introduced in [71],
which purposefully rotates a turntable with the 3D object depending on the trace
of the silhouette contour points over the rotation angle. It is reported that the
remaining 3D reconstruction error is greatly reduced. Kutulakos and Dyer [59]
present an approach for recovering surface shape from the occluding contour using
an active observer, which is based on a relation between the geometries of a sur-
face in a scene and its occluding contour. They have shown that there is a simple
and efficient viewing strategy, depending on only curvature measurements on the
occluding contour, that allows the observer to align the viewing direction with one
of the two principal directions for a point on the surface.

In order to select the desired view from the turntable image collection, we need
to compare the turntable images with the knowledge base of silhouettes associated
with known poses. In [39] a template matching method is proposed to estimate

the human pose from silhouettes, where a body posture is represented by the
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normalized horizontal and vertical projection histograms, the median coordinate,
and the major axis of its silhouette. The extracted silhouette is compared with the
projection templates using the sum of absolute difference method to estimate the
main posture. While this method is simple and fast, it produces some ambiguities.
A distance which can measure the similarity of two silhouettes more robustly is
needed. According to [4], this distance should satisfy a number of properties,
including that 1) it should be a metric, 2) it should be invariant under translation,
rotation and change-of-scale, 3) it should be reasonably easy to compute, and 4) it
should match our intuition. To compare a shape A, which is stored as a model (in
our case, the knowledge base of silhouettes associated with known pose s), with a
shape B, which is found to exist in an image (in our case, the turntable images),
the distance between the turning functions © 4(s) and ©p(s) is an efficient measure
of similarity:.

The turning function © 4(s) measures the angle of the counterclockwise tangent
as a function of the arc-length s measured from some reference point O on A’s
boundary. © 4(s) keeps track of the turning that takes place, increasing with left-
hand turns and decreasing with right-hand turns. The turning function measures
the turning that takes place as we move along the perimeter. Mathematically, if
k(s) is the curvature function of a curve then ©(s) = [ k(s).

In [4], the distance function between two polygons A and B is formally defined
as the L, distance between their two turning functions © 4(s) and © 5(s), minimized

with respect to rotation and choice of reference points,

d,(A,B) =( min }/o |@A(s+t)—@B(s)—|—0|pds)%

feR,te0,1

=( min D*B(t,0))
(eegg[loﬂ Lo (t,0))7,

where D/M(t,0) = fol ©4(s+t) — Op(s) + 0Pds. If the L, metric is used, the
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authors proved that the distance dy(A, B) between two polygons A and B (with
m and n vertices) can be computed exactly in time O(mnlogmn).

The turning function metric has been shown to correlate well with the human
notion of shape similarity [83]. Howe [43] used both the turning function and the
Chamfer distance for silhouette lookup for automatic tracking of poses. In imple-
menting the turning function distance, we use the method mentioned in [83], where
dynamic programming is used to account for warpings that may exist between the
query object and database object that result in stretching and compression. It is
quite possible that the matching between the points along the border of shape A
and the points along the border of shape B is not one-to-one, but one-to-many or
many-to-one. It computes the global best match between O 4(s) and ©5(s) in the
sense that it pairs up each element of ©4(s) with an element of ©p(s)(and vice
versa), but the matching must proceed monotonically through both sets. Thus it
computes two sequences i1, is, ..., and ji, Jo, . . ., Jr such that either 7, ; = 7; or

Q111 = i+ 1 (similarly for j), by normalizing the distance between matched turning

angle points: D =3, |ir — ji|.

The knowledge base of silhouettes consists of the turning functions © 4, (s)
of the silhouettes for some canonical poses, e.g. the 5 standard stances for the
human walking activity. By definition, the turning function is invariant under
translation and scaling of the polygon A;. Therefore the normalization is not
necessary in building the knowledge base. The turning function ©p, (s) of the
silhouette at current viewing direction is calculated and the distance functions
da(A;, Bj) between O 4, (s) and Op,(s) are computed. In addition to the silhouette

B;j at the current viewing direction, we can get an auxiliary silhouette C; by

placing the virtual camera at the position where the angle around the Y-axis has
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turning function distance based view selection result
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Figure 2.11: The view selection result comparison for the turning and pointing
sequence, with the blue curve indicating the view selection result using the turning

function distance, and the red curve indicating the ground truth.

7/2 difference with the current position. Consider the example that the desired
view is a side view, let dy(SA;, Bj) be the turning function distance between B;
and the standard stances SA; for the side view, and dy(F'A;, C;) be the distance
between C; and the standard stances F'A; for the frontal view, then the final
decision measurement is S(i, j) = do(SA;, Bj) + d2(FA;,C;). The view with the
minimal distance not only gives the side view, but also gives the stance at which

the person stands for the current frame. With this method, the desired view is
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Figure 2.12: (a) The side view ground truth for the Keck Lab sequence. (b) The

rendered side view for the Keck Lab sequence.

selected only when it has a small distance in matching the side view stance and
its auxiliary silhouette has a small distance in matching the frontal view stance at
the same time. This greatly reduces the possible ambiguities when considering the
side view stance alone.

Usually there will be no abrupt change from one frame to the next, so we
do not need to generate all the virtual views around the person for each frame.
Only a small number of neighboring positions of the selected view in the previous
frame are synthesized and compared. Experiments show that the results are good
enough while the speed is much faster compared to generating all the virtual views
around the person for each frame. As can be seen from Fig 2.11, which shows
the view selection result for the turning and pointing sequence using the turning
function distance, the selected view follows the ground truth quite well for most

of the frames. Although some error still exists for several frames, it disappears in
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Figure 2.13: (a) The side view ground truth for the MIT sequence. (b) The

rendered side view for the MIT sequence.

the next 2-3 frames. Fig. 2.12 and Fig. 2.13 show the virtual side views for the
turning and pointing sequence and the the normal walking sequence respectively,
which demonstrates the efficiency of the proposed pose-normalized view synthesis

algorithm from silhouettes.

2.3 Articulating Object Synthesis Using Visual

Hull

Although the VH technique is a fast and efficient volumetric scene reconstruction
method, like all the SFC algorithms, it still suffers from the inability of recon-
structing the concave region for human postures. In order to overcome the in-
ability of the SFC method to reconstruct concave regions for human postures, in

this section we propose a simple and robust contour-based body part segmentation
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algorithm [106].

Observing that in many cases the concave human posture is formed due to
the position of arms, we are inspired to explore the possibility of body part based
view synthesis with IBVH. Several methods have been proposed for human body
part segmentation from silhouette (contour). The work in [39] gives a silhouette-
based human body labeling template by using topological order-constraints of body
parts for different postures. A contour-based body part localization method was
presented in [118] with a probabilistic similarity measure which combines the local
shape and global relationship constraints to guide body part identification. More
recently, a hierarchical model fitting method to estimate the 3D shape with den-
sity fields was proposed in [16]. The body parts of the human can be described
accurately with the estimated parameters. We use the work in [118] for body part
segmentation because of its simplicity and robustness, where the short-cut rule
and the saliency requirement are combined to constrain the other end of a cut,
and several computationally efficient strategies are used to reduce the effects of
noise. Using this method, the silhouette image in each input view is partitioned
into arms and torso (with legs) so that each human part is a convex object. All
the parts are separately processed with IBVH, and assembled together to get the
final result. It is possible that the final view has some disconnected or squeezed
regions since it is obtained by assembling the separately processed body parts. To
prevent this problem, a silhouette image for the desired viewing direction is first

generated without segmenting the body parts.
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2.3.1 Contour-Based Body Part Segmentation

Human body parts segmentation and identification are important and challenging
problems in computer vision. Contours are the common features used to overcome
inconsistent texture; parts based approaches can effectively handle occlusion and
articulated motion. We segment a human body into parts at negative minima of
curvature so that the decomposed parts are convex regions. Hoffman and Singh
[41] noted that when boundary points can be joined in more than one way to
decompose a silhouette, human vision prefers the partitioning scheme which uses
the shortest cuts ( A cut is the boundary between a part and the rest of the
silhouette). They further restrict a cut to cross a symmetry axis in order to avoid
short but undesirable cuts. However, most symmetry axes are very sensitive to
noise and are expensive to compute. In contrast, we use the constraint on the
saliency of a part to avoid short but undesirable cuts. According to Hoffman and
Singh’s [41] study, there are three factors that affect the saliency of a part: the size
of the part relative to the whole object, the degree to which the part protrudes,
and the strength of its boundaries. Among these three factors, the computation
of a part’s protrusion (the ratio of the perimeter of the part (excluding the cut) to
the length of the cut) is more efficient and robust to noise and partial occlusion of
the object. Thus, we employ the protrusion of a part to evaluate its saliency; the
saliency of a part increases as its protrusion increases.

In summary, we combine the short-cut rule and the saliency requirement to
constrain the other end of a cut. For example in Fig 2.14, let S be a silhouette, C'
be the boundary of S, P be a point on C' with negative minima of curvature, and
P,, be a point on C' so that P and P, divide the boundary C' into two curves Cj,

C, of equal arc length. Then two cuts are formed passing through point P: PP,
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Figure 2.14: Computing the cuts passing through point P.

PP, such that points P, and P, lies on C} and C,., respectively. The ends P, and

P, of the two cuts are located as follows:

_ PP _
P, = argmin ||PP'|[s.t. ”_” >T, P eC,PP €S (2.19)
P PP
_ B PP : S
P, =argmin |[|PP'|st. ——->1, P €C,, PP eSS (2.20)
P 2P|

where PP is the smaller part of boundary C between P and P, Hﬁ, || is the arc
length of PP , and dg\fg” is the saliency of the part bounded by curve F/’E and cut
PP,

Eq. (2.19) means that point P, is located so that the cut PP, is the shortest

one among all cuts sharing the same end P, lying within the silhouette with the

other end lying on contour €, and resulting in a significant part whose salience
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is above a threshold 7},. The other point P, is located in the same way using Eq.
(2.20). It is possible that only one cut is selected if the other cut does not satisfy
the saliency requirement.

Since negative minima of curvature are obtained by local computation, their
computation is not robust in real digital images. We take several computationally
efficient strategies to reduce the effects of noise. First, a B-spline approximation
is used to moderately smooth the boundary of a silhouette, since the B-spline
representation is stable and easy to manipulate locally without affecting the re-
maining part of the silhouette. Second, the negative minima of curvatures with
small magnitudes are removed to avoid parts due to noise or small local deforma-
tions. However, the curvature is not scale invariant (e.g. its value doubles if the
silhouette shrinks by half). One way to transform curvature into a scale-invariant
quantity is to first find the chord joining the two closest inflections which bound
the point, then multiply the curvature at the point by the length of this chord.
The resulting normalized curvature does not change with scale — if the silhouette
shrinks to half size, the curvature doubles but the chord halves, so the product

remains a constant.

2.3.2 View Synthesis of Articulating Humans

Having segmented each input image into convex body parts, we need to render
the image for each body part in the given viewing direction and assemble them
together. In order to generate each body part separately for the desired view, we
have to use the corresponding body part in each input image. Since the body
part localization method in previous section does not give such corresponding

relationship between views, we can not tell which body part is left arm and which
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one is right arm from the input silhouette images. In the assembling process, it is
possible that the ”stitched” final view has unconnected or squeezed regions because
the separately-generated virtual parts are not guaranteed to match each other.

To solve these two problems, a virtual silhouette image corresponding to the
given viewing direction is first generated using the image based visual hull com-
puted from the input silhouette images. In this process, we only need to decide
whether each pixel in the virtual view belongs to the foreground or the background.
If a pixel’s corresponding 3D ray intersection in the visual hull formulation process
is not null, the pixel is marked as a foreground pixel and the intersection coordi-
nates are stored in a table for later use. Each input image is segmented into left
arm, right arm and torso (with legs). The rendered silhouette image can also be
segmented into body parts in the same way. Since the visual hull of the person has
been built, the 3D centroid for each body part can be roughly approximated with
the center of gravity of the body part’s visual hull. By projecting the 3D centroid
to each input image, we are able to locate the corresponding body part in each
input image for the rendered body part in the synthetic image.

To map the texture for the foreground pixels in the desired view, a nearest
neighbor scheme is used [68]. For each foreground pixel, the 3D closet frontal
point is retrieved from the stored table and projected onto each input view. The
intensity value P for the desired view pixel is a weighted sum of intensity values
P; of the corresponding pixels in the input views, P = Y P;cosf;, where 0; is
the angle between the 3D ray from the desired view foreground pixel and the
3D ray from the corresponding pixel in input view ¢ if the closet frontal point is
visible in this view. If the concave regions are not considered in the formulation

of the visual hull, the pixels in the desired view projected by the points inside the
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Figure 2.15: Two examples of human body part segmentation results: (1.a) and
(2.a) are the body part segmentation results for input views. (1.b) and (2.b) are

the body part segmentation result for the rendered silhouette images.

concavities will have erroneous 3D closet frontal points and their intensity values
will be wrong. In order to obtain correct visual hull and texture mapping results,
the human body part segmentation method is used in the reconstruction process.
For the desired view, each foreground pixel in a segmented body part will have its
epipolar line intersected with the corresponding body part contour in each input
view. These 2D line intersections are projected back into 3D space and intersect
with the retrieved 3D ray starting from the pixel in the desired view. If the pixel
is the projection of a 3D point which lies on the concave region, the new 3D ray
intersection will be shorter compared to the previously-stored intersection because
the epipolar line only intersects with the corresponding body part instead of the
whole body contour. Hence, the 3D closet frontal points for these pixels are closer
to their correct positions so that their intensity values can be decided with the
corresponding pixels in the input views. For the pixels corresponding to the 3D
points which do not lie on concave regions, the 3D ray intersections are same as the

stored ones. In this way, even if the epipolar line of a pixel in a desired view body

38



(d) (e) (f)

Figure 2.16: Two examples of view synthesis of articulating humans with visual

hull: (a) and (d) are the input views. (b) and (e) are the texture mapping results
without using body part segmentation method. (c) and (f) are the texture mapping

results using body part segmentation method.

part has no intersection with the corresponding body part contour in the input
views, this pixel is still marked as a foreground pixel and has its intensity value
decided using the nearest neighboring scheme. Therefore, no unconnected region
will be observed in the assembled view. Since the independently processed body
parts are segmented from the previously g