16 research outputs found

    Fitting a 3D Morphable Model to Edges: A Comparison Between Hard and Soft Correspondences

    Get PDF
    We propose a fully automatic method for fitting a 3D morphable model to single face images in arbitrary pose and lighting. Our approach relies on geometric features (edges and landmarks) and, inspired by the iterated closest point algorithm, is based on computing hard correspondences between model vertices and edge pixels. We demonstrate that this is superior to previous work that uses soft correspondences to form an edge-derived cost surface that is minimised by nonlinear optimisation.Comment: To appear in ACCV 2016 Workshop on Facial Informatic

    3D Model Assisted Image Segmentation

    Get PDF
    The problem of segmenting a given image into coherent regions is important in Computer Vision and many industrial applications require segmenting a known object into its components. Examples include identifying individual parts of a component for proces

    Survey on 2D and 3D human pose recovery

    Get PDF
    Human Pose Recovery approaches have been studied in the eld of Computer Vision for the last 40 years. Several approaches have been reported, and signi cant improvements have been obtained in both data representation and model design. However, the problem of Human Pose Recovery in uncontrolled environments is far from being solved. In this paper, we de ne a global taxonomy to group the model based methods and discuss their main advantages and drawbacks.Peer ReviewedPostprint (published version

    3D Model Assisted Image Segmentation

    Get PDF
    The problem of segmenting a given image into coherent regions is important in Computer Vision and many industrial applications require segmenting a known object into its components. Examples include identifying individual parts of a component for process control work in a manufacturing plant and identifying parts of a car from a photo for automatic damage detection. Unfortunately most of an object’s parts of interest in such applications share the same pixel characteristics, having similar colour and texture. This makes segmenting the object into its components a non-trivial task for conventional image segmentation algorithms. In this paper, we propose a “Model Assisted Segmentation ” method to tackle this problem. A 3D model of the object is registered over the given image by optimising a novel gradient based loss function. This registration obtains the full 3D pose from an image of the object. The image can have an arbitrary view of the object and is not limited to a particular set of views. The segmentation is subsequently performed using a level-set based method, using the projected contours of the registered 3D model as initialisation curves. The method is fully automatic and requires no user interaction. Also, the system does not require any prior training. We present our results on photographs of a real car

    Simultaneous Point Matching and 3D Deformable Surface Reconstruction

    Get PDF
    It has been shown that the 3D shape of a deformable surface in an image can be recovered by establishing correspondences between that image and a reference one in which the shape is known. These matches can then be used to set-up a convex optimization problem in terms of the shape parameters, which is easily solved. However, in many cases, the correspondences are hard to establish reliably. In this paper, we show that we can solve simultaneously for both 3D shape and correspondences, thereby using 3D shape constraints to guide the image matching and increasing robustness, for example when the textures are repetitive. This involves solving a mixed integer quadratic problem. While optimizing this problem is NP-hard in general, we show that its solution can nevertheless be approximated effectively by a branch-and-bound algorithm

    Matchability prediction for full-search template matching algorithms

    Get PDF
    While recent approaches have shown that it is possible to do template matching by exhaustively scanning the parameter space, the resulting algorithms are still quite demanding. In this paper we alleviate the computational load of these algorithms by proposing an efficient approach for predicting the match ability of a template, before it is actually performed. This avoids large amounts of unnecessary computations. We learn the match ability of templates by using dense convolutional neural network descriptors that do not require ad-hoc criteria to characterize a template. By using deep learning descriptions of patches we are able to predict match ability over the whole image quite reliably. We will also show how no specific training data is required to solve problems like panorama stitching in which you usually require data from the scene in question. Due to the highly parallelizable nature of this tasks we offer an efficient technique with a negligible computational cost at test time.Peer ReviewedPostprint (author's final draft

    Robustness and Accuracy of Feature-Based Single Image 2-D–3-D Registration Without Correspondences for Image-Guided Intervention

    Get PDF
    published_or_final_versio
    corecore