27 research outputs found

    Constructive interconnection and damping assignment passivity-based control with applications

    No full text
    Energy-based modeling and control of dynamical systems is crucial since energy is a fundamental concept in Science and Engineering theory and practice. While Interconnection and Damping Assignment Passivity-based Control (IDA-PBC) is a powerful theoretical tool to control port-controlled Hamiltonian (PCH) systems that arise from energy balancing principles, sensorless operation of energy harvesters is a promising practical solution for low-power energy generation. The thesis addresses these two problems of energy-based control and efficient energy generation. The design via IDA-PBC hinges on the solution of the so-called matching equation which is the stumbling block in making this method widely applicable. In the first part of the thesis, a constructive approach for IDA-PBC for PCH systems that circumvents the solution of the matching equation is presented. A new notion of solution for the matching equation, called algebraic solution, is introduced. This notion is instrumental for the construction of an energy function defined on an extended state-space. This yields, differently from the classical solution, a dynamic state-feedback that stabilizes a desired equilibrium point. In addition, conditions that preserve the PCH structure in the extended closed-loop system have been provided. The theory is validated on four examples: a two-dimensional nonlinear system, a magnetic levitated ball, an electrostatic microactuator and a third order food-chain system. For these systems damping structures that cannot be imposed with the standard approach are assigned. In the second part of the thesis, the design of a nonlinear observer and of an energy-based controller for sensorless operation of a rotational energy harvester is presented. A mathematical model of the harvester with its power electronic interface is developed. This model is used to design an observer that estimates the mechanical quantities from the measured electrical quantities. The gains of the observer depend on the solution of a modified Riccati equation. The estimated mechanical quantities are used in a feedback control law that sustains energy generation across a range of source rotation speeds. The proposed observer-controller scheme is assessed through simulations and experiments.Open Acces

    Modélisation, identification et commandes non linéaires d'actionneurs mécatroniques de la boucle d'air d'un moteur diesel

    Get PDF
    Les actionneurs électromécaniques sont de plus en plus utilisés dans le domaine de la motorisation. Particulièrement, ils sont employés pour contrôler la boucle d air du moteur Diesel. De tels actionneurs ont généralement une structure interne très complexe dont les caractéristiques sont protégées par des conventions de confidentialité. Notre travail dans cette thèse vise, en premier, à élaborer des procédures de modélisation et d identification en prenant en compte une seule source de non linéarité, à savoir les frottements. Deux classes d actionneurs sont ainsi étudiées et quatre procédures d identification sont introduites permettant l estimation des paramètres des systèmes et les coefficients des forces de frottement. Les résultats obtenus sont ensuite utilisés pour développer des simulateurs sous Simulink-MATLAB et AMESim dont la dynamique est expérimentalement validée via LabVIEW. Afin d évaluer la dégradation des performances due au processus de vieillissement, la seconde partie du travail consiste en la réalisation des études de sensibilité quantifiant l impact des variations paramétriques sur la réponse des actionneurs. Les techniques d ANOVA (analyse des variances) et des plans d expériences sont appliquées, en boucle ouverte et en boucle fermée, aux actionneurs étudiés. Les résultats issus des deux techniques sont cohérents permettant ainsi de valider les études réalisées.La dernière partie du travail a pour objectif l élaboration de lois de commande robuste vis-à-vis des perturbations et des incertitudes de modélisation. Ainsi, trois stratégies de contrôle sont utilisées : PI-Flou (PI-Fuzzy controller), l IDA-PBC (Interconnection and Damping Assignment - Passivity Based Control) et le backstepping. Les trois contrôleurs sont testés en présence et en absence d incertitudes. Leur performance est démontrée en simulation en utilisant Simulink-MATLAB, et expérimentalement via LabVIEW.In the motorization field, electromechanical actuators are more and more employed. In particular, they are used to control the diesel engine air path. Such actuators have a very complex structure whose characteristics are generally protected by confidential agreements. This work firstly deals with the modelling and the identification of electromechanical systems, considering only one nonlinear phenomenon, i.e. the friction. Hence, two actuator categories are studied, and four identification procedures are designed allowing estimating both the system parameters and the friction coefficients. Effectiveness of the developed simulators is shown using Simulink-MATLAB, AMESim and LabVIEW. In order to evaluate the ageing impact on the actuator performance, this work secondly introduces two techniques of sensitivity analysis: ANOVA (Analysis Of Variance) and DOE (Design Of Experiments). These techniques are applied, in open and closed loop, to evaluate how the change in parameters may affect the output of such actuator. Both techniques lead to very similar results allowing validating the designed study.Finally, this work aims at the design of nonlinear friction compensation techniques. Therefore, three techniques are used: PI-Fuzzy controller, IDA-PBC (Interconnection and Damping Assignment - Passivity Based Control) and the backstepping. All controllers are tested with and without uncertainties. Their effectiveness is shown in simulation, using Simulink, and experimentally via LabVIEW.BELFORT-UTBM-SEVENANS (900942101) / SudocSudocFranceF

    Friction Modeling, Identification and Compensation (PhD Thesis)

    Get PDF
    Abstract HIGH-PRECISION tracking requires excellent control of slow motion and positioning. Recent advances have provided dynamic friction models that represent almost all experimentally observed properties of friction. The state space formulation of these new mathematical descriptions has the property that the state derivatives are continuous functions. This enables the application of established theories for nonlinear systems. The existence of locally stable fixed points does not imply for nonlinear systems the absence of limit cycles (periodic orbits) or unstable solutions. Therefore, global properties of PI velocity and PID position control are analyzed using a passivity and Lyapunov based approach. These linear control laws are then extended by nonlinear components based on the friction model considered. The applications presented in this work are in the domains of mechatronics and machine-tools

    High Accuracy Nonlinear Control and Estimation for Machine Tool Systems

    Get PDF

    Development and evaluation of a wind tunnel manoeuvre rig

    Get PDF
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Dynamic modeling and bioinspired control of a walking piezoelectric motor

    Get PDF
    Szufnarowski F. Dynamic modeling and bioinspired control of a walking piezoelectric motor. Bielefeld: Universität Bielefeld; 2013.Piezoelectric motors have increasingly extended their field of applications during recent years. Improved material properties and manufacturing techniques have led to a variety of designs which can achieve theoretically unlimited displacements for moderate voltage levels while retaining a relatively high stiffness. In practical terms, this leads to stronger and faster motors which become a viable alternative to electromagnetic drives, especially if compact size and small weight are important. The piezoelectric motor considered in this work consists of four piezoelectric bender elements which can forward a ceramic bar by means of a frictional interaction. The drive elements can be compared to "legs" walking on a movable plane. The walking motor offers outstanding force generation capabilities for a motor of its size. Despite this fact, this motor has not been used in a force control scenario before and no motor models exist in the literature which can reproduce the effect of load on its performance. In this work, two dynamic motor models are developed to address the latter issue. Both of them faithfully reproduce the non-linear motor velocity decrease under load. The first model is based on an analytic approach and describes the low-level frictional interactions between the legs and the ceramic bar by means of several physically meaningful assumptions. This analytic model explains several non-linear phenomena in the operation of the walking motor within the full bandwidth of its rated operation. Non-linear influences due to the impact dynamics of the legs, ferroelectric hysteresis and friction are identified in the motor and new insights for an improved motor design as well as an improved motor-drive strategy gained. Moreover, the analytic model finds its application in a theoretical investigation of an alternative motor-drive strategy which is based on findings in insect walking. Specifically, it is shown that the performance of the motor can be improved by a half in terms of its force generation and doubled in terms of its maximal velocity, as compared to classical drive approaches, if the bioinspired drive strategy as proposed in this work is used. The second model is based on an experimental approach and system identification. Although less general, the second model is well-suited for a practical application in a force-control scenario. In particular, the experimental model is used in this work for the development of a load compensation strategy based on force feedback which restores the linearity of motor operation for moderate levels of loading. Based on the linearized motor model, a force controller is developed whose performance is evaluated both theoretically and experimentally. The developed force controller is also used in a bioinspired control scenario. Specifically, two walking motors together with their force controllers are employed in a 1-DOF antagonistic joint as force generators. The motors are supposed to partially mimic the functionality of a muscle based on the non-linear force-length relation as derived by Hill. A simple positioning task shows the feasibility of this kind of non-standard application of a piezoelectric motor. Beside the development of motor models and bioinspired control approaches, this work addresses the issue of drive-signal generation for the walking motor. Specifically, the development of motor-drive electronics is presented which supersedes the commercially available products due to its compactness and the possibility of waveform generation at much higher drive frequencies, above 50 kHz, as compared to the nominal limit of 3 kHz and commercial products. In this context, the possibility of motor operation at ultrasonic frequencies is discussed which would benefit the motor in terms of its speed and the absence of audible noises
    corecore