4 research outputs found

    Port-Hamiltonian Approach to Neural Network Training

    Get PDF
    Neural networks are discrete entities: subdivided into discrete layers and parametrized by weights which are iteratively optimized via difference equations. Recent work proposes networks with layer outputs which are no longer quantized but are solutions of an ordinary differential equation (ODE); however, these networks are still optimized via discrete methods (e.g. gradient descent). In this paper, we explore a different direction: namely, we propose a novel framework for learning in which the parameters themselves are solutions of ODEs. By viewing the optimization process as the evolution of a port-Hamiltonian system, we can ensure convergence to a minimum of the objective function. Numerical experiments have been performed to show the validity and effectiveness of the proposed methods.Comment: To appear in the Proceedings of the 58th IEEE Conference on Decision and Control (CDC 2019). The first two authors contributed equally to the wor

    Thermodynamics of learning physical phenomena

    Get PDF
    Thermodynamics could be seen as an expression of physics at a high epistemic level. As such, its potential as an inductive bias to help machine learning procedures attain accurate and credible predictions has been recently realized in many fields. We review how thermodynamics provides helpful insights in the learning process. At the same time, we study the influence of aspects such as the scale at which a given phenomenon is to be described, the choice of relevant variables for this description or the different techniques available for the learning process

    Structure-preserving deep learning

    Get PDF
    Over the past few years, deep learning has risen to the foreground as a topic of massive interest, mainly as a result of successes obtained in solving large-scale image processing tasks. There are multiple challenging mathematical problems involved in applying deep learning: most deep learning methods require the solution of hard optimisation problems, and a good understanding of the tradeoff between computational effort, amount of data and model complexity is required to successfully design a deep learning approach for a given problem. A large amount of progress made in deep learning has been based on heuristic explorations, but there is a growing effort to mathematically understand the structure in existing deep learning methods and to systematically design new deep learning methods to preserve certain types of structure in deep learning. In this article, we review a number of these directions: some deep neural networks can be understood as discretisations of dynamical systems, neural networks can be designed to have desirable properties such as invertibility or group equivariance, and new algorithmic frameworks based on conformal Hamiltonian systems and Riemannian manifolds to solve the optimisation problems have been proposed. We conclude our review of each of these topics by discussing some open problems that we consider to be interesting directions for future research
    corecore