
Vol.:(0123456789)1 3

Archives of Computational Methods in Engineering 
https://doi.org/10.1007/s11831-023-09954-5

REVIEW ARTICLE

Thermodynamics of Learning Physical Phenomena

Elias Cueto1  · Francisco Chinesta2,3

Received: 16 March 2023 / Accepted: 25 May 2023 
© The Author(s) 2023

Abstract
Thermodynamics could be seen as an expression of physics at a high epistemic level. As such, its potential as an inductive 
bias to help machine learning procedures attain accurate and credible predictions has been recently realized in many fields. 
We review how thermodynamics provides helpful insights in the learning process. At the same time, we study the influence 
of aspects such as the scale at which a given phenomenon is to be described, the choice of relevant variables for this descrip-
tion or the different techniques available for the learning process.

1 Introduction

In a 2009 compilation of essays, the fourth paradigm of 
science was first described [1]. After centuries of science 
based on observation—the empirical period of the first 
paradigm—came a period based on the establishment of 
scientific laws—the second paradigm, think of Newton—
and much more recently a period in which simulation took 
an important role—the third paradigm. Very recently, the 
authors of this essay argue that we have entered a period 
in which data plays a prominent role in scientific discov-
ery and where theory and experiments, symbiotically, help 
data to achieve higher goals. Scientific Machine Learning is 
precisely a new field in which data coming from scientific 
experiments is used massively to unveil new, still unknown 
scientific laws. Some authors have begun to think about an 
even more recent fifth paradigm of science, in which data 
is obtained not from experiments, but from simulations [2]. 
This approach is helping scientists to look for the origin of 
dark matter [3] or the structure of protein folding [4], to 

name but two of the most relevant examples. Other data-
driven approaches do not look for a closed-form scientific 
expression describing a particular phenomenon, but substi-
tute phenomenological laws of low epistemic value (typi-
cally, constitutive or closure laws) by data [5–10]. Of course, 
this approach is somewhat more limited in terms of extrapo-
lation capabilities. Although it largely exceeds the scope of 
this paper, the interested reader could find excellent reviews 
on machine learning in [11–13], for instance.

No doubt that this data-intensive approach is revolution-
izing science. But, on a much more applied context, scien-
tific machine learning is also revolutionizing industry. In the 
same way that these techniques can look for general laws 
of physics, they can also look for rigorous descriptions of 
the functioning of technical apparatus, thus helping us to 
develop digital twins in a very efficient manner [14–16].

However, distilling scientific laws about any physical phe-
nomena, regardless of its practical importance, has profound 
implications. Galileo, for instance, in his book on two new 
sciences—one of which was mechanics of materials—failed 
completely in the description of beam bending phenomena. 
He assumed that rectangular sections of a beam rotate due 
to bending around an axis passing through the lower surface 
of the beam, and not through the center of mass, as it is well 
known today [17]. However, he was intelligent enough to 
think of rotating sections of the beam, which is actually the 
cornerstone of the celebrated Euler-Bernoulli-Navier bend-
ing theory. Thus, even if his theory was not entirely true, 
his choice of variables was correct. Or at least it was at that 
macroscopic scale of description. Of course, at that time the 
atomic structure of matter was not known, but this extremely 
fine scale of description is equally valid, albeit much less 
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efficient. Or that of the theory of elasticity within a contin-
uum mechanics framework. Or that of the Cosserat brothers, 
that includes rotations of the material point—the beam bend-
ing theory could be considered itself as a Cosserat theory 
on a one-dimensional continuum [18]. Any of these scales 
is in principle valid, yet Galileo chose the right one, as did 
Euler, Bernoulli and Navier. Here, by “right” we mean the 
most useful one in terms of engineering practice. In Sect. 2 
we briefly review the statistical mechanics aspects related to 
the choice of an appropriate level of description for a given 
physical phenomenon.

But the employ of machine learning is by no means 
restricted to unveil unknown physical laws. Still today, and 
despite the impressive interest on big data approaches in 
social sciences, the biggest supercomputers in the world 
continue to be devoted to the simulation of complex phe-
nomena [19]. Full-field and high-resolution simulations 
continues to be challenging, and the possibility of develop-
ing a promising family of learned simulators is appealing 
[20–22]. These learned simulators share the characteristics 
of being considerably faster than traditional simulation 
techniques such as finite elements or finite volumes (once 
trained, of course, this does not take into account the con-
siderable effort invested in training these networks). While 
traditional techniques employ a non-negligible effort to con-
struct each model, learned simulators, in general, employ 
reusable architectures that can be employed for different, but 
related, problems. Additionally, the results of these learned 
simulators are, in general, as accurate as the data employed 
to train the network, and do not depend on models whose 
validity could be compromised by extreme parameter val-
ues, for instance. Another advantage includes the possibility 
of employ these simulators for inverse problems and opti-
mization procedures, since they are based on differentiable 
networks [23–26].

Despite of the above-mentioned advantages, neural net-
works are not very popular among the scientific community 
in general, and particularly in the computational mechanics 
one [27, 28]. Common pitfalls include large deviations from 
the expected result arising as a consequence of small per-
turbations in data, or the well-known phenomenon of over-
fitting the data (basically, learning the noise in the data), 
for instance. This has motivated a strong effort of research 
towards the inclusion of previous knowledge about the 
physics taking place in the learning procedure. This knowl-
edge could be included in the form of inductive biases, for 
instance [29] or the particular form of the differential equa-
tion governing the physics.

Recently, very popular methods based on neural networks 
have been developed for the solution of Partial Differential 
Equations (PDEs) from data [30] that try to overcome these 
limitations. These methods, coined globally as Physics-
informed Neural Networks (PINNs), allow one to solve PDEs 

from data by following a scheme that resembles a collocation 
method in some sense. Thus, if the PDE governing the prob-
lem is known—hence the “physics-informed” character—, its 
particular form can be unveiled from the available data. We 
devote Sect. 3 to this family of techniques.

There is still another family of machine learning techniques 
that consider the learning process as a sort of regression pro-
cedure operating on an Ordinary Differential Equation (ODE) 
governing the dynamics of the system. These techniques can 
be seen as a particular instance of the proposal by Weinan [31]. 
These techniques operate when the particular form of the PDE 
governing the physics is not known, nor sought. Instead, as 
will be seen, this particular form of seeing the learning prob-
lem leverages the vast corps of knowledge around dynamical 
systems to enforce the right structure of the system (conserved 
quantities, symmetries, etc.). To this family of techniques we 
devote Sect. 4.

As will be seen throughout this paper, the employ of neural 
networks for learning physical phenomena is an active field of 
research, that has produced hundreds of papers in a very lim-
ited period of time. R Recently, methods have been developed 
that are able to unveil constitutive laws from displacement data 
alone —with global force but, notably, no stress data—which 
constitute a great breakthrough in this discipline, see [32–34]. 
Nevertheless, the topic is still in its infancy, and much more 
research is expected before we will be able to fully understand 
and predict the behavior of machine learning techniques, par-
ticularly neural networks, in this amazing discipline. The paper 
ends with some conclusions about these and other considera-
tions in Sect. 5.

2  Statistical Mechanics of Coarse Graining

The simplest approach to learn physics, at least conceptually, 
consists in going down to the molecular dynamics scale, where 
Newton laws apply, label every molecule and follow them 
across their travel. This is not a useful approach, obviously, 
but conceptually is the simplest one. At this scale, everything 
is reversible. So if we denote by z = {q1,… , qN , p1,… , pN} , 
where N is the number of molecules (on the order of 1023 to 
have meaningful results) and qi , pi , i = 1,… ,N , represent the 
position and momentum of every molecule, the evolution in 
time of the system is well-know to obey a Hamiltonian evolu-
tion, i.e.,

with L the so-called symplectic (skew-symmetric) matrix 
and H the Hamiltonian of the system, the total energy, E. 
So, learning the system at this scale means learning the 
particular form of L and E by regression (a form of super-
vised learning). Distilling these from data will ensure that 

(1)ż =
𝜕z

𝜕t
= L∇H = L∇E,
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predictions obtained through Eq. (1) will conserve energy, 
thanks to the symplectic structure of the learned description.

Since this approach is by no means practical, we will 
need to coarse-grain the description of the system. In other 
words, we will need to represent it with less degrees of free-
dom than it actually has. This process is described with par-
ticular elegance in a paper by Pep Español, whose title we 
borrow for this section [35]. Alternative approaches can be 
found, for instance, in [36]. In essence, the process consists 
in eliminating those degrees of freedom whose evolution 
in time is faster, keeping those whose evolution takes place 
over longer periods of time, thus allowing us to describe the 
system over longer intervals with less computational effort. 
At the other side of the spectrum, (equilibrium) thermody-
namics is a description of the system that takes into account 
only invariants, magnitudes that do not evolve in time (typi-
cally, mass, momentum, energy).

Each possible level of description involves a set of vari-
ables, which we will denote by z , regardless of the particu-
lar scale, if there is no risk of confusion. Coarser levels of 
description will provide us with less information, but will 
involve smaller sets z . The molecular dynamics scale given 
by Eq. (1) has a typical time scale on the order of the colli-
sion time (again, unpractical for our purposes). In any case, 
every description will be governed by some equation that, 
very much like Eq. (1) predicts the evolution of the vari-
ables governing the system. It is also important to realize 
that, if a clear separation of scales exists between conserved 
and eliminated degrees of freedom, the resulting description 
will be Markovian. In other words, the coarse-grained model 
will not depend on history, but only in the present value of 
its variables.

Even in the case in which the description is Markovian, 
it is worth noting that many microscopic states could lead 
to the same macroscopic state. This produces uncertainty in 
the future evolution of the coarse-grained description of the 
system, see [35, 37, 38]. This uncertainty is equivalent to 
fluctuation in the evolution, and fluctuation is equivalent to 
dissipation by the celebrated fluctuation-dissipation theorem 
[39, 40].

Español takes a system with two clearly separated scales 
to elaborate around this theory: a colloidal suspension [35]. 
The finest description is obtained, as discussed before, by 
taking position and momenta of both coloidal particles, 
Qi,Pi and solvent molecules, qj, pj , with i = 1,… ,Ncol , 
j = 1,… ,Nsol the number of coloidal particles and solvent 
molecules, respectively. At this scale, the energy of the 
system is composed by the potential and kinetic energy of 
the particles, and the typical time scale is on the order of 
picoseconds.

If we are not interest in describing the movement of every 
solvent molecule, we can substitute them by a continuous 
hydrodynamic field, in which extensive magnitudes as mass 

density, momentum density and energy density fields sub-
stitute them. In this framework we loose information about 
the precise location of each molecule, but we have instead 
information about how many of them are located within a 
given region of the fluid. Particles entering and leaving the 
considered region in the fluid produce the fluctuations men-
tioned before [41]. These fluctuations are in turn responsible 
of the Brownian motion of the coloidal particles. Dissipative 
Particle Dynamics, for instance, could be employed for the 
description of the solvent at this scale [42–44].

If the coloidal particles are massive, if compared to those 
of the solvent, their change in position and momentum will 
be slow, compared to the scale of hydrodynamic interac-
tions. Therefore, one could envisage the elimination of the 
hydrodynamic field in order to keep position and momenta 
of the coloidal particles as the sole variables of our system, 
z = {Pi,Qi} , i = 1,… ,Ncol . This description gives rise to 
a Fokker-Planck (FP) equation. The general FP equation 
works with a probability density function �(z, t) that reflects 
the probability of finding a particle at a given position at a 
given time instant. Its evolution in time is given by

A is a term that takes into account deterministc effects 
related to the macroscopic velocity drift, while D is a dif-
fusion tensor related to Brownian effects [45, 46]. The FP 
equation has an equivalent Itô stochastic differential equa-
tion of the form

where D = B ⋅ B⊤ and W is a multidimensional Wiener pro-
cess. In the case of our coloidal suspension, the influence of 
the hydrodynamic field is taken into account by introducing 
a friction tensor � ij that depends on the relative position of 
coloidal particles i and j. Its equivalent Itô stochastic dif-
ferential equation has the form

with Vi = Pi∕Mi , FCC
i

 a force of interaction among coloidal 
particles and F̃i a stochastic force described by a Wiener 
process that takes the form dF̃idF̃j = 2kBT� ijdt [47].

Still a coarser description can be obtained if the coloidal 
particles are placed at distant locations from each other. In 
that case, we can assume that � ij = �ijI� , where � is a friction 
coefficient. This gives rise to the set of so-called Langevin 
equations. All this works well only if the density of coloidal 
particles is much bigger than that of the solvent. Otherwise, 
we can not isolate position and momenta of the coloidal 
particles as the sole variables in our model.

(2)

��(z, t)

�t
= −

�

�z
⋅ (A(z, t)�(z, t)) +

1

2

�

�z

�

�z
∶ (D(z, t)�(z, t)).

(3)dz = A(z, t)dt + B(z, t) ⋅ dW,

dQi =
Pi

Mi

dt, dPi = FCC
i
dt −

∑

j

� ij ⋅ Vjdt + dF̃i,
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Coarse-graining this model ever further, one could 
think that the position of the coloidal particles changes 
much more slowly than momentum, and try to keep Qi 
alone as governing variables of our model. This gives 
rise to the so-called Smoluchowsky equation [48]. One 
can even think that we are not interested in knowing the 
position of each and every coloidal particle in our suspen-
sion, but on their density over a particular region. This 
is possible by introducing a concentration field as the 
sole variable of the system. This gives rise, in turn, to the 
well-known Fick equation.

All this process ends by considering that we are only 
interested in the system at equilibrium. The description 
that takes into account invariants of the system only is 
the scale of thermodynamics. For such a simple system 
we have mentioned six different possible scales at which 
we can describe its dynamics. As mentioned before, at 
each of these scales a given degree of uncertainty will 
appear, as a consequence of our lack of knowledge about 
the precise microscopic state (at the molecular dynam-
ics scale). This uncertainty appears as stochasticity. In 
general, at each level of description, the least biased dis-
tribution is the one that maximizes the entropy functional 
at that scale.

It is therefore evident that by performing experiments 
at a given scale—something that depends usually on the 
available instruments and not on our choice—we are 
choosing a particular description of the phenomenon 
under scrutiny that may heavily influence the way in 
which the system shows to us. In the absence of previous 
knowledge on the system, we are not even in the position 
of ensuring the non-Markovian character of the descrip-
tion. Recently, however, data analysis methods have been 
devised that help in determining the precise number of 
internal, phenomenological variables for an accurate 
description of the history of the system [38].

Under this prism, we could ask ourselves if a suitable 
description of our system is already available in the lit-
erature, or if the phenomenon is completely unknown to 
us. In the former case, this description will be given fre-
quently in the form of a partial differential equation. The 
general form of this PDE could be known, but not the 
precise values of its coefficients nor the boundary condi-
tions applying under the laboratory conditions. Should 
this be the case, the formalism of physics-informed neural 
networks (PINNs) becomes the natural way to tackle the 
problem, see Sect. 3. If, on the other hand, we do not have 
any information on the particular form of the law being 
sought—think of the equations governing dark matter, 
for instance—a supervised learning approach based on 
the dynamical systems equivalence should be preferred. 
These will be deeply analyzed in Sect. 4 below.

3  Physics‑Informed Neural Networks

Physics-informed neural networks (PINNs) have consti-
tuted a great success in computational mechanics and 
mathematics and are, perhaps, the responsible of a very 
active research activity in the field [30, 49–56]. PINNs 
assume that a general, nonlinear PDE of the form

is known to govern the physics taking place. Here, N  is 
a nonlinear differential operator and � represents a set of 
parameters. Of course, z(x, t) , x ∈ Ω represent the governing 
variables of the problem, defined in some open set Ω ⊂ ℝ

n . 
The problem is then established so as to find, given some 
measurement on the system, the value of the variables gov-
erning it, z(x, t) , and the fittest parameters � that produce 
these measurements.

PINNs somehow resemble a collocation method. Given 
some measurements zi(ti

z
, xi

z
) , the residual of Eq. (4) is 

defined as

By approximating z through a deep neural network, and 
applying automatic differentiation, one arrives at a neu-
ral network approximation to R . By minimizing the mean 
squared error defined as

with

and

with {ti
z
, xi

z
, zi}

Nz

i=1
 denote measurements on the initial and 

boundary values and {ti
R
, xi

R
}
NR

i=1
 represent the collocation 

points for R.
When learning the physics governing some given phe-

nomenon, knowing in advance the PDE best describing it 
may seem as a too stringent condition, but the fact is that 
we already know many details about much of the physics 
surrounding us. In fact, in 1929, Paul Dirac said that [57],

The underlying physical laws necessary for the math-
ematical theory of a large part of physics and the 
whole of chemistry are thus completely known, and 
the difficulty is only that the exact application of 
these laws leads to equations much too complicated 
to be soluble.

(4)ż +N[z;�] = 0,

R = ż +N[z;�].

(5)MSE = MSEz +MSER,

MSEz =
1

Nz

Nz∑

i=1

|||z(t
i
z
, xi

z
) − zi

|||
2

,

MSER =
1

NR

NR∑

i=1

|||R(ti
R
, xi

R
)
|||
2

,
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It seems therefore reasonable to think that some form of 
PDE could be envisageable for the phenomena under scru-
tiny. Even if this is not completely true—think again of an 
engineer trying to model a beam from observation: should 
he or she consider an Euler-Bernoulli-Navier model or a 
Timoshenko one?—PINNs constitute nowadays a very pop-
ular method for solving PDEs from data.

As discussed in Sect. 2 above, learning physics from data 
is even more difficult than that. The just presented approach 
does no guarantee, of course, that for any reason, the result-
ing prediction made by such a learned PDE will be consist-
ent with the principles of thermodynamics that, as justified 
before, act as a restriction of a very high epistemic level.

If some symmetries of system are known in advance 
(remember that, thanks to the Noether’s theorem, for each 
symmetry of the system there is a conserved quantity, see 
[58] or its recent translation to English [59]) these can be 
imposed beforehand. This is precisely the path followed in 
[60] for Hamiltonian systems of the form given by Eq. (1). 
The PDE (4) is then restricted to an ordinary differential 
equation (ODE). We will come back to this approach in 
Sect. 4 below.

3.1  Thermodynamics‑Based Artificial Neural 
Networks

In a series of papers, I. Stefanou and coworkers presented 
recently a technique that employs thermodynamics as a 
restriction for learning constitutive laws [61–64]. They 
coined the technique as Thermodynamics-based Artificial 
Neural Networks (TANNs). TANNs encode the two laws 
of thermodynamics by making use of automatic differentia-
tion, thus ensuring by constructions the fulfillment of these 
laws, without the need to learn them from data. Thus, it also 
avoids the lack of fulfillment of these laws for previously 
unseen data.

Conservation of energy can be expressed as a PDE of 
the form

with � the density, � the stress tensor, v the velocity field, q 
the heat flux and h the energy supply per unit mass. In turn, 
the second principle of thermodynamics can be expressed as

with s the specific entropy and � the temperature.
TANNs try to avoid black-box ANNs by imposing the 

fulfillment of Eqs. (6) and (7). When fed with the current 
state of the material, zt = {�t,Δ�,�t, �t, �t,Δt} , with � a set 
of internal variables and t the time, they produce an output 
composed by {Δ� ,Δ�,Ft+Δt,Δ�} , where F = E − S� is the 

(6)𝜌ė = � ⋅ ∇sv − ∇ ⋅ q + 𝜌h,

(7)𝜌(𝜃ṡ − ė) + � ⋅ ∇sv −
q ⋅ ∇𝜃

𝜃
≥ 0,

Helmholtz free energy, S = �s and E is an energy potential 
(assumed to be rate-independent such that � =

�E

��
 and � =

�E

�S
).

TANNs actually learn from data the values of two 
scalars, the Helmholtz free energy F and the dissipation 
D = 𝜌(𝜃ṡ − ė) + � ⋅ ∇sv . For this to be possible, the incre-
ment in internal variables and temperature are also learned. 
The rest of the ingredients of Eqs. (6) and (7) are computed 
by automatic differentiation.

A somewhat related approach has recently been presented 
in [65]. An alternative approach based on exterior calculus 
is also developed in [66].

3.2  Variational Onsager Neural Networks

Huang and coworkers developed recently a technique based 
on the application of the Onsager variational principle [67, 
68] which they coined as Variational Onsager Neural Net-
works, VONNs [69]. Again, their technique is based on the 
learning of two potentials: the free energy F and the dissi-
pation potential D. The resulting NN enforces strongly the 
fulfillment of the second law of thermodynamics.

For systems at constant temperature and free of inertial 
effects, the Onsager principle looks like

where R is the so-called Rayleighian and z and � repre-
sent the state variables and the process (internal) variables, 
respectively. The Rayleighian takes the form

with P[z, �] the power supplied by external forces.
From the variational principle, Eq. (8), we arrive at

Both F and D are learned through a different NN, by mini-
mizing the loss function à la PINN, see Eq. (5). The convex-
ity of the dissipation potential D must be imposed explicitly, 
by making use of the input convex neural network paradigm 
[70]. This may be also the case for the free energy potential 
F.

VONNs work after data for z and � . This means that, 
very much like TANNs, this technique needs for data on 
internal variables that are often impossible to measure. If 
these networks work is by the availability of synthetic data, 
coming from simulations. We will discuss further about this 
limitation in Sect. 4. In any case, both techniques are able 
to impose in a soft manner the fulfillment of the second law 
of thermodynamics.

(8)min
�

R[z, �],

(9)R[z, �] = Ḟ[z, �] + D[z, �] + P[z, �],

𝛿Ḟ

𝛿�
+

𝛿D

𝛿�
+

𝛿P

𝛿�
= 0.
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In the next section we analyze a different family of tech-
niques based on dynamical systems, ODEs, instead of PDEs, 
and discuss their relative advantages and disadvantages.

4  Learning Based on a Dynamical Systems 
Analogy

On a somewhat different setting, Weinan showed that the 
learning problem has the same structure of a dynamical sys-
tem [31, 37, 71]. In these works, it is suggested that super-
vised learning has the same structure of a dynamical system 
of the form

so that the flow map

is produced by a non-linear function f whose precise form is 
sought. This function can be found by employing classical 
regression methodologies such as linear regression, support 
vector machines [72], or others. Of course, given the avail-
ability of the universal approximation theorem for neural 
networks, these appear as an appealing choice [73–75]. But 
the most interesting part of this approach is to recognize 
that, given the form of a dynamical system, all our previ-
ous knowledge in the field can be advantageously exploited 
to impose known structures in the system. The simplest 
structures one can think of are, of course, the Hamiltonian 
structure given by Eq. (1) if the system is known to be con-
servative, or the gradient flow structure, for instance [76]. 
For non-conservative variables, their evolution can be estab-
lished after some potential R in the form [77]

As can be readily noticed, this framework assumes no known 
form for the problem at at hand. In sharp contrast to the 
framework of PINNs, whose governing PDE is assumed to 
be known, this dynamical systems equivalence assumes no 
previous knowledge on the physics taking place from which 
data are obtained. We explore this formalism more in detail 
in the following sections.

4.1  Neural Networks for Conservative Systems

This framework has attracted the interest of many research-
ers in recent times. For instance, in [60] a method is devel-
oped for systems of the form given by Eq. (1). To better 
explain this method, let us introduce some notation first.

(10)
dz

dt
= f (z, t), z(0) = z0,

z0 → z(T , z0),

dz

dt
= −

�R

�z
.

A differentiable map 𝜙 ∶ U ⊂ ℝ
2N

→ ℝ
2N is said to be 

symplectic if

In particular, if �t(z0) is the flow map of a Hamiltonian sys-
tem, it is a symplectic map,

Assume that we are in the position of obtaining experimental 
data about the system at hand in the form

with h the time step size for an adequate numerical integra-
tion scheme on the problem. With these data we can think 
of constructing a feedforward neural network whose loss is 
of the form

with

the typical loss on the accuracy of the predictions and

� is a parameter to take into account the different relative 
size of both losses. This loss (11) enforces the symplectic 
structure of the sought matrix L , thus enforcing in turn the 
Hamiltonian character of the resulting approximation and its 
inherent conservative character. The resulting network works 
actually as a time integrator with time step h.

Many researchers have followed similar strategies. For 
instance, a year or so before Jin et al. and Greydanus et al. 
introduced the so-called Hamiltonian Neural Networks for 
canonical, discrete systems, in which the loss term is of 
the form [78]

where q and p represent, respectively, position and momenta 
of discrete particles. A similar approach is followed in [79]. 
The same loss function in Eq. (12) is employed in [80]. 
However, in this work the authors solve parametric prob-
lems, so the input data set is collected for different values of 

(
𝜕𝜙

𝜕x

)⊤

L⊤

(
𝜕𝜙

𝜕x

)
= L⊤.

(
𝜕𝜙t

𝜕z0

)⊤

L⊤

(
𝜕𝜙t

𝜕z0

)
= L⊤.

D = {zi, yi = �h(zi)}
�samples

i=1
,

MSE = MSEd + � ⋅MSEs,

MSEd =
1

�samples

�samples�

i=1

‖�h(zi) − yi‖2

(11)

MSEs =
1

�samples

�samples∑

i=1

‖‖‖‖‖‖

[(
𝜕𝜙t

𝜕z

)⊤

L⊤

(
𝜕𝜙t

𝜕z

)]
(zi) − L⊤

‖‖‖‖‖‖

2

.

(12)MSE =
‖‖‖‖
�H

�p
−

�q

�t

‖‖‖‖2
+
‖‖‖‖
�H

�q
+

�p

�t

‖‖‖‖2
,
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these parameters, thus generalizing this type of networks, 
while keeping their conservative character.

Even more sophisticate loss functions could be consid-
ered. For instance, Bertalan et al. assume that their data 
includes not only position and momenta, but also their 
derivatives. Their loss term is therefore of the form [81]

where each one of the four terms look like

(this term serves for disambiguation only, since the Ham-
iltonian can be determined up to a constant. It is therefore 
assume to be known at a point (q0, p0) ), and

The number of works that employs related approaches 
is huge and dates back to at least 1993 [82]. In [83], for 
instance, an improved training method is developed for this 
type of networks that is based on the symplectic character of 
the equations. Finzi et al. suggest a modification of the above 
techniques by working on cartesian coordinates and not in 
the phase space [84]. To improve the expressiveness of these 
networks, Tong et al. introduce a method that adds Taylor 
series expansions designed with symmetric structure [85].

Always with the same Hamiltonian structure in mind, 
Chen et al. introduce them in the realm of recurrent neural 
networks, RNNs [86]. Even Generative Neural Networks 
exist under this Hamiltonian prism [87]. Again following 
a similar rationale, Di Pietro et al. improve the results by 
introducing a fourth-order time integration scheme in the 
learning scheme [88]. Choudhary et al. focus their atten-
tion in the transition from ordered to chaotic systems, and 
show that Hamiltonian Neural Networks (HNNs) perform 
much better than classical, black-box NNs [89]. Other 
works also confirm the superiority of HNNs over classi-
cal NNs [90, 91].

But these architectures are interesting not only by their 
inductive biases, that force them to follow conservative 
dynamics. Galimberti and coworkers have also demon-
strated that HNNs eliminate by construction the problem 
of vanishing gradients [92], present in many NN archi-
tectures [93]. Even a very recent survey paper has been 
written on this particular family of techniques [94].

Loss =

4∑

k=1

ckfk,

f1 =
‖‖‖‖
�H

�p
−

�q

�t

‖‖‖‖2
,

f2 =
‖‖‖‖
�H

�q
+

�p

�t

‖‖‖‖2
,

f3 =(H(q0, p0) −H0)
2,

f4 =
‖‖‖‖
𝜕H

𝜕q
q̇ +

𝜕H

𝜕p
ṗ
‖‖‖‖2
.

An alternative route to follow in this vast family of conserv-
ative phenomena is to employ Lagrangian, instead of Hamil-
tonian, formalisms. One advantage of doing so is the possibil-
ity of employing arbitrary coordinates instead of canonical 
coordinates. Although we will see later on that this does not 
constitute a true limitation for many systems of practical inter-
est, canonical coordinates satisfy a set of rules in terms of the 
so-called Poisson bracket. The Lagrangian formalism assumes 
a data set composed by z = {q, q̇}

�samples

i=1
 (position and velocities 

of the particles). As it is well known, the Lagrangian formal-
ism defines the so-called action functional as

with T the kinetic energy and V the potential energy, so that 
a dynamical system will follow a path given by the minimum 
value of S. This value is obtained through the restriction to 
the so-called Euler-Lagrange equations,

with L = T − V  the Lagrangian of the system. This Lagran-
gian is precisely the objective to reconstruct from data. By 
standard algebraic manipulations, we arrive at

From this expression it is therefore straighforward to define 
a loss function

so as to obtain an approximation to L . This is the approach 
followed in [95–101], among others. Again, the amount of 
works devoted to this approach and their recent dates prove 
the interest of the community in these approaches.

4.2  Neural Networks for Dissipative Phenomena

Despite the success in the development of network architec-
tures that impose conservation of energy (achieved mainly 
in the last two years), many researchers have realized that, 
following the reasoning in Sect. 2, dissipation is present in 
nearly every phenomenon of interest. Therefore, it is of utmost 
importance to develop techniques able to satisfy the principles 
of thermodynamics in the presence of dissipation. We make 
an overview of these techniques in this section.

4.2.1  Deconstructing Inductive Biases

Some authors, aware of the need to include dissipation in the 
formulation, have opted for its direct inclusion by just relaxing 

S = ∫
t1

t0

(T(q, q̇) − V(q))dt,

d

dt

𝜕L

𝜕q̇
=

𝜕L

𝜕q
,

q̈ = (∇q̇∇
⊤

q̇
L)−1

[
∇qL − (∇q∇

⊤

q̇
L)q̇

]
.

Loss = ‖q̈L − q̈true‖2,
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the fulfillment of the restrictions (inductive biases) introduced 
in the last section. This is the approach followed in the Sym-
plectic ODE nets (symODEN) approach [102, 103], inspired 
by the literature on controlling dynamical systems. It is also 
the approach followed in a very recent approach [104]. Actu-
ally, both approaches are heavily influenced by the port-Ham-
iltonian approach to dynamical systems, which has a strong 
tradition in the introduction of dissipation and control in the 
formulation of dynamical systems [105–107]. Essentially, 
port-Hamiltonian systems consider an evolution of the sys-
tem in the form

where, as can be noticed, dissipation is included through 
a symmetric, positive semi-definite matrix D , and control 
in considered through an actuation u . The formulation in 
Eq. (13) recovers the Hamiltonian structure if no dissipation 
nor control are present. However, as will be demonstrated 
later, this formulation does not guarantee the fulfillment of 
the principles of thermodynamics and can be considered, in 
some sense, phenomenological.

Of course, neural networks based upon this formulation 
have been developed in the last years [108–113]. They all share 
the more or less the same ingredients and are based upon the 
formulation just discussed.

An alternative route is the one followed by Wang and cow-
orkers [114]. Given the equivalence of symmetries and con-
servation laws for different magnitudes, the authors choose to 
begin by employing equivariant neural networks [115–117]. 
Then, these requirements on invariance are relaxed. But again, 
the lack of thermodynamic foundations of this method does 
not guarantee, in principle, the fulfillment of the principles of 
thermodynamics.

4.2.2  Metriplectic Neural Networks

As mentioned above, the port-Hamiltonian or relaxed equiv-
ariance formalisms do not guarantee but a phenomenological 
fulfillment of the laws of thermodynamics. There is no guar-
antee that, once faced to previously unseen data, or trained 
with noisy data, these networks will produce an output with 
the right amount of dissipation.

In order to develop a consistent formulation, let us assume 
that, at a given level of description, as discussed in Sect. 2, the 
invariants of the system, I(z) can be expressed as a function of 
the resolved variables,

(13)
[
q

p

]
=

([
0 I

−I 0

]
− D(q)

)[
�H

�q
�H

�p

]
+

[
0

g(q)

]
u,

I(z) = I(z),

for some suitable function I  . Let us also assume that the 
Hamiltonian of the system can be expressed as a function 
of these variables,

with E the actual energy of the system. In these circum-
stances, the Fokker-Planck equation (2) and, more particu-
larly, its equivalent Itô stochastic differential equation (3) 
takes the form [42]

where kB is the Boltzmann constant, M(z) is a symmetric, 
positive semi-definite dissipation matrix, S is a second 
potential (the so-called Massieu potential, entropy at this 
level of description) and dz̃ is a Wiener process that satisfies

with B a non-square matrix satisfying

The importance of thermal fluctuations is controlled by the 
relative value of the Boltzmann constant kB with respecto to 
the average value of entropy. Given that E, S, L and M do 
not depend on kB , if these effects are of low importance, we 
can take the limit kB → 0 , resulting in

This same assumption, kB → 0 , induces two additional 
consequences (we omit the proof, the interested reader can 
consult [42])

and

which constitute the ingredients of the celebrated General 
Equation for the non-Equilibrium Reversible-Irreversible 
Coupling, GENERIC, equations [118–122]. This type of 
formulations are also known as metriplectic formulations, 
since they combine metric and symplectic terms [123, 
124]. However, in GENERIC Eqs. (16) and (17), known as 
degeneracy conditions, play a fundamental role. They are 
key ingredients in the demonstration of the a priori satisfac-
tion of the two laws of thermodynamics: conservation of 
energy in closed systems and non-negative entropy produc-
tion. Indeed, given Eqs. (16) and (17), it is straightforward 
to prove that, given the anti-symmetry of L,

H(z) = E(z),

(14)dz =

[
L(z)

𝜕E

𝜕z
+M(z)

𝜕S

𝜕z
+ kB∇M(z)

]
dt + dz̃,

dz̃ = B(z)dW(t),

B(z)B(z)⊤ = 2kBM(z).

(15)dz = L(z)
�E

�z
+M(z)

�S

�z
.

(16)L(z)
�S

�z
= 0,

(17)M(z)
�E

�z
= 0,



Thermodynamics of Learning Physical Phenomena  

1 3

and

given the positive semi-definiteness of M . Therefore, the 
GENERIC structure appears to be much more interesting 
than port-Hamiltonian ones. It consistently guarantees the 
satisfaction of the laws of thermodynamics by construc-
tion. This makes GENERIC a very appealing choice for the 
construction of inductive biases in the learning of physical 
phenomena.

We assume that data sets Di contain labelled pairs of 
a single-step state vector zt and its evolution in time zt+1,

so that a neural network can be constructed by means of two 
loss terms, a data loss term that takes into account the cor-
rect prediction of the state vector time evolution using the 
GENERIC integrator, defined as

where ‖ ⋅ ‖2 denotes the L2-norm. The choice of the time 
derivative instead of the state vector itself is to regularize the 
global loss function to a uniform order of magnitude with 
respect to the degeneracy terms.

A second loss term takes into account the fulfillment of 
the degeneracy equations,

This formulation gave rise to the so-called structure-preserv-
ing neural networks [125] and thermodynamics-informed 
neural networks [126–128]. These networks have been 
employed recently in the development of physcs perception 
with the help of computer vision techniques [129, 130].

The global loss term is a weighted mean of the two 
terms over the shuffled Nbatch batched snapshots.

Note that the energy and entropy are learned through data 
about their gradients, so they are learnt up to an integration 
constant value. Note also that the activation functions must 
have a sufficient degree of continuity to allow for this.

Recently, alternative approaches have been developed to 
impose these degeneracy restrictions in hard form, instead 

Ė(z) =
𝜕E

𝜕z
ż = 0,

Ṡ =
𝜕S

𝜕z
ż =

𝜕S

𝜕z
M(z)

𝜕S

𝜕z
≥ 0,

(18)D = {Di}
Nsim

i=1
, Di = {(zt, zt+1)}

T
t=0

,

L
data
n

=
‖‖‖‖
dzGT

dt
−

dznet

dt

‖‖‖‖

2

2

,

L
deg
n

=
‖‖‖‖
L
�S

�zn

‖‖‖‖

2

2

+
‖‖‖‖
M

�E

�zn

‖‖‖‖

2

2

.

(19)L =
1

Nbatch

Nbatch∑

n=0

(�Ldata
n

+ L
deg
n

).

of soft form. For instance, [131] employ a particular para-
metrization of the L and M matrices. Zhang and coworkers 
[132] employ skew-symmetric matrices for forcing orthog-
onality. Notably, in this last work a universal approxima-
tion theorem is provided for this class of GENERIC-based 
networks, thus proving their expressivity.

An approach has been developed in which both inductive 
biases for the thermodynamic structure of the problem and a 
graph structure in the network are used in conjunction [128]. 
This approach has demonstrated to be very convenient for 
the development of learned simulators trained from finite 
element data. The result is a network for the problem of 
interest in which previously unseen geometric modifications 
can be introduced in the domain, as well as remeshings asso-
ciated to these changes, without any decrease in accuracy.

Alternative versions based on GENERIC, but employ-
ing classical, piece-wise linear regressions instead of neu-
ral networks also exist, see [133–137]. More details on the 
geometric and thermodynamic structure of information can 
be found at [138].

Something remarkable from this GENERIC approach is 
that is works whenever the set of state variables z is able 
to adequately represent the energy of the system [42]. This 
opens the possibility of constructing reduced-order models 
and apply TINNs to learn the evolution equations in this 
reduced-order manifold. This is the approach followed in 
[126]. In Fig. 1 a sketch of this architecture is depicted. At 
a first instance, a sparse autoencoder is trained [139]. This 
autoencoder is trained with the full-field variables z . The 
autoencoder, that employs L1-norm enforcing sparsity, then 
finds a latent representation of the phenomenon x . It is pre-
cisely in this latent space in which the method seeks for a 
GENERIC representation.

It is worth highlighting that the reduced-order modeling 
must follow this path: first reduce, then learn the GENERIC 
representation. The opposite (first learn the GENERIC 
model, then reduce) will make the ingredients of this for-
malism, L , M , E and S to loose their required properties.

4.2.3  Generalized GENERIC Structures

One of the most frequent criticisms to the employ of 
GENERIC as an inductive bias when learning physical 
phenomena is that metriplectic formalisms are only able to 
consider quadratic potentials. However, this is not entirely 
true. While the early descriptions of metriplectic formalisms 
and of GENERIC itself included only quadratic dissipation 
potentials, see [118, 119, 123, 124], this is no longer the 
case for modern descriptions of the GENERIC formalism 
[121, 140].

To develop such a theory, we first introduce the conjugate 
variables
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We also introduce the so-called dissipative thermodynamic 
forces X(z∗) . The third ingredient of the model is a dissipa-
tion potential

with the following properties: 

1. Ξ is a real-valued and regular function of (z,X).
2. Ξ(z, 0) = 0.
3. Ξ(z,X) reaches its minimum at X = 0.
4. Ξ(z,X) is convex in a neighborhood of X = 0.
5. z∗

𝜕Ξ

𝜕z∗
= K(X,

𝜕Ξ

𝜕X
) > 0.

With these conditions, we have that

Solutions to Eq. (20) satisfy the conservation of energy and 
non-negative entropy production,

Equation (20) reduces to the standard GENERIC equation if 
X(z∗) = z∗ and Ξ(z,X) = 1

2
z∗Mz∗ , with M the usual dissipa-

tion matrix, symmetric and positive semi-definite.

z∗ =
�S

�z
= Sz.

Ξ = Ξ(z,X),

(20)ż = L(z)
𝜕E

𝜕z
+

𝜕Ξ

𝜕z∗
.

Ṡ =
𝜕S

𝜕z

𝜕Ξ

𝜕
𝜕S

𝜕z

= K
(
X,

𝜕Ξ

𝜕X

)
> 0.

Therefore, the elements in the GENERIC description of 
complex solids is composed by 

1. the state variables z.
2. the kinematics expressed by the Poisson bracket {a, b},
3. the dissipative forces X  and
4. three potentials, E(z) , S(z) and Ξ(z,X).

To the best of the author’s knowledge, there is no learning 
strategy developed on top of this last theory that, neverthe-
less, is worth exploring to extend the capabilities of metri-
plectic formalisms.

4.3  Strategies for Open Systems

The variational Onsager strategy arising from Eq. (9) pre-
sents one important advantage over strategies based upon 
metriplectic (GENERIC) formalisms: they are valid for 
externally-driven systems. On the contrary, GENERIC 
assumes by construction a closed system. Very recently, 
however, the metriplectic approach inherent in GENERIC 
has been extended to open systems in a port-Hamiltonian-
like style [141]. This new formalism can be seen as a sort 
of port-metriplectic approach in which dissipative, open 
systems can be tackled within the metriplectic framework 
by simply adding ports to the formulation, through which 
energy is exchanged with the environment. This opens the 
possibility to learn systems of systems, i.e., systems com-
posed by sub-system, possibly of different nature, while 
ensuring the fulfillment of the right thermodynamic struc-
ture of the problem. Under the umbrella of the port-metri-
plectic formalism, the evolution of the open system can be 
analyzed as

where {⋅, ⋅} is the Poisson bracket and [⋅, ⋅] represents the 
dissipative bracket that constitute the conservative and dis-
sipative, respectively, terms of GENERIC. In fact, the reader 
can notice that both brackets are decomposed additively into 
bulk and boundary contributions. The degeneracy condi-
tions, Eqs. (16) and (17) are satisfied by the bulk operators 
only.

5  Conclusions

We have explored the recent interest in developing learn-
ing strategies for physical phenomena that take into account 
inductive biases originated from the non-equilibrium ther-
modynamic theory. The growing interest in this field is moti-
vated by the interest of the mechanics community on the 

(21)
ż = {z,E}bulk + [z, S]bulk

= {z,E} + [z, S] − {z,E}boun − [z, S]boun,

Fig. 1  Sketch of the architecture employed in [126] to learn reduced-
order models of a given phenomenon
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development of strategies that avoid as much as possible 
black-box approaches to the problem. For our community, 
but also for industrialists, credible methods are necessary. 
These days somewhat resemble the early days of finite ele-
ments. By that times, industrialists did not understand how 
finite elements worked. This motivated a huge effort of 
research within the applied maths and engineering commu-
nities that soon dissipated any doubt. If we want these data 
driven techniques to be adopted by the industry in a near 
future, we should provide responses, very much like the ones 
given for finite elements. This will make it necessary a joint 
effort from the applied maths community, from the engineer-
ing community but also from the physics and thermodynam-
ics community, as we have tried to demonstrate in this paper.

In any case, so far these techniques have already demon-
strated a substantial increase in robustness and credibility 
with respect to black-box approaches. It is also worth not-
ing that something that we have already learnt is that the 
more physics knowledge we add to the learning process as 
an inductive bias, the less data will be necessary for the same 
level of accuracy and, conversely, the lower the error on the 
approximation will be.

In general, we strongly believe that these techniques, and 
those that will be developed in the future, will change the 
way we think of simulation, paving the way for instantane-
ous responses for parametric problems to the designers and 
analysts.
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