26,416 research outputs found

    Optimization Monte Carlo: Efficient and Embarrassingly Parallel Likelihood-Free Inference

    Get PDF
    We describe an embarrassingly parallel, anytime Monte Carlo method for likelihood-free models. The algorithm starts with the view that the stochasticity of the pseudo-samples generated by the simulator can be controlled externally by a vector of random numbers u, in such a way that the outcome, knowing u, is deterministic. For each instantiation of u we run an optimization procedure to minimize the distance between summary statistics of the simulator and the data. After reweighing these samples using the prior and the Jacobian (accounting for the change of volume in transforming from the space of summary statistics to the space of parameters) we show that this weighted ensemble represents a Monte Carlo estimate of the posterior distribution. The procedure can be run embarrassingly parallel (each node handling one sample) and anytime (by allocating resources to the worst performing sample). The procedure is validated on six experiments.Comment: NIPS 2015 camera read

    Variational Sequential Monte Carlo

    Full text link
    Many recent advances in large scale probabilistic inference rely on variational methods. The success of variational approaches depends on (i) formulating a flexible parametric family of distributions, and (ii) optimizing the parameters to find the member of this family that most closely approximates the exact posterior. In this paper we present a new approximating family of distributions, the variational sequential Monte Carlo (VSMC) family, and show how to optimize it in variational inference. VSMC melds variational inference (VI) and sequential Monte Carlo (SMC), providing practitioners with flexible, accurate, and powerful Bayesian inference. The VSMC family is a variational family that can approximate the posterior arbitrarily well, while still allowing for efficient optimization of its parameters. We demonstrate its utility on state space models, stochastic volatility models for financial data, and deep Markov models of brain neural circuits

    Population Monte Carlo algorithms

    Full text link
    We give a cross-disciplinary survey on ``population'' Monte Carlo algorithms. In these algorithms, a set of ``walkers'' or ``particles'' is used as a representation of a high-dimensional vector. The computation is carried out by a random walk and split/deletion of these objects. The algorithms are developed in various fields in physics and statistical sciences and called by lots of different terms -- ``quantum Monte Carlo'', ``transfer-matrix Monte Carlo'', ``Monte Carlo filter (particle filter)'',``sequential Monte Carlo'' and ``PERM'' etc. Here we discuss them in a coherent framework. We also touch on related algorithms -- genetic algorithms and annealed importance sampling.Comment: Title is changed (Population-based Monte Carlo -> Population Monte Carlo). A number of small but important corrections and additions. References are also added. Original Version is read at 2000 Workshop on Information-Based Induction Sciences (July 17-18, 2000, Syuzenji, Shizuoka, Japan). No figure

    Efficient Sequential Monte-Carlo Samplers for Bayesian Inference

    Full text link
    In many problems, complex non-Gaussian and/or nonlinear models are required to accurately describe a physical system of interest. In such cases, Monte Carlo algorithms are remarkably flexible and extremely powerful approaches to solve such inference problems. However, in the presence of a high-dimensional and/or multimodal posterior distribution, it is widely documented that standard Monte-Carlo techniques could lead to poor performance. In this paper, the study is focused on a Sequential Monte-Carlo (SMC) sampler framework, a more robust and efficient Monte Carlo algorithm. Although this approach presents many advantages over traditional Monte-Carlo methods, the potential of this emergent technique is however largely underexploited in signal processing. In this work, we aim at proposing some novel strategies that will improve the efficiency and facilitate practical implementation of the SMC sampler specifically for signal processing applications. Firstly, we propose an automatic and adaptive strategy that selects the sequence of distributions within the SMC sampler that minimizes the asymptotic variance of the estimator of the posterior normalization constant. This is critical for performing model selection in modelling applications in Bayesian signal processing. The second original contribution we present improves the global efficiency of the SMC sampler by introducing a novel correction mechanism that allows the use of the particles generated through all the iterations of the algorithm (instead of only particles from the last iteration). This is a significant contribution as it removes the need to discard a large portion of the samples obtained, as is standard in standard SMC methods. This will improve estimation performance in practical settings where computational budget is important to consider.Comment: arXiv admin note: text overlap with arXiv:1303.3123 by other author

    Statistical Inference for Partially Observed Markov Processes via the R Package pomp

    Get PDF
    Partially observed Markov process (POMP) models, also known as hidden Markov models or state space models, are ubiquitous tools for time series analysis. The R package pomp provides a very flexible framework for Monte Carlo statistical investigations using nonlinear, non-Gaussian POMP models. A range of modern statistical methods for POMP models have been implemented in this framework including sequential Monte Carlo, iterated filtering, particle Markov chain Monte Carlo, approximate Bayesian computation, maximum synthetic likelihood estimation, nonlinear forecasting, and trajectory matching. In this paper, we demonstrate the application of these methodologies using some simple toy problems. We also illustrate the specification of more complex POMP models, using a nonlinear epidemiological model with a discrete population, seasonality, and extra-demographic stochasticity. We discuss the specification of user-defined models and the development of additional methods within the programming environment provided by pomp.Comment: In press at the Journal of Statistical Software. A version of this paper is provided at the pomp package website: http://kingaa.github.io/pom

    Orthogonal parallel MCMC methods for sampling and optimization

    Full text link
    Monte Carlo (MC) methods are widely used for Bayesian inference and optimization in statistics, signal processing and machine learning. A well-known class of MC methods are Markov Chain Monte Carlo (MCMC) algorithms. In order to foster better exploration of the state space, specially in high-dimensional applications, several schemes employing multiple parallel MCMC chains have been recently introduced. In this work, we describe a novel parallel interacting MCMC scheme, called {\it orthogonal MCMC} (O-MCMC), where a set of "vertical" parallel MCMC chains share information using some "horizontal" MCMC techniques working on the entire population of current states. More specifically, the vertical chains are led by random-walk proposals, whereas the horizontal MCMC techniques employ independent proposals, thus allowing an efficient combination of global exploration and local approximation. The interaction is contained in these horizontal iterations. Within the analysis of different implementations of O-MCMC, novel schemes in order to reduce the overall computational cost of parallel multiple try Metropolis (MTM) chains are also presented. Furthermore, a modified version of O-MCMC for optimization is provided by considering parallel simulated annealing (SA) algorithms. Numerical results show the advantages of the proposed sampling scheme in terms of efficiency in the estimation, as well as robustness in terms of independence with respect to initial values and the choice of the parameters
    corecore