85 research outputs found

    On Approximating the Sum-Rate for Multiple-Unicasts

    Full text link
    We study upper bounds on the sum-rate of multiple-unicasts. We approximate the Generalized Network Sharing Bound (GNS cut) of the multiple-unicasts network coding problem with kk independent sources. Our approximation algorithm runs in polynomial time and yields an upper bound on the joint source entropy rate, which is within an O(log⁡2k)O(\log^2 k) factor from the GNS cut. It further yields a vector-linear network code that achieves joint source entropy rate within an O(log⁡2k)O(\log^2 k) factor from the GNS cut, but \emph{not} with independent sources: the code induces a correlation pattern among the sources. Our second contribution is establishing a separation result for vector-linear network codes: for any given field F\mathbb{F} there exist networks for which the optimum sum-rate supported by vector-linear codes over F\mathbb{F} for independent sources can be multiplicatively separated by a factor of k1−δk^{1-\delta}, for any constant δ>0{\delta>0}, from the optimum joint entropy rate supported by a code that allows correlation between sources. Finally, we establish a similar separation result for the asymmetric optimum vector-linear sum-rates achieved over two distinct fields Fp\mathbb{F}_{p} and Fq\mathbb{F}_{q} for independent sources, revealing that the choice of field can heavily impact the performance of a linear network code.Comment: 10 pages; Shorter version appeared at ISIT (International Symposium on Information Theory) 2015; some typos correcte

    Distributed design of network codes for wireless multiple unicasts

    Get PDF
    Previous results on network coding for low-power wireless transmissions of multiple unicasts rely on opportunistic coding or centralized optimization to reduce the power consumption. This paper proposes a distributed strategy for reducing the power consumption in a network coded wireless network with multiple unicasts. We apply a simple network coding strategy called “reverse carpooling,” which uses only XOR and forwarding operations. In this paper, we use the rectangular grid as a simple network model and attempt to increase network coding opportunities without the overhead required for centralized design or coordination. The proposed technique designates “reverse carpooling lines” analogous to a collection of bus routes in a crowded city. Each individual unicast then chooses a route from its source to its destination independently but in a manner that maximizes the fraction of its path spent on reverse carpooling lines. Intermediate nodes apply reverse carpooling opportunistically along these routes. Our network optimization attempts to choose the reverse carpooling lines in a manner that maximizes the expected power savings with respect to the random choice of sources and sinks

    Precoding-Based Network Alignment For Three Unicast Sessions

    Full text link
    We consider the problem of network coding across three unicast sessions over a directed acyclic graph, where each sender and the receiver is connected to the network via a single edge of unit capacity. We consider a network model in which the middle of the network only performs random linear network coding, and restrict our approaches to precoding-based linear schemes, where the senders use precoding matrices to encode source symbols. We adapt a precoding-based interference alignment technique, originally developed for the wireless interference channel, to construct a precoding-based linear scheme, which we refer to as as a {\em precoding-based network alignment scheme (PBNA)}. A primary difference between this setting and the wireless interference channel is that the network topology can introduce dependencies between elements of the transfer matrix, which we refer to as coupling relations, and can potentially affect the achievable rate of PBNA. We identify all possible such coupling relations, and interpret these coupling relations in terms of network topology and present polynomial-time algorithms to check the presence of these coupling relations. Finally, we show that, depending on the coupling relations present in the network, the optimal symmetric rate achieved by precoding-based linear scheme can take only three possible values, all of which can be achieved by PBNA.Comment: arXiv admin note: text overlap with arXiv:1202.340

    A Linear Network Code Construction for General Integer Connections Based on the Constraint Satisfaction Problem

    Get PDF
    The problem of finding network codes for general connections is inherently difficult in capacity constrained networks. Resource minimization for general connections with network coding is further complicated. Existing methods for identifying solutions mainly rely on highly restricted classes of network codes, and are almost all centralized. In this paper, we introduce linear network mixing coefficients for code constructions of general connections that generalize random linear network coding (RLNC) for multicast connections. For such code constructions, we pose the problem of cost minimization for the subgraph involved in the coding solution and relate this minimization to a path-based Constraint Satisfaction Problem (CSP) and an edge-based CSP. While CSPs are NP-complete in general, we present a path-based probabilistic distributed algorithm and an edge-based probabilistic distributed algorithm with almost sure convergence in finite time by applying Communication Free Learning (CFL). Our approach allows fairly general coding across flows, guarantees no greater cost than routing, and shows a possible distributed implementation. Numerical results illustrate the performance improvement of our approach over existing methods.Comment: submitted to TON (conference version published at IEEE GLOBECOM 2015

    A Linear Network Code Construction for General Integer Connections Based on the Constraint Satisfaction Problem

    Get PDF
    The problem of finding network codes for general connections is inherently difficult. Resource minimization for general connections with network coding is further complicated. The existing solutions mainly rely on very restricted classes of network codes, and are almost all centralized. In this paper, we introduce linear network mixing coefficients for code constructions of general connections that generalize random linear network coding (RLNC) for multicast connections. For such code constructions, we pose the problem of cost minimization for the subgraph involved in the coding solution and relate this minimization to a Constraint Satisfaction Problem (CSP) which we show can be simplified to have a moderate number of constraints. While CSPs are NP-complete in general, we present a probabilistic distributed algorithm with almost sure convergence in finite time by applying Communication Free Learning (CFL). Our approach allows fairly general coding across flows, guarantees no greater cost than routing, and shows a possible distributed implementation
    • …
    corecore