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A Linear Network Code Construction for
General Integer Connections Based on

the Constraint Satisfaction Problem
Ying Cui, Muriel Médard, Fan Lai, Edmund Yeh, Douglas Leith, Ken Duffy, Dhaivat Pandya

Abstract— The problem of finding network codes for gen-
eral connections is inherently difficult in capacity constrained
networks. Resource minimization for general connections with
network coding is further complicated. Existing methods for
identifying solutions mainly rely on highly restricted classes of
network codes, and are almost all centralized. In this paper, we
introduce linear network mixing coefficients for code constructions
of general connections that generalize random linear network
coding (RLNC) for multicast connections. For such code construc-
tions, we pose the problem of cost minimization for the subgraph
involved in the coding solution and relate this minimization to a
path-based Constraint Satisfaction Problem (CSP) and an edge-
based CSP. While CSPs are NP-complete in general, we presenta
path-based probabilistic distributed algorithm and an edge-based
probabilistic distributed algorithm with almost sure convergence
in finite time by applying Communication Free Learning (CFL).
Our approach allows fairly general coding across flows, guarantees
no greater cost than routing, and shows a possible distributed
implementation. Numerical results illustrate the performance
improvement of our approach over existing methods.

Index Terms— network coding, network mixing, general con-
nection, resource optimization, distributed algorithm.

I. I NTRODUCTION

The problem of finding network codes in the case of general
connections, where each destination can request information
from any subset of sources, is intrinsically difficult and little
is known about its complexity. In certain special cases, such
as multicast connections (where destinations share all of their
demands), it suffices to satisfy a Ford-Fulkerson type of min-
cut max-flow constraint between all sources to every destination
individually. For multicast connections, linear codes suffice [1],
[2], and lend themselves to a distributed random construction
[3]. While linear codes have been the most widely considered
in the literature, linear codes over finite fields may in general
not be sufficient for general connections, as shown by [4] using
an example from matroid theory.

A matroidal structure for the network coding problem with
general connections was conjectured by the late Ralf Kötter
(private communication) but, while different aspects of this con-
nection have been investigated in the literature [5]–[11],a proof
remains elusive, except in special cases. Recently, the problem
of scalar-linear coding has been shown to have a matroidal
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structure [7], [8], [12]. There exists a correspondence between
scalar-linearly solvable networks and representable matroids
over finite fields, which can be used to obtain some bounds on
scalar linear network capacity [13] or the capacity regionsof
certain classes of networks [14]. More generally, the problem of
finding the linear network coding capacity region is equivalent
to the characterization of all linear polymatroids [9], whose
structure was investigated in [10]. Reference [11] generalized
the results of [15], which investigated the connection among
index coding, network coding and matroid theory. In [16],
polymatroids were used to produce linear code constructions.

Progress in understanding the matroidal structure of the
general connection problem has, however, not yet provided
simple and useful approaches to generating explicit linear
codes. There has been considerable investigation of restricted
cases, such as a network with only two sources and two
destinations, generally referred to as the two-unicast network
[17]–[21], but thus far such investigation has yielded only
bounds or linear solutions for restricted cases of the two-unicast
network. It has been shown in [20] that the two-unicast problem
is as hard as the most general network coding problem. Since
the difficulty of coding in the case of general connections is
in effect an interference cancellation one, approaches relying
on interference alignment have naturally been explored [22]–
[24]. Reference [25] investigated the enumeration, rate region
computation and hierarchy of general multi-source multi-sink
hyper-edge networks under network coding.

Even when we consider simple scalar network codes, which
have scalar coding coefficients, the problem of code con-
struction for general connections remains vexing. The main
difficulty lies in cancelling the effect of flows that are coded
together even though they are not destined for a common
destination. The problem of code construction is further compli-
cated when we seek, for common reasons of network resource
management, to limit fully or partially the use of links in the
network. For convex cost functions of flows over edges in
the graph corresponding to the network, finding a minimum-
cost solution is known to be a convex optimization problem
in the case of multicast connections (for continuous flows)
[26]. However, in the case of general connections, network
resource minimization, even when allowing only restrictedcode
constructions, appears difficult.

Among coding approaches for optimizing network use for
general connections, we distinguish two types. The first, which
we adopt in this paper, is that of mixing, by which we mean
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coding together flows using random linear network coding
(RLNC) [3], originally proposed for multicast connections. The
principle is to code together flows as though they were part ofa
common multicast connection. In this case, no explicit coding
coefficients are provided, and decidability is ensured withhigh
probability by RLNC. For example, the mixing approaches
in [27] and [28] are both based on mixing variables, each
corresponding to a set of flows that can be mixed over an edge.
Specifically, in [27], a two-step mixing approach is proposed for
network resource minimization of general connections, where
flow partition (mixing) and flow rate optimization are consid-
ered separately. This separation imposes stronger restrictions
on the mixing design in the first step and leads to a limitation
on the feasibility region. Reference [28] studies the feasibility
of more general mixing designs based on mixing variables of
sizeO(2P ), whereP is the number of flows. Reference [28]
does not, however, provide an approach for obtaining a specific
mixing design. The second type of coding approach is an
explicit linear code construction, by which we mean providing
specific linear coefficients over some finite field, to be applied
to coding flows at different nodes. Often these constructions
are simplified by restricting them to be pairwise. For example,
in [29] and [30], simple codes over pairs of flows are proposed
for network resource minimization of general connections.

Some explicit linear network code construction approaches
[29], [30] are distributed, but they allow only pairwise coding.
The algorithms of [31] using evolutionary techniques, which
are also explicit code constructions, are partially distributed,
since the chromosomes can be decomposed into their local
contributions, but require information to be fed back from
the receivers to all the nodes in the network. In addition, the
convergence results for evolutionary techniques are generally
scant and do not yield prescriptive constructions. While RLNC
for multicast connections is a distributed algorithm, mostof
the mixing approaches [27], [28] based on it have remained
centralized. In [32], we propose new methods for constructing
linear network codes for general connections of continuous
flows based on mixing to minimize the total network cost.
Flow splitting and coding over time are required to achieve the
desired performance. The focus in [32] is to apply continuous
optimization techniques to obtain continuous flow rates. In
[33], we consider linear network code construction for general
connections of integer flows based on mixing, and propose an
edge-based probabilistic distributed algorithm to minimize the
total network cost. This paper extends the results in [33].

Our contribution in this paper is to present new methods for
constructing linear network codes in a distributed manner for
general connections of integer flows based on mixing.
• We introduce linear network mixing coefficients. The num-

ber of mixing coefficients grows polynomially with the number
of flows. We formally establish the relationship between linear
network coding and mixing.
• We formulate the minimization of the cost of the subgraph

involved in the code construction for general connections of
integer flows in terms of the mixing coefficients.
• We relate our problem to a path-based Constraint Satisfac-

tion Problem (CSP) and an edge-based CSP. While CSPs are

NP-complete in general, we present a path-based probabilis-
tic distributed algorithm and an edge-based probabilisticdis-
tributed algorithm with almost sure convergence in finite time
by applying Communication Free Learning (CFL), a recent
probabilistic distributed solution for CSPs [34]. The path-based
distributed algorithm requires more local information than the
edge-based distributed algorithm, but converges faster.
• We show that our approach guarantees no greater cost

than routing or the simplified mixing design in [27]. Numerical
results also illustrate the performance improvement of our
approach over existing methods.

While our approach, like all other general connection code
constructions, is generally suboptimal, it allows more flows to
be mixed than is possible with pairwise mixing [29], [30] and
with the separate mixing design in [27]. Moreover, in contrast
to [27], [28], [32], our approach does not require non-scalar
coding over time.

II. PROBLEM SETUP AND DEFINITIONS

A. Network Model

We consider a directed acyclic network with general con-
nections.1 Let G = (V , E) denote the directed acyclic graph,
whereV denotes the set ofV = |V| nodes andE denotes the
set ofE = |E| edges. To simplify notation, we assume there
is only one edge from nodei ∈ V to nodej ∈ V , denoted
as edge(i, j) ∈ E .2 For each nodei ∈ V , define the set of
incoming neighbors to beIi = {j : (j, i) ∈ E} and the set of
outgoing neighbors to beOi = {j : (i, j) ∈ E}. Let Ii = |Ii|
and Oi = |Oi| denote the in-degree and out-degree of node
i ∈ V , respectively. AssumeIi ≤ D andOi ≤ D for all i ∈ V ,
whereD is a constant.

Consider a finite fieldF with size F = |F|. Let P =
{1, · · · , P} denote the set ofP = |P| flows of symbols in
finite field F to be carried by the network. For each flow
p ∈ P , let sp ∈ V be its source. We consider integer flows. To
simplify notation, we assume unit source rate (i.e., one finite
field symbol per second).3 Let S = {s1, · · · , sP } denote the set
of P = |S| sources. We assume different flows do not share a
common source node and no source node has any incoming
edges. LetT = {t1, · · · , tT } denote the set ofT = |T |
terminals. Each terminalt ∈ T demands a subset ofPt = |Pt|
flowsPt ⊆ P . Assume∪t∈T Pt = P . LetP , (Pt)t∈T denote
the demands of all the terminals. We assume no terminal has
any outgoing edges.

As we consider integer flows, we assume unit edge capacity
(i.e., one finite field symbol per second).4 Let zij ∈ {0, 1}
denote whether edge(i, j) ∈ E is in the subgraph involved in

1The network model we considered in this paper is similar to that in [32]
for continuous flows, but here we consider integer flows and edge capacities,
and do not allow flow splitting and coding over time.

2Multiple edges from nodei to node j can be modeled by introducing
multiple extra nodes, one on each edge, to transform a multigraph intro a
graph.

3A source with a positive integer source rate greater than onecan be modeled
by multiple sources, each with unit source rate.

4An edge with a positive integer edge capacity greater than one can be
equivalently converted to multiple edges, each with unit edge capacity.
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the code construction in a sense we shall make precise later.5

We assume a cost is incurred on an edge when information
is transmitted through the edge and letUij(zij) denote the
cost function for edge(i, j). We assumeUij(zij) is non-
decreasing inzij . We are interested in the problem of finding
linear network coding designs and minimizing the network cost
∑

(i,j)∈E Uij(zij) for general connections under those designs.

B. Scalar Time-Invariant Linear Network Coding

In linear network coding, a linear combination overF of
the symbols in{σki ∈ F : k ∈ Ii} from the incoming
edges{(k, i) : k ∈ Ii} can be transmitted through the
shared edge(i, j) ∈ E . The coefficients used to form this
linear combination are referred to as local coding coefficients.
Specifically, letαkij ∈ F denote the local coding coefficient
corresponding to edge(k, i) ∈ E and edge(i, j) ∈ E . Denote
α , (αkij)(k,i),(i,j)∈E . Then, for linear network coding, using
local coding coefficients, the symbol through edge(i, j) ∈ E
can be expressed as

σij =
∑

k∈Ii

αkijσki, (i, j) ∈ E , i 6∈ S. (1)

This is illustrated in Fig. 1.
Starting from the sources, we transmit source symbols{σp ∈

F : p ∈ P}, and then, at intermediate nodes, we perform only
linear operations overF on the symbols from incoming edges.
Thus, the symbol of each edge can be expressed as a linear
combination overF of the source symbols{σp ∈ F : p ∈ P}.
Let cij,p ∈ F denote the coefficient of flowp ∈ P in the
linear combination for edge(i, j) ∈ E . This is referred to as the
global coding coefficient of flowp ∈ P and edge(i, j) ∈ E . Let
cij , (cij,1, · · · , cij,p, · · · , cij,P ) ∈ FP denoteP coefficients
corresponding to this linear combination for edge(i, j) ∈ E .
This is referred to as the global coding vector of edge(i, j) ∈
E . Here,FP represents the set of global coding vectors, the
cardinality of which isFP . Then, using global coding vectors,
the symbol through edge(i, j) ∈ E can also be expressed as

σij =
∑

p∈P

cij,pσp, (i, j) ∈ E , i 6∈ S. (2)

This is illustrated in Fig. 1.

αkij

σki

αhij

σhi

σij

k h

i

j

Fig. 1: Illustration of local and global coding coefficients.P = {1, 2}.
Then, we haveσki = cki,1σ1 + cki,2σ2, σhi = chi,1σ1 + chi,2σ2,
σij = αkijσki + αhijσhi = cij,1σ1 + cij,2σ2, cij,1 = αkijcki,1 +
αhijchi,1 andcij,2 = αkijcki,2 + αhijchi,2.

5There is either no flow or a unit rate of (coded) flow through each edge.
Under the unit source rate and edge capacity assumptions, weshall see that
there is one global coding (mixing) vector for each edge.

In this paper, we consider scalar time-invariant linear net-
work coding. In other words,αkij ∈ F and cij,p ∈ F are
both scalars, and do not change over time. Letep denote the
vector with thep-th element being 1 and all the other elements
being 0. For decodability to hold at all the terminals, the global
coding vectors at all edges must satisfy the following feasibility
condition for scalar linear network coding.

Definition 1 (Feasibility of Scalar Linear Network Coding):
For a networkG = (V , E) and a set of flowsP with sources
S and terminalsT , a linear network codec , (cij)(i,j)∈E is
called feasible if the following three conditions are satisfied:
1) cspj = ep for source edge(sp, j) ∈ E , where sp ∈ S
and p ∈ P ; 2) cij =

∑

k∈Ii
αkijcki for edge (i, j) ∈ E

not outgoing from a source, wherei 6∈ S andαkij ∈ F ; 3)
ep ∈ span{cit : i ∈ It}, wherep ∈ Pt and t ∈ T .

Note that when using scalar linear network coding, for each
terminal, extraneous flows are allowed to be mixed with the
desired flows on the paths to the terminal, as the extraneous
flows can be cancelled at intermediate nodes or at the terminal.

C. Scalar Time-Invariant Linear Network Mixing

As mentioned in Section I, to facilitate distributed linear
network code designs for general connections using the mix-
ing concept (without requiring the specific values of local
or global coding coefficients in the designs), we introduce
local and global mixing variables. Later, we shall see that
distributed linear network mixing designs in terms of these
mixing coefficients are much easier. Specifically, we introduce
the local mixing coefficientβkij ∈ {0, 1} corresponding to edge
(k, i) ∈ E and edge(i, j) ∈ E , which relates to the local coding
coefficientαkij ∈ F . Denoteβ , (βkij)(k,i),(i,j)∈E . βkij = 1
indicates that symbolσki of edge(k, i) ∈ E is allowed (under
our construction) to contribute to the linear combination over
F forming symbolσij in (1) andβkij = 0 otherwise. Thus,
if βkij = 0, we haveαkij = 0; if βkij = 1, we can further
determine how symbolσki contributes to the linear combination
forming symbolσij by choosingαkij ∈ F (note thatαkij can
be zero whenβkij = 1).

Similarly, we introduce the global mixing coefficientxij,p ∈
{0, 1} of flow p ∈ P and edge(i, j) ∈ E , which relates to the
global coding coefficientcij,p ∈ F . xij,p = 1 indicates that
flow p is allowed (under our construction) to be mixed (coded)
with other flows, i.e., symbolσp is allowed to contribute to
the linear combination overF forming symbolσij in (2), and
xij,p = 0 otherwise. Thus, ifxij,p = 0, we havecij,p = 0; if
xij,p = 1, we can further determine how symbolσp contributes
to the linear combination forming symbolσij (note thatcij,p
can be zero whenxij,p = 1). Then, we introduce the global
mixing vectorxij , (xij,1, · · · , xij,p, · · · , xij,P ) ∈ {0, 1}P for
edge(i, j) ∈ E , which relates to the global coding vectorcij =
(cij,1, · · · , cij,p, · · · , cij,P ) ∈ FP . Here,{0, 1}P represents the
set of global mixing vectors, the cardinality of which is2P .

We consider scalar time-invariant linear network mixing. In
other words,βkij ∈ {0, 1} andxij,p ∈ {0, 1} are both scalars,
andβkij andxij,p do not change over time.

Global mixing vectors provide a natural way of speaking
of flows as possibly coded or not without knowledge of the
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specific values of global coding vectors. Intuitively, global
mixing vectors can be regarded as a limited representation of
global coding vectors. Given network mixing vectors, it may
not be sufficient to tell whether a certain symbol can be decoded
or not. Thus, using the network mixing representation, the
extraneous flows, when mixed with the desired flows on the
paths to each terminal, are not guaranteed to be cancelled at
the terminal. For decodability to hold at all the terminals,the
global mixing vectors at all edges must satisfy the following
feasibility condition for scalar linear network mixing.

Definition 2 (Feasibility of Scalar Linear Network Mixing):
For a networkG = (V , E) and a set of flowsP with
sourcesS and terminalsT , a linear network mixing design
x , (xij)(i,j)∈E is called feasible if the following three
conditions are satisfied: 1)xspj = ep for source edge
(sp, j) ∈ E , wheresp ∈ S andp ∈ P ; 2) xij = ∨k∈Ii

βkijxki

for edge(i, j) ∈ E not outgoing from a source, wherei 6∈ S
andβkij ∈ {0, 1};6 3) xit,p = 0, wherei ∈ It, p 6∈ Pt, t ∈ T .

Note that Condition 3) in Definition 2 ensures that for each
terminal, the extraneous flows are not mixed with the desired
flows on the paths to the terminal. In other words, linear
mixing allows only mixing at intermediate nodes. This is not
as general as using linear network coding, which allows mixing
and canceling (i.e., removing one or multiple flows from a
mixing of flows) at intermediate nodes.

Given a feasible linear network mixing design, one of the
ways to implement mixing whenF is large is to use random
linear network coding (RLNC) [3], [27], as discussed in the
introduction. In particular, whenβkij = 1, αkij can be
randomly, uniformly, and independently chosen inF using
RLNC; whenβkij = 0, αkij has to be chosen to be 0.

III. M IXING PROBLEM FORMULATION

In this section, we formulate the problem of selecting mixing
coefficientsβ and x to minimize the cost of the subgraph
involved in the coding solution, i.e., the set of edges used in
delivering the flows.

In the following formulation,zij ∈ {0, 1} indicates whether
edge(i, j) ∈ E is involved in delivering flows, andf t

ij,p ∈
{0, 1} indicates whether edge(i, j) ∈ E is involved in deliver-
ing flow p ∈ Pt to terminalt ∈ T .

Problem 1 (Mixing):

U∗(P) , min
z,f ,x,β

∑

(i,j)∈E

Uij(zij)

s.t. zij ∈ {0, 1}, (i, j) ∈ E (3)

xij,p ∈ {0, 1}, (i, j) ∈ E , p ∈ P (4)

βkij ∈ {0, 1}, (k, i), (i, j) ∈ E (5)

f t
ij,p ∈ {0, 1}, (i, j) ∈ E , p ∈ Pt, t ∈ T (6)
∑

p∈Pt

f t
ij,p ≤ zij , (i, j) ∈ E , t ∈ T (7)

∑

k∈Oi

f t
ik,p −

∑

k∈Ii

f t
ki,p = σt

i,p, i ∈ V , p ∈ Pt, t ∈ T

(8)

6Note that∨ denotes the “or” operator (logical disjunction).

f t
ij,p ≤ xij,p, (i, j) ∈ E , p ∈ Pt, t ∈ T (9)

xspj = ep, (sp, j) ∈ E , p ∈ P (10)

xij = ∨k∈Ii
βkijxki, (i, j) ∈ E , i 6∈ S (11)

xit,p = 0, i ∈ It, p 6∈ Pt, t ∈ T (12)

where

σt
i,p =











1, i = sp

−1, i = t

0, otherwise

i ∈ V , p ∈ Pt, t ∈ T . (13)

Here,z , (zij)(i,j)∈E and f , (f t
ij,p)(i,j)∈E,p∈Pt,t∈T .7

Consider a feasible solutionz, f , x andβ to Problem 1. By
(6) and (8), we know that for allp ∈ Pt and t ∈ T , all the
edges in{(i, j) ∈ E : f t

ij,p = 1} form one flow path (i.e., a set
of ordered edges(i, j) ∈ E such thatf t

ij,p = 1) from sourcesp
to terminalt. In addition, combining (3) and (7), we have an
equivalent constraint purely in terms off , i.e.,

∑

p∈Pt

f t
ij,p ∈ {0, 1}, (i, j) ∈ E , t ∈ T . (14)

From this, we know that for allp, p′ ∈ Pt, p 6= p′ and
t ∈ T , the two flow paths from sourcessp andsp′ to terminal
t are edge-disjoint. Finally, the feasibility constraints in (10),
(11) and (12) together with (4) and (5) set other requirements
on flow paths (i.e.,f ) via the constraint in (9). Therefore, a
feasible solution to Problem 1 corresponds to a set of flow paths
satisfying certain requirements, as illustrated above. These
interpretations can be understood from the following example.

Example 1 (Illustration of Problem 1):As illustrated in
Fig. 2, we consider a network withP = {1, 2}, S = {1, 2},
T = {8, 7, 10}, P1 = {1}, P2 = P3 = {1, 2}, and
Uij(zij) = zij ∈ {0, 1} for all (i, j) ∈ E . Problem 1 for
the network in Fig. 2 has two feasible solutions of network
costs 11 and 12, as illustrated in Fig. 2 (a) and Fig. 2 (b),
respectively. Specifically, the two feasible solutions share the
same flow paths from sourcess1 and s2 to terminalst2 and
t3, i.e., flow paths1− 3− 4− 6− 7, 2− 5− 7, 1− 3− 9− 10,
2− 5− 4− 6− 10. Notice that the two feasible solutions have
different flow paths from sources1 to terminal t1, i.e., flow
path1 − 3− 8 for the feasible solution in Fig. 2 (a) and flow
path1− 3− 9− 11− 8 for the feasible solution in Fig. 2 (b).
The optimal solution is the one illustrated in Fig. 2 (a) and
the optimal network cost is 11.

We now illustrate the complexity of Problem 1. The num-
ber of variables inβ is

∑

(i,j)∈E Oj =
∑

j∈V IjOj ≤
D

∑

j∈V Oj = DE. The number of variables inf is smaller
than or equal toPTE. The numbers of variables inz andx

are E and PE, respectively. Therefore, the total number of
variables in Problem 1 is smaller than or equal to(D+1)E+
(T + 1)PE, i.e., polynomial inE, T andP . Problem 1 is a
binary optimization problem, and does not appear to have a
ready solution.

7Note that the optimal value in Problem 1 is a function ofG, S, T andP,
which are assumed to be fixed. Here, we writeU∗(P) as a function ofP only
to emphasize the impact ofP on U∗(P), which is helpful when considering
demand set expansion in Problem 2.
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(a) One feasible solution of network cost 11.
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(b) One feasible solution of network cost 12.

Fig. 2: Illustration of feasible solutions to Problem 1.P = {1, 2},
S = {1, 2}, T = {8, 7, 10}, P1 = {1}, P2 = P3 = {1, 2},
Uij(zij) = zij ∈ {0, 1} for all (i, j) ∈ E . The flow paths from the
two sources are illustrated using green and blue curves, respectively.
SinceP2 = P3 = {1, 2}, the flows froms1 to t2 and s2 to t3 are
allowed to be mixed at edge(4, 6). The red edges carry network-
coded information. In this topology, Problem 1 has two feasible
solutions. However, neither the two-step mixing approach for general
connections in [27] nor routing provides a feasible solution.

Remark 1 (Problem 1 for Multicast):When Pt = P for
all t ∈ T (i.e., multicast), the constraint in (12) does not
exist, and the constraint in (9) is always satisfied by choosing
βkij = 1 for all (k, i), (i, j) ∈ E and choosingx accordingly
by (10) and (11). Therefore, Problem 1 for general connections
reduces to the conventional minimum-cost scalar time-invariant
linear network code design problem for the multicast case. The
complexity of the optimization for the multicast case is much
lower than that for the general case. This is because in the
optimization for the multicast case, variablesx andβ do not
appear, and the constraints in (4), (5), (9), (10), (11) and (12)
can be removed.

In the following, we show that a feasible linear network code
can be obtained using a feasible solution to Problem 1 (e.g.,
using RLNC [3]), as illustrated in Section II-C.

Theorem 1:Suppose Problem 1 is feasible. Then, for each
feasiblex andβ, there exists a feasible linear network code
designα andc with a field sizeF > T to deliver the desired
flows to each terminal.

Proof: Please refer to Appendix A.
Next, the minimum network cost of Problem 1 is no greater
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Fig. 3: Illustration of the network coding gain improvement of
Problem 2 over Problem 1 for two unicasts over the butterfly network.
Problem 1 (left) is not feasible, as the flows froms1 to t2 ands2 to
t1 are not allowed to be mixed over edge(3, 4) whenP1 ∩ P2 = ∅.
However, Problem 2 (right) is feasible, as the flows are allowed to be
mixed over edge(3, 4) after the demand set expansion toP .

than the minimum costs of the two-step mixing approach for
general connections in [27] and routing for integer flows,
owing to the following reasons. Problem 1 withβkij = 1
for all (k, i), (i, j) ∈ E , instead of (5), is equivalent to the
minimum-cost flow rate control problem in the second step of
the two-step mixing approach for general connections in [27].
Problem 1 with an extra constraint

∑

p∈P xij,p ∈ {0, 1} for all
(i, j) ∈ E is equivalent to the minimum-cost routing problem.
Fig. 2 illustrates a feasible solution to Problem 1 that cannot
be obtained by the two-step mixing approach [27] or routing.
In this example, the minimum network cost of Problem 1 is
smaller than those of the two-step mixing approach [27] and
routing (which can be treated as infinity).

WhenPt∩Pt′ = ∅ for all t 6= t′ andt, t′ ∈ T (e.g., multiple
unicasts), Problem 1 for general connections reduces to the
minimum-cost routing problem and cannot take advantage of
the network coding gain. This is because using the network
mixing representation, for decodability to hold, the extraneous
flows of each terminal are not allowed to be mixed with the
terminal’s desired flows on the path to this terminal, thus
limiting the network coding gain. To address this limitation,
we now formulate Problem 2, which allows the expansion of
the demand sets and the optimization over the expansions to
increase the opportunity for mixing flows to different terminals.
Let Pt denote the expanded demand set, which satisfiesPt ⊆
Pt ⊆ P . Let P , (Pt)t∈T denote the expanded demand sets
of all the terminals.

Problem 2 (Mixing with Demand Set Expansion):

U∗ = min
{Pt}

U∗(P) (15)

s.t. Pt ⊆ Pt ⊆ P , t ∈ T (16)

whereU∗(P) is the optimal value to Problem 1 forP.
The network coding gain improvement of Problem 2 can

be easily understood from the case of two unicasts over the
butterfly network, as illustrated in Fig. 3. By Theorem 1, we
can easily show the following result.

Corollary 1: Suppose Problem 2 is feasible. Then, for each
feasible solution, there exists a feasible linear network code
design with a field sizeF > T to deliver the desired flows to
each terminal.
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By comparing Problem 1 and Problem 2, we can obtain the
following lemma.

Lemma 1:Suppose Problem 1 is feasible. Then, Problem 2
is feasible andU∗ ≤ U∗(P).

In the following sections, we focus on solving Problem 1
for givenP . However, the obtained centralized and distributed
algorithm can be easily extended to solve Problem 2 by further
optimizing overP. Later, in Section VI, we shall illustrate the
results for Problem 1 and Problem 2 numerically.

IV. CENTRALIZED ALGORITHM

In this section, we develop a centralized algorithm to solve
Problem 1, based on the concept of edge-disjoint flow paths
discussed before. The centralized algorithm is conducted at a
central node which is aware of global network information.

For all p ∈ Pt andt ∈ T , let N t
p denote the number of flow

paths from sourcesp to terminalt. For Problem 1 to be feasible,
assumeN t

p > 0. As illustrated in Section III, obtaining a
feasible solution to Problem 1 is equivalent to selecting a set of
flow paths satisfying certain requirements. Thus, we introduce
flow path selection variables to indicate the flow paths selected
for information transmission. Letnt

p ∈ {1, · · · , N t
p} denote the

flow path selection variable for sourcesp and terminalt (i.e.,
the index of the selected flow path from sourcesp to terminalt).
Denote the flow path selection variables asn , (nt

p)p∈Pt,t∈T .
In the following, we express variablesz, f ,x andβ in terms of
n. To satisfy (6) and (8), we requirent

p to take only one value
from {1, · · · , N t

p}. Let Lt
p(n

t
p) denote the selected flow path

(i.e., the set of edges on the selected flow path) from source
sp to terminalt. To satisfy (3) and (7) (or equivalently (14)),
we require that thePt flow paths from sources{sp : p ∈ Pt}
to terminalt are edge-disjoint, i.e.,

Lt
p(n

t
p) ∩ Lt

p′(nt
p′) = ∅, p, p′ ∈ Pt, p 6= p′, t ∈ T . (17)

Then, variablesf(n) ,
(

f t
ij,p(n

t
p)
)

(i,j)∈E,p∈Pt,t∈T
can be

expressed in terms of variablesn as follows:

f t
ij,p(n

t
p) =

{

1, (i, j) ∈ Lt
p(n

t
p)

0, otherwise
, (i, j) ∈ E , p ∈ Pt, t ∈ T .

(18)

By (7) and the monotonicity ofUij(·), variablesz(n) ,

(zij(n))(i,j)∈E can be chosen based onf(n) and expressed
implicitly in terms of variablesn as follows:

zij(n) = max
t∈T

∑

p∈Pt

f t
ij,p(n

t
p), (i, j) ∈ E . (19)

In addition, to satisfy (4), (5), (9) and (11),β(n) ,

βkij (n)(k,i),(i,j)∈E can be chosen based onf(n) and expressed
implicitly in terms of variablesn as follows:

βkij(n) =

{

1, maxt∈T ,p∈Pt
f t
ki,p(n

t
p)f

t
ij,p(n

t
p) = 1

0, otherwise
,

(k, i), (i, j) ∈ E . (20)

Algorithm 1 Centralized Algorithm for Problem 1

1: For all p ∈ Pt and t ∈ T , obtain all the flow paths{Lt
p(n

t
p) :

nt
p ∈ {1, · · · , N t

p}} from sourcesp to terminal t, using depth-
first-search (DFS).

2: For all t ∈ T , obtain the set of Pt edge-
disjoint flow paths Lt = {(Lt

p(n
t
p))p∈Pt : nt

p ∈
{1, · · · , N t

p} for all p ∈ Pt and (17) is satisfied} from sources
{sp : p ∈ Pt} to terminalt.

3: Calculate the network costs ofL =
∏

t∈T Lt combinations of
Pt edge-disjoint flow paths for all terminalt ∈ T , and sort theL
combinations in the ascending order of their network costs,where
Lt = |Lt| and thel-th combination is of thel-th smallest network
costUl.

4: initialize l = 1 andflag = 1.
5: while flag = 1 do
6: For all p ∈ Pt and t ∈ T , let nt

p denote the index of the flow
path from sourcesp to terminalt in the l-th combination.

7: For all p ∈ Pt, t ∈ T and (i, j) ∈ E , setf t
ij,p(n

t
p) according

to (18).
8: For all (i, j) ∈ E , setzij(n) according to (19).
9: For all (k, i), (i, j) ∈ E , setβkij(n) according to (20).

10: Based on{βkij(n)}, (10) and (11), determine{xij,p(n)} in
the topological order.

11: if (21) is satisfiedthen
12: let U∗

x (P) = Ul, z∗ = z(n), f∗ = f(n)}, x∗ = x(n)},
β∗ = β(n), and setflag = 0

13: else
14: set l = l + 1
15: end if
16: end while

Then, based onβ(n), (10) and (11),x(n) can be determined in
topological order8 and expressed implicitly in terms of variables
n. Finally, to satisfy (12), we require

xit,p(n) = 0, i ∈ It, p 6∈ Pt, t ∈ T . (21)

Based on the above relationship between the flow path selection
variables and the variables of Problem 1, we now describe the
procedure of the centralized algorithm, i.e., Algorithm 1,which
obtains the feasible flow paths of the minimum network cost.

Note that Constraints (6) and (8) are guaranteed in Step 1
and Step 8; Constraints (3) and (7) are guaranteed in Step 2
and Step 7; Constraints (4), (5), (9) are guaranteed in Step 9;
Constraints (10) and (11) are guaranteed in Step 10; and
Constraint (12) is considered in Steps 11–15. Therefore, we
can see that the optimization to Problem 1 can be obtained by
Algorithm 1.

V. PROBABILISTIC DISTRIBUTED ALGORITHMS

In this section, using recent results for CSP [34], we develop
two probabilistic distributed algorithms to solve Problem1.

A. Background on Decentralized CSP

We review some existing results on CSP in [34].
Definition 3 (Constraint Satisfaction Problem): [34] A

CSP consists ofM variables{λ1, · · · , λM} and K clauses

8A topological order of a directed graphG = (V , E) is an ordering of its
nodes such that for every directed edge(i, j) ∈ E from nodei ∈ V to node
j ∈ V , i comes beforej in the ordering. Such an order exists for the edges of
any directed graphG that is acyclic.



7

{φ1, · · · , φK}. Each variableλm takes values in a finite
set Λ, i.e., λm ∈ Λ for all m ∈ M , {1, · · · ,M}. Let
λ , (λ1, · · · , λM ) ∈ ΛM . Each clausek ∈ K , {1, · · · ,K}
is a functionφk : ΛM → {0, 1}, where for an assignment of
variablesλ ∈ ΛM , φk(λ) = 1 if clausem is satisfied and
φk(λ) = 0 otherwise. An assignmentλ ∈ ΛM is a solution to
the CSP if and only if all clauses are simultaneously satisfied

min
k∈K

φk(λ) = 1. (22)

To solve a CSP in a distributed way, clause
participation is introduced in [34]. Let λ−m ,

(λ1, · · · , λm−1, λm+1, · · · , λM ) ∈ ΛM−1. For each
variable λm, let Km denote the set of clause indices
in which it participates, i.e.,Km , ∪λ−m∈ΛM−1{c :
minλm∈Λ φk(λm,λ−m) = 0,maxλm∈Λ φk(λm,λ−m) = 1}.
Thus, we can rewrite the left hand side of (22) in a
way that focuses on the satisfaction of each variable, i.e.,
minm∈M mink∈Km

φk(λ) = 1. This form enables us to solve
CSPs in a distributed iterative way by locally evaluating the
clauses inKm and then updatingλm.

CSPs are in general NP-complete and most effective CSP
solvers are designed for centralized problems. The CFL al-
gorithm [34, Algorithm 1], summarized in Algorithm 2, is
a distributed iterative algorithm which can find a satisfying
assignment to a CSP almost surely in finite time [34, Corollary
2]. Note that Algorithm 2 keeps a probability distribution
over all possible values of each variable. The value of each
variable is selected from this distribution. For each variable,
if all the clauses in which a variable participates are satisfied
with its current value, the associated probability distribution is
updated to ensure that the variable value remains unchanged;
if at least one clause is unsatisfied, the probability distribution
evolves by interpolating between it and a distribution thatis
uniform on all values except the one that is currently generating
dissatisfaction. Therefore, if all variables are simultaneously
satisfied in all clauses, the same assignment of values will be
reselected indefinitely with probability 1.

Algorithm 2 Communication-Free Learning [34]

1: Initialize qm(λ) = 1

|Λ|
for all λ ∈ Λ, where |Λ| denotes the

cardinality ofΛ.
2: loop
3: Realize a random variable, selectingλm = λ with probability

qm(λ).
4: Evaluatemink∈Km φk(λ), returningsatisfiedif its value is 1

andunsatisfiedotherwise.
5: if satisfiedthen

6: setqm(λ) =

{

1, if λ = λm

0, otherwise
7: else

8: set qm(λ) =

{

(1− b)qm(λ) + a
|Λ|−1+a/b

, if λ = λm

(1− b)qm(λ) + b
|Λ|−1+a/b

, otherwise
,

wherea, b ∈ (0, 1] are design parameters.
9: end if

10: end loop

B. Path-based Probabilistic Distributed Algorithm

In this part, we develop a path-based probabilistic distributed
algorithm to solve Problem 1, using recent results in [34].
This distributed algorithm is based on the concept of edge-
disjoint flow paths discussed before. It can be viewed as a
distributed version of the path-based centralized algorithm, i.e.,
Algorithm 1. For all p ∈ Pt, t ∈ T and nt

p ∈ {1, · · · , N t
p},

this algorithm requires each node on thent
p-th flow path from

sourcesp to terminal t to know its neighboring edge on this
flow path. Note that it is not necessary for each node on the
nt
p-th flow path to be aware of other edges on thent

p-th flow
path.

First, we construct a path-based CSP corresponding to the
feasibility problem obtained from Problem 1. Treatn as the
variables of the path-based CSP, wherent

p ∈ {1, · · · , N t
p}

denotes the index of the selected flow path from sourcesp
to terminal t. As illustrated in Section IV, the constraints of
f in (6) and (8) for Problem 1 can be taken into account by
choosingnt

p ∈ {1, · · · , N t
p}, for all p ∈ Pt and t ∈ T . The

constraints in (3) and (7) (or equivalently (14)) can be replaced
by the constraint ofn in (17) for the path-based CSP. Variables
{βijk(n)} and {xij,p(n)} can be determined for givenn via
(18), (20), (10) and (11). Thus, the last constraint in (12) of
Problem 1 can be replaced by the constraint ofn for the path-
based CSP in (21). Therefore, we can write the clause fornt

p

as follows:

φn,t
p (n) =

{

1, if (17) and (21) hold

0, otherwise
, p ∈ Pt, t ∈ T .

(23)

We thus have the following proposition.9

Proposition 1 (Path-based CSP):The path-based CSP with
variablesn (nt

p ∈ {1, · · · , N t
p}) and clauses (23) has consid-

ered all the constraints in Problem 1.
Now, we present a path-based distributed probabilistic al-

gorithm, i.e., Algorithm 3, to obtain a feasible solution to
the path-based CSP using CFL [34, Algorithm 1]. Based on
the convergence result of CFL [34, Corollary 2], we know
that Algorithm 3 can find a feasible solution to Problem 1
in almost surely finite time. Fig. 4 illustrates the convergence
of Algorithm 3. From Fig. 4, we can see that Algorithm 3
converges to a feasible solution (i.e., the feasible solution
illustrated in Fig. 2 (a)) to Problem 1 for the network in
Fig. 2 quite quickly (within 35 iterations). This feasible solution
corresponds to flow paths1−3−8, 1−3−4−6−7, 2−5−7,
1 − 3 − 9 − 10 and2 − 5 − 4 − 6 − 10. The network cost of
this feasible solution is 11.

Relying on Algorithm 3, we present a path-based distributed
probabilistic algorithm, Algorithm 4, to obtain the optimal solu-
tion to Problem 1 among multiple feasible solutions obtained by
Algorithm 3.10 Since Algorithm 3 can find any feasible solution

9Note that the clauses of the path-based CSP cannot be furtherpartitioned,
as all the variablesn are coupled in general.

10In Step 3 of Algorithm 4, the path-based CFL is run for a sufficiently
long time. Step 6 of Algorithm 4 can be implemented with a master node
obtaining the network cost of the path-based CFL from all nodes or with all
nodes computing the average network cost of the path-based CFL locally via
a gossip algorithm.
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Algorithm 3 Path-based CFL

1: For all p ∈ Pt and t ∈ T , obtain all the flow paths from source
sp to terminalt, using DFS.

2: For all p ∈ Pt and t ∈ T , sourcesp initializes qtp(n) =
1

Nt
p

for

all n ∈ {1, ..., N t
p}.

3: loop
4: For all p ∈ Pt and t ∈ T , sourcesp realizes a random

variable, selectingnt
p = n with probability qtp(n), wheren ∈

{1, ..., N t
p}, and sends signaling packet(p, t, nt

p) over edge
(sp, j) ∈ Lt

p(n
t
p) to nodej. Once nodej receives signaling

packet(p, t, nt
p) over edge(i, j) ∈ Lt

p(n
t
p) , it forwards this

signaling packet to nodek over edge(j, k) ∈ Lt
p(n

t
p).

5: For all (i, j) ∈ E , if edge (i, j) receives signaling packets
{(p, t, nt

p) : p ∈ Pt} to terminal t ∈ T from more than one
source in{sp : p ∈ Pt}, it sends NAK back to each of these
sources along its selected pathnt

p.
6: For all p ∈ Pt, t ∈ T and (i, j) ∈ E , setf t

ij,p(n
t
p) according

to (18).
7: For all (k, i), (i, j) ∈ E , setβkij(n) according to (20).
8: Based onβ(n), (10) and (11), determinex(n) in topological

order.
9: Every terminalt ∈ T checks (21). For alli ∈ It andp 6∈ Pt,

if (21) is unsatisfied, terminalt sends NAK back to sourcesp
(along any path to sourcesp), and sends NAK back to each of
the sources inPt (along its selected path).

10: for p ∈ Pt and t ∈ T do
11: if sourcesp receives no NAKsthen

12: setqtp(n) =

{

1, if n = nt
p

0, otherwise
13: else

14: set qtp(n) =

{

(1− b)qtp(n) +
a

Nt
p−1+ a

b

, if n = nt
p

(1− b)qtp(n) +
b

Nt
p−1+ a

b

, otherwise
,

wherea, b ∈ (0, 1] are design parameters.
15: end if
16: end for
17: end loop

Algorithm 4 Path-based Distributed Algorithm

1: l = 1 andU1 = +∞.
2: loop
3: Run the path-based CFL in Algorithm 3 to the path-based CSP

corresponding to Problem 1. Letnl denote the feasible solution
obtained by Algorithm 3 and let̄Ul denote the corresponding
network cost.

4: if Ūl < Ul then
5: setUl+1 = Ūl, n∗ = nl, and l = l + 1.
6: end if
7: end loop

to Problem 1 with positive probability,Ul → U∗({Pt}) almost
surely asl → ∞, whereUl denotes the minimum network
cost obtained by the firstl path-based CFLs. Fig. 5 illustrates
the convergence of Algorithm 4. From Fig. 5, we can see that
Algorithm 4 obtains the optimal network cost 11 to Problem 1
for the network in Fig. 2 quite quickly (within 5 iterations).

C. Edge-based Probabilistic Distributed Algorithm

In this part, we develop an edge-based probabilistic dis-
tributed algorithm to solve Problem 1, using recent resultsin
[34]. Compared with the path-based distributed algorithm in
Section V-C, this edge-based distributed algorithm does not
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Fig. 4: Convergence of the path-based CFL in Algorithm 3 for
Problem 1 of the network in Fig. 2.a = 1 and b = 0.01. These
convergence curves are for one realization of the random Algorithm 3.
Note that all the flow paths are shown in the figure.
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Fig. 5: Network costs of the path-based CFLs in Algorithm 4 for
Problem 1 of the network in Fig. 2. Each blue dot represents the
network cost of a feasible solution obtained by the path-based CFL
in each iteration of Algorithm 4. While the red curve represents the
minimum network cost obtained by Algorithm 4 within a certain
number of iterations. The blue dots and red curve are for one
realization of the random Algorithm 4.
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require any path information.
Obtaining a feasible solution to Problem 1 can be directly

treated as a CSP [34]. Specifically,z, f ,x,β and{0, 1} can be
treated as the variables and the finite set of the CSP. Constraints
(7)-(12) can be treated as the clauses of the CSP. While CSPs
are in general NP-complete, several centralized CSP solvers
(see references in [34]) and the distributed CSP solver proposed
in [34] can be applied to solve this (naı̈ve) CSP. However, the
direct application of the distributed CSP solver in [34] leads to
high complexity owing to the large constraint set. In this part,
by exploring the features of the constraints in Problem 1, we
obtain a different CSP and present a probabilistic distributed
solution with a significantly reduced number of clauses.

First, we construct a new problem, which we show to be
a CSP. This new problem is better suited than the original
problem to being treated using a probabilistic distributedal-
gorithm based on the distributed CSP solver presented in [34].
Combining (3) and (7), we have an equivalent constraint purely
in terms of f , i.e., (14). In addition, from (11), we have an
equivalent constraint purely in terms ofx, i.e.,

∃ βkij ∈ {0, 1} ∀k ∈ Ii, s.t. xij = ∨k∈Ii
βkijxki,

(i, j) ∈ E , i 6∈ S. (24)

Therefore, we can solve only for variablesf and x in a
distributed way, asz can be obtained directly from feasible
f by choosingzij = maxt∈T

∑

p∈Pt
f t
ij,p according to (3)

and (7), andβ can be obtained from feasiblex by (10)
and (11). We group all the local variables for each edge
(i, j) ∈ E and introduce the vector variable(fij ,xij) ∈
Yij , where fij ,

(

f tij
)

t∈T
, f tij ,

(

f t
ij,p

)

p∈Pt
and Yij ,

{(fij ,xij) : (4), (6), (9), (10), (12), (14)}. We also writeYij =
{yij,1, · · · ,yij,Yij

}, whereYij = |Yij |. We now consider a
new CSP, different from the naı̈ve one that would be directly
obtained from Problem 1. We treat(fij ,xij) and Yij as the
variable and the finite set for edge(i, j) of the CSP. We write
the clauses for{(fij ,xij)} as follows:

φ
f
i (fi) =

{

1, if (8) holds∀p ∈ Pt, t ∈ T

0, otherwise
, i ∈ V (25)

φx
ij (xij , {xki : k ∈ Ii}) =

{

1, if (24) holds

0, otherwise
,

(i, j) ∈ E , i 6∈ S (26)

wherefi , (fik)k∈Oi,k∈Ii
. Note that the local constraints in (4),

(6), (9), (10), (12) and (14) (i.e., (3) and (7)) are considered
in the finite setYij of the CSP with respect to each edge
(i, j) ∈ E . On the other hand, the non-local constraints in (8)
and (24) are considered in clausesφ

f
i in (25) andφx

ij in (26),
respectively. We thus have the following proposition.

Proposition 2 (Edge-based CSP):The edge-based CSP with
variables(fij ,xij) ∈ Yij , (i, j) ∈ E and clauses (25) and (26)
has considered all the constraints in Problem 1.

Note that the number of variables (E) and the number of
clauses (≤ V + E − P ) of the new CSP are much smaller
than the number of variables (≤ (1+D+P +TP )E) and the
number of clauses (≤ (1+T +TP )E+TPV +TPD) of the

Algorithm 5 Edge-based CFL

1: For all (i, j) ∈ E , edge(i, j) initializes qij(y) = 1

Yij
for all

y ∈ Yij .
2: loop
3: For all (i, j) ∈ E , edge (i, j) realizes a random variable,

selecting(fij ,xij) = y with probability qij(y), wherey ∈
Yij .

4: for (i, j) ∈ E do
5: Each edge(i, j) evaluates all the clauses inΦij .
6: if all clauses inΦij are satisfiedthen

7: setqij(y) =

{

1, if y = (fij ,xij)

0, otherwise
8: else

9: setqij(y) =

{

(1− b)qij(y) +
a

Yij−1+a/b
, y = (fij ,xij)

(1− b)qij(y) +
b

Yij−1+a/b
, otherwise

,

wherea, b ∈ (0, 1] are design parameters.
10: end if
11: end for
12: end loop

naı̈ve CSP directly obtained from Problem 1. This feature will
favor the complexity reduction of a distributed solution based
on the distributed CSP solver in [34].

Next, we construct the clause partition. The set of clauses in
which variable(fij ,xij) participates is

Φij =
{

φ
f
i , φ

f
j

}

∪
{

φx
ij , φ

x
jk : i 6∈ S, k ∈ Oj

}

, (i, j) ∈ E .

(27)

Then, the focus can be on the satisfaction of each variable
(fij ,xij), i.e., the satisfaction of each set of clausesΦij . Now,
the new CSP can be solved using the distributed iterative CFL
algorithm [34, Algorithm 1]. Specifically, each edge(i, j) ∈ E
realizes a random variable selecting(fij ,xij). Allow message
passing on(fij ,xij) between adjacent nodes to evaluate the
related clauses. Based on whether the clauses in (27) are
satisfied or not, the distribution of the random variable of each
edge(i, j) ∈ E is updated. The details are summarized in Al-
gorithm 5, which obtains a feasible solution to the edge-based
CSP using CFL [34, Algorithm 1]. Based on the convergence
result of CFL [34, Corollary 2], we know that Algorithm 5 can
find a feasible solution to Problem 1 in almost surely finite
time. Fig. 6 illustrates the convergence of Algorithm 5. From
Fig. 6, we can see that Algorithm 5 converges to a feasible
solution to Problem 1 for the network in Fig. 2 within 5000
iterations. This feasible solution is the same as the one shown
in Fig. 4, with network cost 11.

Relying on Algorithm 5, we present an edge-based dis-
tributed probabilistic algorithm, Algorithm 6, to solve Prob-
lem 1.11 Since Algorithm 5 can find any feasible solution to
Problem 1 with positive probability,Ul → U∗({Pt}) almost
surely asl → ∞, whereUl denotes the smallest network cost
obtained by the firstl edge-based CFLs. Fig. 7 illustrates the
convergence of Algorithm 6. From Fig. 7, we can see that
Algorithm 6 obtains the optimal network cost 11 to Problem 1
for the network in Fig. 2 quite quickly (within 5 iterations).

11Note that Step 3 and Step 6 of Algorithm 6 can be implemented insimilar
ways to those in Algorithm 4.
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Algorithm 6 Edge-based Distributed Algorithm

1: l = 1 andU1 = +∞.
2: loop
3: Run the edge-based CFL in Algorithm 5 to the edge-based CSP

corresponding to Problem 1. Let{(fij,l,xij,l) : (i, j) ∈ E}
denote the feasible solution obtained by Algorithm 5 and let
Ūl denote the corresponding network cost.

4: if Ūl < Ul then
5: setUl+1 = Ūl, (f∗ij ,x

∗
ij) = (fij,l,xij,l) for all (i, j) ∈ E ,

and l = l + 1.
6: end if
7: end loop
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(c) Variable(f67,x67) for edge(6, 7).

Fig. 6: Convergence of the edge-based CFL in Algorithm 5 for
Problem 1 of the network in Fig. 2.a = 1 and b = 0.01. Note
that for each edge, the “Correct Event” indicates the variable taking
the value which corresponds to the feasible solution obtained by the
edge-based CFL. These convergence curves are for one realization of
the random Algorithm 5.
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Fig. 7: Network costs of the edge-based CFLs in Algorithm 4 for
Problem 1 of the network in Fig. 8. Each blue dot represents the
network cost of a feasible solution obtained by the edge-based CFL
in each iteration of Algorithm 4. While the red curve represents the
minimum network cost obtained by Algorithm 4 within a certain
number of iterations. The blue dots and red curve are for one
realization of the random Algorithm 4.

D. Comparison

In this part, we compare the path-based and edge-based
distributed algorithms. In obtaining a feasible solution to Prob-

lem 1, the path-based CFL, i.e., Algorithm 3 and the edge-
based CFL, i.e., Algorithm 5 both base on CFL [34, Algorithm
1]. The convergence result of CFL [34, Corollary 2] guarantee
that Algorithm 3 and Algorithm 5 both converge to feasible
solutions to Problem 1 almost surely in finite time. However,
Algorithm 3 converges much faster than Algorithm 5 in our
simulations. This is expected, as Algorithm 3 solves a path-
based CSP, while Algorithm 5 solves an edge-based CSP. The
number of variables and the number of possible values for each
variable for the path-based CSP are much smaller than those
for the edge-based CSP. The difference in the convergence rates
of Algorithm 3 and Algorithm 5 can be seen by comparing
Fig. 4 and Fig. 6. On the other hand, Algorithm 3 requires more
local information than Algorithm 5. In particular, Algorithm 3
requires all the nodes on one path from a source node to a
terminal node to be aware of their neighboring nodes on the
path (not all the nodes on the path). Algorithm 5 instead only
requires each node to be aware of its neighboring nodes.

In obtaining an optimal solution to Problem 1 among mul-
tiple feasible solutions, the path-based distributed algorithm,
i.e., Algorithm 4 and the edge-based distributed algorithm, i.e.,
Algorithm 6 base on the path-based CFL, i.e., Algorithm 3 and
the edge-based CFL, i.e., Algorithm 5, respectively, in thesame
way. Therefore, Algorithm 4 and Algorithm 6 share similar
convergence properties. This can be illustrated in Fig. 5 and
Fig. 7.

VI. N UMERICAL ILLUSTRATION

In this section, we numerically illustrate the performance
of the proposed optimal solutions to Problems 1 and 2 using
mixing only with the two-step mixing approach in [27] and
optimal routing for general connections of integer flows.

In the simulation, we consider the Sprint backbone network
[35] as illustrated in Fig. 8. We choose sourcesS = {8, 11} and
terminalsT ⊆ {2, 3, 4, 6, 9}. The edge directions are chosen
to permit connections and help illustrate network coding gain.
The green edges have edge cost 1, while the blue edges have
edge cost 10 or 20. The edge costs are chosen to make the
network coding advantage exist at least for some connection
requests [31]. Note that network coding gain takes effect only
if transmitting coded information requires a lower networkcost
than routing. We consider 1000 random realizations of demand
sets. For each realization, a pair or triplet of terminals (i.e.,
T = 2, 3) are selected from{2, 3, 4, 6, 9} uniformly at random,
and each selected terminal randomly, uniformly, independently
demands a source out of the two sources inS = {8, 11}. In
addition, each selected terminal randomly chooses to demand
the other source or not according to a Bernoulli distribution
with probability q − 1 of selecting a second source, where
q ∈ [1, 2]. Thus,q represents the expected number of sources
selected by each terminal (i.e.,Pt). Note thatq = 2 indicates
multicast, andq = 1 results in unicast connections. In this way,
general connections are randomly generated withq controlling
the average size of the intersections of the demand sets by
different terminals.



11

Sprint Backbone Network
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Fig. 8: Sprint backbone network topology [35].S = {8, 11} and
T ⊆ {2, 3, 4, 6, 9}. The edge costs are: 20 for edges(10, 5) and
(10, 6), 10 for edge(9, 4), and 1 for all the other edges.

T=2 T=3
q=1.2 q=1.8 q=1.2 q=1.8

Problem 2 7.49 12.70 12.82 20.79
Problem 1 8.99 13.80 16.96 23.20

Two-step Mixing [27] 8.99 13.80 17.24 24.94
Routing 9.36 18.68 17.25 32.34

TABLE I: Average optimal network cost of the network in Fig. 8.

A. Network Cost

Table. I illustrates the average optimal network cost (aver-
aged over 1000 random realizations) for differentq andT . Note
that the optimal network costs of Problems 1 and 2 are obtained
by the centralized algorithm, i.e., Algorithm 1. We can observe
that the average optimal network costs of all the schemes
increase with increases ofq or T , i.e., the increase of network
load. The average network costs of the optimal solutions to
Problems 1 and 2 are lower than the optimal routing, with
average cost reductions up to28% and36%, respectively. The
average cost reductions are due to the network coding gain
exploited by Problems 1 and 2. Specifically, edge(10, 7) can
serve as the coding edge for the butterfly subnetwork consisting
of nodes 6, 7, 8, 9, 10 and 11, and edges(7, 4) and(4, 1) can
serve as the coding edge for the butterfly subnetwork consisting
of nodes 1, 2, 3, 4, 6, 7 and 9, in the Sprint backbone network in
Fig. 8. The network coding gain increases asq or T increases.
This is because, using network coding, edges can be used more
efficiently in the case of high network load.

In addition, the average network costs of the optimal solu-
tions to Problems 1 and 2 are lower than the two-step mixing
approach, with average cost reductions up to7% and 26%,
respectively. The average cost reductions are due to the extra
network coding gain (achieved through mixing) exploited by
Problems 1 and 2. Specifically, given the demand sets of all
the terminals, mixing or not in the two-step mixing approach
(determined in the first step, separately from the second flow
rate control step) is restricted by all the physical paths, while
mixing or not in Problems 1 and 2 (determined jointly with
flow rate control) is only restricted by the actual paths that
each flow will take, which is also illustrated in the example
in Fig. 2. Note that the average network cost of Problem 1
is lower than the two-step mixing whenT = 3. The average
cost reductions of the optimal solutions to Problems 1 and 2
increase asT increases, as there are more physical paths to

terminals restricting network coding (mixing) in the two-step
mixing approach.

On the other hand, the average network cost of the optimal
solution to Problem 2 is lower than that of the optimal so-
lution to Problem 1, with average cost reduction up to24%,
illustrating the consequence of Lemma 1. For a givenT , the
performance gain of Problem 2 over Problem 1 decreases asq

increases, since the difference between the feasibility regions of
the two problems reduces with the increase ofq. Note that when
q = 2 (i.e., multicast), the two problems (feasibility regions)
are the same. However, for a givenq, the performance gain of
Problem 2 over Problem 1 increases asT increases, since the
difference between the feasibility regions of the two problems
increases with the increase ofT .

B. Convergence

We illustrate the convergence performance of own distributed
Algorithm 4. Considers1 = 8, s2 = 11, t1 = 2, t2 = 6,
P1 = {1, 2}, P2 = {2} and P = {1, 2}. In this case, the
optimal network costs of Problem 2, Problem 1, the two-step
mixing approach and routing are 10, 28, 28, 28, respectively.
The optimal network mixing solution to Problem 2 is achieved
through the demand set expansion, i.e.,P̄1 = P̄2 = P = {1, 2}.
The expanded demand set corresponds to multicast, where the
network coding gain is achieved. The optimal mixing (coding)
solutions with cost 10 corresponds to flow paths8− 10− 7−
4 − 1 − 2, 11 − 10 − 7 − 9 − 2 (11 − 9 − 2), 8 − 6 and
11−10−7−6. There is no network mixing (coding) solution to
Problem 1 and the two-step mixing approach. There are three
optimal routing solutions of cost 28, which are also optimal
(feasible but non-coding) solutions for Problem 1 and the two-
step mixing approach. The first one corresponds to flow paths
8−10−5−1−2, 11−10−7−9−2 and11−10−7−6. The
second one corresponds to flow paths8− 10− 7− 4− 1− 2,
11− 9− 2 and11− 10− 6. The third one corresponds to flow
paths8 − 10 − 5 − 1 − 2, 11 − 9 − 2 and 11 − 10 − 7 − 6.
In the following, we illustrate the convergence for the path-
based and edge-based distributed algorithms for Problem 2 (at
P̄1 = P̄2 = P = {1, 2}), respectively.

1) Path-based Probabilistic Distributed Algorithm:Fig. 9
illustrates the convergence of Algorithm 3 (i.e., Step 3 in
Algorithm 4). From Fig. 9, we can see that Algorithm 3
converges to a feasible solution to Problem 2 quite quickly
(within 25 iterations). This feasible solution corresponds to flow
paths8−10−7−4−1−2, 11−10−7−9−2, 8−10−7−6
and 11 − 10 − 6 . The network cost of this feasible solution
is 10, i.e., the optimal network cost to Problem 2. Fig. 10
illustrates the convergence of Algorithm 4 for one instance.
We can see that there exist multiple feasible mixing solutions
to Problem 2, which are of different network costs, and running
Algorithm 3 for multiple times can result in different feasible
solutions. Thus, the minimum network cost may decrease as
the number of iterations increases. Algorithm 4 obtains the
optimal network cost 10 to Problem 2 quite quickly (within
100 iterations). Fig. 11 illustrates the average convergence
of Algorithm 4 over 1000 instances. We can see that on
average, within 100 iterations, the minimum network cost under
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(d) Flow path from (source) node 11 to (terminal) node 6.

Fig. 9: Convergence of the path-based CFL in Algorithm 3 for
Problem 2 of the network in Fig. 8.a = 0.05 and b = 0.009. These
convergence curves are for one realization of the random Algorithm 3.
Note that all the flow paths are shown in the figure.
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Fig. 10:Network costs of Algorithm 4 for Problem 2 of the network in
Fig. 8. Each blue dot represents the network cost of a feasible solution
obtained by the path-based CFL in each iteration of Algorithm 4.
While the red curve represents the minimum network cost obtained
by Algorithm 4 within a certain number of iterations. The blue dots
and red curve are for one realization of the random Algorithm4.

Algorithm 4 converges to 10, which is the optimal network
cost to Problem 2 obtained by the centralized algorithm in
Algorithm 1.

2) Edge-based Probabilistic Distributed Algorithm:Fig. 12
illustrates the convergence of Algorithm 5 (i.e., Step 3 in
Algorithm 6). From Fig. 12, we can see that Algorithm 5
converges to a feasible solution to Problem 2 within 8000
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Fig. 11: Average minimum network costs of the path-based CFLs
in Algorithm 4 for Problem 2 of the network in Fig. 8 over 1000
instances. The red curve here represents the average of the red curves
in Fig. 10 over 1000 instances.
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Fig. 12: Convergence of the edge-based CFL in Algorithm 5 for
Problem 2 of the network in Fig. 8.a = 1 and b = 0.01. Note that
for each edge, the “Correct Event” indicates the variable taking the
value which corresponds to the feasible solution obtained by the edge-
based CFL. These convergence curves are for one realizationof the
random Algorithm 5.

0 50 100 150 200 250 300 350 400
5

15

25

35

45

55

65
Network Cost
Minimum Network Cost

Fig. 13:Network costs of Algorithm 6 for Problem 2 of the network in
Fig. 8. Each blue dot represents the network cost of a feasible solution
obtained by the edge-based CFL in each iteration of Algorithm 6.
While the red curve represents the minimum network cost obtained
by Algorithm 6 within a certain number of iterations. The blue dots
and red curve are for one realization of the random Algorithm6.
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Fig. 14: Average minimum network costs of the edge-based CFLs
in Algorithm 6 for Problem 2 of the network in Fig. 8 over 1000
instances. The red curve here represents the average of the red curves
in Fig. 13 over 1000 instances.

iterations. This feasible solution is the same as the one shown in
Fig. 9, with network cost 10. By comparing Fig. 12 with Fig. 9,
we can see that Algorithm 5 converges much more slowly than
Algorithm 3. Fig. 13 illustrates the convergence of Algorithm 6.
We can see that there exist for Problem 2, multiple feasible mix-
ing solutions which have different network costs, and running
Algorithm 5 for multiple times can result in different feasible
solutions. Thus, the minimum network cost may decrease as the
number of iterations increases. Algorithm 6 obtains the optimal
network cost 10 to Problem 2 within 100 iterations. Fig. 14
illustrates the average convergence of Algorithm 6 over 1000
instances. We can see that on average, within 300 iterations,
the minimum network cost under Algorithm 6 converges to 10,
which is the optimal network cost to Problem 2 obtained by
the centralized algorithm in Algorithm 1. By comparing Fig.14
with Fig. 11, we can see that Algorithm 6 converges much more
slowly than Algorithm 4.

VII. C ONCLUSION AND FUTURE WORK

In this paper, we introduce linear network mixing coefficients
for code constructions of general integer connections. Forsuch
code constructions, we pose the problem of cost minimization
for the subgraph involved in the coding solution, and relate
this minimization to a path-based CSP and an edge-based CSP,
respectively. We present a path-based probabilistic distributed
algorithm and an edge-based probabilistic distributed algo-
rithm with almost sure convergence in finite time by applying
CFL. Our approach allows fairly general coding across flows,
guarantees no greater cost than routing, and demonstrates a
possible distributed implementation. Numerical results illustrate
the performance improvement of our approach over existing
methods.

This paper opens up several directions for future research.
For instance, the proposed optimization-based linear network
code construction for general integer connections can be ex-
tended to design route finding protocols of superior perfor-
mance for general connections. In addition, a possible direction
for future research is to design dynamic approaches not onlyto
build new subgraphs, but also to update them as they evolve,
so as to reflect changes in topologies for varying networks, as
occur in such settings as peer-to-peer (P2P) networks. Another
interesting extension of the proposed approach to content-
centric cache-enabled networks is to incorporate cache place-
ment (which creates new sources) into the cost minimization

for the subgraph involved in the coding solution in this work.
Finally, the proposed approach for wireline networks can also
be generalized to wireless networks by considering hyper edges
to model broadcast links.
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APPENDIX A: PROOF OFTHEOREM 1

Let z, x, β and f denote a feasible solution to Problem 1.
Note thatx is uniquely determined byβ according to (10) and
(11), which correspond to Conditions 1) and 2) in Definition
2. In addition, by (12), which corresponds to Condition 3) in
Definition 2, we know thatx ensures that for each terminal,
the extraneous flows are not mixed with the desired flows on
the paths to the terminal. We shall show that, based onβ, we
can find local coding coefficientsα, which uniquely determine
feasible global coding coefficientsc according to

cspj = ep, (sp, j) ∈ E , p ∈ P (28)

cij =
∑

k∈Ii

αkijcki, (i, j) ∈ E , i 6∈ S (29)

where correspond to Conditions 1) and 2) in Definition 1).

First, we chooseαkij = 0 if βkij = 0. Note that, as a feasible
solution,x is uniquely determined byβ according to (10) and
(11). In addition, we choosec based onα according to (28)
and (29). Thus, by (28), (29), (10) and (11), we can show that
cij,p = 0 if xij,p = 0 by induction. Thus, by (12), we have

cit,p = 0, i ∈ It, p 6∈ Pt, t ∈ T . (30)

In other words, each terminalt ∈ T only needs to consider
(cit,p)i∈It,p∈Pt

for decoding. By (8), we can form a flow path
from sourcesp to terminal t, which consists of the edges in
Lt
p , {(i, j) ∈ E : f t

ij,p = 1}, wherep ∈ Pt. By (3) and (7),
we know that for allt ∈ T , there existsPt edge-disjoint unit
flow paths, each one from one sourcesp to terminalt, where
p ∈ Pt. Note thatx satisfies all the conditions in Definition
2. Thus, by (9), we know that all the flow paths satisfy that
for each terminal, the extraneous flows (information) are not
mixed with the desired flows (information) on the flow paths
to the terminal. LetAt denote thePt × Pt matrix, each row
(out of Pt rows) of which consists of thePt elements in
(cit,p)p∈Pt

for the last edge(i, t) on one flow path (out of
Pt flow paths) to terminalt, where i ∈ It. Note thatAt

(in terms of (cit,p)i∈It,p∈Pt
for all Pt flow paths) can also

be expressed in terms of local coding coefficientsα by (28)
and (29).12 By (28) and (29), we know that 1) and 2) of
Definition 1 are satisfied. Therefore, it remains to show that3)
of Definition 1 is satisfied. This can be achieved by choosing
{αkij : (k, i), (i, j) ∈ E , βkij 6= 0} so thatAt for all t ∈ T are
full rank, i.e.,

∏

t∈T det(At) 6= 0 [36, Pages19-20].
Next, we show that ifF > T , we can choose{αkij :

(k, i), (i, j) ∈ E , βkij 6= 0} such that
∏

t∈T det(At) 6= 0.
We first show that for allt ∈ T , det(At) is not identically
equal to zero. For allp ∈ Pt and t ∈ T , chooseαkij = 1
for all edges(k, i), (i, j) ∈ E on the flow path from source
sp to terminalt, i.e., (k, i), (i, j) ∈ Lt

p, andαkij = 0 for all
edges(k, i), (i, j) ∈ E not on the same flow path, i.e.,(k, i)
or (i, j) 6∈ Lt

p. This local coding coefficient assignment makes
At thePt×Pt identity matrix. Thus,det(At) is not identically
equal to zero [36, Page 20]. Then, we show that

∏

t∈T det(At)
is not equal to zero, using the algebraic framework in [36, Pages
31-32]. Similarly to the proof of Theorem 3.2 in [36, Pages
31-32], we can show that

∏

t∈T det(At) is a polynomial in
unknown variables{αkij : (k, i), (i, j) ∈ E , βkij 6= 0} and that
the degree of each unknown variable is at mostT . Therefore,
by Lemma 2.3 [36, Page 21], we can show that, forF > T ,
there exists a choice of{αkij : (k, i), (i, j) ∈ E , βkij 6= 0}
such that

∏

t∈T det(At) 6= 0. Recall thatαkij = 0 if βkij = 0.
Therefore, based onβ, we can obtainα that leads to feasible
c.

12Given all the local coding coefficientsα, we can compute global coding
coefficientsc, and vice versa.


