8,941 research outputs found

    Bidimensionality and Geometric Graphs

    Full text link
    In this paper we use several of the key ideas from Bidimensionality to give a new generic approach to design EPTASs and subexponential time parameterized algorithms for problems on classes of graphs which are not minor closed, but instead exhibit a geometric structure. In particular we present EPTASs and subexponential time parameterized algorithms for Feedback Vertex Set, Vertex Cover, Connected Vertex Cover, Diamond Hitting Set, on map graphs and unit disk graphs, and for Cycle Packing and Minimum-Vertex Feedback Edge Set on unit disk graphs. Our results are based on the recent decomposition theorems proved by Fomin et al [SODA 2011], and our algorithms work directly on the input graph. Thus it is not necessary to compute the geometric representations of the input graph. To the best of our knowledge, these results are previously unknown, with the exception of the EPTAS and a subexponential time parameterized algorithm on unit disk graphs for Vertex Cover, which were obtained by Marx [ESA 2005] and Alber and Fiala [J. Algorithms 2004], respectively. We proceed to show that our approach can not be extended in its full generality to more general classes of geometric graphs, such as intersection graphs of unit balls in R^d, d >= 3. Specifically we prove that Feedback Vertex Set on unit-ball graphs in R^3 neither admits PTASs unless P=NP, nor subexponential time algorithms unless the Exponential Time Hypothesis fails. Additionally, we show that the decomposition theorems which our approach is based on fail for disk graphs and that therefore any extension of our results to disk graphs would require new algorithmic ideas. On the other hand, we prove that our EPTASs and subexponential time algorithms for Vertex Cover and Connected Vertex Cover carry over both to disk graphs and to unit-ball graphs in R^d for every fixed d

    Minimum-Cost Coverage of Point Sets by Disks

    Full text link
    We consider a class of geometric facility location problems in which the goal is to determine a set X of disks given by their centers (t_j) and radii (r_j) that cover a given set of demand points Y in the plane at the smallest possible cost. We consider cost functions of the form sum_j f(r_j), where f(r)=r^alpha is the cost of transmission to radius r. Special cases arise for alpha=1 (sum of radii) and alpha=2 (total area); power consumption models in wireless network design often use an exponent alpha>2. Different scenarios arise according to possible restrictions on the transmission centers t_j, which may be constrained to belong to a given discrete set or to lie on a line, etc. We obtain several new results, including (a) exact and approximation algorithms for selecting transmission points t_j on a given line in order to cover demand points Y in the plane; (b) approximation algorithms (and an algebraic intractability result) for selecting an optimal line on which to place transmission points to cover Y; (c) a proof of NP-hardness for a discrete set of transmission points in the plane and any fixed alpha>1; and (d) a polynomial-time approximation scheme for the problem of computing a minimum cost covering tour (MCCT), in which the total cost is a linear combination of the transmission cost for the set of disks and the length of a tour/path that connects the centers of the disks.Comment: 10 pages, 4 figures, Latex, to appear in ACM Symposium on Computational Geometry 200

    A Constant-Factor Approximation for Multi-Covering with Disks

    Full text link
    We consider variants of the following multi-covering problem with disks. We are given two point sets YY (servers) and XX (clients) in the plane, a coverage function κ:XN\kappa :X \rightarrow \mathcal{N}, and a constant α1\alpha \geq 1. Centered at each server is a single disk whose radius we are free to set. The requirement is that each client xXx \in X be covered by at least κ(x)\kappa(x) of the server disks. The objective function we wish to minimize is the sum of the α\alpha-th powers of the disk radii. We present a polynomial time algorithm for this problem achieving an O(1)O(1) approximation

    Approximating Minimum Independent Dominating Sets in Wireless Networks

    Get PDF
    We present the first polynomial-time approximation scheme (PTAS) for the Minimum Independent Dominating Set problem in graphs of polynomially bounded growth. Graphs of bounded growth are used to characterize wireless communication networks, and this class of graph includes many models known from the literature, e.g. (Quasi) Unit Disk Graphs. An independent dominating set is a dominating set in a graph that is also independent. It thus combines the advantages of both structures, and there are many applications that rely on these two structures e.g. in the area of wireless ad hoc networks. The presented approach yields a robust algorithm, that is, the algorithm accepts any undirected graph as input, and returns a (1+")- pproximate minimum dominating set, or a certificate showing that the input graph does not reflect a wireless network

    Stabbing line segments with disks: complexity and approximation algorithms

    Full text link
    Computational complexity and approximation algorithms are reported for a problem of stabbing a set of straight line segments with the least cardinality set of disks of fixed radii r>0r>0 where the set of segments forms a straight line drawing G=(V,E)G=(V,E) of a planar graph without edge crossings. Close geometric problems arise in network security applications. We give strong NP-hardness of the problem for edge sets of Delaunay triangulations, Gabriel graphs and other subgraphs (which are often used in network design) for r[dmin,ηdmax]r\in [d_{\min},\eta d_{\max}] and some constant η\eta where dmaxd_{\max} and dmind_{\min} are Euclidean lengths of the longest and shortest graph edges respectively. Fast O(ElogE)O(|E|\log|E|)-time O(1)O(1)-approximation algorithm is proposed within the class of straight line drawings of planar graphs for which the inequality rηdmaxr\geq \eta d_{\max} holds uniformly for some constant η>0,\eta>0, i.e. when lengths of edges of GG are uniformly bounded from above by some linear function of r.r.Comment: 12 pages, 1 appendix, 15 bibliography items, 6th International Conference on Analysis of Images, Social Networks and Texts (AIST-2017
    corecore