302 research outputs found

    Scalable Population Synthesis with Deep Generative Modeling

    Full text link
    Population synthesis is concerned with the generation of synthetic yet realistic representations of populations. It is a fundamental problem in the modeling of transport where the synthetic populations of micro-agents represent a key input to most agent-based models. In this paper, a new methodological framework for how to 'grow' pools of micro-agents is presented. The model framework adopts a deep generative modeling approach from machine learning based on a Variational Autoencoder (VAE). Compared to the previous population synthesis approaches, including Iterative Proportional Fitting (IPF), Gibbs sampling and traditional generative models such as Bayesian Networks or Hidden Markov Models, the proposed method allows fitting the full joint distribution for high dimensions. The proposed methodology is compared with a conventional Gibbs sampler and a Bayesian Network by using a large-scale Danish trip diary. It is shown that, while these two methods outperform the VAE in the low-dimensional case, they both suffer from scalability issues when the number of modeled attributes increases. It is also shown that the Gibbs sampler essentially replicates the agents from the original sample when the required conditional distributions are estimated as frequency tables. In contrast, the VAE allows addressing the problem of sampling zeros by generating agents that are virtually different from those in the original data but have similar statistical properties. The presented approach can support agent-based modeling at all levels by enabling richer synthetic populations with smaller zones and more detailed individual characteristics.Comment: 27 pages, 15 figures, 4 table

    Observation Uncertainty in Reversible Markov Chains

    Get PDF
    In many applications one is interested in finding a simplified model which captures the essential dynamical behavior of a real life process. If the essential dynamics can be assumed to be (approximately) memoryless then a reasonable choice for a model is a Markov model whose parameters are estimated by means of Bayesian inference from an observed time series. We propose an efficient Monte Carlo Markov Chain framework to assess the uncertainty of the Markov model and related observables. The derived Gibbs sampler allows for sampling distributions of transition matrices subject to reversibility and/or sparsity constraints. The performance of the suggested sampling scheme is demonstrated and discussed for a variety of model examples. The uncertainty analysis of functions of the Markov model under investigation is discussed in application to the identification of conformations of the trialanine molecule via Robust Perron Cluster Analysis (PCCA+)

    Infinite mixture-of-experts model for sparse survival regression with application to breast cancer

    Get PDF
    BACKGROUND: We present an infinite mixture-of-experts model to find an unknown number of sub-groups within a given patient cohort based on survival analysis. The effect of patient features on survival is modeled using the Cox's proportionality hazards model which yields a non-standard regression component. The model is able to find key explanatory factors (chosen from main effects and higher-order interactions) for each sub-group by enforcing sparsity on the regression coefficients via the Bayesian Group-Lasso. RESULTS: Simulated examples justify the need of such an elaborate framework for identifying sub-groups along with their key characteristics versus other simpler models. When applied to a breast-cancer dataset consisting of survival times and protein expression levels of patients, it results in identifying two distinct sub-groups with different survival patterns (low-risk and high-risk) along with the respective sets of compound markers. CONCLUSIONS: The unified framework presented here, combining elements of cluster and feature detection for survival analysis, is clearly a powerful tool for analyzing survival patterns within a patient group. The model also demonstrates the feasibility of analyzing complex interactions which can contribute to definition of novel prognostic compound markers

    Symmetrized importance samplers for stochastic differential equations

    Get PDF
    We study a class of importance sampling methods for stochastic differential equations (SDEs). A small-noise analysis is performed, and the results suggest that a simple symmetrization procedure can significantly improve the performance of our importance sampling schemes when the noise is not too large. We demonstrate that this is indeed the case for a number of linear and nonlinear examples. Potential applications, e.g., data assimilation, are discussed.Comment: Added brief discussion of Hamilton-Jacobi equation. Also made various minor corrections. To appear in Communciations in Applied Mathematics and Computational Scienc
    • …
    corecore