90 research outputs found

    Polynomial Threshold Functions, AC^0 Functions and Spectral Norms

    Get PDF
    The class of polynomial-threshold functions is studied using harmonic analysis, and the results are used to derive lower bounds related to AC^0 functions. A Boolean function is polynomial threshold if it can be represented as a sign function of a sparse polynomial (one that consists of a polynomial number of terms). The main result is that polynomial-threshold functions can be characterized by means of their spectral representation. In particular, it is proved that a Boolean function whose L_1 spectral norm is bounded by a polynomial in n is a polynomial-threshold function, and that a Boolean function whose L_∞^(-1) spectral norm is not bounded by a polynomial in n is not a polynomial-threshold function. Some results for AC^0 functions are derived

    Near-Optimal Lower Bounds on the Threshold Degree and Sign-Rank of AC^0

    Full text link
    The threshold degree of a Boolean function f ⁣:{0,1}n{0,1}f\colon\{0,1\}^n\to\{0,1\} is the minimum degree of a real polynomial pp that represents ff in sign: sgn  p(x)=(1)f(x).\mathrm{sgn}\; p(x)=(-1)^{f(x)}. A related notion is sign-rank, defined for a Boolean matrix F=[Fij]F=[F_{ij}] as the minimum rank of a real matrix MM with sgn  Mij=(1)Fij\mathrm{sgn}\; M_{ij}=(-1)^{F_{ij}}. Determining the maximum threshold degree and sign-rank achievable by constant-depth circuits (AC0\text{AC}^{0}) is a well-known and extensively studied open problem, with complexity-theoretic and algorithmic applications. We give an essentially optimal solution to this problem. For any ϵ>0,\epsilon>0, we construct an AC0\text{AC}^{0} circuit in nn variables that has threshold degree Ω(n1ϵ)\Omega(n^{1-\epsilon}) and sign-rank exp(Ω(n1ϵ)),\exp(\Omega(n^{1-\epsilon})), improving on the previous best lower bounds of Ω(n)\Omega(\sqrt{n}) and exp(Ω~(n))\exp(\tilde{\Omega}(\sqrt{n})), respectively. Our results subsume all previous lower bounds on the threshold degree and sign-rank of AC0\text{AC}^{0} circuits of any given depth, with a strict improvement starting at depth 44. As a corollary, we also obtain near-optimal bounds on the discrepancy, threshold weight, and threshold density of AC0\text{AC}^{0}, strictly subsuming previous work on these quantities. Our work gives some of the strongest lower bounds to date on the communication complexity of AC0\text{AC}^{0}.Comment: 99 page

    On Higher Order Elicitability and Some Limit Theorems on the Poisson and Wiener Space

    Get PDF
    This PhD thesis consists of two independent parts. The first one is dedicated to a thorough study of higher order elicitability whereas the second part is concerned with qualitative and quantitative limit theorems for Poisson and Gaussian functionals. It comprises a total number of four articles, three of them already published in peer-reviewed journals (Annals of Statistics, Risk Magazine, and ALEA), the fourth one in a preprint version. The articles are accompanied by detailed additional material, primarily concerning questions of order-sensitivity, order-preservingness and convexity of strictly consistent scoring functions

    On exponential observability estimates for the heat semigroup with explicit rates

    No full text
    13 pages, a4 paper, no figures, some references and an appendix added. To appear in Rendiconti Lincei: Matematica e Applicazioni.This note concerns the final time observability inequality from an interior region for the heat semigroup, which is equivalent to the null-controllability of the heat equation by a square integrable source supported in this region. It focuses on exponential estimates in short times of the observability cost, also known as the control cost and the minimal energy function. It proves that this final time observability inequality implies four variants (an integrated inequality with singular weights, an integrated inequality in infinite times, a sharper inequality and a Sobolev inequality) with roughly the same exponential rate everywhere and some control cost estimates with explicit exponential rates concerning null-controllability, null-reachability and approximate controllability. A conjecture and open problems about the optimal rate are stated. This note also contains a brief review of recent or to be published papers related to exponential observability estimates: boundary observability, Schrödinger group, anomalous diffusion, thermoelastic plates, plates with square root damping and other elastic systems with structural damping

    Analytical Methods for Structured Matrix Computations

    Get PDF
    The design of fast algorithms is not only about achieving faster speeds but also about retaining the ability to control the error and numerical stability. This is crucial to the reliability of computed numerical solutions. This dissertation studies topics related to structured matrix computations with an emphasis on their numerical analysis aspects and algorithms. The methods discussed here are all based on rich analytical results that are mathematically justified. In chapter 2, we present a series of comprehensive error analyses to an analytical matrix compression method and it serves as a theoretical explanation of the proxy point method. These results are also important instructions on optimizing the performance. In chapter 3, we propose a non-Hermitian eigensolver by combining HSS matrix techniques with a contour-integral based method. Moreover, probabilistic analysis enables further acceleration of the method in addition to manipulating the HSS representation algebraically. An application of the HSS matrix is discussed in chapter 4 where we design a structured preconditioner for linear systems generated by AIIM. We improve the numerical stability for the matrix-free HSS construction process and make some additional modifications tailored to this particular problem

    Graph Priors, Optimal Transport, and Deep Learning in Biomedical Discovery

    Get PDF
    Recent advances in biomedical data collection allows the collection of massive datasets measuring thousands of features in thousands to millions of individual cells. This data has the potential to advance our understanding of biological mechanisms at a previously impossible resolution. However, there are few methods to understand data of this scale and type. While neural networks have made tremendous progress on supervised learning problems, there is still much work to be done in making them useful for discovery in data with more difficult to represent supervision. The flexibility and expressiveness of neural networks is sometimes a hindrance in these less supervised domains, as is the case when extracting knowledge from biomedical data. One type of prior knowledge that is more common in biological data comes in the form of geometric constraints. In this thesis, we aim to leverage this geometric knowledge to create scalable and interpretable models to understand this data. Encoding geometric priors into neural network and graph models allows us to characterize the models’ solutions as they relate to the fields of graph signal processing and optimal transport. These links allow us to understand and interpret this datatype. We divide this work into three sections. The first borrows concepts from graph signal processing to construct more interpretable and performant neural networks by constraining and structuring the architecture. The second borrows from the theory of optimal transport to perform anomaly detection and trajectory inference efficiently and with theoretical guarantees. The third examines how to compare distributions over an underlying manifold, which can be used to understand how different perturbations or conditions relate. For this we design an efficient approximation of optimal transport based on diffusion over a joint cell graph. Together, these works utilize our prior understanding of the data geometry to create more useful models of the data. We apply these methods to molecular graphs, images, single-cell sequencing, and health record data

    Meshfree Approximation Methods For Free-form Optical Surfaces With Applications To Head-worn Displays

    Get PDF
    Compact and lightweight optical designs achieving acceptable image quality, field of view, eye clearance, eyebox size, operating across the visible spectrum, are the key to the success of next generation head-worn displays. The first part of this thesis reports on the design, fabrication, and analysis of off-axis magnifier designs. The first design is catadioptric and consists of two elements. The lens utilizes a diffractive optical element and the mirror has a free-form surface described with an x-y polynomial. A comparison of color correction between doublets and single layer diffractive optical elements in an eyepiece as a function of eye clearance is provided to justify the use of a diffractive optical element. The dual-element design has an 8 mm diameter eyebox, 15 mm eye clearance, 20 degree diagonal full field, and is designed to operate across the visible spectrum between 450-650 nm. 20% MTF at the Nyquist frequency with less than 3% distortion has been achieved in the dual-element head-worn display. An ideal solution for a head-worn display would be a single free-form surface mirror design. A single surface mirror does not have dispersion; therefore, color correction is not required. A single surface mirror can be made see-through by machining the appropriate surface shape on the opposite side to form a zero power shell. The second design consists of a single off-axis free-form mirror described with an x-y polynomial, which achieves a 3 mm diameter exit pupil, 15 mm eye relief, and a 24 degree diagonal full field of view. The second design achieves 10% MTF at the Nyquist frequency set by the pixel spacing of the VGA microdisplay with less than 3% distortion. Both designs have been fabricated using diamond turning techniques. Finally, this thesis addresses the question of what is the optimal surface shape for a single mirror constrained in an off-axis magnifier configuration with multiple fields? Typical optical surfaces implemented in raytrace codes today are functions mapping two dimensional vectors to real numbers. The majority of optical designs to-date have relied on conic sections and polynomials as the functions of choice. The choice of conic sections is justified since conic sections are stigmatic surfaces under certain imaging geometries. The choice of polynomials from the point of view of surface description can be challenged. A polynomial surface description may link a designer s understanding of the wavefront aberrations and the surface description. The limitations of using multivariate polynomials are described by a theorem due to Mairhuber and Curtis from approximation theory. This thesis proposes and applies radial basis functions to represent free-form optical surfaces as an alternative to multivariate polynomials. We compare the polynomial descriptions to radial basis functions using the MTF criteria. The benefits of using radial basis functions for surface description are summarized in the context of specific head-worn displays. The benefits include, for example, the performance increase measured by the MTF, or the ability to increase the field of view or pupil size. Even though Zernike polynomials are a complete and orthogonal set of basis over the unit circle and they can be orthogonalized for rectangular or hexagonal pupils using Gram-Schmidt, taking practical considerations into account, such as optimization time and the maximum number of variables available in current raytrace codes, for the specific case of the single off-axis magnifier with a 3 mm pupil, 15 mm eye relief, 24 degree diagonal full field of view, we found the Gaussian radial basis functions to yield a 20% gain in the average MTF at 17 field points compared to a Zernike (using 66 terms) and an x-y polynomial up to and including 10th order. The linear combination of radial basis function representation is not limited to circular apertures. Visualization tools such as field map plots provided by nodal aberration theory have been applied during the analysis of the off-axis systems discussed in this thesis. Full-field displays are used to establish node locations within the field of view for the dual-element head-worn display. The judicious separation of the nodes along the x-direction in the field of view results in well-behaved MTF plots. This is in contrast to an expectation of achieving better performance through restoring symmetry via collapsing the nodes to yield field-quadratic astigmatism
    corecore