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Preface

This doctoral thesis comprises the scientific outcome of three and a half years
of research as a doctoral student at the Institute of Mathematical Statistics and
Actuarial Science of the University of Bern from September 2013 until March 2017.
During that time, I had the opportunity to jointly work with my PhD supervisor
Johanna F. Ziegel on the SNF-project 152609, having the title ‘Understanding
elicitability’. The joint research led to many new and fascinating insights into the
topic, ultimately resulting in two peer-reviewed articles – one of them published
in the Annals of Statistics – and further additional material. The first part of this
thesis is devoted to these results, comprising the joint articles and the additional
findings, with a main focus on higher order elicitability, which explains also the
first part of the title of this thesis.

At the same time, I had the opportunity to do some joint research with Christoph
Thäle from the Ruhr-University Bochum. We studied qualitative and quantita-
tive limit theorems for Gaussian and Poisson functionals, using techniques from
Malliavin Calculus in combination with Stein’s method. With its rather proba-
bilistic perspective, this work was not only a pleasant complement to the research
on elicitability, but also built a connection to some topics of my Bachelor the-
sis at Heidelberg University, which was jointly supervised by Johanna F. Ziegel
and Mark Podolskij. The fruitful outcome of this collaboration sublimated in two
joint research articles, one of them is already published in ALEA, the other one is
currently under review. They are the main content Part II of this thesis.

The two parts of this thesis are independent in their content, connected only
by my own biographical ties, the fact that they both belong to the broad field
of stochastics, and definitely by the fact that they are hosted in the same thesis.
Since this thesis is cumulative in nature, with major parts consisting of original
research papers – be it in their journal style, be it in their preprint version –, each
of the articles has its own bibliography. All references appearing in the rest of the
text can be found in a joint bibliography at the end of the thesis.
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Higher Order Elicitability
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1. Introduction to Elicitability

From the cradle to the grave, human life is full of decisions. Due to the inherent
nature of time, decisions have to be made today, but at the same time, they are
supposed to account for unknown and uncertain future events. However, since
these future events cannot be known today, the best thing to do is to base the
decisions on predictions for these unknown and uncertain events. The call for and
the usage of predictions for future events is literally ubiquitous and even dates
back to ancient times.

1.1. Forecasts over the times and an ancient approach
towards forecast evaluation

For ancient Greeks, the Delphic Oracle was one of the most respected authorities
in the ancient Hellenistic world. It was consulted for decisions of private life such
as marriage or business, but also for strategic political decisions concerning peace
and war. In these days, dreams, divination, and revelation were considered as
respected sources for forecasts, as was the course of nature resulting for example in
the pre-science of astrology. During these days and at least till the 19th century, the
risk of famine was hanging over agricultural societies like the Sword of Damocles,
giving evidence for the need of good means of weather forecasts. This found
its expression mainly in terms of weather proverbs, incorporating the empirical
knowledge and experience of ancestral generations. With the development of
natural sciences, mathematics, and in particular statistics and probability theory
– i.a. triggered by the need for guidance in gambling and betting –, the art of
forecasting turned more and more into a discipline of science. Fields, dedicated to
prediction making in specialized areas of nature, such as meteorology, or society,
e.g. mathematical finance, or even futurology, evolved. Today, elaborated forecasts
are present in a variety of different disciplines: Politics and government (e.g.
forecasts for elections and votings), business (e.g. forecasts for demands), finance
(e.g. forecasts of inflation, interest rates, exchange rates), defense and intelligence,
the health sector, the energy market, agriculture, and everyday life.

At all times, due to previous experience or to pure logical reasoning in the
presence of contradicting forecasts, there were people who were aware of the fact
that predictions – whether made by divine oracles or by sophisticated scientific
models – were not infallible. Assessing the quality of a forecast, they asked the
two main questions:
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1. Introduction to Elicitability

(i) “How good is the forecast at hand in absolute terms?”

(ii) “How good is the forecast at hand in relative terms?”

Question (i) deals with forecast validation, whereas question (ii) is concerned with
forecast selection, forecast comparison, or forecast ranking. A historic example for
assessing the second question is the ancient king Croesus, king of Lydia. In the
6th century B.C., he sent messengers to the most famous oracles in the Hellenistic
world. As Herodotus wrote:

“His intent in sending was to test the knowledge of the oracles, so that, if
they should be found to know the truth, he might send again and ask if he
should take in hand an expedition against the Persians.” (Herodotus and
Godley, 1920, Book I. 46–48, pp. 53–55)

Herodotus also detailed on the way Croesus performed this ancient forecast com-
parison.

“And when he sent to make trial of these shrines he gave the Lydians this
charge: they were to keep count of the time from the day of their leaving
Sardis, and on the hundredth day inquire of the oracles what Croesus, king of
Lydia, son of Alyattes, was then doing; then they were to write down whatever
were the oracular answers and bring them back to him. [. . . ] Croesus then
unfolded and surveyed all the writings.” (ibidem)

Ultimately, the oracle at Delphi was the only one to report correctly what king
Croesus was doing at that very day (namely, he was cooking a lamb-and-tortoise
stew in a caldron of bronze), thus convincing him of her dominant predictive
ability.

1.2. Forecast evaluation in modern times

Even though king Croesus’ ultimate problem was not an incorrect forecast ranking,
but rather a misinterpretation of a future oracular utterance,1 his assessment of
the problem of forecast ranking would definitely not satisfy the present state of
the art, one of the major drawbacks being the fact that he based his judgement
on one observation only. One of the suggestions of a 21st–century–expert would
certainly consist of, but would not be limited to, the proposal of using the full
100 days and repeating the very same experiment 100 times consecutively, then
deeming that oracle to be the best which performed best on average over the 100
days.

Part I of this doctoral thesis is devoted to collecting and developing more ad-
vanced advice to king Croesus and his contemporary colleagues. Aware of the two

1When he was wondering whether to attack the Persians, he made an inquiry at the Delphic
Oracle as to whether he should send an army against the Persians, and, if so, whether to take
an ally. The oracle’s answer was that “if he should send an army against the Persians he would
destroy a great empire.” (Herodotus and Godley, 1920, Book I. 53, p. 61) Misinterpreting
this divination and having the Persian empire in mind to be destroyed by his attack, he sent
his army against Persia, but ultimately destroyed his own ‘great empire’.
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1.2. Forecast evaluation in modern times

crucial tasks of forecast evaluation – (i) forecast validation and (ii) forecast com-
parison – the thesis at hand is mostly concerned with the latter task, in particular
concentrating on the issue of elicitability.

1.2.1. The ingredients of forecast comparison

We begin by collecting the ingredients of modern forecast comparison, some of
them already present in Croesus’ ancient oracle contest. To this end, we adopt a
quite general decision-theoretic framework following Gneiting (2011); cf. (Savage,
1971; Osband, 1985; Lambert et al., 2008). For some number n ≥ 1, one has

(a) observed ex post realizations y1, . . . , yn of a time series (Yt)t∈N, taking values
in an observation domain O with a σ-algebra O;

(b) a family F of probability distributions on (O,O), reflecting the potential dis-
tributions of Yt;

(c) for m ≥ 1 competing experts / forecasters, ex ante forecasts x
(i)
1 , . . . , x

(i)
n , i ∈

{1, . . . ,m}, taking values in an action domain A.

As outlined in Fissler and Ziegel (2016) (see Chapter 3), the observations yt can be
real-valued (GDP growth for one year, maximal temperature at one day), vector-
valued (wind-speed, weight and height of persons), functional-valued (path of the
exchange rate Euro–Swiss franc over one day), or also set-valued (area of rain
on one day, area affected by a flood). Concerning the forecasts and the action
domain, respectively, there is a dichotomy: On the one hand, predictions can take
the form of point forecasts. In this situation, one is typically interested in a certain
statistical property of the underlying distribution Ft of Yt. Strictly speaking, this
property can be expressed in terms of a functional T : F → A such as the mean,
a certain quantile or a risk measure. In many cases, A coincides with O and is
typically a subset of R. But T can also be vector-valued (one is interested in the
covariance matrix of a multivariate observation or in quantiles at different levels),
but also set-valued (expectation of a random set, prediction region of a random
variable at a certain level). On the other hand, forecasts can be probabilistic, taking
into account the random nature of future events. In this case, the forecasts take
the form of probability measures, probability distributions, or density functions.
Gneiting (2011, p. 746) noted:

“In many aspects of human activity, a major desire is to make forecasts for an
uncertain future. Consequently, forecasts ought to be probabilistic in nature,
taking the form of probability distributions over future quantities or events
(Dawid, 1984; Gneiting, 2008). Still, many practical situations require single-
valued point forecasts, for reasons of decision making, market mechanisms,
reporting requirements, communication, or tradition, among others.”

We remark that from a mathematical perspective, probabilistic forecasts can be
seen as a particular instance of point forecasts where the functional T is infinite-
dimensional and merely the identity map on F .

Recalling that the observations y1, . . . , yn are ex post, whereas the forecasts

11



1. Introduction to Elicitability

x
(i)
1 , . . . , x

(i)
n , i ∈ {1, . . . ,m}, are ex ante, we emphasize that the forecasts do not

need to be one step ahead forecasts, but can also be multistep ahead forecasts.
Even more generally, the forecasts can be made with different time horizons (e.g. all
forecasts are issued at the same time t = 1).

The last ingredient of the decision-theoretic framework is

(d) a loss function or scoring function S : A × O → R. The scoring function is
assumed to be negatively oriented, that is, if a forecaster reports the quantity
x ∈ A and y ∈ O materializes, she is assigned the penalty S(x, y) ∈ R.

Common examples for scoring rules are the absolute loss S(x, y) = |x − y|, the
squared loss S(x, y) = (x − y)2 (for A = O = R), or the absolute percentage loss
S(x, y) = |(x − y)/y| (for A = O = (0,∞)). In the literature, the function S
has different names. In the case of probabilistic forecasts, it is commonly called
scoring rule (Gneiting and Raftery, 2007; Gneiting, 2011). But from an abstract
decision-theoretic point of view, the concepts coincide.

Having collected all the ingredients, modern forecast comparison is done in
terms of the ranking of the realized scores

S̄(i)
n =

1

n

n∑

t=1

S(x
(i)
t , yt), i ∈ {1, . . . ,m}.

That is, a forecaster is deemed to be the better the lower her realized score is. We
illustrate this practice with the following example.

Example 1.2.1. Suppose we have m = 2 forecaster, both issuing their predic-
tions for tomorrow’s temperature at noon for n = 100 subsequent days. After
these 100 days, one evaluates the corresponding prediction-observation sequences

(x
(i)
t , yt)t=1,...,100, i = 1, 2. Assume forecaster 1 is almost correct, but misspecified

the correct values always by one degree. On the other hand, forecaster 2 is even
better on the first 99 days and predicts exactly the correct temperatures.2 How-
ever, on the the last day, he ultimately misspecified the real outcome and deviated
by 50 degrees.

Who has performed better? The answer obviously depends on the choice of
the scoring function: utilizing the absolute loss, forecaster 2 is clearly the better
one. However, arguing that small errors are negligible, but larger misspecifications
entail the risk of a severe damage to health, one could also argue in favour of using
the squared loss assigning forecaster 1 a lower realized score.

Example 1.2.1 shows a caveat : the forecast ranking in terms of realized scores
not only depends on the forecasts and the realizations (as it should definitely be
the case), but also on the choice of the loss function. In order to avoid impure
possibilities of manipulating the forecast ranking ex post with the data at hand,

2One can assume that the measurement and the forecasts for the temperature are always rounded
to the closest integer.

12



1.2. Forecast evaluation in modern times

it is necessary to specify a certain scoring function before the inspection of the
data. A fortiori, for the sake of transparency and in order to encourage truthful
forecasts, one ought to disclose the choice of the scoring function to the competing
forecasters ex ante. But still, the optimal choice of the scoring function remains
an open problem. One can think of two situations:

(i) A decision-maker might be aware of his actual economic costs of utilizing
misspecified forecasts. In this case, the scoring function should reflect these
economic costs.

(ii) The actual economic costs might be unclear and the scoring function might
be just a tool for forecast ranking. However, the directive is given in terms
of the functional T : F → A one is interested in.

1.2.2. Consistency and elicitability

For situation (i) described above, one should use the readily economically inter-
pretable cost or scoring function. Therefore, the only concern is situation (ii).
Assuming the forecasters are homines oeconomici and adopting the rationale of
expected utility maximization, given a concrete scoring function S, the most sen-
sible action consists in minimizing the expected score EF [S(x, Y )] with respect to
the forecast x, where Y follows the distribution F , thus issuing the Bayes act
arg minx∈A EF [S(x, Y )]. Hence, a scoring function should be incentive compatible
in that it encourages truthful and honest forecasts. In line with Murphy and Daan
(1985) and Gneiting (2011), we call a scoring function strictly F-consistent for the
functional T : F → A if

T (F ) = arg min
x∈A

EF [S(x, Y )]

for all distributions F ∈ F . And following the terminology of Lambert et al. (2008)
and Gneiting (2011), a functional T : F → A is called elicitable if it possesses a
strictly F-consistent scoring function. In the context of probabilistic forecasting,
a strictly consistent scoring rule is called strictly proper. The necessity of uti-
lizing strictly consistent scoring functions for meaningful forecast comparison is
impressively demonstrated in terms of a simulation study in Gneiting (2011).

Further merits of elicitability, besides meaningful forecast comparison and rank-
ing, are M -estimation (Huber, 1964; Huber and Ronchetti, 2009), and general-
ized regression such as quantile regression or expectile regression (Koenker, 2005;
Newey and Powell, 1987); cf. Zwingmann and Holzmann (2016) for M -estimation
as well as Bayer and Dimitriadis (2017) for a regression framework for the pair
(Value at Risk, Expected Shortfall), respectively.
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1. Introduction to Elicitability

1.3. The elicitation problem

Having settled the basic definitions, one can formulate a threefold elicitation prob-
lem with respect to a fixed functional T : F → A.

(i) Is T elicitable, i.e., is there a strictly F-consistent scoring function for T?

(ii) What is the class of strictly F-consistent scoring functions for T? What are
handy sufficient and / or necessary conditions for a scoring function to be
strictly F-consistent for T?

(iii) Are there some particularly distinguished instances of strictly F-consistent
scoring functions?

Some comments are in order: Apparently, a certain hierarchy inheres in the three
subquestions of the elicitation problem. One ought to try to answer the questions
in the order presented above. But clearly, a question of inferior hierarchy may
help to tackle a question of superior hierarchy: if, for example, one can find
necessary conditions for the strict consistency of a scoring function which lead
to a contradiction, this also gives a negative answer to question (i). A crucial
fact which should be born in mind is that the questions of the elicitation problem
are not only relative with respect to the functional, but also with respect to the
domain F of the functional; see Fissler and Ziegel (2016, Lemma 2.5) and the
discussion thereafter (Chapter 3 of this thesis). Finally, question (iii) is in its
present form a vague statement which calls for further specification. This can be
given in terms of a list of quality requirements for scoring functions beyond strict
consistency. Some of them are certainly order-sensitivity, convexity, homogeneity
or translation invariance of a scoring function.

Even though the denomination and the synopsis of the described problems un-
der the term ‘elicitation problem’ are novel, there is a rich strand of literature
in mathematical statistics and economics concerned with the threefold elicitation
problem. Foremost, one should mention the pioneering work of Osband (1985),
establishing a necessary condition for elicitability in terms of convex level sets of
the functional, and a necessary representation of strictly consistent scoring func-
tions, known as Osband’s principle (Gneiting, 2011; Fissler and Ziegel, 2016).
Whereas the necessity of convex level sets holds in a quite general framework,
Lambert (2013) could specify sufficient conditions for elicitability for functionals
taking values in a finite set, and Steinwart et al. (2014) showed sufficiency of con-
vex level sets for real-valued functionals satisfying certain regularity conditions.
Moments, ratios of moments, quantiles, and expectiles are in general elicitable,
whereas other important functionals such as variance, Expected Shortfall or the
mode functional are not (Savage, 1971; Gneiting, 2011; Heinrich, 2014; Osband,
1985; Weber, 2006). E.g., the squared loss is a strictly F-consistent scoring func-
tion for the mean (with respect to the class F of distributions with finite second
moments), and the absolute loss is the counterpart for the median (in this case
with respect to the class F of distributions with unique medians and finite first
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1.3. The elicitation problem

moments).

Concerning subproblem (ii) of the elicitation problem, Savage (1971), Reichel-
stein and Osband (1984), Saerens (2000), and Banerjee et al. (2005) gave char-
acterizations for strictly consistent scoring functions for the mean functional of a
one-dimensional random variable in terms of Bregman functions. Strictly consis-
tent scoring functions for quantiles have been characterized by Thomson (1979)
and Saerens (2000); see Gneiting (2011) for a good review of the literature and a
characterization of the class of strictly consistent scoring functions for expectiles.
We refer to the recent paper Ehm et al. (2016) for an insightful complementary
approach to the characterization of strictly consistent scoring functions for quan-
tiles and expectiles in terms of Choquet type mixture representations. The case
of vector-valued functionals apart from means of random vectors has been treated
substantially less than the one-dimensional case (Osband, 1985; Banerjee et al.,
2005; Lambert et al., 2008; Frongillo and Kash, 2015a,b).

Point (iii) of the elicitation problem in its different aspects was treated by sev-
eral authors, again mainly concentrating on the case of real-valued functionals or
even finite-valued functionals. The early work of Savage (1971) is concerned with
special choices of strictly consistent scoring functions for the mean, in particu-
lar, resulting in translation invariance, homogeneity, or symmetry of the scoring
function. The results of Patton (2011) point into a similar direction with a special
emphasis on homogeneous scoring functions for mean forecasts. Finally, Nolde and
Ziegel (2016) described the classes of strictly consistent and homogeneous scoring
functions for the most common risk measures, such as Value at Risk (the quantile),
expectiles, and the pair (Value at Risk, Expected Shortfall), being an example of
a vector-valued functional. The issue of order-sensitivity of scoring functions has
been treated mainly in the one-dimensional case (Lambert, 2013; Steinwart et al.,
2014; Bellini and Bignozzi, 2015; Ehm et al., 2016), whereas Lambert et al. (2008)
introduced a notion of order-sensitivity for the case of the action domain A being
a subset of Rk as a kind of componentwise order-sensitivity. Friedman (1983) and
Nau (1985) considered similar questions in the setting of probabilistic forecasts,
coining the term of effectiveness of scoring rules which can be described as a kind
of order-sensitivity in terms of a metric. Holzmann and Eulert (2014) proved a
sort of order-sensitivity on a different level, considering random forecasts in the
prediction space setting (Gneiting and Ranjan, 2013; Strähl and Ziegel, 2015),
showing that ideal forecasts reward the more informed forecaster in the presence
of nested information sets. Finally, Acerbi and Székely (2017) gave a new motiva-
tion for the usage of convex scoring functions (with convexity in the first argument
of the scoring function), also describing the form of convex strictly consistent scor-
ing functions for mean- and quantile-forecasts; cf. (Patton, 2011; Steinwart et al.,
2014).
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1.4. The relevance of elicitability in quantitative risk
management

In recent years, there was a lively debate in academia, regulation, banks, and
insurances about what risk measure to use in practice. One of the main require-
ments of a ‘good’ risk measure is comprised in a list of axioms given by Artzner
et al. (1999), introducing the notion of coherent risk measures. Their axiomatic
approach consists in requiring monotonicity, super-additivity, positive homogene-
ity, and translation invariance of a risk measure. Further consensually accepted
requirements are robustness of risk measures and elicitability, the latter mainly
for the purpose of backtesting historical data; see Emmer et al. (2015) for a good
overview. The debate about the best choice of a risk measure has mainly con-
centrated on the dichotomy between Value at Risk (VaR) and Expected Shortfall
(ES). In a nutshell, VaR is robust, and, as a quantile, it is elicitable (Cont et al.,
2010; Emmer et al., 2015; Gneiting, 2011). However, VaR has been criticized for
being ‘blind’ against losses beyond the the level α (Dańıelsson et al., 2001) and
for its lack of super-additivity (Acerbi, 2002). On the other hand, by definition,
ES takes into account the losses beyond the level α, it is a coherent risk measure,
but fails to be elicitable (Weber, 2006; Gneiting, 2011). Moreover, Dańıelsson
et al. (2001) pointed out that one needs more data to correctly estimate ES in
comparison to VaR. During that debate, the role and relevance of elicitability was
sometimes vague and often disputatious, however, recently has been clarified for
being important for model selection, and not for model verification (Embrechts
and Hofert, 2014; Acerbi and Székely, 2014; Emmer et al., 2015; Bellini and Big-
nozzi, 2015; Ziegel, 2016; Nolde and Ziegel, 2016; Davis, 2016; Acerbi and Székely,
2017).

1.5. Contributions of Part I of this thesis

The main contributions and achievements of Part I of this thesis affect all three
aspects of the elicitation problem as well as a contribution to the discussion about
the role of elicitability for backtesting in quantitative risk management. The main
focus lies on a thorough study of higher order elicitability in the sense that the
functionals under consideration are higher-dimensional, meaning vector-valued.
The organization is as follows.

Chapter 2 settles the common notation for Part I of the thesis, and introduces
the main rationale behind the usage of strictly consistent scoring functions also for
the more realistic case of non-deterministic forecasts, thereby using and refining
the prediction-space setting of Gneiting and Ranjan (2013) and Strähl and Ziegel
(2015). Moreover, the chapter collects and transfers some basic results from the
one-dimensional to the higher-dimensional setting.

The main content of Chapter 3 is the peer-reviewed and published paper Fissler
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and Ziegel (2016). It is primarily devoted to question (ii) of the elicitation problem
in the higher-dimensional setting. A crucial tool and result is a refinement and
generalization of Osband’s principle (Osband, 1985), which gives a close connec-
tion between the gradient of the expected score and expectations of identification
functions, exploiting first order conditions of the optimization problem linked to
strict consistency. Using this and a second order version of Osband’s principle,
we are able to describe the class of all strictly consistent scoring functions for
vectors of quantiles and / or expectiles and different levels. Making further use of
the established technique, we can describe the class of strictly consistent scoring
functions for a vector consisting of a spectral risk measure with finitely supported
spectral measure and the corresponding quantiles. In particular, this shows that
the pair (VaR, ES) at the same level α ∈ (0, 1) is jointly elicitable. This result is of
high relevance in two aspects: First, it is the first result showing the elicitability of
a functional which cannot be represented as a bijection of a functional consisting
of elicitable components only. Second, it has added a piece to the mosaic of the de-
bate about the best choice of a risk measure, opening the possibility of meaningful
forecast comparison between competing joint (VaR, ES)-forecasts. The positive
confirmation about the joint elicitability also gave rise to a more general principle
of the joint elicitability of the ‘divergence’ of a strictly consistent scoring function
discovered by Frongillo and Kash (2015b), which is described in Section 3.3. Sec-
tion 3.2 presents a characterization of the class of (strict) identification functions
for a fixed functional, utilizing an argument quite similar to Osband’s principle.

Chapter 4 is concerned with the collection and investigation of further ‘nice’
properties of scoring functions besides and beyond strict consistency, apparently
dealing with subproblem (iii) of the above introduced elicitation problem. The
main topics are order-sensitivity and different variants of generalizing it to the
multivariate case. In particular, we give characterizations of the different sorts
of order-sensitivity for various popular functionals. The second goal is to study
convexity and quasi-convexity of scoring functions in greater detail. We review
and introduce various known as well as novel motivations of considering convex
scoring functions. Similarly, we strive to establish the classes of (quasi-)convex
scoring functions for many popular functionals. Finally, in Section 4.3, we inspect
equivariant functionals covering the most important and popular cases of posi-
tively homogeneous functionals and translation equivariant functionals. Arguing
that it is a desirable requirement of a scoring function that it preserves the ranking
of competing forecasts under a transformation of the corresponding observations
and forecasts, we study notions of order-preserving scoring functions. Again pos-
itively homogeneous and translation invariant scoring functions are the two main
instances that should be born in mind. We collect some known results from the lit-
erature, but also present original findings concerning translation invariant scoring
functions.

Chapter 5 consists of the article Fissler et al. (2016). Contributing to the de-
bate about the choice of the best risk measure and commenting on the role of
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elicitability for backtesting in quantitative finance, we show how the finding of
Fissler and Ziegel (2016) about the joint elicitability of (VaR, ES) can be used
for comparative backtests. We introduce and explain this notion of comparative
backtests, amounting to model selection rather than model verification, the lat-
ter being the goal of traditional backtests. Whereas for model verification can
dispense with elicitability, it is vital for model selection. Remarkably, utilizing
comparative backtests of Diebold-Mariano type, one can use a more conservative
backtesting decision, amounting to a reversed onus of proof when establishing new
internal models by banks, enticing financial institutions to improve the prediction
performances of their internal models and being “beneficial to all stakeholders,
including banks, regulators, and society at large” (Fissler et al., 2016, p. 60).

Part I concludes with a discussion in Chapter 6, reviewing the reception of the
two articles Fissler and Ziegel (2016), Fissler et al. (2016) in the literature, and
outlining possible future research projects related to Part I of this thesis.
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2. Some Basic Results and
Preliminaries on Higher Order
Elicitability

Section 2.3 in this chapter gathers some basic observations about strictly consis-
tent scoring functions for vector-valued functionals. It mainly generalizes results
mentioned in Gneiting (2011) to the higher-dimensional case. Most of these gen-
eralizations are quite straight forward and coincide with the one-dimensional case
– however, we present them for the sake of completeness. On the other hand, the
novelty of this chapter is certainly the observations concerning the normalization
conventions before Proposition 2.3.1, a generalized version of the revelation princi-
ple, Lemma 2.3.3 and the considerations about manipulating the second argument
of a strictly consistent scoring function, which can be found after Proposition 2.3.4.

Before entering into the details of higher order elicitability, we strive to bring the
rationale of elicitability to life. That is, we present the prediction space setting in
Section 2.2, which is an adaptation of the concepts presented in Gneiting and Ran-
jan (2011) and Strähl and Ziegel (2015). It tries to explain how to use elicitability
when comparing and ranking competing non-deterministic forecasts in general. A
fortiori, it explains the ‘conditioning argument’ after which, in many situations,
it is no loss of generality to consider forecasts as deterministic. It is accompanied
by a brief excursion to the connection between elicitability and regression.

The whole notation in this part of the thesis is intended to be consistent, and
formally, most notation is introduced in Fissler and Ziegel (2016), attached in
Chapter 3. However, since we have decided to present these more elementary
results before the paper mentioned above, it is necessary to fix some notation
already here, thereby accepting the danger of redundancy and self-citation within
the thesis to some extent.

2.1. Notation and definitions

We collect again the components of the decision-theoretic framework motivated in
the Introduction and which can be found in Gneiting (2011). By O we denote the
observation domain which is a measurable space equipped with a σ-algebra O. In
most applications, O will be a subset of the Euclidean space Rd equipped with the
Borel σ-algebra. In those cases, we will deliberately identify a Borel probability
measure on (O,O) with its distribution function. Generally, we denote by F a class
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of probability distributions in (O,O). Third, A stands for the action domain. For
the presentation of the abstract setting, one can treat O and A as some generic sets
equipped with σ-algebras. However, for most results of this thesis, we will assume
that also A ⊆ Rk for some k ≥ 1 and that it is equipped with the corresponding
Borel σ-algebra.

We say that a function a : O → R is F-integrable if it is F -integrable for each
F ∈ F . A function g : A×O→ R is F-integrable if g(x, ·) is F-integrable for each
x ∈ A. If g is F-integrable, we introduce the map

ḡ : A×F → R, (x, F ) 7→ ḡ(x, F ) =

∫
g(x, y) dF (y). (2.1.1)

Consequently, for fixed F ∈ F we can consider the function ḡ(·, F ) : A→ R, x 7→
ḡ(x, F ), and for fixed x ∈ A we can consider the (linear) functional ḡ(x, ·) : F → R,
F 7→ ḡ(x, F ).

Definition 2.1.1 (Consistency). A scoring function is a Borel-measurable, F-
integrable function S : A × O → R. It is said to be F-consistent for a functional
T : F → A if

S̄(T (F ), F ) ≤ S̄(x, F )

for all F ∈ F and for all x ∈ A. Furthermore, S is strictly F-consistent for T if it
is F-consistent for T and if

S̄(T (F ), F ) = S̄(x, F ) =⇒ x = T (F )

for all F ∈ F and for all x ∈ A.

Definition 2.1.2 (Elicitability). A functional T : F → A is called elicitable, if
there exists a strictly F-consistent scoring function for T .

Definition 2.1.3 (Identification function). Let A ⊆ Rk. An identification func-
tion is a Borel-measurable, F-integrable function V : A×O→ Rk. It is said to be
an F-identification function for a functional T : F → A ⊆ Rk if

V̄ (T (F ), F ) = 0

for all F ∈ F . Furthermore, V is a strict F-identification function for T if

V̄ (x, F ) = 0 ⇐⇒ x = T (F )

for all F ∈ F and for all x ∈ A.

Definition 2.1.4 (Identifiability). A functional T : F → A ⊆ Rk is said to be
identifiable, if there exists a strict F-identification function for T .

Remark 2.1.5. Gneiting (2011) and some other parts of the literature consider
functionals that are set-valued. That is, they consider T : F → 2A where 2A is the
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2.2. The prediction space setting – bringing elicitability to life

power set of A. For some functionals and choices the class F , this is a natural
assumption. Then, the notions introduced above can be generalized as follows. A
scoring function S : A× O→ R is F-consistent for T if

S̄(t, F ) ≤ S̄(x, F )

for all F ∈ F , t ∈ T (F ) and x ∈ A. The scoring function S is strictly F-consistent
for T if it is F-consistent and if

S̄(t, F ) = S̄(x, F ) =⇒ x ∈ T (F )

for all F ∈ F and for all t ∈ T (F ), x ∈ A. The notions of a (strict) F-identification
functions can be generalized mutatis mutandis. It is important to remark that the
two notions coincide whenever T (F ) is a singleton for all F ∈ F .

Within this thesis, we consider the case of set-valued functionals only once ex-
plicitly, namely in Lemma 2.3.3 and the discussion thereafter. Nevertheless, many
of the results of this thesis can be extended to set-valued functionals. However,
to allow for a clear presentation, we confine ourselves to functionals with values
in A ⊆ Rk in most of the parts.

If we have a random variable Y on some probability space (Ω,A,P), mapping
to O, we denote its distribution with L(Y ). For some sub-σ-algebra A0 ⊆ A,
we write L(Y |A0) for the (regular version of the) conditional distribution of Y
given A0. If X is a random element on (Ω,A,P), we write σ(X) ⊆ A for the σ-
algebra generated by the pre-images of X. As mentioned above, we often identify
probability measures with their probability distribution function. We deliberately
write L(Y |X) for the regular version of the conditional distribution L(Y |σ(X)) as
well as E[Y |X] for the conditional expectation E[Y |σ(X)]. The notation Y ∼ F
means that the random variable Y has distribution F , L(Y ) = F , and for two
random variables Y ∼ Y ′ means that they have the same law, L(Y ) = L(Y ′).

2.2. The prediction space setting – bringing
elicitability to life

After this theoretical introduction we demonstrate the rationale of elicitability.
Assume we have a time series (Yt)t∈N taking values in an observation domain
O ⊆ Rd defined on some common underlying probability space (Ω,A,P). Assume
further that we have m competing forecasters, each of them issuing a point forecast

X
(i)
t , i ∈ {1, . . . ,m}, for a certain k-dimensional property of the distribution of

Yt such as the mean or median for k = 1 or a vector of different moments for
k > 1. More specifically, we have m sequences (X

(i)
t )t∈N, i ∈ {1, . . . ,m}, of random

vectors taking values in an action domain A ⊆ Rk and consider a functional T
mapping from some generic class of distributions F on O to A. Consequently, we
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have a forecast-observation sequence

(
(X

(1)
t , . . . , X

(m)
t , Yt)

)
t∈N . (2.2.1)

Let S : A×O→ R be a (strictly) F-consistent scoring function for the functional T .
Up to time n, it is common practice to compare and rank the forecast performances
in terms in their realized scores

S̄(i)
n =

1

n

n∑

t=1

S(X
(i)
t , Yt).

Since the scores are negatively oriented, the forecaster with the lowest realized
score is deemed to have the best forecast performance. But what is the ratio-
nale and the justification behind that practice? Assuming for a moment that

the sequence at (2.2.1) is stationary and ergodic with (X
(1)
t , . . . , X

(m)
t , Yt) ∼

(X(1), . . . , X(m), Y ) and that E[|S(X(i), Y )|] < ∞ for all i ∈ {1, . . . ,m}, then
one has the convergence

S̄(i)
n −→ E[S(X(i), Y )], as n→∞

P-almost surely and in Lp. Now suppose that the distribution L(Y ) of Y is an
element of F as well as for any sub-σ-algebra A0 ⊆ A subsequently appearing,
the regular version of the conditional distribution L(Y |A0) is P-a.s. an element of
F . Then, by the tower property, one has for any i ∈ {1, . . . ,m}

E[S(X(i), Y )] = E
[
E[S(X(i), Y ) |σ(X(1), . . . , X(m))]

]

= E
[
S̄(X(i),L(Y |σ(X(1), . . . , X(m))))

]

≥ E
[
S̄(T (L(Y |σ(X(1), . . . , X(m)))),L(Y |σ(X(1), . . . , X(m))))

]
,

where we used the notation introduced at (2.1.1), the (strict) F-consistency of S
and the monotonicity of the conditional expectation. Hence, under the assumption
of stationarity and ergodicity, a forecaster outperforms his colleagues – at least
asymptotically – if she issues P-a.s. the forecast

X(i) = T (L(Y |σ(X(1), . . . , X(m))))

and she outperforms a subset {j1, . . . , j`} ⊂ {1, . . . ,m} of her colleagues if P-a.s.

X(i) = T (L(Y |σ(X(i), X(j1), . . . , X(j`)))).

At first glance, this seems to be a very appealing reasoning. However, the as-
sumption that the forecast observation sequence at (2.2.1) is stationary is quite
simplistic and in most cases unrealistic. First, for some processes of observation
from nature, assuming stationarity of (Yt)t∈N might be suitable due to the per-
sistence of laws in nature over time. But if a forecaster has memory and can
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learn from previous observations of (Yt)t∈N, a reasonable strategy for issuing the
forecast Xt would be to compute some sample estimator of the functional based
on Y1, . . . , Yt−1, e.g.

Xt = T (F̂t−1), where F̂t−1 =
1

t− 1

t−1∑

j=1

δYj (2.2.2)

and δy is the Dirac measure in y. However, it is obvious that then (Xt)t∈N is
non-stationary. Second, in line with Davis (2016, p. 4)

“. . . the typical stylised features found in financial price data [are] apparent
non-stationarity and highly ‘bursty’ volatility.”

So regarding elicitability, Davis (2016, p. 8) remarks:

“What is not so clear is how to apply these results in a dynamic context
such as risk management where the data is a sequence Y1, Y2, . . . of random
variables each having a different conditional distribution, . . . ”

To cope with some non-stationarity, we introduce the prediction space setting for
serial dependence which is due to Strähl and Ziegel (2015) and is a generalization
of the one-period prediction space introduced in Gneiting and Ranjan (2013); see
Subsection 2.2.3.

Nevertheless, we begin with two situations where stationarity and, a fortiori, the
i.i.d. structure if the sequence at (2.2.1) are a common and accepted assumption,
namely learning and regression.

2.2.1. Learning

If we have n observations of an i.i.d. (or, more generally, an ergodic) sequence
(Yt)t∈N where Yt has some unknown distribution F ∈ F and one wants to esti-
mate a functional T : F → A ⊆ Rk, one can use any strictly F-consistent scoring
function S to do M -estimation in the sense that

arg min
x∈A

1

n

n∑

t=1

S(x, Yt)

is a consistent estimator for

arg min
x∈A

E[S(x, Y )] = arg min
x∈A

S̄(x, F ) = T (F )

under some regularity conditions detailed in Huber and Ronchetti (2009, Chapter
6).

2.2.2. Regression

The usual situation of regression is that we have i.i.d. data consisting of explana-
tory factors Z with values in R` and an output variable Y with values in Rd.
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More specifically, we have n observations of the i.i.d. sequence (Zt, Yt)t∈N where
(Zt, Yt) ∼ (Z, Y ). Given a (parametric) class of models G with measurable func-
tions g : R` → Rk, k = d, as elements, one tries to fit the output Y with g(Z) for
g ∈ G in the sense that

Y = g(Z) + ε (2.2.3)

under the assumption of the identity for the conditional mean

E[Y |Z] = g∗(Z) (2.2.4)

for some g∗ ∈ G (at least approximately). Then, the fitting is usually done with a
least squares approach

g∗ = arg min
g∈G

1

n

n∑

t=1

(g(Zt)− Yt)2 , (2.2.5)

thereby exploiting the fact that the squared loss is a strictly consistent scoring
function for the mean. Now, one can generalize this classical approach on the
one hand by computing the arg min at (2.2.5) with respect to another strictly
consistent scoring function for the mean; see Gneiting (2011, Theorem 7) for
possible candidates. On the other hand, one can generalize the assumption at
(2.2.4): If

T (L(Y |Z)) = g∗(Z)

for some g∗ ∈ G (at least approximately) and some functional T : F → A ⊆ Rk,
then one can compute g∗ by

g∗ = arg min
g∈G

1

n

n∑

t=1

S(g(Zt), Yt) ,

where S is a strictly F-consistent scoring function for T . Note that for the general
situation, the dimensions k and d do not necessarily have to coincide. However,
clearly for k 6= d, an identity in the spirit of (2.2.3) does not make sense any more.

To match this framework with the one of forecast comparison, assume that G
is finite, that is G = {g(1), . . . , g(m)}. Then, we can define the ‘forecasts’ X

(i)
t =

g(i)(Zt) for i ∈ {1, . . . ,m}. Notice, that the induced forecast-observation sequence
corresponding to (2.2.1) is again i.i.d. and moreover σ(X(1), . . . , X(m)) ⊆ σ(Z).
Due to the tower property, a model / forecaster g(i) outperforms the competing
models / forecasters if

g(i)(Z) = T (L(Y |Z)) .

More generally, it is also no problem to assume that the class G is not finite.

This way of bringing elicitability to life in the context of regression was mainly
conducted in the field of quantile regression (Koenker, 2005) and expectile re-
gression (Newey and Powell, 1987), but recently has been extended to the case
of a joint regression framework for Value at Risk (VaR) and Expected Shortfall
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(ES) (Bayer and Dimitriadis, 2017), which is based on the results of Fissler and
Ziegel (2016) that the pair (VaR, ES) is jointly elicitable. We shall illuminate
some aspects of regression using convex and strictly consistent scoring functions
in Section 4.2. However, a detailed analysis of regression using strictly consistent
scoring functions is beyond the scope of this thesis and is deferred to possible
future research.

2.2.3. The prediction space

The prediction space setting for one period in Gneiting and Ranjan (2013) as well
as its generalization to serial dependence in Strähl and Ziegel (2015) are tailored
for probabilistic forecasts. However, it is straight forward to adopt the notion to
point forecasts, which has been done by Ehm et al. (2016) for the one-period-
setting. In the sequel, we give a definition for the setting of serial dependence for
point forecasts, using the notation N0 := N ∪ {0}.
Definition 2.2.1 (Prediction space for serial dependence for point forecasts).
Let m, k, d ≥ 1 be integers. Consider a probability space (Ω,A,P) together with

filtrations (A(1)
t )t∈N0 , . . . , (A(m)

t )t∈N0 with A(i)
t ⊆ A for all i ∈ {1, . . . ,m}, t ∈ N0.

A prediction space for serial dependence for point forecasts is a collection of an Rd-
valued sequence (Yt)t∈N with the filtration (Tt)t∈N0 generated by (Yt)t∈N, that is
Tt = σ(Ys, s ≤ t) for t ∈ N and T0 = {∅,Ω}, and m sequences of Rk-valued random

variables (X
(i)
t )t∈N, i ∈ {1, . . . ,m}, such that X

(i)
t is measurable with respect to

σ(A(i)
t−1, Tt−1). Moreover, the prediction space contains a functional T : F → Rk

where F is a class of probability distributions on Rd such that L(Yt) ∈ F for all

t ∈ N and P-a.s. L(Yt |σ(A(ji)
t−1, . . . ,A

(j`)
t−1, Tt−1)) ∈ F for all t ∈ N and all subsets

{j1, . . . , j`} ⊆ {1, . . . ,m}.

Essentially, this definition can be understood in the following way: We have m
competing forecasters. At time point t− 1 they are given their personal (possibly

exclusive) information A(i)
t−1 respectively, as well as the commonly available infor-

mation consisting of the past observations, that is Tt−1. Their point forecasts for

time point t, that is X
(i)
t , must be based on these two sources of information only.

For a detailed explanation of this definition in the setting of probabilistic forecasts,
see Strähl and Ziegel (2015). Of course, the difference between point forecasts and
probabilistic forecasts is the appearance of a certain fixed functional T in the
case of point forecasts. In analogy to Strähl and Ziegel (2015), we introduce the
following concepts.

Definition 2.2.2 (ideal). Within the prediction space setting for serial depen-

dence for point forecasts, a forecast X
(i)
t , i ∈ {1, . . . ,m}, is ideal for T with

respect to A(i)
t−1 if

X
(i)
t = T (L(Yt |σ(A(i)

t−1, Tt−1))) P-a.s.
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Definition 2.2.3 (cross-ideal). Within the prediction space setting for serial de-

pendence for point forecasts, a forecast X
(i)
t , i ∈ {1, . . . ,m}, is cross-ideal for T

with respect to A(ji)
t−1, . . . ,A

(j`)
t−1 where i ∈ {j1, . . . , j`} ⊆ {1, . . . ,m} if

X
(i)
t = T (L(Yt |σ(A(ji)

t−1, . . . ,A
(j`)
t−1, Tt−1))) P-a.s.

Moreover, in analogy to Nolde and Ziegel (2016, Definition 4) but with some
slight differences, we introduce the notion of forecast dominance.

Definition 2.2.4 (Forecast dominance). Let S be a strictly F-consistent scoring
function for a functional T : F → A, let H be some σ-algebra, and (Ht)t∈N0 some
filtration. Within the prediction space setting for serial dependence for point

forecasts, a forecast X
(i)
t S-dominates X

(j)
t conditionally H if

E[S(X
(i)
t , Yt)− S(X

(j)
t , Yt) |H] ≤ 0 P-a.s.

Moreover, the forecast sequence (X
(i)
t )t∈N S-dominates the sequence (X

(j)
t )t∈N on

average conditionally on (Ht)t∈N0 if

E[S(X
(i)
t , Yt)− S(X

(j)
t , Yt) |Ht−1] ≤ 0 P-a.s. for all t ∈ N.

In particular, the forecast sequence (X
(i)
t )t∈N S-dominates the sequence (X

(j)
t )t∈N

unconditionally on average if

E[S(X
(i)
t , Yt)− S(X

(j)
t , Yt)] ≤ 0 for all t ∈ N.

Remark 2.2.5. Clearly, the most interesting choices of the filtration is a filtra-
tion that makes one or even both predictions measurable. That is, in the pre-

diction space setting, one could choose Ht−1 such that it contains σ(A(i)
t−1, Tt−1)

or σ(A(j)
t−1, Tt−1) or even σ(A(i)

t−1,A
(j)
t−1, Tt−1). This situation is in line with Nolde

and Ziegel (2016, Definition 4). However, we also allow for smaller σ-algebras. In
particular, choosing Ht−1 = {∅,Ω} for all t ∈ N, this definition also covers the un-
conditional case. Of course, by the tower property, the conditional S-dominance
implies the unconditional S-dominance.

Lemma 2.2.6. Let S : A×O→ R be a strictly F-consistent scoring function for
a functional T : F → A ⊆ Rk. Within the prediction space setting for serial de-

pendence for point forecasts, let the forecast X
(i)
t , i ∈ {1, . . . ,m}, be cross-ideal for

T with respect to A(ji)
t−1, . . . ,A

(j`)
t−1 where i ∈ {j1, . . . , j`} ⊆ {1, . . . ,m}. Then X

(i)
t

S-dominates X
(j)
t for any j ∈ {j1, . . . , j`} conditionally on σ(A(ji)

t−1, . . . ,A
(j`)
t−1, Tt−1)

and unconditionally.
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Proof. Let j ∈ {j1, . . . , j`}. Then

E
[
E[S(X

(j)
t , Yt) |σ(A(ji)

t−1, . . . ,A
(j`)
t−1, Tt−1)]

]

= E
[
S̄(X

(j)
t ,L(Yt |σ(A(ji)

t−1, . . . ,A
(j`)
t−1, Tt−1)))

]

≥ E
[
S̄(T (L(Yt |σ(A(i)

t−1, Tt−1))),L(Yt |σ(A(ji)
t−1, . . . ,A

(j`)
t−1, Tt−1)))

]

= E
[
S̄(X

(i)
t ,L(Yt |σ(A(ji)

t−1, . . . ,A
(j`)
t−1, Tt−1)))

]
.

The unconditional case follows by the tower property.

The notion of forecast dominance with respect to a certain fixed scoring func-
tion is due to Nolde and Ziegel (2016), whereas Ehm et al. (2016) consider the
notion of forecast dominance with respect to the whole class of consistent scoring
functions for some functional. Lemma 2.2.6 also means that the more information
an ideal forecaster has the lower is her expected score. This recovers Corollary
2 in Holzmann and Eulert (2014) asserting that strictly consistent scoring func-
tions are ‘order-sensitive’ with respect to nested information sets. The notion of
order-sensitivity will be discussed in greater detail in Section 4.1 of this thesis.

It is possible to test for conditional and unconditional forecast dominance,
thereby relaxing the assumption on stationarity.fortiori

Testing for (conditional) forecast dominance

Following the lines of Nolde and Ziegel (2016) and Giacomini and White (2006),
it is theoretically possible to define asymptotic level α tests for the null hypothesis
of conditional and unconditional S-forecast dominance. That is, one can test

H0 : E[S(X
(i)
t , Yt)− S(X

(j)
t , Yt) |Ht−1] ≤ 0 P-a.s. for all t ∈ N

for some filtration (Ht)t∈N0 . It is important to notice that one can dispense with
the stationarity assumption. However, one still has to impose mixing conditions on

the sequences (X
(i)
t )t∈N and (X

(j)
t )t∈N (see the references for details). Moreover,

the tests are also asymptotically consistent against corresponding alternatives.

For the unconditional case, meaning Ht = {∅,Ω} for all t, one can also test a
broader null hypothesis. Assuming that the limit

λ := lim
n→∞

1

n

n∑

i=1

E
[
S(X

(i)
t , Yt)− S(X

(j)
t , Yt)

]

exists in R∪{±∞}, one can define an asymptotic level α test for the null hypothesis

H0 : λ ≤ 0.

Of course, the null hypothesis holds under (conditional) S-dominance on average.
For the proof, one still has to assume certain mixing conditions on the forecast
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sequences. Details for this unconditional approach can be found in Nolde and
Ziegel (2016) and Giacomini and White (2006). Such unconditional tests involving
rescaled versions of the test statistic

1

n

n∑

i=1

S(X
(i)
t , Yt)− S(X

(j)
t , Yt)

are so-called Diebold-Mariano tests (Diebold and Mariano, 1995). We propose
the usage of such tests as comparative backtests in the setting of backtesting risk
measures; see Fissler et al. (2016) which corresponds to Chapter 5 of this thesis.

The ‘conditioning argument’

The essence of this section which should be borne in mind, also for the forthcoming
sections and chapters of the first part of this thesis, is a certain conditioning
argument. Whenever one intends to compare the expected scores of two competing
forecasts one can first condition on a σ-algebra which makes the two forecast
measurable. Then, one can treat them as if they were deterministic, and can
evaluate the expected scores with respect to some conditional distribution of the
observation. If one of the forecasters is ideal with respect to this information
set, one can derive an inequality which carries over to the level of the expected
scores by the monotonicity of the expectation. In some other cases such as order-
sensitivity – see Section 4.1 – one can also derive an inequality on the level of the
conditional expectations which carries over analogously. Following this rationale,
one can usually work on the ‘conditional level’, meaning conditionally on a σ-
algebra which makes all forecasts at hand measurable. And hence, we shall tacitly
assume that the forecasts are deterministic and that the observations follow some
deterministic distribution.

Nevertheless, we shall occasionally come back to the setting of the prediction
space. Whenever we do that, we shall mention it explicitly.

2.3. Transferring results from Gneiting (2011) to the
higher-dimensional case

Strictly consistent scoring functions for a given functional T are not unique. In
particular, the following result generalizes directly from the one-dimensional case.
Let S : A × O → R be a strictly F-consistent scoring function for a functional
T : F → A. Then, for any λ > 0 and any F-integrable function a : O → R, the
scoring function

S̃(x, y) := λS(x, y) + a(y) (2.3.1)

is again strictly F-consistent for T . In the sequel, we shall say that S and S̃ are of
equivalent form (or just equivalent) if there is some λ > 0 and some F-integrable
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function a : O → R such that they are connected by equation (2.3.1). Nolde and
Ziegel (2016) say that two scoring functions are equivalent if their difference is
a function of the observation y only. Clearly, equivalence in their sense implies
equivalence in our sense with λ = 1. Note that equivalence preserves (strict)
consistency and also any kind of order-sensitivity and (quasi-)convexity.

Gneiting (2011, Theorem 2) showed that in the one-dimensional case under
the assumption S(x, y) ≥ 0, the class of consistent scoring functions is a convex
cone. Generally, the assumption of scoring functions being nonnegative is natural
if δy ∈ F for all y ∈ O because for an F-consistent scoring function S, the scoring

function S̃(x, y) := S(x, y) − S̄(T (δy), δy) is non-negative and it is of the form
(2.3.1) if y 7→ S̄(T (δy), δy) is F-integrable. We can see that the normalization
condition (S0) in Table 7 of Gneiting (2011) – which seems to appear quite a
number of times in the literature, e.g. in Bellini and Bignozzi (2015), Ehm et al.
(2016), or Davis (2016) – should be slightly adapted to S(x, y) ≥ 0 and S(x, y) = 0
if x = T (δy), thereby replacing the condition that S(x, y) = 0 if x = y. In fact, this
is quite important because otherwise, functionals like T (F ) = −EF [Y ] would not
be elicitable. So in general, assuming that F contains all point measures implies
that one can assume that S is non-negative. However, not for all situations in this
thesis, this assumption is satisfied, and in fact different normalization conventions
are convenient for different situations. We generalize Gneiting (2011, Theorem
2) as follows, showing that the class of strictly F-consistent scoring functions for
T is a convex cone (not including zero). The proof follows easily using Fubini’s
theorem.

Proposition 2.3.1. Let T : F → A be a functional and (Z,Z) be a measurable
space with a σ-finite measure ν where ν 6= 0. Let {Sz : z ∈ Z} be a family of
strictly F-consistent scoring functions Sz : A×O→ R for T . If for all x ∈ A and
for all F ∈ F the map

Z × O→ R, (z, y) 7→ Sz(x, y)

is ν ⊗ F -integrable, then the scoring function

S : A× O→ R, (x, y) 7→ S(x, y) =

∫

Z
Sz(x, y) ν(dz)

is strictly F-consistent for T .

Many important statistical functionals are transformations of other statistical
functionals, for example variance and first and second moment are related in this
manner. The following revelation principle, which originates from Osband (1985,
p. 8) and is also given in Gneiting (2011, Theorem 4), states that if two functionals
are related by a bijection, then one of them is elicitable if and only if the other one
is elicitable. The assertion also holds upon replacing ‘elicitable’ with ‘identifiable’.
We omit the proof which is straight forward.
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Proposition 2.3.2 (Revelation principle). Let g : A → A′ be a bijection with
inverse g−1, where A,A′ ⊆ Rk. Let T : F → A be a functional. Then the following
two assertions hold.

(i) The functional T : F → A is identifiable if and only if Tg = g ◦ T : F → A′

is identifiable. The function V : A × O → Rk is a strict F-identification
function for T if and only if

Vg : A′ × O→ Rk, (x′, y) 7→ Vg(x
′, y) = V (g−1(x′), y)

is a strict F-identification function for Tg.

(ii) The functional T : F → A is elicitable if and only if Tg = g ◦ T : F → A′

is elicitable. The function S : A × O → R is a strictly F-consistent scoring
function for T if and only if

Sg : A′ × O→ R, (x′, y) 7→ Sg(x
′, y) = S(g−1(x′), y) (2.3.2)

is a strictly F-consistent scoring function for Tg.

One could possibly wonder what happens in the revelation principle if g is not
necessarily a bijection. Clearly, then the scoring function Sg defined at (2.3.2) is
not well-defined any more. However, one can give a meaningful interpretation to
this question.

Lemma 2.3.3. Let T : F → 2A be a set-valued functional with a (strictly) F-
consistent scoring function S : A× O→ R. Let g : A′ → A be some map. Then

Sg−1 : A′ × O→ R, (x′, y) 7→ Sg−1(x′, y) = S(g(x′), y) (2.3.3)

is a (strictly) F-consistent scoring function for Tg−1 = g−1 ◦ T : F → 2A
′
.

Proof. Let F ∈ F . If Tg−1 = g−1(T (F )) = ∅, there is nothing to show. So assume
that t′ ∈ Tg−1(F ) and let x′ ∈ A′. Then

S̄g−1(x′, F )− S̄g−1(t′, F ) = S̄(g(x′), F )− S̄(g(t′), F ) ≥ 0 (2.3.4)

due to the F-consistency of S for T and due to the fact that g(t′) ∈ T (F ). Now,
assume that S is strictly F-consistent for T and that we have an equality in (2.3.4).
Then, necessarily g(x′) ∈ T (F ) such that x′ ∈ Tg−1(F ).

We remark that in this context, the sets A,A′ can be arbitrary. If g is surjective
and T (F ) 6= ∅ for all F ∈ F , then also Tg−1(F ) 6= ∅ for all F ∈ F and one can

consequently define some selection T̃g−1 : F → A′ of Tg−1 meaning that T̃g−1(F ) ∈
Tg−1(F ) for all F ∈ F . Then Sg−1 defined at (2.3.3) is an F-consistent scoring

function for T̃g−1 which is only strictly F-consistent if Tg−1(F ) is a singleton for
each F ∈ F . A case of particular interest is that A′ = F , g = T and the selection
of T−1 ◦ T being the identity on F .
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This consideration leads the way to a connection between the theories of com-
paring point forecasts and probabilistic forecasts. In the setting of probabilistic
forecasts, one issues a forecast in form of a probability distribution. Using the
language of point forecasts, one is interested in the identity functional on F . Fol-
lowing Gneiting and Raftery (2007), we call scoring functions for probabilistic
forecasts scoring rules. Formally, a scoring rule is a map R : F ×O→ R such that
for each G ∈ F , the map R(G, ·) : O → R, y 7→ R(G, y) is F-integrable. Using
the notation introduced in Section 2.1, we say that a scoring rule is F-proper if
R̄(F, F ) ≤ R̄(G,F ) for all F,G ∈ F . A scoring rule is strictly F-proper if it is F-
proper and R̄(F, F ) = R̄(G,F ) implies that F = G for all F,G ∈ F . With Lemma
2.3.3 and the discussion thereafter, we can see that each F-consistent scoring func-
tion for a functional T : F → A induces an F-proper scoring rule. However, if we
do not impose that the functional T is injective, we cannot conclude that it is a
strictly F-proper scoring rule, even though the scoring function we are starting
with might be strictly F-consistent. We recover Gneiting (2011, Theorem 3).

Proposition 2.3.4. Let T : F → A be a functional with an F-consistent scoring
function S : A× O→ R. Then the scoring rule

R : F × O→ R, (F, y) 7→ R(F, y) = S(T (F ), y)

is F-proper.

Proof. Let F,G ∈ F . Then

R̄(G,F ) = S̄(T (G), F ) ≥ S̄(T (F ), F ) = R̄(F, F ),

which yields the assertion.

One way of interpreting the revelation principle, Proposition 2.3.2, is that one
considers the pushforward Tg = g ◦ T of a functional T : F → A by applying
the bijection g : A → A′. We remark that for this result, it is not essential that
A′ is a subset of Rk. On the level of the scoring functions, this amounts to a
manipulation of the first argument of the scoring functions. If one takes this
point of view as a starting point, it is also natural to ask what happens upon
applying some measurable function φ : O → O (not necessarily a bijection) to
the second argument of a strictly F-consistent scoring function for a functional
T : F → A. In fact, the resulting scoring function

φS : A× O→ R, (x, y) 7→ φS(x, y) = S(x, φ(y))

is a strictly φF-consistent scoring function for the functional φT : φF → A where

φT is the functional T applied to the pushforward measures. To give a more
formal definition, assume that F is a class of probability measures P and let that

φF = {P ∈ F : P ◦ φ−1 ∈ F} ⊆ F . Then

φT : φF → A, P 7→ φT (P ) = T (P ◦ φ−1) .
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Now, we consider weighted scoring functions where the weight depends on the
realized observation y ∈ O only, thus generalizing Gneiting (2011, Theorem 5).

Proposition 2.3.5. Let O ⊆ Rd and w : O → [0,∞) be a measurable weight
function. Let µ be a σ-finite measure on (O,O) and F be a class of probability
distributions on (O,O) which are dominated by µ, and which are such that w̄(F ) ∈
(0,∞) for all F ∈ F . If F ∈ F has a density f with respect to µ, define F (w) as
the probability distribution with µ-density

f (w)(y) =
w(y)f(y)

w̄(F )

for µ-almost-all y ∈ O. Let F (w) = {F ∈ F : F (w) ∈ F}. Fix a functional
T : F → A ⊆ Rk, where k ≥ 1, and define the functional

T (w) : F (w) → A, F 7→ T (w)(F ) = T (F (w)).

Then, the following two assertions hold:

(i) If V : A× O→ Rk is a (strict) F-identification function for T , then

V (w) : A× O→ Rk, (x, y) 7→ V (w)(x, y) = w(y)V (x, y)

is a (strict) F (w)-identification function for the functional T (w).

(ii) If S : A× O→ R is a (strictly) F-consistent scoring function for T , then

S(w) : A× O→ R, (x, y) 7→ S(w)(x, y) = w(y)S(x, y)

is a (strictly) F (w)-consistent scoring function for the functional T (w).

Proof. Let F ∈ F (w) and x ∈ A. Then, we obtain the identity

S̄(w)(x, F ) =

∫

O
w(y)S(x, y)f(y)µ(dy)

= w̄(F )
[ ∫

O
S(x, y)f (w)(y)µ(dy)

]

= w̄(F ) S̄(x, F (w)),

and by an analogue calculation

V̄ (w)(x, F ) = w̄(F ) V̄ (x, F (w)).

Now, the assertions follow upon recalling that w̄(F ) ∈ (0,∞).

Remark 2.3.6. Interestingly, a combination of Lemma 2.3.3 and Proposition 2.3.5
retrieves Theorem 1 in Holzmann and Klar (2016). To see this, let F be a class
of probability distributions on O ⊆ Rd which are dominated by a σ-finite measure
µ. Let w : O→ [0,∞) be a measurable weight function such that w̄(F ) > 0 for all
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F ∈ F . Define the operator gw on F via gw(F ) = F (w) where F (w) is defined like
in Proposition 2.3.5. Set A := gw(F) ∩ F and A′ := F (w) := g−1

w (A) ⊆ F , such
that we are in the situation of Lemma 2.3.3 with g = gw|A′ : A′ → A. Overloading
notation, we shall merely write gw instead of gw|A′ . Let T be the identity on
F and S : F × O → R be a strictly proper scoring rule. In the terminology of
scoring functions, that means that S is a strictly F-consistent scoring function for
T . Then, Proposition 2.3.5 yields that

S(w) : A× O→ R, (F, y) 7→ S(w)(F, y) = w(y)S(F, y)

is a strictly F-consistent scoring function for T (w) = gw : F (w) → A. Finally,
Lemma 2.3.3 asserts that

S
(w)

g−1
w

: A′ × O→ R, (F, y) 7→ S
(w)

g−1
w

(F, y) = w(y)S(gw(F ), y) = w(y)S(F (w), y)

is a strictly F-consistent scoring function for T
(w)

g−1
w

= g−1
w ◦ gw : F (w) → 2A

′
=

2F
(w)

. In the terminology of Holzmann and Klar (2016) this means that S
(w)

g−1
w

is proportionally locally proper. Indeed, For F1, F2 ∈ F (w), the relation F2 ∈
T

(w)

g−1
w

(F1) holds if and only if gw(F1) = gw(F2). This in turn is equivalent to

w(y)
f1(y)

w̄(F1)
= w(y)

f2(y)

w̄(F2)

for µ-almost-all y ∈ O. But that means that f1 = w̄(F1)
w̄(F2)f2 on {w > 0} µ-a.e.

Convexity of level sets is a necessary condition for elicitability. The result is
classical in the literature and was first presented in Osband (1985, Proposition
2.5); see also Gneiting (2011, Theorem 6).

Proposition 2.3.7. Let T : F → A ⊆ Rk be an elicitable functional. Then for
all F0, F1 ∈ F with t := T (F0) = T (F1) and for all λ ∈ (0, 1) such that Fλ :=
(1− λ)F0 + λF1 ∈ F it holds that t = T (Fλ).

Proof. Let S : A × O → R be a strictly F-consistent scoring function for T . Let
F0, F1 ∈ F with t = T (F0) = T (F1) and Fλ = (1 − λ)F0 + λF1 ∈ F for some
λ ∈ (0, 1). Let x ∈ A, x 6= t. Then we have that

S̄(t, Fλ) = (1− λ)S̄(t, F0) + λS̄(t, F1)

< (1− λ)S̄(x, F0) + λS̄(x, F1) = S̄(x, Fλ).

Since S is a strictly F-consistent scoring function for T , we conclude that t =
T (Fλ).
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We remark that in a similar fashion one can see that convexity of the level
sets of a functional is also necessary for its identifiability; see Lemma 4.1.13 for a
slightly stronger result.

Steinwart et al. (2014) found that under some regularity conditions on the func-
tional T such as its continuity and the fact that all distributions in F are domi-
nated by some common measure, the convexity of the level sets is also a sufficient
condition for the elicitability of T in the one-dimensional case k = 1. If one
dispenses with the continuity of T , the convexity of the level sets fails to be a
sufficient condition for elicitability, as shown for the mode-functional in Heinrich
(2014). The proof of sufficiency in Steinwart et al. (2014) is done by a version
of a separation theorem (actually, they show that the convexity of the level sets
first implies the identifiability of the functional and then conclude that it is also
elicitable). Hence, their proof cannot be generalized to the higher-dimensional
case and it remains an open question, whether the sufficiency continues to hold
for k > 1 under appropriate regularity conditions.
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3. Higher Order Elicitability and
Osband’s Principle

This chapter consists of three sections. Section 3.1 is the main part and settles
the most crucial results of this chapter, and, a fortiori, the most crucial results
of Part I of this thesis. One particular achievement is Theorem 3.2 in Fissler
and Ziegel (2016). Due to Gneiting (2011) we call it ‘Osband’s principle’, since
it originates from Osband’s (1985) doctoral thesis, showing the intimate relation
between strictly consistent scoring functions and identification functions. Our
contribution is a generalization in that we formulated this relation on the level
of expectations and not pointwise. Thus, we could relax the assumptions on the
class F of distributions as well as smoothness assumptions substantially, making
the result applicable to a larger class of functionals and scoring functions. More-
over, we established a kind of ‘second order Osband’s principle’ in Fissler and
Ziegel (2016, Corollary 3.3) exploiting the second order conditions related to the
minimization problem of strictly consistent scoring functions. Osband’s principle
– also comprising the second order one – serves as a powerful tool in the deriva-
tion of the necessary form of strictly consistent scoring functions in a plenitude of
different situations. One particular example for this and, at the same time, an-
other major achievement is Fissler and Ziegel (2016, Theorem 5.2) where we could
show that spectral risk measures with a finitely supported spectral measure are a
component of an elicitable functional. Up to our knowledge, this is the first result
of an elicitable functional having a non-elicitable component and which is not a
bijection of another elicitable functional with elicitable components, such that the
revelation principle does not apply. A consequence of particularly applied interest
is Fissler and Ziegel (2016, Corollary 5.5) asserting that the pair (Value at Risk,
Expected Shortfall), at the same level α ∈ (0, 1), is elicitable. The latter results
gave rise to an observation made by Frongillo and Kash (2015b) that for a fixed
elicitable functional T , the minimum of any strictly consistent scoring function –
which defines another functional T ′ – is jointly elicitable with T . Section 3.3 is a
brief summary of this observation. The chapter is complemented by Section 3.2
giving a characterization of the class of strict identification functions for a fixed
functional exploiting a rationale very similar to Osband’s principle.
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3.1. Fissler and Ziegel (2016)

The content of this section is the article Fissler and Ziegel (2016) in the published
version of the Annals of Statistics (http://www.imstat.org/aos/) which can be
found on http://projecteuclid.org/euclid.aos/1467894712. It is followed
by the online supplement of the article (http://projecteuclid.org/euclid.
aos/1467894712#supplemental). Three preprint versions of this article can be
found on https://arxiv.org/abs/1503.08123, and we refer to these versions by
Fissler and Ziegel (2015).
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A statistical functional, such as the mean or the median, is called elic-
itable if there is a scoring function or loss function such that the correct fore-
cast of the functional is the unique minimizer of the expected score. Such
scoring functions are called strictly consistent for the functional. The elic-
itability of a functional opens the possibility to compare competing forecasts
and to rank them in terms of their realized scores. In this paper, we explore
the notion of elicitability for multi-dimensional functionals and give both nec-
essary and sufficient conditions for strictly consistent scoring functions. We
cover the case of functionals with elicitable components, but we also show
that one-dimensional functionals that are not elicitable can be a component
of a higher order elicitable functional. In the case of the variance, this is a
known result. However, an important result of this paper is that spectral risk
measures with a spectral measure with finite support are jointly elicitable if
one adds the “correct” quantiles. A direct consequence of applied interest is
that the pair (Value at Risk, Expected Shortfall) is jointly elicitable under mild
conditions that are usually fulfilled in risk management applications.

1. Introduction. Point forecasts for uncertain future events are issued in a
variety of different contexts such as business, government, risk-management or
meteorology, and they are often used as the basis for strategic decisions. In all
these situations, one has a random quantity Y with unknown distribution F . One
is interested in a statistical property of F , that is a functional T (F ). Here, Y can
be real-valued (GDP growth for next year), vector-valued (wind-speed, income
from taxes for all cantons of Switzerland), functional-valued (path of the inter-
change rate Euro–Swiss franc over one day), or set-valued (area of rain tomorrow,
area of influenza in a country). Likewise, also the functional T can have a variety
of different sorts of values, among them the real- and vector-valued case (mean,
vector of moments, covariance matrix, expectiles), the set-valued case (confidence
regions) or also the functional-valued case (distribution functions). This article is
concerned with the situation where Y is a d-dimensional random vector and T is
a k-dimensional functional, thus also covering the real-valued case.

It is common to assess and compare competing point forecasts in terms of a loss
function or scoring function. This is a function S such as the squared error or the
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absolute error which is negatively oriented in the following sense: If the forecast
x ∈ Rk is issued and the event y ∈ Rd materializes, the forecaster is penalized by
the real value S(x, y). In the presence of several different forecasters, one can com-
pare their performances by ranking their realized scores. Hence, forecasters have
an incentive to minimize their Bayes risk or expected loss EF [S(x,Y )]. Gneiting
(2011) demonstrated impressively that scoring functions should be incentive com-
patible in that they should encourage the forecasters to issue truthful reports; see
also Engelberg, Manski and Williams (2009), Murphy and Daan (1985). In other
words, the choice of the scoring function S must be consistent with the choice of
the functional T . We say a scoring function S is strictly F -consistent for a func-
tional T if T (F ) is the unique minimizer of the expected score EF [S(x,Y )] for
all F ∈ F , where the class F of probability distributions is the domain of T . In
some parts of the literature, strictly consistent scoring functions are called proper
scoring rules. Our choice of terminology is in line with Gneiting (2011). Following
Lambert, Pennock and Shoham (2008) and Gneiting (2011), we call a functional
T with domain F elicitable if there exists a strictly F -consistent scoring function
for T .

The elicitability of a functional allows for regression, such as quantile regres-
sion and expectile regression [Koenker (2005), Newey and Powell (1987)] and for
M-estimation [Huber (1964)]. Early work on elicitability is due to Osband (1985),
Osband and Reichelstein (1985). More recent advances in the one-dimensional
case, that is, k = d = 1 are due to Gneiting (2011), Lambert (2013), Steinwart
et al. (2014) with the latter showing the intimate relation between elicitability
and identifiability. Under mild conditions, many important functionals are elic-
itable such as moments, ratios of moments, quantiles and expectiles. However,
there are also relevant functionals which are not elicitable such as variance, mode,
or Expected Shortfall [Gneiting (2011), Heinrich (2014), Osband (1985), Weber
(2006)].

With the so-called revelation principle Osband (1985) [see also Gneiting
(2011), Theorem 4] was one of the first to show that a functional, albeit itself
not being elicitable, can be a component of an elicitable vector-valued functional.
The most prominent example in this direction is that the pair (mean, variance) is
elicitable despite the fact that variance itself is not. However, it is crucial for the
validity of the revelation principle that there is a bijection between the pair (mean,
variance) and the first two moments. Until now, it appeared as an open problem
if there are elicitable functionals with non-elicitable components other than those
which can be connected to a functional with elicitable components via a bijection.
Frongillo and Kash (2015) conjectured that this is generally not possible. We solve
this open problem and can reject their conjecture: Corollary 5.5 shows that the pair
(Value at Risk, Expected Shortfall) is elicitable, subject to mild regularity assump-
tions, improving a recent partial result of Acerbi and Székely (2014). To the best
of our knowledge, we provide the first proof of this result in full generality. In
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fact, Corollary 5.4 demonstrates more generally that spectral risk measures with
a spectral measure having finite support in (0,1] can be a component of an elic-
itable vector-valued functional. These results may lead to a new direction in the
contemporary discussion about what risk measure is best in practice, and in par-
ticular about the importance of elicitability in risk measurement contexts [Acerbi
and Székely (2014), Davis (2016), Embrechts and Hofert (2014), Emmer, Kratz
and Tasche (2015)].

Complementing the question whether a functional is elicitable or not, it is in-
teresting to determine the class of strictly consistent scoring functions for a func-
tional, or at least to characterize necessary and sufficient conditions for the strict
consistency of a scoring function. Most of the existing literature focuses on real-
valued functionals meaning that k = 1. For the case k > 1, mainly linear function-
als, that is, vectors of expectations of certain transformations, are classified where
the only strictly consistent scoring functions are Bregman functions [Abernethy
and Frongillo (2012), Banerjee, Guo and Wang (2005), Dawid and Sebastiani
(1999), Osband and Reichelstein (1985), Savage (1971)]; for a general overview
of the existing literature, we refer to Gneiting (2011). To the best of our knowl-
edge, only Osband (1985), Lambert, Pennock and Shoham (2008) and Frongillo
and Kash (2015) investigated more general cases of functionals, the latter also
treating vectors of ratios of expectations as the first nonlinear functionals. In his
doctoral thesis, Osband (1985) established a necessary representation for the first-
order derivative of a strictly consistent scoring function with respect to the report
x which connects it with identification functions. Following Gneiting (2011), we
call results in the same flavor Osband’s principle. Theorem 3.2 in this paper com-
plements and generalizes Osband (1985), Theorem 2.1. Using our techniques, we
retrieve the results mentioned above concerning the Bregman representation, how-
ever, under somewhat stronger regularity assumptions than the one in Frongillo and
Kash (2015); see Proposition 4.4. On the other hand, we are able to treat a much
broader class of functionals; see Proposition 4.2, Remark 4.5 and Theorem 5.2.
In particular, we show that under mild richness assumptions on the class F , any
strictly F -consistent scoring function for a vector of quantiles and/or expectiles is
the sum of strictly F -consistent one-dimensional scoring functions for each quan-
tile/expectile; see Proposition 4.2.

The paper is organized as follows. In Section 2, we introduce notation and de-
rive some basic results concerning the elicitability of k-dimensional functionals.
Section 3 is concerned with Osband’s principle, Theorem 3.2, and its immediate
consequences. We investigate the situation where a functional is composed of elic-
itable components in Section 4, whereas Section 5 is dedicated to the elicitability
of spectral risk measures. We end our article with a brief discussion; see Section 6.
Most proofs are deferred to Section 7 and the supplementary material Fissler and
Ziegel (2016).
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2. Properties of higher order elicitability.

2.1. Notation and definitions. Following Gneiting (2011), we introduce a
decision-theoretic framework for the evaluation of point forecasts. To this end, we
introduce an observation domain O ⊆ Rd . We equip O with the Borel σ -algebra
O using the induced topology of Rd . We identify a Borel probability measure P
on (O,O) with its cumulative distribution function (c.d.f.) FP : O → [0,1] defined
as FP (x) := P((−∞, x] ∩ O), where (−∞, x] = (−∞, x1] × · · · × (−∞, xd ] for
x = (x1, . . . , xd) ∈ Rd . Let F be a class of distribution functions on (O,O). Fur-
thermore, for some integer k ≥ 1, let A ⊆ Rk be an action domain. To shorten nota-
tion, we usually write F ∈ F for a c.d.f. and also omit to mention the σ -algebra O.

Let T :F → A be a functional. We introduce the notation T (F) := {x ∈ A:x =
T (F ) for some F ∈ F}. For a set M ⊆ Rk , we will write int(M) for its interior
with respect to Rk , that is, int(M) is the biggest open set U ⊆ Rk such that U ⊆ M .
The convex hull of M is defined as

conv(M) :=
{

n∑

i=1

λixi

∣∣∣n ∈ N, x1, . . . , xn ∈ M,λ1, . . . ,λn > 0,
n∑

i=1

λi = 1

}

.

We say that a function a: O → R is F -integrable if it is F -integrable for each
F ∈ F . A function g: A×O → R is F -integrable if g(x, ·) is F -integrable for each
x ∈ A. If g is F -integrable, we introduce the map

ḡ: A × F → R, (x,F ) )→ ḡ(x,F ) =
∫

g(x, y)dF(y).

Consequently, for fixed F ∈ F we can consider the function ḡ(·,F ): A → R, x )→
ḡ(x,F ), and for fixed x ∈ A we can consider the (linear) functional ḡ(x, ·):F →
R, F )→ ḡ(x,F ).

If we fix y ∈ O and g is sufficiently smooth in its first argument, then for
m ∈ {1, . . . , k} we denote the mth partial derivative of the function g(·, y) with
∂mg(·, y). More formally, we set

∂mg(·, y): int(A) → R, (x1, . . . , xk) )→ ∂

∂xm
g(x1, . . . , xk, y).

We denote by ∇g(·, y) the gradient of g(·, y) defined as ∇g(·, y) := (∂1g(·, y),
. . . , ∂kg(·, y))⊤; and with ∇2g(·, y) := (∂l ∂mg(·, y))l,m=1,...,k the Hessian of
g(·, y). Mutatis mutandis, we use the same notation for ḡ(·,F ), F ∈ F . We call
a function on A differentiable if it is differentiable in int(A) and use the notation
as given above. The restriction of a function f to some subset M of its domain is
denoted by f|M .

DEFINITION 2.1 (Consistency and elicitability). A scoring function is an F -
integrable function S: A × O → R. It is said to be F -consistent for a functional
T :F → A if S̄(T (F ),F ) ≤ S̄(x,F ) for all F ∈ F and for all x ∈ A. Furthermore,
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S is strictly F -consistent for T if it is F -consistent for T and if S̄(T (F ),F ) =
S̄(x,F ) implies that x = T (F ) for all F ∈ F and for all x ∈ A. Wherever it is
convenient, we assume that S(x, ·) is locally bounded for all x ∈ A. A functional
T :F → A ⊆ Rk is called k-elicitable, if there exists a strictly F -consistent scoring
function for T .

DEFINITION 2.2 (Identification function). An identification function is an F -
integrable function V : A × O → Rk . It is said to be an F -identification function
for a functional T :F → A ⊆ Rk if V̄ (T (F ),F ) = 0 for all F ∈ F . Furthermore,
V is a strict F -identification function for T if V̄ (x,F ) = 0 holds if and only if
x = T (F ) for all F ∈ F and for all x ∈ A. Wherever it is convenient, we assume
that V (x, ·) is locally bounded for all x ∈ A and that V (·, y) is locally Lebesgue-
integrable for all y ∈ O. A functional T :F → A ⊆ Rk is said to be k-identifiable,
if there exists a strict F -identification function for T .

If the dimension k is clear from the context, we say that a functional is elicitable
(identifiable) instead of k-elicitable (k-identifiable).

REMARK 2.3. Depending on the class F , some statistical functionals such as
quantiles can be set-valued. In such situations, one can define T :F → 2A. Then a
scoring function S: A × O → R is called (strictly) F -consistent for T if S̄(t,F ) ≤
S̄(x,F ) for all x ∈ A, F ∈ F and t ∈ T (F ) [with equality implying x ∈ T (F )]. The
definition of a (strict) F -identification function for T can be generalized mutatis
mutandis. Many of the results of this paper can be extended to the case of set-
valued functionals—at the cost of a more involved notation and analysis. To allow
for a clear presentation, we confine ourselves to functionals with values in Rk in
this paper.

2.2. Basic results. The first lemma gives a useful equivalent characterization
of strict consistency. Its proof is a direct consequence of the definition.

LEMMA 2.4. A scoring function S: A × O → R is strictly F -consistent for
T : F → A ⊆ Rk if and only if the function

ψ :D → R, s )→ S̄(t + sv,F )

has a global unique minimum at s = 0 for all F ∈ F , t = T (F ) and v ∈ Sk−1

where D = {s ∈ R: t + sv ∈ A}.

The following result follows directly from the definition of consistency (Defini-
tion 2.1). However, it is crucial to understand many of the results of this paper.

LEMMA 2.5. Let T :F → A ⊆ Rk be a functional with a strictly F -consistent
scoring function S: A × O → R. Then the following two assertions hold:
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(i) Let F ′ ⊆ F and T|F ′ be the restriction of T to F ′. Then S is also a strictly
F ′-consistent scoring function for T|F ′ .

(ii) Let A′ ⊆ A such that T (F) ⊆ A′ and S|A′×O be the restriction of S to A′ ×O.
Then S|A′×O is also a strictly F -consistent scoring function for T .

The main results of this paper consist of necessary and sufficient conditions for
the strict F -consistency of a scoring function S for some functional T . What are
the consequences of Lemma 2.5 for such conditions? Assume that we start with a
functional T ′:F ′ → A′ ⊆ Rk and deduce some necessary conditions for a scoring
function S′: A′ × O → R to be strictly F ′-consistent for T ′. Then Lemma 2.5(i)
implies that these conditions continue to be necessary conditions for the strict F -
consistency of S′ for T :F → A′ where F ′ ⊆ F , and T is some extension of T ′
such that T (F) ⊆ A′. On the other hand, Lemma 2.5(ii) implies that the neces-
sary conditions for the strict F ′-consistency of a scoring function S′: A′ × O → R
continue to be necessary conditions for the strict F ′-consistency of S: A × O → R
for T ′, where A′ ⊆ A and S is some extension of S′.

Summarizing, given a functional T :F → A, a collection of necessary condi-
tions for the strict F -consistency of scoring functions for T is the more restrictive
the smaller the class F and the smaller the set A is [provided that T (F) ⊆ A, of
course]. Hence, in the forthcoming results concerning necessary conditions, it is
no loss of generality to just mention which distributions must necessarily be in
the class F to guarantee the validity of the results. Furthermore, it is no loss of
generality to make the assumption that T is surjective, so A = T (F).

Some of the subsequent results also provide sufficient conditions for the strict
F -consistency of a scoring function S: A × O → R for a functional T :F → A.
Those results are the stronger the bigger the class F and the bigger the set A is. For
the notion of elicitability, this means that the assertion that a functional T :F → A
is elicitable is also the stronger the bigger the class F and the bigger the set A is. To
demonstrate this reasoning, observe that if the functional T :F → A is degenerate
in the sense that it is constant, so T ≡ t for some t ∈ A (which covers the particular
case that F contains only one element), then T is automatically elicitable with a
strictly F -consistent scoring function S: A×O → R, defined as S(x, y) := ∥x− t∥.

As a last result in this section, we present the intuitive observation that a vector
of elicitable functionals itself is elicitable.

LEMMA 2.6. Let k1, . . . , kl ≥ 1 and let Tm:F → Am ⊆ Rkm be a km-elicitable
functional, m ∈ {1, . . . , l}. Then the functional T = (T1, . . . , Tl): F → A is k-
elicitable where k = k1 + · · · + kl and A = A1 × · · · × Al ⊆ Rk .

PROOF. For m ∈ {1, . . . , l}, let Sm: Am × O → R be a strictly F -consistent
scoring function for Tm. Let λ1, . . . ,λl > 0 be positive real numbers. Then

S(x1, . . . , xl, y) :=
l∑

m=1

λmSm(xm, y)(2.1)

is a strictly F -consistent scoring function for T . !

42



1686 T. FISSLER AND J. F. ZIEGEL

A particularly simple and relevant case of Lemma 2.6 is the situation k1 =
· · · = kl = 1 such that k = l. It is an interesting question whether the scoring func-
tions of the form (2.1) are the only strictly F -consistent scoring functions for T ,
which amounts to the question of separability of scoring rules that was posed by
Frongillo and Kash (2015). The answer is generally negative. As mentioned in
the Introduction, it is known that all Bregman functions elicit T , if the compo-
nents of T are all expectations of transformations of Y [Abernethy and Frongillo
(2012), Banerjee, Guo and Wang (2005), Dawid and Sebastiani (1999), Osband
and Reichelstein (1985), Savage (1971)] or ratios of expectations with the same
denominator [Frongillo and Kash (2015)]; see also Proposition 4.4. However, for
other situations, such as a combination of different quantiles and/or expectiles, the
answer is positive; see Proposition 4.2. These results rely on “Osband’s principle”
which gives necessary conditions for scoring functions to be strictly F -consistent
for a given functional T ; see Section 3.

There are more involved functionals that are k-elicitable than combinations
of k 1-elicitable components. An immediate example that is the pair (expecta-
tion, variance) which can be obtained through the revelation principle from the
2-elicitable pair (expectation, second moment). In Section 5, we show that the con-
cept of k-elicitability is also not restricted to functionals that can be obtained by
combining Lemma 2.6 and the revelation principle. It is shown in Weber (2006),
Example 3.4 and Gneiting (2011), Theorem 11, that the coherent risk measure
Expected Shortfall at level α, α ∈ (0,1), does not have convex level sets and
is therefore not elicitable. In contrast, we show in Corollary 5.5 that the pair
(Value at Riskα,Expected Shortfallα) is 2-elicitable relative to the class of distri-
butions on R with finite first moment and unique α-quantiles. This refutes Propo-
sition 2.3 of Osband (1985); see Remark 5.3 for a discussion.

3. Osband’s principle. In this section, we give necessary conditions for the
strict F -consistency of a scoring function S for a functional T :F → A. In the
light of Lemma 2.5 and the discussion thereafter, we have to impose some richness
conditions on the class F as well as on the “variability” of the functional T . To this
end, we establish a link between strictly F -consistent scoring functions and strict
F -identification functions. We illustrate the idea in the one-dimensional case. Let
F be a class of distribution functions on R, T :F → R a functional and S: R×R →
R a strictly F -consistent scoring function for T . Furthermore, let V : R × R → R
be an oriented strict F -identification function for T . Then, under certain regularity
conditions, there is a nonnegative function h: R → R such that

d
dx

S(x, y) = h(x)V (x, y).(3.1)

If we naïvely swap differentiation and expectation and h does not vanish, the
form (3.1) plus the identification property of V are sufficient for the first order
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condition on S̄(·,F ), F ∈ F , to be satisfied and the orientation of V (see Re-
mark 4.1) as well as the fact that h is positive are sufficient for S̄(·,F ) to satisfy
the second-order condition for strict F -consistency. So the really interesting part
is to show that the form given in (3.1) is necessary for the strict F -consistency of
a scoring function for T .

The idea of this characterization originates from Osband (1985). He gives a
characterization including Rk-valued functionals, but for his proof he assumes that
F contains all distributions with finite support. This is not a problem per se, but
in the light of Lemma 2.5 and the discussion thereafter it is desirable to weaken
this assumption. In particular, the results in Section 5 on spectral risk measures
cannot be derived if F has to contain all distributions with finite support. Rely-
ing on a functional space extension of the Kuhn–Tucker theorem, Osband (1985)
conjectures that his characterization continues to hold if F consists only of abso-
lutely continuous distributions, but we do not believe that his approach is feasible
in this case. In Steinwart et al. (2014), Theorem 5, there is a rigorous statement
of Osband’s principle for the one-dimensional functionals where the distributions
in F must be absolutely continuous with respect to some finite measure. We shall
give a proof in the setting of an Rk-valued functional that does not have to specify
the kinds of distributions in F , but only uses the following (minimal) collection of
regularity assumptions. To this end, we apply a similar technique as in the proof
of Osband (1985), Lemma 2.2, which is based on a finite-dimensional argument.

Let F be a class of distribution functions on O ⊆ Rd . Fix a functional T :F →
A ⊆ Rk , an identification function V : A × O → Rk and a scoring function S: A ×
O → R.

ASSUMPTION (V1). Let F be a convex class of distributions functions on
O ⊆ Rd and assume that for every x ∈ int(A) there are F1, . . . ,Fk+1 ∈ F such that

0 ∈ int
(
conv

({
V̄ (x,F1), . . . , V̄ (x,Fk+1)

}))
.

REMARK 3.1. Assumption (V1) implies that for every x ∈ int(A) there are
F1, . . . ,Fk ∈ F such that the vectors V̄ (x,F1), . . . , V̄ (x,Fk) are linearly indepen-
dent.

Assumption (V1) ensures that the class F is “rich” enough meaning that
the functional T varies sufficiently in order to derive a necessary form of the
scoring function S in Theorem 3.2. Assumptions like (V1) are classical in
the literature. For the case of k-elicitability, Osband (1985) assumes that 0 ∈
int(conv({V (x, y):y ∈ O})). Steinwart et al. (2014), Definition 8 and Lambert
(2013) treat the case k = 1 and work under the assumption that the functional
is strictly locally nonconstant which implies assumption (V1) if the functional is
identifiable.
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ASSUMPTION (V2). For every F ∈ F , the function V̄ (·,F ): A → Rk , x )→
V̄ (x,F ), is continuous.

ASSUMPTION (V3). For every F ∈ F , the function V̄ (·,F ) is continuously
differentiable.

If the function x )→ V (x, y), y ∈ O, is continuous (continuously differentiable),
assumption (V2) [assumption (V3)] is satisfied, and it is equivalent to (V2) [(V3)]
if F contains all measures with finite support. However, (V2) and (V3) are much
weaker requirements if we move away from distributions with finite support. To
illustrate this fact, let k, d = 1 and V (x, y) = 1{y ≤ x} − α, α ∈ (0,1), which
is a strict F -identification function for the α-quantile. Of course, V (·, y) is not
continuous. But if F contains only probability distributions F that have a con-
tinuous derivative f = F ′, then V̄ (x,F ) = F(x) − α and (d/dx)V̄ (x,F ) = f (x)

and V satisfies (V2) and (V3). The following assumptions (S1) and (S2) are simi-
lar conditions as (V2) and (V3) but for scoring functions instead of identification
functions.

ASSUMPTION (S1). For every F ∈ F , the function S̄(·,F ): A → R, x )→
S̄(x,F ), is continuously differentiable.

ASSUMPTION (S2). For every F ∈ F , the function S̄(·,F ) is continuously
differentiable and the gradient is locally Lipschitz continuous. Furthermore,
S̄(·,F ) is twice continuously differentiable at t = T (F ) ∈ int(A).

Note that assumption (S2) implies that the gradient of S̄(·,F ) is (totally) differ-
entiable for almost all x ∈ A by Rademacher’s theorem, which in turn indicates that
the Hessian of S̄(·,F ) exists for almost all x ∈ A and is symmetric by Schwarz’s
theorem; see Grauert and Fischer (1978), page 57.

THEOREM 3.2 (Osband’s principle). Let T :F → A ⊆ Rk be a surjective, elic-
itable and identifiable functional with a strict F -identification function V : A ×
O → Rk and a strictly F -consistent scoring function S: A×O → R. If the assump-
tions (V1) and (S1) hold, then there exists a matrix-valued function h: int(A) →
Rk×k such that for l ∈ {1, . . . , k}

∂l S̄(x,F ) =
k∑

m=1

hlm(x)V̄m(x,F )(3.2)

for all x ∈ int(A) and F ∈ F . If in addition, assumption (V2) holds, then h is
continuous. Under the additional assumptions (V3) and (S2), the function h is
locally Lipschitz continuous.
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Under the conditions of Theorem 3.2, equation (3.2) gives a characterization
of the partial derivatives of the expected score. If we impose more smoothness
assumptions on the expected score, we are also able to give a characterization of
the second-order derivatives of the expected score.

COROLLARY 3.3. For a surjective, elicitable and identifiable functional
T :F → A ⊆ Rk with a strict F -identification function V : A × O → Rk and a
strictly F -consistent scoring function S: A×O → R that satisfy assumptions (V1),
(V3) and (S2), we have the following identities for the second-order derivatives:

∂m ∂l S̄(x,F ) =
k∑

i=1

∂mhli(x)V̄i(x,F ) + hli(x)∂mV̄i(x,F )

(3.3)

=
k∑

i=1

∂lhmi(x)V̄i(x,F ) + hmi(x)∂l V̄i(x,F ) = ∂l ∂mS̄(x,F ),

for all l,m ∈ {1, . . . , k}, for all F ∈ F and almost all x ∈ int(A), where h
is the matrix-valued function appearing at (3.2). In particular, (3.3) holds for
x = T (F ) ∈ int(A).

Theorem 3.2 and Corollary 3.3 establish necessary conditions for strictly F -
consistent scoring functions on the level of the expected scores. If the class F is
rich enough and the scoring and identification function smooth enough in the fol-
lowing sense, we can also deduce a necessary condition for S which holds point-
wise.

ASSUMPTION (F1). For every y ∈ O, there exists a sequence (Fn)n∈N of dis-
tributions Fn ∈ F that converges weakly to the Dirac-measure δy such that the
support of Fn is contained in a compact set K for all n.

ASSUMPTION (VS1). Suppose that the complement of the set

C := {
(x, y) ∈ A × O| V (x, ·) and S(x, ·) are continuous at the point y

}

has (k + d)-dimensional Lebesgue measure zero.

PROPOSITION 3.4. Assume that int(A) ⊆ Rk is a star domain and let
T :F → A be a surjective, elicitable and identifiable functional with a strict F -
identification function V : A×O → Rk and a strictly F -consistent scoring function
S: A × O → R. Suppose that assumptions (V1), (V2), (S1), (F1) and (VS1) hold.
Let h be the matrix valued function appearing at (3.2). Then the scoring function
S is necessarily of the form

S(x, y) =
k∑

r=1

k∑

m=1

∫ xr

zr

hrm(x1, . . . , xr−1, v, zr+1, . . . , zk)

(3.4)
× Vm(x1, . . . , xr−1, v, zr+1, . . . , zk, y)dv + a(y)
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for almost all (x, y) ∈ A × O, for some star point z = (z1, . . . , zk) ∈ int(A) and
some F -integrable function a: O → R. On the level of the expected score S̄(x,F ),
equation (3.4) holds for all x ∈ int(A), F ∈ F .

While Theorem 3.2, Corollary 3.3 and Proposition 3.4 only establish necessary
conditions for strictly F -consistent scoring functions for some functional T , often
they guide a way how to construct strictly F -consistent scoring functions starting
with a strict F -identification function V for T .

For the one-dimensional case, one can use the fact that, subject to some mild
regularity conditions, if V is a strict F -identification function, then either V or
−V is oriented; see Remark 4.1. Supposing that V is oriented, we can choose any
strictly positive function h: A → R to get the derivative of a strictly F -consistent
scoring function. Then integration yields the desired strictly F -consistent scoring
function.

Establishing sufficient conditions for scoring functions to be strictly F -
consistent for T is generally more involved in the case k > 1. First of all, working
under assumption (S2), the symmetry of the Hessian ∇2S̄(x,F ) imposes strong
necessary conditions on the functions hlm; see, for example, Proposition 4.2 which
treats the case where all components of the functional T = (T1, . . . , Tk) are elic-
itable and identifiable. The example of spectral risk measures is treated in Sec-
tion 5. Second, (3.2) and (3.3) are necessary conditions for S̄(x,F ) having a local
minimum in x = T (F ), F ∈ F . Even if we additionally suppose that the Hessian
∇2S̄(x,F ) is strictly positive definite at x = T (F ), this is a sufficient condition
only for a local minimum at x = T (F ), but does not provide any information con-
cerning a global minimum. Consequently, even if the functions hlm satisfy (3.3),
one must verify the strict consistency of the scoring function on a case by case ba-
sis. This can often be done by showing that the one-dimensional functions R → R,
s )→ S̄(t + sv,F ), with t = T (F ), have a global minimum in s = 0 for all v ∈ Sk−1

and for all F ∈ F .

4. Functionals with elicitable components. Suppose that the functional T =
(T1, . . . , Tk):F → A ⊆ Rk consists of 1-elicitable components Tm. As prototypical
examples of such 1-elicitable components, we consider the functionals given in
Table 1 where we implicitly assume that O ⊆ R if a quantile or an expectile are a
part of T . If Vm are strict F -identification functions for Tm then V : A × R → Rk

with

V (x1, . . . , xk, y) = (
V1(x1, y), . . . , Vk(xk, y)

)⊤(4.1)

is a strict F -identification function for T . Under (V3), the partial derivatives of
V̄ (x,F ), x ∈ A and F ∈ F exist, and if the class F is sufficiently rich T (or some
subset of its components) often fulfills the following assumption.
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TABLE 1
Strict identification functions for k = 1; see Gneiting (2011), Table 9

Functional Strict identification function

Ratio EF [p(Y )]/EF [q(Y )] V (x, y) = xq(y) − p(y)

α-Quantile V (x, y) = 1{y ≤ x} − α

τ -Expectile V (x, y) = 2|1{y ≤ x} − τ |(x − y)

ASSUMPTION (V4). Let assumption (V3) hold. For all r ∈ {1, . . . , k} and for
all t ∈ int(A) ∩ T (F) there are F1,F2 ∈ T −1({t}) such that

∂l V̄l(t,F1) = ∂l V̄l(t,F2) ∀l ∈ {1, . . . , k} \ {r}, ∂r V̄r (t,F1) ≠ ∂r V̄r (t,F2).

The following proposition gives a characterization of the class of strictly F -
consistent scoring functions under (V4). In particular, the result covers vectors
of different quantiles and/or different expectiles (with the exception of the 1/2-
expectile), thus answering a question raised in Gneiting and Raftery (2007),
page 370.

One relevant exception when (V4) is not satisfied is when T is a ratio of expec-
tations with the same denominator, that is, qm = q for all m. We treat this case in
Proposition 4.4 below.

REMARK 4.1. Steinwart et al. (2014) introduced the notion of an oriented
strict F -identification function for the case k = 1 and d = 1. They say that V : A ×
O → R is an oriented strict F -identification function for the functional T :F → A
if V is a strict F -identification function for T and, moreover, V̄ (x,F ) > 0 if and
only if x > T (F ) for all F ∈ F and for all x ∈ A.

PROPOSITION 4.2. Let Tm:F → Am ⊆ R be 1-elicitable and 1-identifiable
functionals with oriented strict F -identification functions Vm: Am × O → R for
m ∈ {1, . . . , k}. Define T = (T1, . . . , Tk) with identification function V as at (4.1)
and a strictly F -consistent scoring function S: A × O → R with A := T (F) ⊆
A1 × · · · × Ak . Suppose that int(A) is a star domain, and assumptions (V1), (V3),
(V4), (S2) hold. Define A′

m := {xm:∃(z1, . . . , zk) ∈ int(A), zm = xm}.
(i) Let h : int(A) → Rk×k be the function given at (3.2). Then there are func-

tions gm: A′
m → R, gm > 0, such that hmm(x1, . . . , xk) = gm(xm) for all m ∈

{1, . . . , k} and (x1, . . . , xk) ∈ int(A) and

hrl(x) = 0(4.2)

for all r, l ∈ {1, . . . , k}, l ≠ r , and for all x ∈ int(A).
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(ii) Assume that (F1) and (VS1) hold. Then S is strictly F -consistent for T if
and only if it is of the form

S(x1, . . . , xk, y) =
k∑

m=1

Sm(xm, y),(4.3)

for almost all (x, y) ∈ A × O, where Sm: Am × O → R, m ∈ {1, . . . , k}, are strictly
F -consistent scoring functions for Tm.

REMARK 4.3. Lambert, Pennock and Shoham (2008), Theorem 5, show that
a scoring function is accuracy-rewarding if and only if it is the sum of strictly con-
sistent scoring functions for each component. Their assumptions are different from
Proposition 4.2(ii). For example, they assume that all distributions in F have finite
support, and that scoring functions are twice continuously differentiable. There-
fore, despite the same form of the characterization in (4.3), neither result implies
the other. However, the key components of the proofs of both results is to show
that the cross-derivatives of the expected scoring functions are zero. This implies
then a decomposition as in (4.3). The converse is trivial in both cases.

If T is a ratio of expectations with the same denominator, it is well known that
the class of strictly F -consistent scoring functions is bigger than the one given in
Proposition 4.2(ii).

PROPOSITION 4.4. Let T :F → A ⊆ Rk be a ratio of expectations with the
same denominator, that is, T (F ) = EF [p(Y )]/EF [q(Y )] for some F -integrable
functions p: O → Rk , q: O → R. Assume that q̄(F ) > 0 for all F ∈ F and let
V : A × O → Rk , V (x, y) = q(y)x − p(y). Let S: A × O → R be a strictly F -
consistent scoring function for T and h : int(A) → Rk×k be the function given
at (3.2). Suppose that T is surjective, and assumptions (V1), (V3), (S2) hold.

(i) It holds that

∂lhrm(x) = ∂rhlm(x), hrl(x) = hlr(x)(4.4)

for all r, l,m ∈ {1, . . . , k}, l ≠ r , where the first identity holds for almost all
x ∈ int(A) and the second identity for all x ∈ int(A). Moreover, the matrix
(hrl(x))r,l=1,...,k is positive definite for all x ∈ int(A).

(ii) Let int(A) be a star domain and assume that (F1) and (VS1) hold. Then S
is strictly F -consistent for T if and only if it is of the form

S(x, y) = −φ(x)q(y) +
k∑

m=1

(
q(y)xm − pm(y)

)
∂mφ(x) + a(y),(4.5)

with

φ(x) =
k∑

r=1

∫ xr

zr

∫ v

zr

hrr (x1, . . . , xr−1,w, zr+1, . . . , zk)dw dv,(4.6)

49



HIGHER ORDER ELICITABILITY 1693

for almost all (x, y) ∈ A × O, where (z1, . . . , zk) ∈ int(A) is some star point and
a: O → R is F -integrable. Moreover, φ has Hessian h and is strictly convex.

Part (ii) of this proposition recovers results of Abernethy and Frongillo (2012),
Banerjee, Guo and Wang (2005), Osband and Reichelstein (1985) if q ≡ 1, which
show that all consistent scoring functions for vectors of expectations are so-called
Bregman functions, that is, functions of the form (4.5) with q ≡ 1 and a convex
function φ. Frongillo and Kash (2015), Theorem 13, also treat the case of more
general functions q .

REMARK 4.5. One might wonder about necessary conditions on the matrix-
valued function h in the flavor of Propositions 4.2(i) and 4.4(i) if the k components
of the functional T can be regrouped into (a) a new functional T ′

1:F → A′
1 ⊂ Rk′

1

with an oriented strict F -identification function V ′
1: A′

1 × O → Rk′
1 which satis-

fies assumption (V4), and (b) several, say l, new functionals T ′
m:F → A′

k′
m

⊆ Rk′
m ,

m ∈ {2, . . . , l + 1} which are ratios of expectations with the same denominator,
and k′

1 + · · · + k′
l+1 = k. We can apply the propositions to obtain necessary condi-

tions for each of the (k′
m × k′

m)-valued functions h′
m, m ∈ {1, . . . , l + 1}. Applying

Lemma 2.6, we get a possible choice for a strictly F -consistent scoring function S
for T . On the level of the k × k-valued function h associated to S this means that h
is a block diagonal matrix of the form diag(h′

1, . . . , h
′
l+1). But what about the ne-

cessity of this form? Indeed, if we assume that the blocks in (b) have maximal size
(or equivalently that l is minimal) then one can verify that h must be necessarily
of the block diagonal form described above.

5. Spectral risk measures. Risk measures are a common tool to measure the
risk of a financial position Y . A risk measure is usually defined as a mapping ρ
from some space of random variables, for example, L∞, to the real line. Arguably,
the most common risk measure in practice is Value at Risk at level α (VaRα) which
is the generalized α-quantile F−1(α), that is,

VaRα(Y ) := F−1(α) := inf
{
x ∈ R:F(x) ≥ α

}
,

where F is the distribution function of Y . An important alternative to VaRα is Ex-
pected Shortfall at level α (ESα) (also known under the names Conditional Value
at Risk or Average Value at Risk). It is defined as

ESα(Y ) := 1
α

∫ α

0
VaRu(Y )du, α ∈ (0,1],(5.1)

and ES0(Y ) = ess infY . Since the influential paper of Artzner et al. (1999) intro-
ducing coherent risk measures, there has been a lively debate about which risk
measure is best in practice, one of the requirements under discussion being the
coherence of a risk measure. We call a functional ρ coherent if it is monotone,
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meaning that Y ≤ X a.s. implies that ρ(Y ) ≤ ρ(X); it is super-additive in the
sense that ρ(X + Y) ≥ ρ(X) + ρ(Y ); it is positively homogeneous which means
that ρ(λY ) = λρ(Y ) for all λ ≥ 0; and it is translation invariant which amounts
to ρ(Y + a) = ρ(Y ) + a for all a ∈ R. In the literature on risk measures, there
are different sign conventions which co-exist. In this paper, a positive value of Y

denotes a profit. Moreover, the position Y is considered the more risky the smaller
ρ(Y ) is. Strictly speaking, we have chosen to work with utility functions instead
of risk measures as, for example, in Delbaen (2012). The risk measure ρ is called
comonotonically additive if ρ(X + Y) = ρ(X) + ρ(Y ) for comonotone random
variables X and Y . Coherent and comonotonically additive risk measures are also
called spectral risk measures [Acerbi (2002)]. All risk measures of practical in-
terest are law-invariant, that is, if two random variables X and Y have the same
law F , then ρ(X) = ρ(Y ). As we are only concerned with law-invariant risk mea-
sures in this paper, we will abuse notation and write ρ(F ) := ρ(X), if X has dis-
tribution F .

One of the main criticisms on VaRα is its failure to fulfill the super-additivity
property in general [Acerbi (2002)]. Furthermore, it fails to take the size of losses
beyond the level α into account [Daníelsson et al. (2001)]. In both of these as-
pects, ESα is a better alternative as it is coherent and comonotonically additive,
that is, a spectral risk measure. However, with respect to robustness, some au-
thors argue that VaRα should be preferred over ESα [Cont, Deguest and Scandolo
(2010), Kou, Peng and Heyde (2013)], whereas others argue that the classical sta-
tistical notions of robustness are not necessarily appropriate in a risk measurement
context [Krätschmer, Schied and Zähle (2012, 2015, 2014)]. Finally, ESα fails to
be 1-elicitable [Gneiting (2011), Weber (2006)], whereas VaRα is 1-elicitable for
most classes of distributions F of practical relevance. In fact, except for the ex-
pectation, all spectral risk measures fail to be 1-elicitable [Ziegel (2014)]; further
recent results on elicitable risk measures include [Kou and Peng (2014), Wang
and Ziegel (2015)] showing that distortion risk measures are rarely elicitable and
[Bellini and Bignozzi (2015), Delbaen et al. (2016), Weber (2006)] demonstrating
that convex risk measures are only elicitable if they are shortfall risk measures.

We show in Theorem 5.2 (see also Corollaries 5.4 and 5.5) that spectral risk
measures having a spectral measure with finite support can be a component of a
k-elicitable functional. In particular, the pair (VaRα,ESα):F → R2 is 2-elicitable
for any α ∈ (0,1) subject to mild conditions on the class F . We remark that our
results substantially generalize the result of Acerbi and Székely (2014) as detailed
below.

DEFINITION 5.1 (Spectral risk measures). Let µ be a probability measure on
[0,1] (called spectral measure) and let F be a class of distribution functions on R
with finite first moments. Then the spectral risk measure associated to µ is the
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functional νµ:F → R defined as

νµ(F ) :=
∫

[0,1]
ESα(F )µ(dα).

Jouini, Schachermayer and Touzi (2006), Kusuoka (2001) have shown that law-
invariant coherent and comonotonically additive risk measures are exactly the
spectral risk measures in the sense of Definition 5.1 for distributions with com-
pact support. If µ = δα for some α ∈ [0,1], then νµ(F ) = ESα(F ). In particular,
νδ1(F ) = ∫

y dF(y) is the expectation of F .
In the following theorem, we show that spectral risk measures whose spectral

measure µ has finite support in (0,1) are k-elicitable for some k. The key to find-
ing the form of the strictly consistent scoring functions at (5.2) is the observation
that spectral risk measures jointly with the correct quantiles are identifiable with
identification function given at (5.4). It is possible to extend the result to spectral
measures with finite support in (0,1]; see Corollary 5.4.

THEOREM 5.2. Let F be a class of distribution functions on R with finite first
moments. Let νµ:F → R be a spectral risk measure where µ is given by

µ =
k−1∑

m=1

pmδqm,

with pm ∈ (0,1], ∑k−1
m=1 pm = 1, qm ∈ (0,1) and the qm’s are pairwise distinct.

Define the functional T = (T1, . . . , Tk):F → Rk , where Tm(F ) := F−1(qm), m ∈
{1, . . . , k − 1}, and Tk(F ) := νµ(F ). Then the following assertions are true:

(i) If the distributions in F have unique qm-quantiles, m ∈ {1, . . . , k−1}, then
the functional T is k-elicitable with respect to F .

(ii) Let A ⊇ T (F) be convex and set A′
r := {xr :∃(z1, . . . , zk) ∈ A, xr = zr},

r ∈ {1, . . . , k}. Define the scoring function S: A × R → R by

S(x, y) =
k−1∑

r=1

(
1{y ≤ xr} − qr

)
Gr(xr) − 1{y ≤ xr}Gr(y)

+ Gk(xk)

(

xk +
k−1∑

m=1

pm

qm

(
1{y ≤ xm}(xm − y) − qmxm

)
)

(5.2)

− Gk(xk) + a(y),

where a: R → R is F -integrable, Gr : A′
r → R, r ∈ {1, . . . , k}, Gk: A′

k → R with
G′

k = Gk and for all r ∈ {1, . . . , k} and all xr ∈ A′
r the functions 1(∞,xr ]Gr are

F -integrable.
If Gk is convex and for all r ∈ {1, . . . , k − 1} and xk ∈ A′

k , the function

A′
r,xk

→ R, xr )→ xr
pr

qr
Gk(xk) + Gr(xr)(5.3)
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with A′
r,xk

:= {xr : ∃(z1, . . . , zk) ∈ A, xr = zr , xk = zk} is increasing, then S is F -
consistent for T . If additionally the distributions in F have unique qm-quantiles,
m ∈ {1, . . . , k −1}, Gk is strictly convex and the functions given at (5.3) are strictly
increasing, then S is strictly F -consistent for T .

(iii) Assume the elements of F have unique qm-quantiles, m ∈ {1, . . . , k − 1}
and continuous densities. Define the function V : A × R → Rk with components

Vm(x1, . . . , xk, y) = 1{y ≤ xm} − qm, m ∈ {1, . . . , k − 1},
(5.4)

Vk(x1, . . . , xk, y) = xk −
k−1∑

m=1

pm

qm
y1{y ≤ xm}.

Then V is a strict F -identification function for T satisfying assumption (V3).
If additionally the interior of A := T (F) ⊆ Rk is a star domain, (V1) and (F1)

hold, and (V1, . . . , Vk−1) satisfies (V4), then every strictly F -consistent scoring
function S: A × R → R for T satisfying (S2), (VS1) is necessarily of the form
given at (5.2) almost everywhere. Additionally, Gk must be strictly convex and the
functions at (5.3) must be strictly increasing.

REMARK 5.3. According to Theorem 5.2, the pair (VaRα(F ),ESα(F )),
and more generally (F−1(q1), . . . ,F

−1(qk−1),νµ(F )), admits only nonseparable
strictly consistent scoring functions. This result gives an example demonstrating
that Osband (1985), Proposition 2.3, cannot be correct as it states that any strictly
consistent scoring function for a functional with a quantile as a component must
be separable in the sense that it must be the sum of a strictly consistent scoring
function for the quantile and a strictly consistent scoring function for the rest of
the functional.

Using Theorem 5.2 and the revelation principle, we can now state one of the
main results of this paper.

COROLLARY 5.4. Let F be a class of distribution functions on R with finite
first moments and unique quantiles. Let νµ:F → R be a spectral risk measure.
If the support of µ is finite with L elements and contained in (0,1], then νµ is a
component of a k-elicitable functional where:

(i) k = 1, if µ is concentrated at 1 meaning µ({1}) = 1;
(ii) k = 1 + L, if µ({1}) < 1.

In the special case of T = (VaRα,ESα), the maximal sensible action domain
is A0 := {x ∈ R2 : x1 ≥ x2} as we always have ESα(F ) ≤ VaRα(F ). For this ac-
tion domain, the characterization of consistent scoring functions of Theorem 5.2
simplifies as follows.
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COROLLARY 5.5. Let α ∈ (0,1). Let F be a class of distribution functions on
R with finite first moments and unique α-quantiles. Let A0 = {x ∈ R2 : x1 ≥ x2}.
A scoring function S: A0 × R → R of the form

S(x1, x2, y) = (
1{y ≤ x1} − α

)
G1(x1) − 1{y ≤ x1}G1(y)

+ G2(x2)

(
x2 − x1 + 1

α
1{y ≤ x1}(x1 − y)

)
(5.5)

− G2(x2) + a(y),

where G1,G2,G2, a: R → R, G′
2 = G2, a is F -integrable and 1(−∞,x1]G1 is F -

integrable for all x1 ∈ R, is F -consistent for T = (VaRα,ESα) if G1 is increasing
and G2 is increasing and convex. If G2 is strictly increasing and strictly convex,
then S is strictly F -consistent for T .

Under the conditions of Theorem 5.2(iii) all strictly F -consistent scoring func-
tions for T are of the form (5.5) almost everywhere.

Acerbi and Székely (2014) also give an example of a scoring function for the
pair T = (VaRα,ESα):F → A ⊆ R2. They use a different sign convention for
VaRα and ESα than we do in this paper. Using our sign convention, their proposed
scoring function SW : A × R → R reads

SW(x1, x2, y) = α
(
x2

2/2 + Wx2
1/2 − x1x2

)

(5.6)
+ 1{y ≤ x1}

(−x2(y − x1) + W
(
y2 − x2

1
)
/2

)
,

where W ∈ R. The authors claim that SW is a strictly F -consistent scoring function
for T = (VaRα,ESα) provided that

ESα(F ) > WVaRα(F )(5.7)

for all F ∈ F . This means that they consider a strictly smaller action domain
than A0 in Corollary 5.5. They assume that the distributions in F have contin-
uous densities, unique α quantiles, and that F(x) ∈ (0,1) implies f (x) > 0 for
all F ∈ F with density f . Furthermore, in order to ensure that S̄W (·,F ) is finite,
one needs to impose the assumption that

∫ x
−∞ y2 dF(y) is finite for all x ∈ R and

F ∈ F . This is slightly less than requiring finite second moments. As a matter
of fact, they only show that ∇S̄W (t1, t2,F ) = 0 for F ∈ F and (t1, t2) = T (F )
and that ∇2S̄W (t1, t2,F ) is positive definite. This only shows that S̄W (x,F ) has
a local minimum at x = T (F ) but does not provide a proof concerning a global
minimum; see also the discussion after Corollary 3.3. However, we can use Theo-
rem 5.2(ii) to verify their claims with G1(x1) = −(W/2)x2

1 , G2(x2) = (α/2)x2
2 and

a = 0. Hence, G2 is strictly convex, and the function x1 )→ x1G2(x2)/α + G1(x1)
is strictly increasing in x1 if and only if x2 > Wx1 as at (5.7).

The scoring function SW has one property which is potentially relevant in
applications. If x1, x2 and y are expressed in the same units of measurement,
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then SW(x1, x2, y) is a quantity with these units squared. If one insists that we
should only add quantities with the same units, then the necessary condition that
x1 )→ x1G2(x2)/α + G1(x1) is strictly increasing enforces a condition of the
type (5.7). The action domain is restricted for SW and the choice of W may not be
obvious in practice. Similarly, for the maximal action domain A0, an open question
of practical interest is the choice of the functions G1 and G2 in (5.5). We would like
to remark that S remains strictly consistent upon choosing G1 = 0 and G2 strictly
increasing and strictly convex.

6. Discussion. We have investigated necessary and sufficient conditions for
the elicitability of k-dimensional functionals of d-dimensio nal distributions. In or-
der to derive necessary conditions, we have adapted Osband’s principle for the case
where the class F of distributions does not necessarily contain distributions with
finite support. This comes at the cost of certain smoothness assumptions on the ex-
pected scores S̄(·,F ). For particular situations, for example, when characterizing
the class of strictly F -consistent scoring functions for ratios of expectations, it is
possible to weaken the smoothness assumptions; see Frongillo and Kash (2015).
While moving away from distributions with finite support is not a great gain in the
case of linear functionals or ratios of expectations, it comes in handy when con-
sidering spectral risk measures. Value at Risk, VaRα , being defined as the smallest
α-quantile, is generally not elicitable for distributions where the α-quantile is not
unique. Therefore, we believe that it is also not possible to show joint elicitability
of (VaRα,ESα) for classes F of distributions with nonunique α-quantiles. How-
ever, we can give consistent scoring functions which become strictly consistent
as soon as the elements of F have unique quantiles. Fortunately, the classes F
of distributions that are relevant in risk management usually consist of absolutely
continuous distributions having unique quantiles.

Emmer, Kratz and Tasche (2015) have remarked that ESα is conditionally
elicitable. Slightly generalizing their definition, a functional Tk:F → Ak ⊆ R
is called conditionally elicitable of order k, k ≥ 1, if there are k − 1 elicitable
functionals Tm:F → Am ⊆ R, m ∈ {1, . . . , k − 1}, such that Tk is elicitable re-
stricted to the class Fx1,...,xk−1 := {F ∈ F :T1(F ) = x1, . . . , Tk−1(F ) = xk−1} for
any (x1, . . . , xk−1) ∈ A1 × · · · × Ak−1. Mutatis mutandis, one can define a no-
tion of conditional identifiability by replacing the term “elicitable” with “identi-
fiable” in the above definition. It is not difficult to check that any conditionally
identifiable functional Tk of order k is a component of an identifiable functional
T = (T1, . . . , Tk). Spectral risk measures νµ with spectral measure µ with finite
support in (0,1) provide an example of a conditionally elicitable functional of
order L + 1, where L is the cardinality of the support of µ; see Theorem 5.2.
However, we would like to stress that it is generally an open question whether any
conditionally elicitable and identifiable functional Tk of order k ≥ 2 is always a
component of a k-elicitable functional.
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Slightly modifying Lambert, Pennock and Shoham (2008), Definition 11, one
could define the elicitability order of a real-valued functional T as the smallest
number k such that the functional is a component of a k-elicitable functional. It is
clear that the elicitability order of the variance is two, and we have shown that the
same is true for ESα for reasonably large classes F . For spectral risk measures νµ,
the elicitability order is at most L + 1, where L is the cardinality of the support;
see Corollary 5.4.

In the one-dimensional case, Steinwart et al. (2014) have shown that convex
level sets in the sense of Osband (1985), Proposition 2.5 [see also Gneiting (2011),
Theorem 6] is a sufficient condition for the elicitability of a functional T under
continuity assumptions on T . Without such continuity assumptions, the converse
of Osband (1985), Proposition 2.5, is generally false; see Heinrich (2014) for the
example of the mode functional. It is an open (and potentially difficult) question
under which conditions a converse of Osband (1985), Proposition 2.5, is true for
higher order elicitability.

7. Proofs.

PROOF OF THEOREM 3.2. Let x ∈ int(A). The identifiability property of V
plus the first-order condition stemming from the strict F -consistency of S yields
the relation V̄ (x,F ) = 0 5⇒ ∇S̄(x,F ) = 0 for all F ∈ F . Let l ∈ {1, . . . , k}. To
show (3.2), consider the composed functional

B̄(x, ·):F → Rk+1, F )→ (
∂l S̄(x,F ), V̄ (x,F )

)
.

By construction, we know that

V̄ (x,F ) = 0 ⇐⇒ B̄(x,F ) = 0(7.1)

for all F ∈ F . Assumption (V1) implies that there are F1, . . . ,Fk+1 ∈ F such
that the matrix V = mat(V̄ (x,F1), . . . , V̄ (x,Fk+1)) ∈ Rk×(k+1) has maximal rank,
meaning rank(V) = k. If rank(V) < k, then the space span{V̄ (x,F1), . . . , V̄ (x,
Fk+1)} would be a linear subspace such that the interior of conv({V̄ (x,F1), . . . ,
V̄ (x,Fk+1)}) would be empty. Let G ∈ F . Then still 0 ∈ int(conv({V̄ (x,G), V̄ (x,
F1), . . . , V̄ (x,Fk+1)})), so rank(VG) = k where VG = mat(V̄ (x,G), V̄ (x,F1),
. . . , V̄ (x,Fk+1)) ∈ Rk×(k+2). Define the matrix

BG =
(

∂l S̄(x,G) ∂l S̄(x,F1) · · · ∂l S̄(x,Fk+1)

VG

)
∈ R(k+1)×(k+2).

We use (7.1) to show that ker(BG) = ker(VG). First, observe that the relation
ker(BG) ⊆ ker(VG) is clear by construction. To show the other inclusion, let
θ ∈ ker(VG) be an element of the simplex. Then (7.1) and the convexity of F
yields that θ ∈ ker(BG). By linearity, the inclusion holds also for all θ ∈ ker(VG)
with nonnegative components. Finally, let θ ∈ ker(VG) be arbitrary. Assump-
tion (V1) implies that there is θ∗ ∈ ker(VG) with strictly positive components.
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Hence, there is an ε > 0 such that θ∗ + εθ has nonnegative components. Since
VG(θ∗ + εθ) = VGθ∗ + εVGθ = 0, we know that θ∗ + εθ ∈ ker(BG). Again using
linearity and the fact that θ∗ ∈ ker(BG), we obtain that θ ∈ ker(BG).

With the rank-nullity theorem, this gives rank(BG) = rank(VG) = k. Hence,
there is a unique vector (hl1(x), . . . , hlk(x)) ∈ Rk such that one has ∂l S̄(x,G) =∑k

m=1 hlm(x)V̄m(x,G). Since G ∈ F was arbitrary, the assertion at (3.2) follows.
The second part of the claim can be seen as follows. For x ∈ int(A), pick

F1, . . . ,Fk ∈ F such that V̄ (x,F1), . . . , V̄ (x,Fk) are linearly independent and
let V(z) be the matrix with columns V̄ (z,Fi), i ∈ {1, . . . , k} for z ∈ int(A). Due
to assumption (V2) or (V3), V(z) has full rank in some neighborhood U of x.
Let r ∈ {1, . . . , k} and let er be the r th standard unit vector of Rk . We define
λ(z) := V(z)−1er for z ∈ U . Taking the inverse of a matrix is a continuously dif-
ferentiable operation, so it is in particular locally Lipschitz continuous. Therefore,
the vector λ inherits the regularity properties of V̄ (z,Fi), that is, under (V2) λ

is continuous, and under (V3) λ is locally Lipschitz continuous. Therefore, these
properties carry over to h because for l ∈ {1, . . . , k}, z ∈ U

hlr(z) =
k∑

i=1

λi (z)
k∑

m=1

hlm(z)V̄m(z,Fi) =
k∑

i=1

λi (z)∂l S̄m(z,Fi)

using the assumptions on S. !

PROOF OF PROPOSITIONS 4.2 AND 4.4. We show parts (i) of the two propo-
sitions simultaneously. We have that ∂l V̄r (x,F ) = 0 for all l, r ∈ {1, . . . , k}, l ≠ r ,
and x ∈ int(A), F ∈ F . Equation (3.3) evaluated at x = t = T (F ) yields

hrl(t)∂l V̄l(t,F ) = hlr(t)∂r V̄r (t,F ).(7.2)

If (V4) holds, then (7.2) implies that hrl(t) = 0 for r ≠ l, hence we obtain (4.2)
with the surjectivity of T . On the other hand, if Vr(x, y) = q(y)xm − pm(y), (7.2)
implies that hrl(t) = hlr(t), whence the second part of (4.4) is shown, again using
the surjectivity of T . In both cases, (3.3) is equivalent to

k∑

m=1

(
∂lhrm(x) − ∂rhlm(x)

)
V̄m(x,F ) = 0.(7.3)

Using assumption (V1), there are F1, . . . ,Fk ∈ F such that the vectors V̄ (x,F1),

. . . , V̄ (x,Fk) are linearly independent. This yields that ∂lhrm(x) = ∂rhlm(x) for
almost all x ∈ int(A). For Proposition 4.2, we can conclude that ∂lhrr (x) =
∂rhlr (x) = 0 for r ≠ l for almost all x ∈ int(A). Consequently, invoking that A
is connected, the functions hmm only depend on xm and we can write hmm(x) =
gm(xm) for some function gm: A′

m → R. By Lemma 2.4(i), for v ∈ Sk−1, t =
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T (F ) ∈ int(A), the function s )→ S̄(t + sv,F ) has a global unique minimum at
s = 0, hence

v⊤∇S̄(t + sv,F ) =
k∑

m=1

gm(tm + svm)V̄m(tm + svm,F )vm

vanishes for s = 0, is negative for s < 0 and positive for s > 0, where s is in some
neighborhood of zero. Choosing v as the lth standard basis vector of Rk we obtain
that gl > 0 exploiting the orientation of Vl and the surjectivity of T .

For Proposition 4.4(i) to show the assertion about the definiteness of h, ob-
serve that for v ∈ Sk−1, t = T (F ) ∈ int(A) we have V̄ (t + sv,F ) = q̄(F )sv where
q̄(F ) > 0. Hence, v⊤∇S̄(t + sv,F ) = q̄(F )sv⊤h(t + sv)v, which implies the
claim using again the surjectivity of T .

For part (ii) of Proposition 4.2, the sufficiency is immediate; see the proof of
Lemma 2.6. For necessity, we apply Proposition 3.4 and part (i) such that

S(x, y) =
k∑

m=1

∫ xm

zm

gm(v)Vm(v, y)dv + a(y),

for almost all (x, y) ∈ A × O, where z ∈ int(A) is a star point of int(A) and a is
an F -integrable function. Let t = T (F ) and xm ≠ tm. The strict consistency of S
implies that S̄(t,F ) < S̄(t1, . . . , tm−1, xm, tm+1, . . . , tm). This means S̄m(tm,F ) <
S̄m(xm,F ) with Sm(xm, y) := ∫ xm

zm
gm(v)Vm(v, y)dv + (1/k)a(y).

For part (ii) of Proposition 4.4, observe that due to part (i) h is the Hessian of φ,
and thus, φ is strictly convex. For the sufficiency of the form (4.5), let x ≠ t =
T (F ) for some F ∈ F . Then

S̄(x,F ) − S̄(t,F ) = q̄(F )
(
φ(t) − φ(x) + 〈∇φ(x), x − t

〉)
> 0

due to the strict convexity of φ and q̄(F ) > 0. For the necessity of the form (4.5),
apply Proposition 3.4 and use partial integration. !

PROOF OF THEOREM 5.2. (i) The second part of Theorem 5.2(ii) implies the
k-elicitability of T .

(ii) Let S: A × R → R be of the form (5.2), Gk be convex and the functions
at (5.3) be increasing. Let F ∈ F , x = (x1, . . . , xk) ∈ A and set t = (t1, . . . , tk) =
T (F ), w = min(xk, tk). Then we obtain

S(x, y) = −Gk(xk) + Gk(w)(xk − y) + a(y)

+
k−1∑

r=1

(
1{y ≤ xr} − qr

)(
Gr(xr) + pr

qr
Gk(w)(xr − y)

)

− 1{y ≤ xr}Gr(y) + (
Gk(xk) − Gk(w)

)

×
(

xk +
k−1∑

m=1

pm

qm

(
1{y ≤ xm}(xm − y) − qmxm

)
)

.
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This implies that S̄(x,F ) − S̄(t,F ) = R1 + R2 with

R1 =
k−1∑

r=1

(
F(xr) − qr

)(
Gr(xr) + pr

qr
Gk(w)xr

)

−
∫ xr

tr

(
Gr(y) + pr

qr
Gk(w)y

)
dF(y),

R2 = (
Gk(xk) − Gk(w)

)
(

xk +
k−1∑

m=1

pm

qm

(∫ xm

−∞
(xm − y)dF(y) − qmxm

))

− Gk(xk) + Gk(tk) + Gk(w)(xk − tk).

We denote the r th summand of R1 by ξr and suppose that tr < xr . Due to
the assumptions, the term Gr(y) + (pr/qr)Gk(w)y is increasing in y ∈ [tr , xr ]
which implies that ξr ≥ (F (xr) − qr)(Gr(xr) + (pr/qr)Gk(w)xr) − (F (xr) −
F(tr))(Gr(xr) + (pr/qr)Gk(w)xr) = 0. Analogously, one can show that ξr ≥ 0
if xr < tr . If F has a unique qr -quantile and the term Gr(y) + (pr/qr)Gk(w)y is
strictly increasing in y, then we even get ξr > 0 if xr ≠ tr .

Now consider the term R2. Splitting the integrals from ∞ to xm into integrals
from −∞ to tm and from tm to xm and partially integrating the latter, we obtain

R2 = (
Gk(xk) − Gk(w)

)

×
(

xk +
k−1∑

m=1

pm

(
tm − xm − 1

qm

∫ tm

−∞
y dF(y) + 1

qm

∫ xm

tm
F (y)dy

))

− Gk(xk) + Gk(tk) + Gk(w)(xk − tk)

= (
Gk(xk) − Gk(w)

)
(

xk − tk +
k−1∑

m=1

pm

(
tm − xm + 1

qm

∫ xm

tm
F (y)dy

))

− Gk(xk) + Gk(tk) + Gk(w)(xk − tk)

≥ (
Gk(xk) − Gk(w)

)
(xk − tk) − Gk(xk) + Gk(tk) + Gk(w)(xk − tk)

= Gk(tk) − Gk(xk) − Gk(xk)(tk − xk) ≥ 0.

The first inequality is due to the fact that (i) Gk is increasing and (ii) for xm ≠ tm
we have (1/qm)

∫ xm
tm

F (y)dy ≥ xm − tm with strict inequality if F has a unique
qm-quantile. The last inequality is due to the fact that Gk is convex. The inequality
is strict if xk ≠ tk and if Gk is strictly convex.

(iii) If f denotes the density of F , it holds that

ESα(F ) = 1
α

∫ F−1(α)

−∞
yf (y)dy, α ∈ (0,1].(7.4)

We first show the assertions concerning V given at (5.4). Let F ∈ F with den-
sity f = F ′ and let t = T (F ). Then we have for m ∈ {1, . . . , k − 1}, x ∈ A, that
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V̄m(x,F ) = F(xm) − qm which is zero if and only if xm = tm. On the other hand,
using the identity at (7.4)

V̄k(t1, . . . , tk−1, xk,F ) = xk −
k−1∑

m=1

pm

qm

∫ tm

−∞
yf (y)dy = xk − tk.

Hence, it follows that V is a strict F -identification function for T . Moreover, V
satisfies assumption (V3), and we have for m ∈ {1, . . . , k − 1}, l ∈ {1, . . . , k} and
x ∈ int(A) that ∂l V̄m(x,F ) = 0 if l ≠ m and ∂mV̄m(x,F ) = f (xm), ∂mV̄k(x,F ) =
−(pm/qm)xmf (xm) and ∂kV̄k(x,F ) = 1.

From now on, we assume that t = T (F ) ∈ int(A). Let S be a strictly F -
consistent scoring function for T satisfying (S2). Then we can apply Theorem 3.2
and Corollary 3.3 to get that there are locally Lipschitz continuous functions
hlm: int(A) → R such that (3.2) and (3.3) hold. If we evaluate (3.3) for l = k,
m ∈ {1, . . . , k − 1} at the point x = t , we get

hkm(t)∂mV̄m(t,F ) + hkk(t)∂mV̄k(t,F ) = hmk(t)∂kV̄k(t,F ),

which takes the form hkm(t)f (tm) − hkk(t)(pm/qm)tmf (tm) = hmk(t). Invok-
ing assumption (V4) for (V1, . . . , Vk−1), we get that necessarily hmk(t) = 0 and
hkm(t) = (pm/qm)tmhkk(t). So with the surjectivity of T , we get for x ∈ int(A)
that

hmk(x) = 0, hkm(x) = pm

qm
xmhkk(x) for all m ∈ {1, . . . , k − 1}.(7.5)

Now, we can evaluate (3.3) for m, l ∈ {1, . . . , k − 1}, m ≠ l, at x = t and use
the first part of (7.5) to get that hml(t)f (tl) = hlm(t)f (tm). Using again the same
argument, we get for x ∈ int(A) that

hml(x) = 0 for all m, l ∈ {1, . . . , k − 1}, l ≠ m.(7.6)

At this stage, we can evaluate (3.3) for l ∈ {1, . . . , k − 1}, m ∈ {1, . . . , k}, m ≠ l,
for some x ∈ int(A). Using (7.5) and (7.6), we obtain

k∑

i=1

(
∂lhmi(x) − ∂mhli(x)

)
V̄i(xi,F ) = 0.

Invoking assumption (V1) and using (7.5) and (7.6), we can conclude that for
almost all x ∈ A,

∂lhmm(x) = 0 for all l ∈ {1, . . . , k − 1},m ∈ {1, . . . , k}, l ≠ m(7.7)

and

∂khll(x) = pl

ql
hkk(x) for all l ∈ {1, . . . , k − 1}.(7.8)

Equation (7.7) for m = k shows that there is a locally Lipschitz continuous func-
tion gk: A′

k → R such that for all (x1, . . . , xk) ∈ int(A), we have hkk(x1, . . . , xk) =
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gk(xk). Equation (7.8) together with (7.7) gives that for l ∈ {1, . . . , k − 1}, and
(x1, . . . , xk) ∈ int(A), we obtain hll(x1, . . . , xk) = (pl/ql)Gk(xk) + gl(xl), where
gl: A′

l → R is locally Lipschitz continuous and Gk: A′
k → R is such that G′

k = gk .
Knowing the form of the matrix-valued function h, we can apply Proposi-

tion 3.4. Let z ∈ int(A) be some star point. Then there is some F -integrable func-
tion b: R → R such that

S(x, y) =
k−1∑

r=1

∫ xr

zr

(
pr

qr
Gk(zk) + gr(v)

)(
1{y ≤ v} − qr

)
dv

+ (
Gk(xk) − Gk(zk)

) k−1∑

m=1

pm

qm

(
xm

(
1{y ≤ xm} − qm

) − y1{y ≤ xm})(7.9)

+ Gk(xk)xk − Gk(xk) + b(y),

for almost all (x, y) where Gk: A′
k → R is such that G′

k = Gk . One can check by
a straightforward computation that the representation of S at (7.9) is equivalent to
the one at (5.2) upon choosing a suitable F -integrable function a: R → R.

It remains to show that Gk is strictly convex and that the functions given at (5.3)
are strictly increasing. To this end, we use Lemma 2.4. Let D = {s ∈ R: t + sv ∈
int(A)}, and let v = (v1, . . . , vk) ∈ Sk−1 and without loss of generality assume
vk ≥ 0. We define ψ :D → R by ψ(s) := S̄(t + sv,F ), that is,

ψ(s) =
k−1∑

r=1

∫ s̄r

zr

(
pr

qr
Gk(zk) + gr(v)

)(
F(v) − qr

)
dv

+ (
Gk(s̄k) − Gk(zk)

) k−1∑

m=1

pm

qm

(
s̄m

(
F(s̄m) − qm

) −
∫ s̄m

−∞
yf (y)dy

)

+ s̄kGk(s̄k) − Gk(s̄k) + b̄(F ),

where we use the notation s̄ = t + sv. The function ψ has a minimum at s = 0.
Hence, there is ε > 0 such that ψ ′(s) < 0 for s ∈ (−ε,0) and ψ ′(s) > 0 for s ∈
(0, ε). If vk = 0, then

ψ ′(s) =
k−1∑

r=1

(
F(s̄r ) − qr

)
vr

(
gr(s̄r ) + pr

qr
Gk(s̄k)

)
.

Choosing v as the r th standard basis vector of Rk for r ∈ {1, . . . , k − 1}, we obtain
that gr(s̄r ) + (pr/qr)Gk(s̄k) > 0. Exploiting the surjectivity of T we can deduce
that the functions at (5.3) are strictly increasing. On the other hand, if v is the kth
standard basis vector, we obtain that ψ ′(s) = gk(s̄k)s. Again using the surjectivity
of T , we get that gk > 0 which shows the strict convexity of Gk . !

PROOF OF COROLLARY 5.5. The sufficiency follows directly from Theo-
rem 5.2. We will show that G2 is necessarily bounded below. Suppose the contrary.
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For the action domain A0, we have A′
1,x2

= [x2,∞), therefore, for x2 ≤ x1 < x′
1

(5.3) yields −∞ < G1(x1)−G1(x
′
1) ≤ (1/α)G2(x2)(x

′
1 −x1). Letting x2 → −∞,

one obtains a contradiction. Let C2 = limx2→−∞ G2(x2) > −∞. Then, by (5.3),
we obtain that G1(x1) + (C2/α)x1 is increasing in x1 ∈ R. We can write S at (5.5)
as

S(x1, x2, y) = (
G2(x2) − C2

)( 1
α

1{y ≤ x1}(x1 − y) − (x1 − x2)

)

+ (
1{y ≤ x1} − α

)(
G1(x1) + C2

α
x1

)

− 1{y ≤ x1}
(
G1(y) + C2

α
y

)

− (G2(x2) − C2x2
) + a(y).

The last expression is again of the form at (5.5) with increasing functions G̃1(x1) =
G1(x1) + (C2/α)x1 and G̃2(x2) = G2(x2) − C2 ≥ 0. !
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SUPPLEMENTARY MATERIAL

Supplement to “Higher order elicitability and Osband’s principle” (DOI:
10.1214/16-AOS1439SUPP; .pdf). The proofs of Proposition 3.4 and Corollary 5.4
are deferred to this supplement.
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Proof of Proposition 3.4. Let x ∈ int(A), F ∈ F and let z ∈ int(A) be
some star point. Using a telescoping argument we obtain

S̄(x, F )− S̄(z, F ) = S̄(x1, . . . , xk, F )− S̄(x1, . . . , xk−1, zk, F )

+ S̄(x1, . . . , xk−1, F )− S̄(x1, . . . , xk−2, zk−1, zk, F )

+ . . .

+ S̄(x1, z2, . . . , zk, F )− S̄(z1, . . . , zk, F )

=

k∑

r=1

∫ xr

zr

∂rS̄(x1, . . . , xr−1, v, zr+1, . . . , zk, F ) dv.

Invoking the identity at (3.2) yields (3.4) for the expected scores with ā(F ) =
S̄(z, F ). We denote the right hand side of (3.4) minus a(y) by I(x, y), hence
Ī(x, F ) = S̄(x, F )− S̄(z, F ).

For almost all y ∈ O, the set {x ∈ Rk | (x, y) ∈ Cc} =: Ay has k-
dimensional Lebesgue measure zero, where Cc is the complement of the set
C defined in assumption (VS1). Let y ∈ O be such that Ay has measure zero.
Then we obtain that for almost all x the sets {xi ∈ R | (x, y) ∈ Ay} =: Ni

have one-dimensional Lebesgue-measure zero for all i ∈ {1, . . . , k}. There-
fore, S(x, ·) and I(x, ·) are continuous in y for almost all x.

Let (Fn)n∈N be a sequence as in assumption (F1), that is, (Fn)n∈N con-
verges weakly to δy and the support of all Fn is contained in some compact
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point forecasts, propriety, scoring functions, scoring rules, spectral risk measures, Value
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2 T. FISSLER AND J. F. ZIEGEL

set K. Let ϕ be a function on O which is locally bounded and continuous
at y. By the dominated convergence theorem and the continuous mapping
theorem we get that then

∫
O ϕdFn → ϕ(y).

By this argument (recalling that S(x, ·), V (x, ·) are assumed to be lo-
cally bounded), if S(x, ·) and I(x, ·) are continuous at y, then S̄(x, Fn) −
Ī(x, Fn) → S(x, y) − I(x, y). We have shown that S̄(x, Fn) − Ī(x, Fn) does
not depend on x, hence the same is true for the limit. Therefore, we can de-
fine a(y) = S(x, y)− I(x, y) for almost all y. The function a is F-integrable,
since S and I are F-integrable.

Proof of Corollary 5.4. For the first part of the claim, note that if
µ({1}) = 1, then νµ coincides with the expectation and is thus 1-elicitable. If
µ({1}) = 0, the assertion of the corollary is a direct consequence of Theorem
5.2 (i). If λ := µ({1}) ∈ (0, 1), then we can write

µ =

k−2∑

m=1

pmδqm + λδ1,

where pm ∈ (0, 1),
∑k−2

m=1 pm = 1− λ, qm ∈ (0, 1) and the qm’s are pairwise
distinct. Define the probability measure

µ̃ :=

k−2∑

m=1

pm
1− λδqm .

Using Theorem 5.2 (i), the functional (T ′1, . . . , T
′
k−1) : F → Rk−1 is (k − 1)-

elicitable where T ′m(F ) := F−1(qm), m ∈ {1, . . . , k − 2}, and T ′k−1(F ) =
νµ̃(F ). Using Lemma 2.6 we can deduce that the functional (T ′1, . . . , T

′
k−1, νδ1) :

F → Rk is k-elicitable. Note that

νµ = (1− λ)νµ̃ + λνδ1 .

Hence, we can apply the revelation principle to deduce that the functional
T = (T1, . . . , Tk) : F → Rk is k-elicitable where Tm = T ′m,m ∈ {1, . . . , k−2},
Tk−1 = νδ1 and Tk = νµ.
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3.2. Osband’s Principle for identification functions

3.2. Osband’s Principle for identification functions

As we have seen in Theorem 3.2 of Fissler and Ziegel (2016), Osband’s principle
gives a necessary connection between the gradient of a strictly consistent scoring
function and a strict identification function. One can use the same reasoning of
the proof to characterize the class of strict identification functions.

Let V : A×O→ Rk be a strict F-identification function for a functional T : F →
A ⊆ Rk. Let h : A→ Rk×k be matrix valued function. Then the function

hV : A× O→ Rk, (x, y) 7→ h(x)V (x, y).

is an F-identification function for T . If det(h) 6= 0, it is even a strict F-identification
function for T . We claim that the class of strict F-identification functions for T
is given by

V = {hV : A× O→ Rk, det(h) 6= 0}.
To prove the necessity, one can use the same argumentation as in Osband’s prin-
ciple.

Proposition 3.2.1. Let T : F → A ⊆ Rk be a surjective functional with a strict
F-identification function V : A×O→ Rk. Then the following two assertions hold.

(i) If h : A → Rk×k is a matrix-valued function with det(h) 6= 0, then hV : A ×
O → Rk, (x, y) 7→ h(x)V (x, y), is also a strict F-identification function for
T .

(ii) Let V ′ : A × O → Rk be a strict F-identification function for T such that
both V and V ′ satisfy Assumption (V1) in Fissler and Ziegel (2016). Then
there is a matrix-valued function h : int(A) → Rk×k with det(h) 6= 0, such
that

V̄ ′(x, F ) = h(x)V̄ (x, F )

for all x ∈ int(A) and for all F ∈ F .

Proof. Assertion (i) is straight forward. Concerning (ii), the proof of the existence
of h follows along the lines of the proof of Osband’s principle, which is Theorem
3.2 in Fissler and Ziegel (2016) upon replacing ∇S̄(x, F ) by V̄ ′(x, F ). To show
the invertibility of h(x), one can interchange the roles of V and V ′. Hence, one
obtains the existence of a matrix-valued function g : int(A)→ Rk×k such that

V̄ (x, F ) = g(x)V̄ ′(x, F )

for all x ∈ int(A) and for all F ∈ F . Apparently, using both identities and
exploiting Assumption (V1), one gets that g(x) = (h(x))−1.

Remark 3.2.2. If the two identification functions V and V ′ in Proposition 3.2.1
(ii) both satisfy assumption (V2) in Fissler and Ziegel (2016) then h is also contin-
uous. Therefore, since the determinant is also a continuous map, either det(h) > 0
or det(h) < 0.
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3. Higher Order Elicitability and Osband’s Principle

Remark 3.2.3. Patton (2015) considered the case where the class F is such that
two a priori different functionals coincide. In particular, he considers the case
where F contains only symmetric distributions such that the mean and the median
coincide (of course under the integrability condition that the mean exists). It is
immediate that any convex-combination of a strictly consistent scoring function
for the mean and for the median elicits this functional. Consequently, one can use
both Vmean(x, y) = x−y and Vmedian(x, y) = sgn(x−y) as identification functions.
However, there is no h : R→ R such that Vmean(x, y) = h(x)Vmedian(x, y).

What seems as a contradiction can be explained by the fact that assuming the
convexity of F is crucial for the proof of Osband’s principle. However, the convex
combination of two symmetric distributions is generally not symmetric (provided
that the two distributions have a different center).1

3.3. Eliciting the divergence of a strictly consistent
scoring function

There is an interesting parallel between the pair (mean, variance) = (E,Var) and
the pair (VaRα,ESα), α ∈ (0, 1). Using the revelation principle in the first case
and invoking Corollary 5.5 in Fissler and Ziegel (2016) both functionals are 2-
elicitable. However, there is a stronger connection. Consider the scoring functions

SE(x, y) = (x− y)2, SVaRα(x, y) =
1

α
1{y ≤ x}(x− y)− x.

Under mild regularity conditions on F , they are strictly F-consistent scoring func-
tions for E and VaRα, respectively. Moreover, for a distribution F ∈ F , a direct
computation yields

min
x∈R

S̄E(x, F ) = Var(F ), min
x∈R

S̄VaRα(x, F ) = −ESα(F ).

And moreover, a corresponding relation is also true for the spectral risk mea-
sures with a finitely supported spectral measure considered in Fissler and Ziegel
(2016, Theorem 5.2). That is, for some pairwise disjoint α1, . . . , αk ∈ (0, 1) and
p1, . . . , pk ∈ (0, 1) with

∑k
i=1 pi = 1 one has

min
x∈Rk

k∑

i=1

pi S̄VaRαi
(xi, F ) = −

k∑

i=1

pi ESαi(F ) = −νµ(F ),

using the notation of Definition 5.1 in Fissler and Ziegel (2016) with µ =
∑k

i=1 piδαi .
While writing the paper Fissler and Ziegel (2016), we were not aware of these con-
nections. However, shortly after finishing a preprint of this article, Frongillo and
Kash (2015b) realized this connection and could prove that this is not just a
coincidence. They showed the following theorem.

1And if all distributions in F had the same center, then Assumption (V1) would be violated.

68



3.3. Eliciting the divergence of a strictly consistent scoring function

Theorem 3.3.1 (Frongillo and Kash (2015b)). Under suitable regularity assump-
tions, the following holds. Let T : F → A ⊆ Rk be a k-elicitable functional with a
strictly consistent scoring function S : A× O→ R. Define the functional

T ′ : F → R, F 7→ min
x∈A

S̄(x, F ) = S̄(T (F ), F ).

Then the functional (T, T ′) : F → Rk+1 is (k + 1)-elicitable.

Invoking the revelation principle (Proposition 2.3.2), it directly follows that,
under the conditions of Theorem 3.3.1, the pair (T,−T ′) is also (k+ 1)-elicitable.

Remark 3.3.2. Since every (strictly) consistent scoring function S induces a
proper scoring rule R(G, y) = S(T (G), y) by Proposition 2.3.4, one can consider
the term S̄(T (F ), F ) = R̄(F, F ) as the divergence of the scoring rule R; see Gneit-
ing and Raftery (2007).

With their analysis, Frongillo and Kash (2015b) were also able to solve the
question posed in the discussion of Fissler and Ziegel (2016) about the elicitabil-
ity order of a spectral risk measure with a finitely supported spectral measure.
According to our definition

“the elicitability order of a real-valued functional T as the smallest number
k such that the functional is a component of a k-elicitable functional. It is
clear that the elicitability order of the variance is two, and we have shown
that the same is true for ESα for reasonably large classes F . For spectral risk
measures νµ, the elicitability order is at most L+1, where L is the cardinality
of the support [of µ]” (Fissler and Ziegel, 2016, p. 1699)

Frongillo and Kash (2015b, Definition 6) define the elicitation complexity of a
functional T as the smallest number k such that there is a function f and a k-
elicitable functional T ′ such that T = f ◦ T ′. So it is clear that the elicitation
complexity is less than or equal to the elicitability order.2 However, they prove
for the relevant case µ({1}) < 1 that the elicitation complexity of the spectral risk
measure νµ is L + 1. This proves also that the elicitability order of νµ is exactly
L+ 1.

2For the elicitability order, one only considers projections as candidates for the map f in the
definition of the elicitation complexity.
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4. Scoring Functions Beyond Strict
Consistency

If a strictly consistent scoring function S for a functional T is intrinsically mean-
ingful in the sense that it correctly specifies the costs of an incorrect forecast, it is
no problem to rank competing forecasts in terms of their realized scores, no matter
if one of them was able to report the ‘true’ functional value or not. On the other
hand, if a strictly consistent scoring function was tailored to elicit a functional T
and consequently is just a tool, things look different. Ehm et al. (2016, p. 506)
write:

“As there is no obvious reason for a consistent scoring function to be preferred
over any other, this raises the question which one of the many alternatives
to use.”

To give guidance which (strictly consistent) scoring functions to choose, recall that
the strict consistency of S only justifies a comparison of two competing forecasts
if one of them reports the true functional value. If both of them are misspecified,
it is per se not possible to draw a conclusion which forecast is ‘closer’ to the
true functional value by comparing the realized scores. To this end, some notions
of order-sensitivity are desirable. According to Lambert (2013) we say that a
scoring function S is F-order-sensitive for a one-dimensional functional T : F →
A ⊆ R if for any F ∈ F and any x, z ∈ A such that either z ≤ x ≤ T (F ) or
z ≥ x ≥ T (F ), then S̄(x, F ) ≤ S̄(z, F ). That means if a forecast lies between the
true functional value and some other forecast, then issuing the forecast between
should yield a smaller expected score than issuing the forecast further away. In
particular, order-sensitivity implies consistency. Vice versa, under weak regularity
conditions on the functional, strict consistency also implies order-sensitivity if the
functional is real-valued. However, this notion does not allow for a comparison of
two misspecified forecasts lying on different sides of the true functional value. This
shortcoming could be overcome by introducing a kind of metrical order-sensitivity
imposing that d(x, T (F )) ≤ d(z, T (F )) implies that S̄(x, F ) ≤ S̄(z, F ) where d
is some metric on A. This notion of metrical order-sensitivity has a long history
in the context of probabilistic forecasting and dates back to Friedman (1983) and
Nau (1985). They call a scoring rule R : F × O → R ‘effective’ relative to some
probability metric d on F if for all F,G,H ∈ F it holds that R̄(G,F ) ≤ R̄(H,F )
if and only if d(G,F ) ≤ d(H,F ).

Let us consider the other side of the coin and draw attention to the analytic
properties of the expected score x 7→ S̄(x, F ), x ∈ A, for some scoring function S
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4. Scoring Functions Beyond Strict Consistency

and some distribution F ∈ F . The (strict) consistency of S for some functional
T is then equivalent to the fact that the expected score has a (unique) global
minimum at x = T (F ). The order-sensitivity strives for assessing monotonicity
properties of the expected score. Whilst this notion is straight forward for the one-
dimensional case due to the canonical order on R, one faces the burden of choice
when generalizing this notion to the higher-dimensional setting due to the very
fact that Rk has no total order. In Section 4.1, we introduce three generalizations
of order-sensitivity in the higher-dimensional setting that appear natural to us:
metrical order-sensitivity, componentwise order-sensitivity and order-sensitivity
on line segments. Furthermore, we discuss their connections and strive to give
conditions when such scoring functions exist and of what form they are. Besides
this discussion, we give connections to the notion of oriented identification func-
tions. Moreover, passing to the level of the prediction space setting (see Subsection
2.2.3) we recall a different notion of order-sensitivity in the case of two ideal fore-
casters when their information sets are nested; see Holzmann and Eulert (2014).
As a technical result, we show that under weak regularity assumptions on T , the
expected score of a strictly consistent scoring function has a unique local minimum
– which, of course, coincides with the global minimum at x = T (F ). Accompa-
nied with a result on self-calibration (which is a kind of continuity property of the
inverse of the expected score), these two findings are of interest on their own in
the context of learning.

Besides different notions of monotonicity, the expected score can have other
appealing properties such as convexity or quasi-convexity. Apparently, the con-
vexity of the expected score is a desirable property in the context of learning and
regression, leading to convex optimization problems; see Subsection 4.2.1. How-
ever, the motivation is not limited to these two fields. In the context of forecast
comparison, convex scoring functions incentivize to maximize sharpness, subject
to calibration, thereby generalizing a paradigm raised by Gneiting et al. (2007) in
the framework of probabilistic forecasts to point forecasts. Finally, (quasi-)convex
scoring functions have an insurance-like interpretation and give incentives for a
collaboration between forecasters. An exposition of these diverse motivations and
possible applications as well as classifications of (quasi-)convex strictly consistent
scoring functions for some popular functionals are given in Section 4.2.

Many interesting functionals, e.g. coherent risk measures, are positively homoge-
neous. Then, simultaneously changing the unit of the observation and the forecast
should not affect the ranking of competing forecasts. However, as shown in Patton
(2011), this requires using positively homogenous scoring functions as well. If a
functional is translation-equivariant – again standard examples are given by co-
herent risk measure – then the translation invariance of the corresponding scoring
function is again a natural requirement. In Section 4.3 we give a formal concept
of generalized equivariance of functional, nesting the practically important cases
of homogeneity and translation-equivariance. We discuss that it is a natural re-
quirement on a ‘good’ scoring function to be compatible with the equivariance of
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4.1. Order-Sensitivity

the functional. This leads to the notion of being order-preserving.

Section 4.4 briefly classifies possible applications for the three preceding notions
of order-sensitivity, (quasi-)convexity, and equivariance / order-preservingness.

4.1. Order-Sensitivity

4.1.1. Different notions of order-sensitivity

As already discussed, the idea of order-sensitivity is that a forecast lying between
the true functional value and some other forecast is also assigned an expected
score lying between the two other expected scores. If the action domain is one
dimensional, there are only two cases to consider: both forecasts are on the left
hand side of the functional value or on the right hand side. However, if A ⊆ Rk
for k ≥ 2, the notion of ‘lying between’ is ambiguous. Two obvious interpretations
for the multidimensional case are the componentwise interpretation and the inter-
pretation that one forecast is the convex combination of the true functional value
and the other forecast. In other words, the latter means that the two forecasts
and the true functional value are lying on the same line segment and on this line
segment, the two forecasts are on the same side of the functional. This amounts to
the two formal definitions where we fix some generic functional T : F → A ⊆ Rk
and a scoring function S : A× O→ R.

Definition 4.1.1 (Componentwise order-sensitivity). A scoring function S is com-
ponentwise F-order-sensitive for T if for all F ∈ F , t = T (F ) and for all x, z ∈ A
we have that

z ≤ x ≤ t or z ≥ x ≥ t =⇒ S̄(x, F ) ≤ S̄(z, F ), (4.1.1)

where the inequalities on the left hand side are meant componentwise. If addi-
tionally

(
z ≤ x ≤ t or z ≥ x ≥ t

)
and x 6= z =⇒ S̄(x, F ) < S̄(z, F ), (4.1.2)

we call S strictly componentwise F-order-sensitive for T .

Remark 4.1.2. In economic terms, a componentwise order-sensitive scoring func-
tion rewards Pareto improvements1 in the sense that improving the prediction
performance in one component without deteriorating the prediction ability in the
other components results in a lower expected score.
1The definition of the Pareto principle according to Scott and Marshall (2009): “A principle of

welfare economics derived from the writings of Vilfredo Pareto, which states that a legitimate
welfare improvement occurs when a particular change makes at least one person better off,
without making any other person worse off. A market exchange which affects nobody ad-
versely is considered to be a ‘Pareto-improvement’ since it leaves one or more persons better
off. ‘Pareto optimality’ is said to exist when the distribution of economic welfare cannot be
improved for one individual without reducing that of another.”
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4. Scoring Functions Beyond Strict Consistency

Definition 4.1.3 (Order-sensitivity on line segments). Let ‖ · ‖ be the Euclidean
norm on Rk. A scoring function S is F-order-sensitive on line segments for a
functional T if for all F ∈ F , t = T (F ), and for all v ∈ Sk−1 = {x ∈ Rk : ‖x‖ = 1}
the map

ψ : D = {s ∈ [0,∞) : t+ sv ∈ A} → R, s 7→ S̄(t+ sv, F ) (4.1.3)

is increasing. If the map ψ is strictly increasing, we call S strictly F-order-sensitive
on line segments for T .

Remark 4.1.4. The definition of order-sensitivity on line segments does not de-
pend on the particular choice of the norm.

We have already discussed that these two notions of order-sensitivity do not
allow for a comparison of any two misspecified forecasts, no matter where they
are relative to the true functional value. An intuitive requirement could be ‘the
closer to the true functional value the smaller the expected score’, thus calling for
the notion of a metric.

Definition 4.1.5 (Metrical order-sensitivity). A scoring function S is metrically
F-order-sensitive for T relative to some metric d on A if for all F ∈ F , t = T (F )
and for all x, z ∈ A we have that

d(x, t) ≤ d(z, t) =⇒ S̄(x, F ) ≤ S̄(z, F ). (4.1.4)

If additionally the inequalities in (4.1.4) are strict, we say that S is strictly met-
rically F-order-sensitive for T relative to d.

Since, for a fixed functional T and some fixed distribution F , we always have a
fixed reference point T (F ) and we have the induced vector-space structure of Rk
on A, we shall tacitly assume throughout the thesis that the metric is induced by
a norm. Recalling the fact that all norms are equivalent on Rk, this means that we
also work with the usual (Euclidean) topology on A and, in particular, the notion
of continuity is the same. Sometimes, when we need that the norm ‖x‖, x ∈ A, is
sensitive with respect to changes in any of the components of x, we will assume
that the norm corresponds to an `p-norm ‖ · ‖p where ‖x‖p := (

∑k
i=1 |xi|p)1/p,

where usually p ∈ [1,∞) and sometimes we will consider p =∞ separately (then,
‖x‖∞ = supi=1,...,k |xi|). This has the advantage of a tighter presentation of our
analysis and results, and should also cover most cases of applied interest on a
finite-dimensional action domain. However, for a more general action domain, and
especially for the infinite-dimensional case of forecasting functions, or probabilisitic
forecasting, this assumption would be somehow restrictive and one should allow
for general metrics. But this is beyond the scope of this thesis and is relegated to
future work. Note that we will often not mention the norm / metric explicitly if
the choice of the norm / metric is clear from the context or does not matter.
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Remark 4.1.6. It is valuable to mention that, similarly to (strict) consistency, all
three notions of (strict) order-sensitivity are preserved by the equivalence relation
on scoring functions.

The three different notions of order-sensitivity have some inspiration from the
literature. The notion of componentwise order-sensitivity corresponds almost lit-
erally to the notion of accuracy-rewarding introduced by Lambert et al. (2008).
And apparently, metrically order-sensitivity scoring functions have their counter-
parts in the field of probabilistic forecasting in effective scoring rules introduced by
Friedman (1983) and further investigated by Nau (1985). Actually, the latter pa-
per – and in particular Proposition 3 therein which we will present in our notation
in the sequel – have also given the inspiration for the notion of order-sensitivity
on line segments.

Proposition 4.1.7 (Proposition 3 in Nau (1985)). Let R : F×O→ R be a scoring
rule and let F,G ∈ F , F 6= G and H = (1− λ)F + λG for some λ ∈ [0, 1). Then,
if R is proper, one has the inequality

R̄(H,F ) ≤ R̄(G,F ),

with a strict inequality if R is strictly proper.

It is obvious that any of the three notions of (strict) order-sensitivity implies
(strict) consistency. The next lemma formally states this result and gives some
logical implications concerning the different notions of order-sensitivity. The proof
is standard and therefore omitted.

Lemma 4.1.8. Let T : F → A ⊆ Rk be a functional and S : A×O→ R a scoring
function. Then the following implications hold.

(i) If S is (strictly) metrically F-order-sensitive for T relative to the `p-norm
for p ∈ [1,∞), then S is (strictly) componentwise F-order-sensitive for T .

(i’) If S is (strictly) metrically F-order-sensitive for T relative to the `∞-norm,
then S is componentwise F-order-sensitive for T .

(i”) If S is (strictly) metrically F-order-sensitive for T relative to the `∞-norm,
then S is (strictly) F-consistent for T .

(ii) If S is (strictly) componentwise F-order-sensitive for T , then S is (strictly)
F-order-sensitive on line segments for T .

(iii) If S is (strictly) F-order-sensitive on line segments for T , then S is (strictly)
F-consistent for T .

The purpose of points (i’) and (i”) in Lemma 4.1.8 is to specify point (i) for
the case of the `∞-norm. Essentially, the only difference is that metrical order-
sensitivity with respect to the `∞-norm – whether strict or not – does not nec-
essarily imply strict componentwise order-sensitivity, but merely implies compo-
nentwise order-sensitivity.
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4.1.2. The one-dimensional case

Since the notions of componentwise order-sensitivity and order-sensitivity on line
segments coincide for k = 1, we will loosely refer to both notions as order-
sensitivity in the one-dimensional case, in contrast to metrical order-sensitivity.

Steinwart et al. (2014, Theorem 5 and Corollary 9) showed that under the
regularity conditions that the functional T : F → A ⊆ R is continuous and ‘strictly
locally non-constant’ – a property similar to assumption (V1) in Fissler and Ziegel
(2016) – the elicitability of T is equivalent to (i) T having convex level sets; (ii) the
existence of an oriented strict identification function for T ; and (iii) the existence
of an order-sensitive scoring function for T . Their setting is the following: As a
class F they consider measures which are absolutely continuous with respect to
some finite reference measure; they consider the topology which is induced by the
total variation distance on F ; and they use the usual Euclidean distance on A.
They say that a strict F-identification function for T is oriented if

V̄ (x, F )





< 0, x < T (F )

= 0, x = T (F )

> 0, x > T (F )

(4.1.5)

for any F ∈ F and x ∈ A; see Subsection 4.1.7 for a more detailed discussion of
oriented identification functions and their connections to order-sensitivity. Then,
they use Osband’s principle and a construction in the spirit of Proposition 3.4
in Fissler and Ziegel (2016) to show the existence of an F-order-sensitive scoring
function for T . Indeed, under the conditions of this proposition, one has the
following representation for any strictly F-consistent scoring function

S̄(x, F ) =

∫ x

z
h(v)V̄ (v, F ) dv + ā(F )

for all x ∈ A, F ∈ F , some z ∈ A, some F-integrable function a and a continuous
function h : int(A) → R. If V is oriented, then the strict F-consistency of S and
the surjectivity of T imply that h > 0 almost everywhere. This in turn implies
the strict F-order-sensitivity of S.

However, using an approach in the spirit of Proposition 4.1.7 one can omit to
use the machinery of Osband’s principle and hence dispense with a lot of regularity
assumptions on T and F . What is essential to assume is the mixture-continuity
of the functional T .

Definition 4.1.9 (Mixture-continuity). Let F be convex. A functional T : F →
A ⊆ Rk is called mixture-continuous if for all F,G ∈ F the map

[0, 1]→ R, λ 7→ T ((1− λ)F + λG)

is continuous.
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For the purposes of this thesis, it suffices to consider only the (induced) Eu-
clidean topology on A. However, especially if one works with an infinite dimen-
sional action domain, the choice of the topology plays a more important role.

Proposition 4.1.10. Let F be convex and T : F → A ⊆ R be a surjective and
mixture-continuous functional. Then any (strictly) F-consistent scoring function
for T is (strictly) F-order-sensitive for T .

The proof uses an argument which is quite similar to the proof of Nau (1985,
Proposition 3); see also Lambert (2013, Proposition 2) and Bellini and Bignozzi
(2015, Proposition 3.4).

Proof. Let F ∈ F and t = T (F ). Without loss of generality, we assume that t <
x < z for some x, z ∈ A. Then there exists some G ∈ F such that T (G) = z. Using
the mixture-continuity of T there is a λ ∈ (0, 1) such that for H = (1− λ)F + λG
one has T (H) = x. Due to the F-consistency of S one obtains that

(1− λ)S̄(x, F ) + λS̄(x,G) = S̄(x,H) ≤ S̄(z,H) = (1− λ)S̄(z, F ) + λS(z,G).

This is equivalent to

λ

1− λ
(
S̄(x,G)− S̄(z,G)

)
≤ S̄(z, F )− S̄(x, F ).

If S is F-consistent for T , the left hand side is non-negative which yields the claim.
If moreover S is strictly F-consistent, the left hand side is strictly positive and all
inequalities in the definition of order-sensitivity become strict.

It is quite appealing that one does not have to specify any topology on F to
define mixture-continuity because it suffices to work with the induced Euclidean
topology on [0, 1] and on A ⊆ Rk. Moreover, this criterion is often quite handsome
to check. For example, it is straight forward to see that the ratio of expectations
is mixture-continuous. Moreover, by the implicit function theorem it is possible to
verify the mixture-continuity of quantiles and expectiles directly under appropriate
regularity conditions (e.g., in the case of quantiles, all distributions in F should be
C1 with non-vanishing derivatives). However, we pursue a different approach and
generalize Bellini and Bignozzi (2015, Proposition 3.4c)). The main generalization
of our version is that our result is valid for distributions that do not have compact
support (however, the image of the functional must be bounded), and moreover,
we directly give a higher-dimensional version of it.

Proposition 4.1.11. Let T : F → Rk be an elicitable functional with a strictly
F-consistent scoring function S : Rk ×Rd → R such that S̄(·, F ) is continuous for
all F ∈ F . Then T is mixture-continuous on any F0 ⊆ F such that F0 is convex
and the image T (F0) is bounded.
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4. Scoring Functions Beyond Strict Consistency

Proof. Let F0 ⊆ F be convex such that T (F0) ⊆ [−C,C]k for some C > 0. Let
F,G ∈ F0. Define hF,G : [−C,C]k × [0, 1]→ R via

hF,G(x, λ) = S̄(x, (1− λ)F + λG) = (1− λ)S̄(x, F ) + λS̄(x,G).

Then hF,G is jointly continuous, and due to the strict consistency

T ((1− λ)F + λG) = arg min
x∈[−C,C]k

hF,G(x, λ).

By virtue of the Berge Maximum Theorem (Aliprantis and Border, 2006, Theorem
17.31 and Lemma 17.6), the function

arg min
x∈[−C,C]k

hF,G(x, λ)

is continuous in λ.

Remark 4.1.12. Similarly to the original proof of Bellini and Bignozzi (2015) a
sufficient criterion for the continuity of S̄(·, F ) for any F is that for all y ∈ Rd
S(x, y) is quasi-convex and continuous in x.

Recall that, under appropriate regularity conditions on F , the asymmetric piece-
wise linear loss Sα(x, y) = (1{y ≤ x} − α)(x − y) and the asymmetric piecewise
quadratic loss Sτ (x, y) = |1{y ≤ x} − τ |(x − y)2 are strictly consistent scoring
functions for the α-quantile and the τ -expectile, respectively, and both, Sα as
well as Sτ , are continuous in their first argument and convex. Hence, Proposition
4.1.11 yields that both quantiles and expectiles are mixture-continuous.

Bellini and Bignozzi (2015) showed that the weak continuity of a functional T
implies its mixture-continuity. Therefore, the assumption in Steinwart et al. (2014)
of continuity of T with respect to the total variation distance clearly implies that
T is mixture-continuous. Consequently, one can also derive the order-sensitivity
in their framework directly with Proposition 4.1.10.

Ehm et al. (2016, Subsection 2.4) showed order-sensitivity of any (regular)
strictly consistent scoring function for the α-quantile and τ -expectile by a com-
pletely different method, namely by a mixture representation of any (regular)
strictly consistent scoring function in the spirit of Proposition 2.3.1.

Lambert (2013) showed that it is a harder requirement to have order-sensitivity
if T (F) is discrete. Then both approaches, the one invoking Osband’s principle and
the other one using mixture-continuity, do not work because then the interior of the
image of T is empty and moreover mixture-continuity implies that the functional
is constant (such that only trivial cases can be considered). Furthermore, it is
proven in Lambert (2013) that for a functional T with a discrete image, all strictly
consistent scoring functions are order-sensitive if and only if there is one order-
sensitive scoring function for T . In particular, there are functionals admitting
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strictly consistent scoring functions that are not order-sensitive, one such example
being the mode functional.2

4.1.3. Unique local minimum

Before investigating the different notions of componentwise order-sensitivity, met-
rical order-sensitivity and order-sensitivity on line segments in the higher-dimen-
sional case, we first pose the question of what is possible to deduce concern-
ing monotonicity properties of the expected score of a strictly consistent scoring
function in the framework of Proposition 4.1.10, that is, if one only assumes the
mixture-continuity of a functional T : F → A.

To this end, it is essential to obtain a deeper understanding of the paths
γ : [0, 1] → A ⊆ Rk, γ(λ) = T (λF + (1 − λ)G) for F,G ∈ F . If T is elicitable, it
necessarily has convex level sets by Proposition 2.3.7. This in turn implies that
the level sets of γ can only be closed intervals (including the case of singletons
and the empty set). This rules out loops and some other possible pathologies of
γ. Furthermore, under the assumption that T is identifiable, one can even show
that the path γ is either injective or constant. In particular, this implies that T
has convex level sets.

Lemma 4.1.13. Let F be convex and T : F → A ⊆ Rk be identifiable with a
strict F-identification function V : A×O→ Rk. Then for any F,G ∈ F , the path
γ : [0, 1]→ A, γ(λ) = T (λF + (1− λ)G) is either constant or injective.

Proof. Let F,G ∈ F such that t = T (F ) = T (G). Define γ as in the lemma. Then
for any λ ∈ [0, 1], one has V̄ (t, λF + (1 − λ)G) = λV̄ (t, F ) + (1 − λ)V̄ (t, G) = 0.
Since V is a strict F-identification function for T , t = γ(λ) for all λ ∈ [0, 1].

Now let T (F ) 6= T (G) and let 0 ≤ λ < λ′ ≤ 1. Since V is a strict F-identification
function, V̄ (T (F ), G) 6= 0 (and symmetrically V̄ (T (G), F ) 6= 0.) Assume that
γ(λ) = γ(λ′). Define

Hλ = λF + (1− λ)G, Hλ′ = λ′F + (1− λ′)G .

Consequently, there are µ, µ′ ∈ R such that F = µHλ + (1 − µ)Hλ′ and G =
µ′Hλ + (1− µ′)Hλ′ . Then

V̄ (γ(λ), F ) = µV̄ (γ(λ), Hλ) + (1− µ)V̄ (γ(λ), Hλ′) = 0.

And similarly V̄ (γ(λ), G) = 0. Consequently, T (F ) = γ(λ) = T (G), which is a
contradiction to the assumption that T (F ) 6= T (G). Hence, γ(λ) 6= γ(λ′).
2Note that due to Proposition 1 in Heinrich (2014), the mode functional is elicitable relative

to the class of probability measure F containing unimodal discrete measures. Moreover,
interpreting the mode functional as a set-valued functional, it is elicitable in the sense of
Remark 2.1.5. A strictly F-consistent scoring function is given by S(x, y) = 1{x 6= y}. The
main result of Heinrich (2014) is that the mode functional is not elicitable relative to the class
F of unimodal probability measures with Lebesgue densities.
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Proposition 4.1.14. Let F be convex and T : F → A ⊆ Rk be mixture-continuous
and surjective. Let S : A × O → R be strictly F-consistent for T . Then for
each F ∈ F , t = T (F ) and each x ∈ A, x 6= t there is a continuous path
γ : [0, 1]→ A such that γ(0) = x, γ(1) = t and the function [0, 1] 3 λ 7→ S̄(γ(λ), F )
is decreasing. Additionally, for λ < λ′ such that γ(λ) 6= γ(λ′) it holds that
S̄(γ(λ), F ) > S̄(γ(λ′), F ).

Proof. Let F ∈ F , t = T (F ) and x 6= t. Then there is some G ∈ F with x = T (G).
Define the map

γ : [0, 1]→ A, λ 7→ T (λF + (1− λ)G).

Clearly, γ(0) = x and γ(1) = t. Due to the mixture-continuity of T , the path
γ is also continuous. The rest follows along the lines of the proof of Proposition
4.1.10.

Remark 4.1.15. (i) Proposition 4.1.14 remains valid if S is only F-consistent.
Then, we merely have that the function [0, 1] 3 λ 7→ S̄(γ(λ), F ) is decreasing,
so the last inequality in Proposition 4.1.14 is not necessarily strict.

(ii) If one assumes in Proposition 4.1.14 that T is also identifiable, one can
use the injectivity of γ implied by Lemma 4.1.13 to see that the function
[0, 1] 3 λ 7→ S̄(γ(λ), F ) is strictly decreasing.

Under certain (weak) regularity conditions, the expected scores of a strictly
consistent scoring function has only one local minimum.

Proposition 4.1.16. Let F be convex and T : F → A ⊆ Rk be mixture-continuous
and surjective. If S : A × O → R is strictly F-consistent for T , then for all
F ∈ F the expected score S̄(·, F ) : A→ R has only one local minimum which is at
t = T (F ).

Proof. Let F ∈ F with t = T (F ). Due to the strict F-consistency of S, the
expected score S̄(·, F ) has a local minimum at t. Assume there is another local
minimum at some x 6= t. Then there is a distribution G ∈ F with x = T (G).
Consider the path

γ : [0, 1]→ A, λ 7→ T (λF + (1− λ)G).

Due to Proposition 4.1.14 the function λ 7→ S̄(γ(λ), F ) is decreasing and strictly
decreasing when we move on the image of the path from x to t. Hence S̄(·, F )
cannot have a local minimum at x = γ(0).

4.1.4. Self-calibration

With Proposition 4.1.14 it is possible to prove that, under mild regularity con-
ditions, strictly consistent scoring functions fulfill a local property called ‘self-
calibration’.
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Definition 4.1.17 (Self-calibration). A scoring function S : A× O→ R is called
F-self-calibrated for a functional T : F → A ⊆ Rk with respect to a metric d on A
if for all ε > 0 and for all F ∈ F there is a δ = δ(ε, F ) > 0 such that for all x ∈ A
and t = T (F )

S̄(x, F )− S̄(t, F ) < δ =⇒ d(t, x) < ε.

In some sense, self-calibration can be considered as the continuity of the inverse
of the expected score S̄(·, F ) at the global minimum x = T (F ). This property
ensures that convergence of the expected score to its global minimum implies con-
vergence of the forecast to the true functional value. Therefore, this property
is particularly advantageous in the context of learning and M -estimation.3 The
notion of self-calibration was introduced by Steinwart (2007) in the context of ma-
chine learning. In a preprint of Steinwart et al. (2014)4, the authors translate this
concept to the setting of scoring functions and give a definition which corresponds
to Definition 4.1.17. We cite their explanation, using our notation:

“For self-calibrated S, every δ-approximate minimizer of S̄(·, F ), approxi-
mates the desired property T (F ) with precision not worse than ε. [. . . ] In
some sense order sensitivity is a global and qualitative notion while self-
calibration is a local and quantitative notion.”

It is relatively straight forward that self-calibration implies strict consistency.

Lemma 4.1.18. Let S : A × O → R be an F-self-calibrated scoring function for
some functional T : F → A ⊆ Rk with respect to some metric d. Then S is strictly
F-consistent for T .

Proof. Let S be F-self-calibrated for T with respect to d. Let F ∈ F , t = T (F )
and x ∈ A with x 6= t. Then for ε := d(t, x)/2 > 0 there is a δ > 0 such that

S̄(x, F )− S̄(t, F ) ≥ δ > 0.

In the preprint of Steinwart et al. (2014) it is shown for k = 1 that order-
sensitivity implies self-calibration. The next Proposition shows that the kind of

3Let us briefly sketch the rationale. Assume that we have an i.i.d. sequence (Yt)t∈N of ob-
servations with some distribution F ∈ F . Let S : A × O → R be strictly F-consistent and
F-self-calibrated for a functional T : F → A with respect to a metric d. Let F̂n be the empiri-
cal distribution based on the first n observations Y1, . . . , Yn. Then, by the strong law of large
numbers S̄(x, F̂n) converges to S̄(x, F ) almost surely for all x ∈ A. Now assume that this
convergence is uniform in x, that is supx∈A |S̄(x, F̂n) − S̄(x, F )| → 0 almost surely. Define

x̂n := arg minx∈A S̄(x, F̂n), the empirical M -estimator. Then one can show that d(xn, t)→ 0
almost surely where t = T (F ). Indeed, let ε > 0. Due to the self-calibration, there is a
δ > 0 such that S̄(x, F ) − S̄(t, F ) < δ implies that d(x, t) < ε. Let n0 ∈ N such that
almost surely |S̄(x, F̂n) − S̄(x, F )| < δ/2 for all x ∈ A, and in particular for x = x̂n. Con-
sequently, minx∈A S̄(x, F̂n) = S̄(x̂n, F̂n) ≤ S̄(t, F ) + δ/2. Then, the triangle inequality yields
S̄(x̂n, F )− S̄(t, F ) < δ, which concludes the argument.

4At the moment of writing this thesis, this preprint was still online available at
http://users.cecs.anu.edu.au/~williams/papers/P196.pdf.
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order-sensitivity given by Proposition 4.1.14 also implies self-calibration for k > 1
when the metric is induced by a norm (recall that all norms are equivalent on Rk
such that is suffices to consider the Euclidean norm in this case).

Proposition 4.1.19. Let F be convex and T : F → A ⊆ Rk a surjective and
mixture-continuous functional. If S : A×O→ R is strictly F-consistent for T and
S̄(·, F ) : A→ R is continuous for all F ∈ F , then S is F-self-calibrated for T .

Proof. Let F ∈ F , t = T (F ) and ε > 0. Define

δ := min{S̄(x, F )− S̄(t, F ) : x ∈ A, ‖x− t‖ = ε}.

Due to the continuity of S̄(·, F ), the minimum is well-defined and, as a consequence
of the strict F-consistency of S for T , δ is positive. Now we show the implication

‖x− t‖ ≥ ε =⇒ S̄(x, F )− S̄(t, F ) ≥ δ

for all x ∈ A.

Let x ∈ A. If ‖x−t‖ = ε, we have, by the definition of δ, that S̄(x, F )−S̄(t, F ) ≥
δ. Assume that ‖x− t‖ > ε. Then there is a distribution G ∈ F with T (G) = x.
Due to Proposition 4.1.14 there is a continuous path γ : [0, 1] → A such that
γ(0) = x, γ(1) = t and such that S̄(γ(λ), F ) is decreasing in λ. Moreover, if
λ < λ′ such that γ(λ) 6= γ(λ′) it holds that S̄(γ(λ), F ) > S̄(γ(λ′), F ). Due to the
continuity of γ there is some x′ ∈ γ([0, 1]) with ‖x′ − t‖ = ε. Then we obtain

S̄(x, F )− S̄(t, F ) > S̄(x′, F )− S̄(t, F ) ≥ δ.

This concludes the proof.

4.1.5. Componentwise order-sensitivity

As mentioned further above, the notion of componentwise order-sensitivity can
be traced back to Lambert et al. (2008). In their Theorem 5, they claim that
whenever a functional has a componentwise order-sensitive scoring function, the
components of the functional must necessarily be elicitable. Moreover, they assert
that any componentwise order-sensitive scoring function is the sum of strictly con-
sistent scoring functions for the components. However, they use quite restrictive
regularity assumptions, e.g. they assume that Ω is finite and that the scoring func-
tion itself is twice continuously differentiable. We give a proof of both assertions
in a more general setting.

Lemma 4.1.20. Let T = (T1, . . . , Tk) : F → A ⊆ Rk be a k-dimensional func-
tional with components Tm : F → Am ⊆ R where A = A1 × · · · × Ak. If there is
a strictly componentwise F-order-sensitive scoring function S : A×O→ R for T ,
then the components Tm, m ∈ {1, . . . , k}, are elicitable.
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Proof. Fix m ∈ {1, . . . , k}. Let F ∈ F and x, z ∈ A such that Tm(F ) = xm, xi = zi
for all i 6= m and xm 6= zm. Due to the strict componentwise F-order-sensitivity
of S this implies that

S̄(x, F ) < S̄(z, F ).

This in turn means that for any z = (z1, . . . , zk) ∈ A the map

Sm,z : Am × O→ R, (4.1.6)

(xm, y) 7→ Sm,z(xm, y) := S(z1, . . . , zm−1, xm, zm+1, . . . , zk, y)

is a strictly F-consistent scoring function for Tm.

Lemma 4.1.21. Assume that F is convex and let Tm : F → Am ⊆ R, m ∈
{1, . . . , k}, be mixture-continuous functionals with strictly F-consistent scoring
functions Sm : Am×O→ R. Then, the scoring function S : A1×· · ·×Ak×O→ R
defined by

S(x1, . . . , xk, y) =
k∑

m=1

Sm(xm, y) (4.1.7)

is strictly componentwise F-order-sensitive for T = (T1, . . . , Tk).

Proof. Due to Proposition 4.1.10 the scoring functions Sm, m ∈ {1, . . . , k}, are
strictly F-order-sensitive for Tm. Thanks to its additive form, S is strictly com-
ponentwise F-order-sensitive.

Now, we shall establish the reverse direction of Lemma 4.1.21 in the sense that
any strictly componentwise order-sensitive scoring function must necessarily be of
the additive form given at (4.1.7). In Fissler and Ziegel (2016, Section 4), we es-
tablished a dichotomy for functionals with elicitable components: In most relevant
cases, the functional (the corresponding strict identification function, respectively)
satisfies Assumption (V4) therein (e.g., when the functional is a vector of different
quantiles and / or different expectiles with the exception of the 1/2-expectile), or
it is a vector of ratios of expectations with the same denominator, or it is a combi-
nation of both situations. Under some regularity conditions, Propositions 4.2 and
4.4 in Fissler and Ziegel (2016) characterize the form of strictly consistent scoring
functions for the first two situations, whereas Remark 4.5 is concerned with the
third situation. For this latter situation, any strictly consistent scoring function
must be necessarily additive for the respective blocks of the functional. And for
the first situation, Fissler and Ziegel (2016, Proposition 4.2) yields the additive
form of S automatically. It remains to consider the case of Proposition 4.4, that
is, a vector of ratios of expectations with the same denominator.

Proposition 4.1.22. Let T : F → A ⊆ Rk be a ratio of expectations with the same
denominator, that is, T (F ) = EF [p(Y )]/EF [q(Y )] for some F-integrable functions
p : O → Rk, q : O → R such that EF [q(Y )] > 0 for all F ∈ F . Assume that T
is surjective, and that int(A) is a star domain. Moreover, consider the standard
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strict F-identification function V : A×O→ Rk, V (x, y) = q(y)x− p(y) and some
strictly F-consistent scoring function S : A × O → R such that the Assumptions
(V1), (S2), (F1), and (VS1) in Fissler and Ziegel (2016) hold. If S is strictly
componentwise F-order-sensitive for T , then S is of the form

S(x1, . . . , xk, y) =

k∑

m=1

Sm(xm, y), (4.1.8)

for almost all (x, y) ∈ A × O, where Sm : Am × O → R, m ∈ {1, . . . , k}, are
strictly F-consistent scoring functions for Tm : F → Am, Am := Tm(F) ⊆ R, and
Tm(F ) = EF [pm(Y )]/EF [q(Y )].

Proof. First, note that due to the fact that for fixed y ∈ O, V (x, y) is a polynomial
in x, Assumption (V3) in Fissler and Ziegel (2016) is automatically satisfied. Let
h : int(A)→ Rk×k be the matrix-valued function given in Osband’s principle; see
Fissler and Ziegel (2016, Theorem 3.2). By Proposition 4.4 (i) of Fissler and Ziegel
(2016) we have that

∂lhrm(x) = ∂rhlm(x), hrl(x) = hlr(x) (4.1.9)

for all r, l,m ∈ {1, . . . , k}, l 6= r, where the first identity holds for almost all
x ∈ int(A) and the second identity for all x ∈ int(A). Moreover, the matrix(
hrl(x)

)
l,r=1,...,k

is positive definite for all x ∈ int(A). If we show that hlr = 0 for

l 6= r, we can use the first part of (4.1.9) and deduce that for all m ∈ {1, . . . , k}
there are positive functions gm : A′m → R, where A′m = {xm ∈ R : ∃(z1, . . . , zk) ∈
int(A) and zm = xm}, such that

hmm(x1, . . . , xk) = gm(xm)

for all (x1, . . . , xk) ∈ int(A). Then, we can conclude like in the proof of Fissler
and Ziegel (2016, Proposition 4.2(ii)).

Fix l, r ∈ {1, . . . , k} with l 6= r and F ∈ F such that T (F ) ∈ int(A). Due to the
strict F-consistency of Sl,z defined at (4.1.6) we have that

0 =
d

dxl
S̄l,z(xl, F ) = ∂S̄l,z(xl, F ) = ∂lS̄(z1, . . . , zl−1, xl, zl+1, . . . , zk, F ) (4.1.10)

whenever xl = Tl(F ) and for all z ∈ int(A). This means the map int(A) 3 z 7→
∂S̄l,z(Tl(F ), F ) is constantly 0. Hence, for all x ∈ int(A)

∂r∂lS̄(x, F ) = 0

whenever xl = Tl(F ). Using the special form of V and Corollary 3.3 in Fissler and
Ziegel (2016), we have for x = t = T (F ) that

0 = ∂r∂lS̄(t, F ) = hlr(t)∂rV̄r(t, F ) = hlr(t)q̄(F )

and by assumption q̄(F ) > 0. Using the surjectivity of T we obtain that hlr(t) = 0
for all t ∈ int(A), which ends the proof.
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Remark 4.1.23. It is no loss of generality to assume that q̄(F ) > 0 for all
F ∈ F in Proposition 4.1.22. In order to ensure that T is well-defined, necessarily
q̄(F ) 6= 0 for all F ∈ F . However, Assumption (V1) implies that F is convex. So
if there are F1, F2 ∈ F such that q̄(F1) < 0 and q̄(F2) > 0 then there is a convex
combination G of F1 and F2 such that q̄(G) = 0. Consequently, either q̄(F ) > 0
for all F ∈ F or q̄(F ) < 0 for all F ∈ F , and by possibly changing the sign of p
one can assume that the first case holds.

Remark 4.1.24. One might wonder if the necessary characterization of strictly
componentwise order-sensitive scoring functions as the sum of strictly consistent
scoring functions for each component carries over to more general functionals
with elicitable components, apart from vectors of ratios of expectations with the
same denominator or functionals satisfying Assumption (V4) in Fissler and Ziegel
(2016). The answer is not completely clear. In the preprint version (Fissler and
Ziegel, 2015) we have introduced Assumption (V5). That is, under assumption
(V3) in Fissler and Ziegel (2016), for all F ∈ F there is a constant cF 6= 0 such
that for all r ∈ {1, . . . , k} and for all x ∈ int(A) it holds that

∂rV̄r(x, F ) = cF .

In principle, one can extend the result of Proposition 4.1.22 to the situation,
when this Assumption (V5) is satisfied (see also Proposition 4.1 in Fissler and
Ziegel (2015)). However, the only functionals with elicitable components satisfying
Assumption (V5), that came to our minds, are ratios of expectations with the same
denominator. That is why we decided to give the results directly in terms of the
latter functionals in the published version (Fissler and Ziegel, 2016) and why we
also restricted to this situation in Proposition 4.1.22.

We have already seen in Remark 4.1.2 that the notion of componentwise order-
sensitivity has a very appealing interpretation in the sense that it rewards Pareto
improvements of the predictions. In some sense, the results of Lemma 4.1.20 and
Proposition 4.1.22 give a very clear understanding of that concept including its
limitations to the case of functionals only consisting of elicitable components.

4.1.6. Metrical order-sensitivity

We start with an equivalent formulation of metrical order-sensitivity that is easier
to check in practice than the mere definition. Recall the convention that we tacitly
assume that the metric d on A is induced by a norm, and hence, the induced
topology corresponds to the Euclidean topology on A. In particular, then, the
notion of mixture-continuity is not ambiguous.

Lemma 4.1.25. Let F be convex and T : F → A ⊆ Rk be mixture-continuous
and surjective. Let S : A × O → R be (strictly) F-consistent for T . Then S is
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4. Scoring Functions Beyond Strict Consistency

(strictly) metrically F-order-sensitive for T relative to d if and only if for all
F ∈ F , t = T (F ) and x, z ∈ A we have the implication

d(x, t) = d(z, t) =⇒ S̄(x, F ) = S̄(z, F ). (4.1.11)

Proof. Let S be metrically F-order sensitive for T relative to d. Let F ∈ F , t =
T (F ), x, z ∈ A such that d(x, t) = d(z, t). Then we have both S̄(x, F ) ≤ S̄(z, F )
and S̄(z, F ) ≤ S̄(x, F ).

Assume that (4.1.11) holds and S is (strictly) F-consistent. Let F ∈ F with
t = T (F ) and x, z ∈ A. W.l.o.g. assume that d(x, t) ≤ d(z, t). If d(x, t) = d(z, t),
(4.1.11) implies that S̄(x, F ) = S̄(z, F ) and there is nothing to show. If d(x, t) <
d(z, t), we can apply Proposition 4.1.14. There is a continuous path γ : [0, 1]→ A
such that γ(0) = z and γ(1) = t, and the function [0, 1] 3 λ 7→ S̄(γ(λ), F ) is
decreasing. Due to continuity there is a λ′ ∈ [0, 1] such that d(γ(λ′), t) = d(x, t).
Due to (4.1.11) it holds that S̄(x, F ) = S̄(γ(λ′), F ) ≤ S̄(z, F ). If S is strictly
F-consistent then the latter inequality is strict.

Lemma 4.1.25 directly leads the way to the assertion that for a real-valued
functional T there can be at most one strictly metrically order-sensitive scoring
function, up to equivalence, of course. To show this, we have to put ourselves into
the setting of Osband’s principle.

Proposition 4.1.26. Let T : F → A ⊆ R be a surjective, elicitable and identifiable
functional with an oriented strict F-identification function V : A × O → R. If
int(A) 6= ∅ is convex and S, S∗ : A × O → R are two strictly metrically F-order-
sensitive scoring functions for T such that the Assumptions (V1), (V2), (S1), (F1)
and (VS1) from Fissler and Ziegel (2016) (with respect to both scoring functions)
hold, then S and S∗ are equivalent almost everywhere.

Proof. We apply Osband’s principle, that is, Fissler and Ziegel (2016, Theorem
3.2) to S. Consequently, there is a function h : int(A)→ R such that

d

dx
S̄(x, F ) = h(x)V̄ (x, F ) (4.1.12)

for all F ∈ F and x ∈ int(A). Due to the strict F-consistency of S and the
orientation of V , h ≥ 0. We show that actually h > 0. Applying Lemma 4.1.25,
one has that

S̄(T (F ) + x, F ) = S̄(T (F )− x, F ) (4.1.13)

for all F ∈ F , x ∈ R such that T (F ) + x, T (F ) − x ∈ int(A). Hence, also the
derivative with respect to x of the left-hand side of (4.1.13) must coincide with
the derivative on the right-hand side. This yields, using (4.1.12),

h(T (F ) + x)V̄ (T (F ) + x, F ) = −h(T (F )− x)V̄ (T (F )− x, F ) (4.1.14)
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for all F ∈ F , x ∈ R such that T (F ) + x, T (F ) − x ∈ int(A). Assume h(z) = 0
for some z ∈ int(A). Then, invoking the surjectivity of T and the convexity of
int(A), for all z′ ∈ int(A) \ {z} there exists an F ∈ F and x ∈ R \ {0} such that
z = T (F ) +x and z′ = T (F )−x. Since V is a strict F-orientation function for T ,
both V̄ (T (F ) + x, F ) 6= 0 and V̄ (T (F ) − x, F ) 6= 0. Hence, (4.1.14) implies that
h(z′) = 0. This implies that h identically vanishes on int(A) which contradicts the
strict F-consistency of S.

That means V ∗(x, y) := h(x)V (x, y) is an oriented strict F-identification func-
tion for T . Applying Osband’s principle to S∗, one gets a function h∗ : int(A)→ R
such that

d

dx
S̄∗(x, F ) = h∗(x)V̄ ∗(x, F )

for all F ∈ F , x ∈ R such that T (F ) + x, T (F )− x ∈ int(A). Due to the analogue
of (4.1.13) for S∗ and (4.1.14), one obtains

h∗(T (F ) + x)V̄ ∗(T (F ) + x, F ) = −h∗(T (F )− x)V̄ ∗(T (F )− x, F )

= h∗(T (F )− x)V̄ ∗(T (F ) + x, F ).

for all F ∈ F , x ∈ R with T (F ) + x, T (F ) − x ∈ int(A). By a similar reasoning
as above, one can deduce that h∗ must be constant and positive. Now, the claim
follows by Proposition 3.4 in Fissler and Ziegel (2016).

Now, we shall show a similar version of Proposition 4.1.26 for the higher-
dimensional setting. However, it is a bit more limited: We show that two scoring
functions that are strictly metrically order-sensitive for the same functional and
are additively separable in the form of (4.1.8) must be necessarily equivalent. For
most practically relevant cases – namely the case when the metric is induced by
an `p-norm with p ∈ [1,∞) and when the functional consists of blocks satisfying
Assumption (V4) or that are ratios of expectations with the same denominator
– Lemma 4.1.8, Proposition 4.1.22 and Fissler and Ziegel (2016, Proposition 4.2)
yield that any metrically order-sensitive scoring function is additively separable.
Hence, for these situations, metrically order-sensitive scoring functions are unique,
up to equivalence.

Proposition 4.1.27. Let S : A×O→ R be a strictly metrically F-order-sensitive
scoring function for a surjective functional T = (T1, . . . , Tk) : F → A ⊆ Rk of the
form

S(x1, . . . , xk, y) =
k∑

m=1

Sm(xm, y)

for all (x, y) ∈ A × O where Sm : Am × O → R, m ∈ {1, . . . , k}, Am = {xm ∈
R : ∃(z1, . . . , zk) ∈ A and zm = xm}, are strictly F-consistent scoring functions
for Tm. Assume that int(A) 6= ∅.Then, the following assertions hold:

(i) The scoring functions Sm, m ∈ {1, . . . , k}, are strictly metrically F-order-
sensitive for Tm.
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4. Scoring Functions Beyond Strict Consistency

(ii) Let λ1, . . . , λk > 0 and define the scoring function S∗ : A× O→ R via

S∗(x1, . . . , xk) =

k∑

m=1

λmSm(xm, y).

Then S∗ is strictly metrically F-order-sensitive (with respect to the same
metric as S) if and only if λ1 = · · · = λk.

Proof. (i) Recall that we assume that the metric is induced by a norm. Due to
the positive homogeneity of norms, all norms on R are of the form c | · | for
some c > 0.

Let m ∈ {1, . . . , k}, F ∈ F with t = T (F ) ∈ int(A). Let µ ∈ R and x, z ∈ A
with xi = zi = ti for all i 6= m and with xm = tm + µ and zm = tm − µ,
such that d(x, t) = d(z, t). Due to Lemma 4.1.25 and due to the particular
additive form of S, we have

0 = S̄(x, F )− S̄(z, F ) = S̄m(xm, F )− S̄m(zm, F )

= S̄m(tm + µ, F )− S̄m(tm − µ, F ).

Again with Lemma 4.1.25 one obtains the assertion.

(ii) The only interesting direction is to assume that S∗ is strictly metrically F-
order-sensitive (with respect to the same metric d as S). We will show that
λ1 = λm for all m ∈ {2, . . . , k}. But for notational convenience, we give the
proof only for m = 2.

Let F ∈ F , t = T (F ) ∈ int(A), x, z ∈ A with d(x, t) = d(z, t) > 0 and
xi = zi = ti for all i ∈ {3, . . . , k}. Moreover, let x1 6= z1 = t1. Due to
Lemma 4.1.25 we have that

S̄(x, F )− S̄(z, F ) = S̄∗(x, F )− S̄∗(z, F ) = 0.

Moreover, due to the assumptions on x, z and the fact that the scoring func-
tions Sm are strictly F-consistent

0 = S̄(x, F )− S̄(z, F ) =
k∑

i=1

S̄i(xi, F )− S̄i(zi, F )

= S̄1(x1, F )− S̄1(z1, F ) + S̄2(x2, F )− S̄2(z2, F ).

Setting ε := S̄1(x1, F )− S̄1(z1, F ) > 0, one obtains with the same calculation

0 = S̄∗(x, F )− S̄∗(z, F )

= λ1

(
S̄1(x1, F )− S̄1(z1, F )

)
+ λ2

(
S̄2(x2, F )− S̄2(z2, F )

)

= ε(λ1 − λ2).
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Corollary 4.1.28. Let T = (T1, . . . , Tk) : F → A ⊆ Rk be a surjective, elicitable
and identifiable functional with a strict F-identification function V = (V1, . . . , Vk) :
A×O→ Rk such that each component Vm, m ∈ {1, . . . , k}, is an oriented strict F-
identification function for T . Define Am = {xm ∈ R : ∃(z1, . . . , zk) ∈ A and zm =
xm} for m ∈ {1, . . . , k} and assume that int(A) 6= ∅ as well as int(Am) is con-
vex and non-empty for all m ∈ {1, . . . , k}. If S, S∗ : A × O → R are two strictly
metrically F-order-sensitive scoring functions for T such that Assumptions (V1),
(V2), (S1), (F1) and (VS1) from Fissler and Ziegel (2016) (with respect to both
scoring functions) hold, and they are of the form

S(x1, . . . , xk, y) =

k∑

m=1

Sm(xm, y), S∗(x1, . . . , xk, y) =

k∑

m=1

S∗m(xm, y),

for almost all (x, y) ∈ A × O, where Sm, S
∗
m : Am × O → R, m ∈ {1, . . . , k},

are strictly F-consistent scoring functions for Tm : F → Am, then S and S∗ are
equivalent almost everywhere.

Proof. Due to Proposition 4.1.27(i) Sm and S∗m are strictly metrically F-order-
sensitive for Tm. Invoking Proposition 4.1.26, Sm and S∗m are equivalent almost
everywhere. So there are positive constants λ1, . . . , λk > 0 and F-integrable func-
tions a1, . . . , ak : O→ R such that

S∗(x1, . . . , xk, y) =

k∑

m=1

λmSm(xm, y) + am(y)

for almost all (x, y) ∈ A×O. Set a(y) =
∑k

m=1 am(y). Then S(x, y)− a(y) is also
strictly metrically F-order-sensitive for T . With respect to Proposition 4.1.27(ii),
it holds that λ1 = · · · = λk. So the claim follows.

Next, we use the derived theoretical results to examine when some popular
functionals admit strictly metrically order-sensitive scoring functions, and if so, of
what form they are.

Ratios of expectations with the same denominator

We start with the one-dimensional characterization.

Lemma 4.1.29. Let F be convex and p, q : O → R two F-integrable functions
such that q̄(F ) > 0 for all F ∈ F . Define T : F → A ⊆ R, T (F ) = p̄(F )/q̄(F )
and assume that T is surjective as well as int(A) 6= ∅. Then the following two
assertions are true:

(i) Any scoring function which is equivalent to

S : A× O→ R, S(x, y) =
1

2
q(y)x2 − p(y)x (4.1.15)

is strictly metrically F-order-sensitive for T .

89
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(ii) If F is such that Assumptions (V1), (F1) in Fissler and Ziegel (2016) are
satisfied with V (x, y) = q(y)x−p(y), then any scoring function S∗ : A×O→
R, which is strictly metrically F-order-sensitive and satisfies Assumptions
(S1) and (VS1), is equivalent to S defined at (4.1.15) almost everywhere.

Proof. (i) We can apply Lemma 4.1.25. Let F ∈ F . Then

R 3 x 7→ S̄(T (F ) + x, F ) =
1

2
q̄(F )x2 − 1

2

p̄(F )2

q̄(F )

is an even function in x. Moreover, equivalence of scoring functions preserves
(strict) metrical order-sensitivity.

(ii) The convexity of A is implied by the mixture-continuity of T and the con-
vexity of F . Then, the claim follows with Proposition 4.1.26.

Now, we turn to the multivariate characterization.

Proposition 4.1.30. Let F be convex and p : O→ Rk, q : O→ R two F-integrable
functions such that q̄(F ) > 0 for all F ∈ F . Define T : F → A ⊆ Rk, T (F ) =
p̄(F )/q̄(F ) and assume that T is surjective as well as int(A) 6= ∅. Then, the
following assertions are true:

(i) Any scoring function which is equivalent to

S : A× O→ R, S(x1, . . . , xk, y) =

k∑

m=1

1

2
q(y)x2

m − pm(y)xm (4.1.16)

is strictly metrically F-order-sensitive for T with respect to the `2-norm.

(ii) If F is such that Assumptions (V1), (F1) in Fissler and Ziegel (2016) are
satisfied with V (x, y) = q(y)x − p(y), then any scoring function S∗ : A ×
O→ R, which is strictly metrically F-order-sensitive with respect to the `2-
norm and satisfies Assumptions (S1) and (VS1), is equivalent to S defined
at (4.1.16) almost everywhere.

(iii) If F is such that Assumptions (V1), (F1) in Fissler and Ziegel (2016) are
satisfied with V (x, y) = q(y)x−p(y), then there is no scoring function S∗ : A×
O → R satisfying Assumptions (S1) and (VS1), which is strictly metrically
F-order-sensitive with respect to an `p-norm with p ∈ [1,∞) \ {2}.

Proof. To show (i) we apply again Lemma 4.1.25. For any F ∈ F , s > 0 define
the function ψ : Rk → R, ψ(v) = S̄(T (F ) + sv, F ). Then

ψF,s(v) =
1

2
q̄(F )s2

k∑

m=1

v2
m −

1

2q̄(F )

k∑

m=1

p̄m(F )2. (4.1.17)
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Define Sk−1
p := {x ∈ Rk | ‖x‖p = 1}, p ∈ [1,∞) where ‖ · ‖p is the `p-norm on Rk.

Then ψF,s is constant on Sk−1
2 .

We prove (ii) and (iii) together. Assume there is a scoring function S∗ satisfy-
ing the conditions above, so in particular, it is strictly metrically F-order-sensitive
with respect to the `p-norm for p ∈ [1,∞). Invoking Lemma 4.1.8(i), S∗ is strictly
componentwise F-order-sensitive for T . Thanks to Proposition 4.1.22, S∗ is ad-
ditively separable. Then, using Corollary 4.1.28, S∗ is equivalent to S defined at
(4.1.16) almost everywhere. In case p = 2, assertion (i) already shows that S is
strictly metrically F-order-sensitive. For p 6= 2 recall that strict metrical order-
sensitivity is preserved by equivalence. However, we will show that S is nowhere
metrically F-order-sensitive. To this end, fix any F ∈ F and s > 0. Assume that
ψF,s defined at (4.1.17) is constant on Sk−1

p . Then necessarily for all v ∈ Sk−1
p

ψF,s(v) = ψF,s(em) =
1

2
q̄(F )s2 − 1

2q̄(F )

k∑

m=1

p̄m(F )2,

where em denotes the mth standard basis vector of Rk. But for any vector v ∈
Sk−1
p \ {e1, . . . , em} we have that

∑k
m=1 v

2
m = ‖v‖22 6= 1 if p 6= 2.

Remark 4.1.31. Savage (1971, Section 5) has already shown that in case of the
mean, the squared loss is essentially the only symmetric loss in the sense that it
is the only metrically order-sensitive loss for the mean. See also Patton (2015,
Section 2.1) for a discussion that symmetry – or metrical order-sensitivity – is not
necessary for strict consistency of scoring functions with respect to the mean.

Quantiles

The following proposition provides a similar characterization for the one-dimensional
case k = 1 of an α-quantile.

Proposition 4.1.32. Let α ∈ (0, 1) and F be a family of distribution functions on
R with unique α-quantiles Tα. Assume that for any F ∈ F , its translation Fλ(·) =
F (· − λ) is also an element of F for all λ ∈ R. Consequently, Tα : F → A = R
is surjective. Under assumptions (V1) in Fissler and Ziegel (2016) with respect
to the strict identification function Vα : R × R → R, Vα(x, y) = 1{y ≤ x} − α,
there is no strictly metrically F-order-sensitive scoring function for Tα satisfying
Assumption (S1) in Fissler and Ziegel (2016).

Proof. Assume that there exists a strictly metrically F-order-sensitive scoring
function Sα : R× R→ R satisfying Assumption (S1) in Fissler and Ziegel (2016).
Due to Lemma 4.1.25, for any F ∈ F and any x ∈ R

S̄α(Tα(F ) + x, F ) = S̄α(Tα(F )− x, F ).
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Using Osband’s principle (Fissler and Ziegel, 2016, Theorem 3.2) and taking the
derivative with respect to x on both sides, this yields

h(Tα(F ) + x)V̄α(Tα(F ) + x, F ) = −h(Tα(F )− x)V̄α(Tα(F )− x, F ) (4.1.18)

for some positive function h : R → R (the fact that h ≥ 0 follows from the strict
consistency of Sα and the surjectivity of Tα, and h > 0 follows like in the proof of
Proposition 4.1.26). Equation (4.1.18) implies

h(qα(F ) + x)

h(qα(F )− x)
= −F (qα(F )− x)− α

F (qα(F ) + x)− α
x→∞−→ α

1− α. (4.1.19)

As a consequence, for α 6= 1/2, the function h cannot be constant.

W.l.o.g. let F0 ∈ F with Tα(F0) = 0. For any λ ∈ R define Fλ(·) = F0(· − λ).
Hence, Tα(Fλ) = λ for any λ ∈ R. Then (4.1.19) implies that for any λ ∈ R and
for any x ∈ R

h(λ+ x)

h(λ− x)
= −Fλ(λ− x)− α

Fλ(λ+ x)− α = −F0(−x)− α
F0(x)− α . (4.1.20)

Identity (4.1.20) implies four asymptotic identities:

(i) For any fixed λ ∈ R

lim
x→∞

h(λ+ x)

h(λ− x)
=

α

1− α.

(ii) Setting λ = x and letting x→∞, one can see that h(+∞) := limx→∞ h(x)
exists and that

h(+∞) = h(0)
α

1− α.

(iii) Setting λ = −x and letting x→∞, one can see that h(−∞) := limx→∞ h(−x)
exists and that

h(−∞) = h(0)
1− α
α

.

(iv) For any fixed x ∈ R, one has that

1 =
h(+∞)

h(+∞)
= lim

λ→∞
h(λ+ x)

h(λ− x)
= −F0(−x)− α

F0(x)− α . (4.1.21)

Recalling that h > 0, (ii) and (iii) imply that

h(+∞)

h(−∞)
= 1,

whereas (i) implies that
h(+∞)

h(−∞)
=

α

1− α.
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As a consequence, necessarily α = 1/2. So under the conditions of the proposition,
there is no strictly metrically F-order-sensitive scoring function for the α-quantile
if α 6= 1/2. (4.1.21) together with (4.1.20) yield that h must be constant. On
the other hand, for α = 1/2, equation (4.1.21) yields that any F ∈ F must be
symmetric around its median, that means

F (T1/2(F ) + x) = 1− F ((T1/2(F )− x)−) ∀x ∈ R,

where F (y−) denotes the left-sided limit of F at y. However, if F0 is symmetric
around its median, then any translation Fλ of F0 is symmetric around its median.
But then, there is a convex combination of F0 and Fλ with mixture-parameter
β ∈ (0, 1), β 6= 1/2 such that βF0 + (1−β)Fλ is not symmetric around its median
if λ 6= 0. Consequently, the conditions of the proposition are violated such that a
strictly metrically F-order-sensitive function for the median does not exist in this
setting.

It is crucial to recapitulate that the reasons for the non-existence of a strictly
metrically order-sensitive scoring function for the α-quantile are of different nature
in the two cases that α 6= 1/2 and that α = 1/2 in the proof of Proposition 4.1.32.
In both cases, we used the assumptions of the proposition to use Osband’s principle
to derive a representations of the derivative of the expected score. Assuming that
the derivative has the form as stated in Osband’s principle, one can directly derive
a contradiction for α 6= 1/2. However, for α = 1/2, this form merely implies that
the distributions in F must be symmetric around their medians. This is not
contradictory to the form of the gradient derived via Osband’s principle, but only
to the assumptions stated in Osband’s principle, in particular, the convexity of
F . But refraining from assuming the convexity needed in Osband’s principle,
this leads the way to a sufficiency condition for strict metrical order-sensitivity as
shown in the following lemma.

Lemma 4.1.33. Let F be a family of distribution functions on R with unique
medians T1/2 : F → R and finite first moments. If all distributions in F are
symmetric around their medians in the sense that

F (T1/2(F ) + x) = 1− F ((T1/2(F )− x)−)

for all F ∈ F , x ∈ R, then any scoring function that is equivalent to the absolute
loss S : R×R→ R, S(x, y) = |x− y|, is strictly metrically F-order-sensitive with
respect to the median.

Proof. It is known that S is strictly F-consistent for T1/2. Then, we can use
Lemma 4.1.25. For F ∈ F with t = T1/2(F ) and for x ∈ R one has

S̄(t+ x, F ) = EF |t+ x− Y | = EF |x− (Y − t)| (4.1.22)

= EF |x+ (Y − t)| = EF |t− x− Y | = S̄(t− x, F ).

Note again that equivalence preserves strict metrical order-sensitivity.
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4. Scoring Functions Beyond Strict Consistency

As mentioned above, under the conditions of Lemma 4.1.33, the necessary char-
acterization of strictly consistent scoring functions via Osband’s principle is not
available. In particular, this means that we cannot use Proposition 4.1.26. In-
deed, if the distributions in F are symmetric around their medians in the sense of
(4.1.21) and under the integrability condition that all elements in F have a finite
first moment, the median and the mean coincide. Hence, any convex combination
of a strictly consistent scoring function for the mean and the median provides a
strictly consistent scoring function; see also Patton (2015, Section 2.6). A fortiori,
any scoring function which is equivalent to S(x, y) = (1 − λ)|x − y| + λ|x − y|2,
λ ∈ [0, 1] is strictly metrically F-order-sensitive. However, the class of strictly
metrically F-order-sensitive scoring functions is even bigger. In the sequel, we
will denote the median / mean merely by the ‘center of symmetry’ or merely ‘cen-
ter’ of the distribution if (4.1.21) is satisfied for all F ∈ F . The following lemma
shows that – in contrast to the median – the center of symmetry of a distribution
is unique if it exists.

Lemma 4.1.34. Let F be a symmetric distribution on R in the sense that there
exists a ‘center’ C = C(F ) ∈ R such that

F (C + x) = 1− F ((C − x)−) ∀x ∈ R. (4.1.23)

Then, the center C is unique.

Proof. Let C1 < C2 ∈ R be two centers for a distribution F , such that C1 and C2

satisfy (4.1.23). Then, for any x ∈ R

F (C1 + x) = 1− F ((C1 − x)−)

= 1− F ((C2 − (C2 − C1 + x))−)

= F (2C2 − C1 + x).

Since F is increasing, it is constant on the interval [C1 + x, 2C2−C1 + x]. As this
holds for all x ∈ R, F must be globally constant and thus fails to be a distribution
function.

Proposition 4.1.35. Let F be a family of symmetric distributions on R in the
sense that for all F ∈ F there exists a center C(F ) ∈ R satisfying (4.1.23). Let
Φ: R→ R be even and convex. Define the scoring function

S : R× R→ R, (x, y) 7→ S(x, y) = Φ(x− y). (4.1.24)

Then, the following assertions hold:

(i) S is F-consistent for the center functional C : F → R and S is metrically
F-order-sensitive for C.

(ii) If Φ is strictly convex, then S is strictly F-consistent for C (and consequently
strictly metrically F-order-sensitive for C).
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4.1. Order-Sensitivity

(iii) If Φ(0) < Φ(x) for all x ∈ R \ {0} and P(Y ∈ (C(F )− ε, C(F ) + ε)) > 0 for
all ε > 0 and for all F ∈ F where Y ∼ F , then S is strictly F-consistent for
C (and consequently strictly metrically F-order-sensitive for C).

Proof. (i) One can directly verify that x 7→ S(x, y) is convex for any y ∈ R.
Hence, the expected score x 7→ S̄(x, F ) is convex for any F ∈ F . In particu-
lar, for any F ∈ F with center c = C(F ) ∈ R, the function x 7→ S̄(c+x, F ) is
convex. Moreover, a computation similar to (4.1.22) yields that the function
x 7→ S̄(c + x, F ) is even. Consequently, S is F-consistent for C and, with
respect to Lemma 4.1.25, it is metrically F-order-sensitive.

(ii) Let Φ be strictly convex. Fix some x ∈ R \ {0} and define the function,

Ψx : R→ R, y 7→ Ψx(y) =
1

2

(
Φ(x− y) + Φ(−x− y)

)
− Φ(−y). (4.1.25)

The function Ψx is even and due to the strict consistency of Φ, Ψx is strictly
positive. Let F ∈ F with center c = C(F ) ∈ R. Then

S̄(c+ x, F )− S̄(c, F ) =
1

2

(
S̄(c+ x, F ) + S̄(c− x, F )

)
− S̄(c, F )

= EF [Ψx(Y − c)] > 0.

So S is strictly F-consistent for C. With Lemma 4.1.25 one concludes that
S is also strictly metrically F-order-sensitive for C.

(iii) Let x ∈ R \ {0} and consider the function Ψx defined at (4.1.25). Since
Φ is convex, it is continuous. Hence, also Ψx is continuous. Due to the
assumptions, Ψx ≥ 0 and Ψx(0) > 0. Therefore, there is some ε > 0 such
that Ψx(y) > 0 for all y ∈ (−ε, ε). Now, let F ∈ F with center c = C(F ) ∈ R.
Then,

S̄(c+ x, F )− S̄(c, F ) = EF [Ψx(Y − c)]
≥ EF [1{Y ∈ (c− ε, c+ ε)}Ψx(Y − c)] > 0.

That means again that S is strictly F-consistent for C. So Lemma 4.1.25
yields that S is strictly metrically F-order-sensitive.

Example 4.1.36. One prominent example of a scoring function besides the linear
or the squared loss is the so-called Huber loss which was presented in Huber (1964)
and arises upon taking

Φ(t) =

{
1
2 t

2, for |t| < k

k|t| − 1
2k

2, for |t| ≥ k

in (4.1.24), where k ∈ R, k ≥ 0 is a tuning parameter.
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4. Scoring Functions Beyond Strict Consistency

Remark 4.1.37. If the a distribution is symmetric, then not only the mean and
the median coincide with the center of symmetry, but also the α-trimmed mean
and the α-Winsorized mean, α ∈ (0, 1/2); see Huber and Ronchetti (2009, pp. 57–
59) for a definition of the two functionals.

Due to the negative result of Proposition 4.1.32 we dispense with an investiga-
tion of scoring functions that are metrically order-sensitive for vectors of different
quantiles.

Expectiles

As a last example of a popular elicitable functional, let us draw attention to ex-
pectiles. The special situation of the 1/2-expectile, such that it coincides with
the mean functional, was already considered in the subsection on ratios of expec-
tations with the same denominator. So the main purpose is to explore the case
τ 6= 1/2. It is obvious that the canonical scoring function for the τ -expectile, that
is, the asymmetric squared loss

Sτ (x, y) = |1{y ≤ x} − τ |(x− y)2

is not a metrically order-sensitive scoring function since x 7→ Sτ (x + y, y) is not
an even function. A fortiori, it turns out that under some smoothness conditions
on the distribution functions F ∈ F and some richness assumption on F there
is no metrically F-order-sensitive scoring function for the τ -expectile for τ 6=
1/2. Strictly speaking, we have the following proposition where we recall that the
function Vτ : R× R→ R

Vτ (x, y) = 2|1{y ≤ x} − τ | (x− y) (4.1.26)

is an oriented strict identification function for the τ -expectile.

Proposition 4.1.38. Let τ ∈ (0, 1), τ 6= 1/2, and T = µτ : F → A ⊆ R be the
τ -expectile, such that Assumption (V1) in Fissler and Ziegel (2016) holds with
respect to the strict F-identification function at (4.1.26), and assume that T is
surjective. Assume that V̄ (·, F ) is twice differentiable for all F ∈ F and that there
is a strictly F-consistent scoring function S : A×R→ R such that S̄(·, F ) is three
times differentiable for all F ∈ F . In particular, let each F ∈ F be differentiable
with derivative f = F ′.

If there is a t ∈ A and F1, F2 ∈ F such that T (F1) = T (F2) = t, F1(t) = F2(t),
but F ′1(t) = f1(t) 6= f2(t) = F ′2(t), then S is not metrically F-order-sensitive.

Proof. Under the assumptions, Osband’s principle implies that there is a function
h : int(A) → R, h > 0 (by an argument like in the proof of Proposition 4.1.26)
such that for all F ∈ F , x ∈ int(A)

d

dx
S̄(x, F ) = h(x)V̄τ (x, F ).
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Using the same argument as in the proof of Osband’s principle (Fissler and Ziegel,
2016, Theorem 3.2), h is twice differentiable. Assume that S is metrically F-order
sensitive. Then, due to Lemma 4.1.25 for any F ∈ F the function gF : A 3 x 7→
gF (x) = S̄(T (F ) + x, F ) is an even function. Hence, invoking the smoothness
assumptions, the third derivative of gF must be odd. So necessarily g′′′F (0) = 0.
Denoting tF = T (F ), some tedious calculations lead to

g′′′F (0) = 2h′(tF )
(
F (tF )(1− 2τ) + τ

)
+ 2h(tF )f(tF )(1− 2τ). (4.1.27)

Recalling that h > 0 and τ 6= 1/2 implies g′′′F1
(0) 6= g′′′F2

(0). So S cannot be
metrically F-order-sensitive.

Remark 4.1.39. Starting with some differentiable F1 ∈ F it is possible to con-
struct an F2 satisfying the conditions of Proposition 4.1.38 by changing F1 in a
neighborhood of t = T (F1).

Remark 4.1.40. Inspecting the proof of Proposition 4.1.38, equation (4.1.27)
yields for τ = 1/2

g′′′F (0) = h′(tF )F (tF )

for any F ∈ F , tF = T (F ). With the surjectivity of T this proves that h′ = 0,
such that h is necessarily constant. Hence, we get an alternative proof that the
squared loss is the only metrically order-sensitive scoring function for the mean,
up to equivalence.

Connections to (quasi-)convexity

It is interesting to examine the connection between metrical order-sensitivity and
the convexity of the expected score. However, generally, neither implies the other
– there are examples of metrically order-sensitive scoring functions, which are not
convex and vice versa. However, one can show the following weaker result.

Lemma 4.1.41. Let S be a metrically F-order-sensitive scoring function for some
functional T : F → A where the metric is induced by a norm ‖ · ‖. Then for any
F ∈ F , the expected score S̄(·, F ) is quasi-convex.

Proof. Let F ∈ F , t = T (F ), x, z ∈ A, λ ∈ [0, 1] with x′ = λx+ (1− λ)z ∈ A.

‖x′ − t‖ = ‖λ(x− t) + (1− λ)(z − t)‖
≤ ‖λ(x− t)‖+ ‖(1− λ)(z − t)‖
= λ‖x− t‖+ (1− λ)‖z − t‖ ≤ max{‖x− t‖, ‖z − t‖}.

Using the metrical F-order-sensitivity of S with respect to ‖ · ‖, one concludes
with

S̄(x′, F ) ≤ max{S̄(x, F ), S̄(z, F )}.
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4. Scoring Functions Beyond Strict Consistency

Remark 4.1.42. In Corollary 4.1.48 we will show that quasi-convexity of a scoring
function in turn implies order-sensitivity on line segments.

Example 4.1.43. Let A = O = R, S(x, y) = |x − y|1/2 and T : F → R be a
functional implicitly defined such that S becomes a strictly F-consistent scoring
function5. Then S is quasi-convex, but not convex in x. However, if F con-
tains only distributions which are symmetric around T (F ) and such that T (F ) is
uniquely defined, an argument similar as in the proof of Proposition 4.1.35 yields
that S is metrically F-order-sensitive.

Example 4.1.44. There are convex scoring functions which are not metrically
order-sensitive. For example, the α-pinball loss S(x, y) = (1{y ≤ x} − α)(x − y)
is convex in x. However, due to Proposition 4.1.32, for α 6= 1/2, S cannot be
metrically order-sensitive for the α-quantile.

4.1.7. Order-sensitivity on line segments

Recalling Lemma 4.1.8, every componentwise order-sensitive scoring function is
also order-sensitive on line segments. With the help of the findings of Subsection
4.1.3 it is possible to derive the following Corollary.

Corollary 4.1.45. If F is convex and T : F → A ⊆ Rk is linear and surjective,
then any strictly F-consistent scoring function for T is strictly F-order-sensitive
on line segments.

Proof. The linearity of T implies that T is mixture-continuous. Then the assertion
follows directly by Proposition 4.1.14 and the special form of the image of the path
γ in the proof therein, which is a line segment.

Corollary 4.1.45 immediately leads the way to the result that the class of strictly
order-sensitive scoring functions on line segments is strictly bigger than the class
of strict componentwise order-sensitive scoring functions (for some functionals
with dimension k ≥ 2.) E.g. consider a vector of expectations satisfying the
conditions of Proposition 4.1.22 which are the same as the one in Proposition 4.4
in Fissler and Ziegel (2016). Due to the latter result, there are strictly consistent
scoring functions – and hence, with Corollary 4.1.45, strictly order-sensitive on
line segments – which are not additively separable. By Proposition 4.1.22 they
cannot be strictly componentwise order-sensitive.

The next Lemma asserts that order-sensitivity on line segments is stable under
applying an isomorphism via the revelation principle (Proposition 2.3.2).

5Besides integrability assumptions on F one has to pay attention since arg minx∈R S̄(x, F ) is
generally not a singleton. In particular, even if one excludes those distributions F where the
arg min is not unique, the resulting functional is not mixture-continuous.
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Lemma 4.1.46. Let S : A×O→ R be a (strictly) F-order-sensitive scoring func-
tion on line segments for a functional T : F → A ⊆ Rk. Let g : A→ A′ ⊆ Rk be an
isomorphism where A′ is the image of A under g. Then Sg : A′×O→ R defined as
Sg(x

′, y) = S(g−1(x′), y) is a (strictly) F-order-sensitive scoring function on line
segments for the functional Tg = g ◦ T : F → A′.

Proof. Let F ∈ F , t = T (F ) and tg = Tg(F ) = g(t). Let v ∈ Sk−1 and s ∈ [0,∞).
Using the linearity of g−1 we get

S̄g(tg + sv, F ) = S̄
(
g−1(g(t) + sv), F

)
= S̄(t+ sg−1(v), F ).

Since also g is an isomorphism, we have that g−1(v)/‖g−1(v)‖ ∈ Sk−1. Hence, the
map s 7→ S̄g(tg + sv, F ) is (strictly) increasing for all v ∈ Sk−1 if S is (strictly)
order-sensitive on line segments.

Connections to quasi-convexity

It is obvious that quasi-convexity of an expected strictly consistent score implies
order-sensitivity on line segments; see Section 4.2 for an introduction and a formal
definition of quasi-convexity. More precisely, we have the following equivalent
characterization of order-sensitivity on line segments.

Lemma 4.1.47. Let S : A × O → R be a strictly F-consistent scoring function
for a functional T : F → A ⊆ Rk where A is convex. Then S is (strictly) F-order-
sensitive on line segments if and only if for all F ∈ F , t = T (F ), and for all
v ∈ Sk−1 the map

ψ : D′ = {s ∈ R : t+ sv ∈ A} → R, s 7→ S̄(t+ sv, F ) (4.1.28)

is (strictly) quasi-convex.

The proof is straight forward and therefore omitted. In particular, we obtain
the following corollary.

Corollary 4.1.48. Let S : A×O→ R be a strictly F-consistent scoring function
for a functional T : F → A ⊆ Rk where A is convex. If for all F ∈ F the
expected score S̄(·, F ) : A → R is (strictly) quasi-convex, then S is (strictly) F-
order-sensitive on line segments for T .

From a theoretical point of view, quasi-convexity is strictly stronger than order-
sensitivity on line segments. In terms of sublevel sets of the expected score,
quasi-convexity is equivalent to the convexity of the sublevel sets, whereas order-
sensitivity on line segments implies merely that the sublevel sets are star domains
with star point T (F ). And indeed, we shall give examples of scoring functions
that are order-sensitive on line segments, but not quasi-convex; compare Example
4.1.50 with Proposition 4.2.28.
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Scoring functions for ratios of expectations with the same
denominator

We can extend the result of Corollary 4.1.45 to the case of ratios of expectations
with the same denominator.

Lemma 4.1.49. Let T : F → A ⊆ Rk be a ratio of expectations with the same
denominator, that is, T (F ) = p̄(F )/q̄(F ) for some F-integrable functions p : O→
Rk, and q : O → R where we assume that q̄(F ) > 0 for all F ∈ F . Assume that
A is open. Then any strictly F-consistent scoring function of the form given at
equation (4.5) in Fissler and Ziegel (2016) is strictly F-order-sensitive on line
segments.

Proof. We use the notation of Proposition 4.4 in Fissler and Ziegel (2016). Let
F ∈ F , t = T (F ), v ∈ Sk−1 and s ∈ R such that t + sv ∈ A. Then, consider the
function ψ given at (4.1.28). One obtains

ψ′(s) = sv>h(t+ sv)V̄ (t+ sv, F ) = s q̄(F )v>h(t+ sv)v





> 0, if s > 0

= 0, if s = 0

< 0, if s < 0,

where we used the fact that h(x) is positive definite for all x ∈ A.

Scoring functions for the pair (VaR, ES)

In this subsection, we shall give examples of strictly consistent scoring functions
for the pair (VaR, ES) which are strictly order-sensitive on line segments. To this
end, we assume the conditions of Corollary 5.5 in Fissler and Ziegel (2016). So
we fix a (small) α ∈ (0, 1) and assume that F is a class of distribution functions
on R with finite first moments and unique α-quantiles. Moreover, to simplify the
analysis, suppose that any distribution F ∈ F has a continuous derivative f (which
then is also its density). Recall that ESα ≤ VaRα, such that it is no restriction
to consider the action domain A0 = {x ∈ R2 : x1 ≥ x2}. Then, a scoring function
S : A0 × R→ R of the form

S(x1, x2, y) =
(
1{y ≤ x1} − α

)
G1(x1)− 1{y ≤ x1}G1(y) (4.1.29)

+G2(x2)

(
x2 − x1 +

1

α
1{y ≤ x1}(x1 − y)

)
− G2(x2),

where G1, G2,G2 : R → R, G′2 = G2, 1(−∞,x1]G1 is F-integrable for all x1 ∈ R, is
strictly F-consistent for T = (VaRα,ESα), if G1 is increasing and G2 is strictly
increasing and strictly convex. Throughout this paragraph, assume moreover that
G1 and G2 are twice differentiable.
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For some F ∈ F , the first and second order partial derivatives of the expected
score S̄(x1, x2, F ) have the form

∂1S̄(x1, x2, F ) = (F (x1)− α)
(
G′1(x1) + 1

αG2(x2)
)
,

∂2S̄(x1, x2, F ) = G′2(x2)
(
x2 − x1 + 1

αF (x1)x1 − 1
α

∫ x1
−∞ y dF (y)

)
,

∂1∂1S̄(x1, x2, F ) = f(x1)
(
G′1(x1) + 1

αG2(x2)
)

+ (F (x1)− α)G′′1(x1),

∂1∂2S̄(x1, x2, F ) = ∂2∂1S̄(x1, x2, F ) = 1
αG
′
2(x2)(F (x1)− α),

∂2∂2S̄(x1, x2, F ) = G′′2(x2)
(
x2 − x1 + 1

αF (x1)x1 − 1
α

∫ x1
−∞ y dF (y)

)
+G′2(x2).





(4.1.30)
Now, for v ∈ S1, consider the function ψ : D′ → R defined at (4.1.28). Then, for
s ∈ D′, t = T (F ) and s̄ = t+ sv, one obtains

ψ′(s) = v1(F (s̄1)− α)

(
G′1(s̄1) +

1

α
G2(s̄2)

)
(4.1.31)

+ v2G
′
2(s̄2)

(
sv2 +

1

α

(
s̄1(F (s̄1)− α)−

∫ s̄1

t1

y dF (y)

))
.

We immediately see that ψ′(0) = 0. If v2 = 0, then v1 ∈ {−1, 1} such that

ψ′(s) = v1(F (s̄1)− α)

(
G′1(s̄1) +

1

α
G2(s̄2)

)




> 0, s > 0

= 0, s = 0

< 0, s < 0.

Similarly, we get for v2 ∈ {−1, 1}, v1 = 0, that ψ′(s) = sG′2(s̄2). Now, suppose
without loss of generality that v2 > 0 and v1 6= 0. Then, in a similar way as
performed in a preprint version of Fissler and Ziegel (2015)6, equation (4.1.31)
can be rewritten as ψ′(s) = v2G

′
2(s̄2)(R(s)− L(s)), where

R(s) =
1

α

(
s̄1(F (s̄1)− α)−

∫ s̄1

t1

y dF (y)

)
,

L(s) = −sv2 − v1(F (s̄1)− α)
G′1(s̄1) + 1

αG2(s̄2)

v2G′2(s̄2)
.

Due to our assumptions it holds that G′2 > 0, so ψ′(s) = 0 if and only if R(s) =
L(s). Since

R′(s) =
v1

α
(F (s̄1)− α)

is increasing with R′(0) = 0, R is a convex function, decreasing for s < 0 and
increasing for s > 0. The first summand, −sv2, of L is a linear function with slope
−v2 < 0. The second summand vanishes for s = 0, it is ≤ 0 for s > 0 and ≥ 0
for s < 0. Consequently, R(s) > L(s) for s > 0, and hence ψ′(s) > 0 for s > 0.

6This preprint version we are referring to corresponds to version 1 on arXiv.
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Due to the form of L, one has L′(0) ≤ v2 < 0. With a continuity argument, one
obtains that ψ′(s) < 0 in a neighborhood of 0 for s < 0. This implies that ψ
has a local minimum at s = 0 (alternatively, one can also see that ψ′′(0) > 0).
However, it is not clear whether there exists an s∗ < 0 such that R(s∗) = L(s∗).
If such an s∗ < 0 exists with ψ′(s∗) = 0 then ψ is quasi-convex if and only if s∗ is
not a strict local maximum, but an inflection point. A necessary condition is that
ψ′′(s∗) ≥ 0 and a sufficient condition is that ψ′′(s∗) > 0; see Proposition 4.2.3.
For any s ∈ D′, ψ′′ takes the form

ψ′′(s) = v2
1f(s̄1)

(
G′1(s̄1) +

1

α
G2(s̄2)

)
+ v1(F (s̄1)− α)

(
v1G

′′
1(s̄1) +

v2

α
G′2(s̄2)

)

+ v2
2G
′
2(s̄2) + v3

2G
′′
2(s̄2)s+

v2
2

α
G′′2(s̄2)

(
s̄1(F (s̄1)− α)−

∫ s̄1

t1

y dF (y)

)

+
v2

α
G′2(s̄2)v1(F (s̄1)− α).

Indeed, one can see that ψ′′(0) = v2
1f(s̄1)

(
G′1(s̄1) + 1

αG2(s̄2)
)

+ v2
2G
′
2(s̄2) > 0.

Now, computing ψ′′(s∗) using the condition that R(s∗) = L(s∗), one obtains

ψ′′(s∗) = v2
1f(s̄1)

(
G′1(s̄∗1) +

1

α
G2(s̄∗2)

)
+ v2

2G
′
2(s̄∗2) (4.1.32)

+ v1(F (s̄∗1)− α)

(
v1G

′′
1(s̄∗1) + v2

2

α
G′2(s̄∗2)− v2G

′′
2(s̄∗2)

G′1(s̄∗1) + 1
αG2(s̄∗2)

G′2(s̄∗2)

)
.

The first summand in (4.1.32) is ≥ 0, and the second > 0. Since v2 > 0 and
s∗ < 0, we have v1(F (s̄∗1)−α) < 0. Consequently, one needs to control the sign of
the last bracket. We give a sufficient criterium such that also the third summand
is ≥ 0:

G′′1 ≡ 0 and G2(x)G′′2(x)− 2(G′2(x))2 ≥ 0 ∀x. (4.1.33)

We give two examples for functions G1, G2 satisfying (4.1.33) and the conditions
of Fissler and Ziegel (2016, Corollary 5.5), also stated after equation (4.1.29).

Example 4.1.50. Consider the restricted action domain A−0 = {x ∈ R2 : x1 ≥
x2, x2 < 0} ⊂ A0. So the domain of G2 is (−∞, 0). Then choose G1 linear with
a non-negative slope and G2 in the family

G2(x) = |x|−b, b ∈ (0, 1], x < 0.

Indeed, then G′2(x) = b|x|−b−1 > 0 for x < 0 and b > 0, and

G2(x)G′′2(x)− 2(G′2(x))2 = |x|−2(b+1)(b− b2) ≥ 0,

for b ≤ 1.
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Connections to oriented identification functions

At the beginning of Subsection 4.1.2 we have discussed the notion of orienta-
tion of a strict identification function for a real-valued functional, which is due
to Steinwart et al. (2014), but has already been mentioned by Lambert et al.
(2008). Giving an alternative, but equivalent formulation of (4.1.5), which also
corresponds to the formulation in Steinwart et al. (2014), one can say that a strict
F-identification function V : A×O→ R for a functional T : F → A ⊆ R is oriented
for T if

V̄ (x, F ) > 0 ⇐⇒ x > T (F ) (4.1.34)

for all F ∈ F , x ∈ A. In our preprint Fissler and Ziegel (2015), we gave a
generalization of orientation for higher-dimensional functionals.

Definition 4.1.51 (Orientation). Let T : F → A ⊆ Rk be a functional with a
strict F-identification function V : A × O → Rk. Then V is called an oriented
strict F-identification function for T if

v>V̄ (T (F ) + sv, F ) > 0 ⇐⇒ s > 0

for all v ∈ Sk−1 := {x ∈ Rk : ‖x‖ = 1}, for all F ∈ F and for all s ∈ R such that
T (F ) + sv ∈ A.

Remark 4.1.52. (i) Indeed, the one-dimensional definition of orientation at
(4.1.34) is nested in Definition 4.1.51 upon recalling that S0 = {−1, 1}.

(ii) Our notion of orientation differs from the one proposed by Frongillo and Kash
(2015a). In contrast to their definition, our definition is per se independent of
a (possibly non-existing) strictly consistent scoring function for T . Moreover,
whereas their definition has connections to the convexity of the expected
score, our definition shows strong ties to order-sensitivity on line segments.

If the gradient of an expected score induces an oriented identification function,
then the scoring function is strictly order-sensitive on line segments and vice versa.
However, the existence of an oriented identification function is not sufficient for
the existence of a strictly order-sensitive scoring function on line segments. The
reason is that – due to integrability conditions – the identification function is not
necessarily the gradient of some (scoring) function.

Likewise, under Assumption (S1) in Fissler and Ziegel (2016), the gradient of
an expected score induces a locally oriented identification function in the sense of
the following definition.

Definition 4.1.53 (Local orientation). Let T : F → A ⊆ Rk be a functional with
an F-identification function V : A × O → Rk. Then V is called a locally oriented
F-identification function for T if for all F ∈ F and for all v ∈ Sk−1 there is an
ε > 0 such that for all s ∈ (−ε, ε) with T (F ) + sv ∈ A

v>V̄ (T (F ) + sv, F ) > 0 ⇐⇒ s > 0.
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4. Scoring Functions Beyond Strict Consistency

We end this paragraph by mentioning that, apparently, there is a flaw in the
proof of Steinwart et al. (2014, Lemma 6). Assuming convexity of F , continuity
of T : F → R (actually, they only use mixture-continuity) and the fact that T has
convex level sets, they claim that if V is a strict F-identification function for T ,
then either V or −V is oriented. However, considering the mean functional, any
identification function V : R× R→ R of the form

V (x, y) = h(x)(x− y)

is a strict identification function if h 6= 0. But for

h : R→ R, h(x) =

{
1, x ≥ 0

−1, x < 0,

V is not oriented. Of course, multiplying with a discontinuous function h, will
also cause V to be discontinuous in x; cf. Remark 3.2.2.

4.1.8. Nested information sets

Corollary 2 in Holzmann and Eulert (2014)7, which corresponds to Lemma 2.2.6 in
this thesis, can also be considered as a notion of order-sensitivity or monotonicity.
However, it argues on the level of the prediction space setting and not on the
‘conditional’ level, assuming that the forecast is deterministic. So it should not
be mixed with the notions presented above in this section.

4.2. Convexity of scoring functions

In this section, we investigate the notions of convexity and quasi-convexity of
scoring functions. To this end, consider a generic scoring function S : A× O→ R
where A ⊆ Rk is convex, O ⊆ Rd. Let F be a class of distributions on O such that
S is F-integrable. We start with some definitions.

Definition 4.2.1 (Convex scoring function). A scoring function S : A × O → R
is called convex if S(·, y) : A→ R is convex for all y ∈ O. That is, if for all y ∈ O

S((1− λ)x0 + λx1, y) ≤ (1− λ)S(x0, y) + λS(x1, y) ∀x0, x1 ∈ A, ∀λ ∈ [0, 1].

If the inequality is strict for x0 6= x1 and λ ∈ (0, 1), S is strictly convex. S is called
F-convex if the expected score S̄(·, F ) : A → R is convex for all F ∈ F . That is,
if for all F ∈ F

S̄((1− λ)x0 + λx1, F ) ≤ (1− λ)S̄(x0, F ) + λS̄(x1, F ) ∀x0, x1 ∈ A, ∀λ ∈ [0, 1].

If the inequality is strict for x0 6= x1 and λ ∈ (0, 1), S is strictly F-convex.
7See Patton (2015) for a partial converse of this result.
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4.2. Convexity of scoring functions

Definition 4.2.2 (Quasi-convex scoring function). A scoring function S : A×O→
R is called quasi-convex if S(·, y) : A→ R is quasi-convex for all y ∈ O. That is, if
for all y ∈ O

S((1− λ)x0 + λx1, y) ≤ max{S(x0, y), S(x1, y)} ∀x0, x1 ∈ A, ∀λ ∈ [0, 1].

If the inequality is strict for x0 6= x1 and λ ∈ (0, 1), S is strictly quasi-convex. S
is called F-quasi-convex if the expected score S̄(·, F ) : A → R is quasi-convex for
all F ∈ F . That is, if for all F ∈ F
S̄((1− λ)x0 + λx1, F ) ≤ max{S̄(x0, F ), S̄(x1, F )} ∀x0, x1 ∈ A, ∀λ ∈ [0, 1].

If the inequality is strict for x0 6= x1 and λ ∈ (0, 1), S is strictly F-quasi-convex.

Let us recall that a function f : Rk ⊇ C → R, where C is convex, is quasi-
convex if and only if its lower-level sets are convex, that is, if for all z ∈ R the set
{x ∈ C : f(x) ≤ z} is convex. For a good introduction into the theory of quasi-
convex (or quasi-concave) functions, we refer the reader to the books of Schaible
and Ziemba (1981) and Avriel et al. (2010) as well as to the survey article of
Greenberg and Pierskalla (1971) and the two research articles of Diewert et al.
(1981), and Crouzeix and Ferland (1982). We cite two equivalent characterization
of quasi-convexity. The first one is given in terms of second order conditions and
corresponds to Proposition 9 and Proposition 11 in Schaible and Ziemba (1981,
pp. 36–39).

Proposition 4.2.3 (Schaible and Ziemba (1981)). Let C ⊆ Rk be an open convex
set and let f : C → R be a twice continuously differentiable function with gradient
∇f and Hessian ∇2f . Then f is quasi-convex if and only if for all x ∈ C and for
all v ∈ Sk−1,

v>∇f(x) = 0

implies

(i) v>∇2f(x)v > 0; or

(ii) v>∇2f(x)v = 0 and ψ : {s ∈ R : x + sv ∈ C} → R, ψ(s) = f(x + sv) is
quasi-convex.

Moreover, f is strictly quasi-convex if and only if this implication holds where in
(ii) ψ does not attain a local maximum at s = 0.

The next result corresponds to Theorem 3.15 in Avriel et al. (2010, p. 69)
and the second part concerning strict quasi-convexity is due to Proposition 10 in
Schaible and Ziemba (1981, p. 38). But before, we give a definition of a semistrict
local maximum, which is due to Definition 3.3 in Avriel et al. (2010, p. 60).

Definition 4.2.4 (Avriel et al. (2010)). A function f : C → R where C ⊆ R is
an open interval, is said to attain a semistrict local maximum at a point x0 ∈ C
if there exist x1, x2 ∈ C, with x1 < x0 < x2 such that

f(x0) ≥ f((1− λ)x1 + λx2) ∀λ ∈ [0, 1]
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and

f(x0) > max{f(x1), f(x2)}.

Proposition 4.2.5 (Avriel et al. (2010)). Let C ⊆ Rk be an open convex set and
let f : C → R be a differentiable function with gradient ∇f . Then f is quasi-convex
if and only if for all x ∈ C and for all v ∈ Sk−1

v>∇f(x) = 0

implies that the function ψ : {s ∈ R : x+ sv ∈ C} → R, ψ(s) = f(x+ sv) does not
attain a semistrict local maximum at s = 0.

Moreover, f is strictly quasi-convex if and only if this implication holds where
the function ψ does not attain a local maximum at s = 0.

Since the space of convex functions over the same domain forms a convex cone,
the convexity of a scoring function implies its F-convexity with respect to any
class of probability distributions F on O. However, the analogue result is not
true for quasi-convex scoring functions, since the sum of quasi-convex functions
does not need to be quasi-convex.8 Nevertheless, in the one-dimensional case,
order-sensitivity ensures quasi-convexity. The reason is that the class of (strictly)
quasi-convex functions defined on an interval in R can be easily described. It
consists exactly of those functions that are either (strictly) monotone or there is
a point x in their domain such that they are (strictly) decreasing up to x and
afterwards (strictly) increasing.

Lemma 4.2.6. Let F be convex and T : F → A ⊆ R be surjective and mixture-
continuous. Then, any F-consistent scoring function for T is quasi-convex.

Proof. Let S be F-consistent for T . Then, by Proposition 4.1.10, S is F-order-
sensitive for T . Let F ∈ F , and x ∈ int(A) and without loss of generality x ≥
T (F ). Then there are x0 ≤ x ≤ x1 such that x is a convex combination of x0 and
x1. But due to the order-sensitivity S̄(x, F ) ≤ S̄(x1, F ).

Remark 4.2.7. It is worth mentioning that the definitions of (F-)(quasi-)convexity
of a scoring function is not relative to a functional, but an absolute notion. More-
over, if a scoring function is strictly F-convex, it induces a functional T : F → R,
via T (F ) = arg minx∈R S̄(x, F ).

Remark 4.2.8. (Quasi-)convexity is also preserved by equivalence of scoring func-
tions.

8To illustrate this fact, consider the family of functions fy : R→ R, fy(x) = |x−y|1/2 for y ∈ R.
For any y ∈ R, fy is quasi-convex. However, f−1 + f1 has two global minima at x ∈ {−1, 1}
and a strict local maximum at x = 0. Hence, f−1 + f1 is not quasi-convex.
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4.2. Convexity of scoring functions

4.2.1. Motivation

The use of quasi-convex, and in particular convex scoring functions might be
beneficial in many different areas. Subsequently, we shall give examples related
to learning and regression, show how convex scoring functions can incentivize
‘sharper’ forecasts and cooperations between competing forecasters, and finally
show a connection to the question of ‘backtestability’ of risk measures in the
context of quantitative finance.

Learning

Let us repeat the framework of learning and M -estimation already described in
Subsection 2.2.1. If we have n observations of an i.i.d. sequence (Yt)t∈N where
Yt has some unknown distribution F ∈ F (actually, ergodicity is sufficient) and
one wants to estimate a functional T : F → A ⊆ Rk, one can use any strictly
F-consistent scoring function S to do M -estimation in the sense that

arg min
x∈A

1

n

n∑

t=1

S(x, Yt) (4.2.1)

is a consistent estimator for

arg min
x∈A

E[S(x, Y )] = arg min
x∈A

S̄(x, F ) = T (F ) (4.2.2)

under some regularity conditions detailed in Huber and Ronchetti (2009, Chapter
6). Then, if S is (F-)convex, both (4.2.1) and (4.2.2) are convex optimization
problems. Furthermore, if S is quasi-convex, then (4.2.1) is a quasi-convex opti-
mization problem, whereas (4.2.2) is a quasi-convex optimization problem if S is
F-quasi-convex.

Note that not only convexity is beneficial in the context of optimization, but
also quasi-convexity; see for example Chapter 3 in Diewert et al. (1981).

Regression

We use the notation introduced in Subsection 2.2.2. That is, we consider n ob-
servations of an i.i.d. sequence (Zt, Yt)t∈N where (Zt, Yt) ∼ (Z, Y ). Recall that Z
takes values in R` and consists of the explanatory factors for the output variable
Y , taking values in O ⊆ Rd. Assume that G is a class of models, where a model
g ∈ G is a (measurable) function g : R` → Rd. Let us further assume that the class
G is convex. Let T : F → A ⊆ Rk be a functional such that (i) the (regular version
of) the conditional distribution L(Y |Z) is in F (almost surely); and (ii) for each
g ∈ G, g(Z) ∈ A almost surely. Let S : A × O → R be a strictly F-consistent
scoring function for T . Then, the goal of regression is to determine the ‘oracle
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function’9

arg min
g∈G

1

n

n∑

t=1

S(g(Zt), Yt). (4.2.3)

If S is a convex scoring function, (4.2.3) is clearly a convex optimization problem.
Moreover, the law of large numbers yields that the objective function in (4.2.3)
converges (almost surely or in probability) to E[S(g(Z), Y )]. Under some regular-
ity conditions detailed in Huber and Ronchetti (2009, Chapter 6), then also the
arg min defined at (4.2.3) converges (almost surely or in probability) to

arg min
g∈G

E[S(g(Z), Y )]. (4.2.4)

So still the convexity of S is sufficient for (4.2.4) to be a convex optimization
problem. A fortiori, the identity

E[S(g(Z), Y )] = E
[
E[S(g(Z), Y ) |Z]

]
= E

[
S̄(g(Z),L(Y |Z))

]

shows that the F-convexity of S is sufficient for (4.2.4) to be a convex optimization
problem.

On the other hand, neither the F-quasi-convexity nor the quasi-convexity of
S imply that (4.2.3) or (4.2.4) is a quasi-convex optimization problem (unless
F contains all necessary discrete distributions). The difficulty is again that the
sum of quasi-convex functions (over the same domain or over different domains)
is not necessarily quasi-convex. So it appears that, whereas convexity of scoring
functions is highly desirable in the context of regression, quasi-convexity is of
limited use.

Incentives to maximize ‘sharpness’ subject to calibration

In the context of the evaluation of probabilistic forecasts, Gneiting et al. (2007,
pp. 245–246) proposed the

“paradigm of maximizing the sharpness of the predictive distributions subject
to calibration. Calibration refers to the statistical consistency between the
distributional forecasts and the observations and is a joint property of the
predictions and the observed values. Sharpness refers to the concentration of
the predictive distributions and is a property of the forecasts only. The more
concentrated the predictive distributions are, the sharper the forecasts, and
the sharper the better, subject to calibration.”

If one strives to establish a similar notion of this sharpness principle in the context
of point forecasts, first, it is important to think of a new definition of sharpness
in this context. Prima facie, point forecasts are maximally sharp in the sense
that they are concentrated at one point. However, moving one level upwards and

9We use this terminology in line with the machine learning community; see the contribution of
H. Liu in the discussion article Ehm et al. (2016, p. 549).

108



4.2. Convexity of scoring functions

taking the perspective of the prediction space setting (actually, for our considera-
tions, the one-period-prediction-space-setting due to Gneiting and Ranjan (2013)
is sufficient), one could argue that a forecast is the sharper the more unnecessary
variance it avoids. Clearly, this definition is a bit vague, and we shall come up with
a precise definition. But before, we want to give an illustrative example in the
easiest possible setting, that is, when observation and forecast are independent.

Note that within this motivation, we will not focus too much on technicalities
such as measurability or integrability assumptions. Moreover, we confine ourselves
to an exposition of the ideas for the one-dimensional setting, such that A ⊆ R.
Consider a probability space (Ω,A,P), and two random variables X,Y where Y
is the observation and X the forecast. Let X be measurable with respect to
some sub-σ-algebra A0 ⊂ A. Then, if the goal is to predict some functional
T of the (conditional) distribution of Y , the ideal forecast, knowing A0, would
be T (L(Y |A0)). Let us assume for a moment that A0 does not contain any
information about Y in the sense that A0 and σ(Y ) are independent. Then the
ideal forecast is clearly T (L(Y )), wich is a constant. Consequently, X does not
have a chance to be the ideal forecast (with respect to his (useless) information
A0) unless X is a constant. Even if one does not know which constant is the ideal
forecast, at least, the ‘closest’ constant to X should be deemed a better forecast
than X itself. The term ‘close’ can be understood in the L2-sense, implying that
the L2-projection of X onto the space of constants, that is merely its expectation
E[X], can be regarded a better forecast and should be preferred over X. Therefore,
it can be a reasonable requirement for a strictly consistent scoring function for T
to reflect this preference. If a scoring function is F-convex (where, as usual, F
is the domain of T ), this property is automatically satisfied due to the Jensen
inequality. Indeed,

E[S(X,Y )] = E
[
S̄(X,L(Y ))

]
≥ S̄

(
E[X],L(Y )

)
= E

[
S(E[X], Y )

]
, (4.2.5)

where we obtain the first identity by conditioning onA0 and taking the expectation
with respect to Y . It is remarkable that (4.2.5) holds irrespective whether S is
consistent for T or not. The following example shows that (4.2.5) is generally not
satisfied if S is not convex.

Example 4.2.9. Let T : F → R be the mean functional and F be the class
of probability distributions with finite first moments. Due to Gneiting (2011,
Theorem 7) the scoring function S : R× R→ R, Sφ(x, y) = −φ(x) + φ′(x)(x− y)
is strictly F-consistent for T if φ is strictly convex. Now consider the convex
function φ(x) = x2/(1 + |x|) with derivative

φ′(x) =
2x(1 + |x|)− sgn(x)x2

(1 + |x|)2
.

Clearly (and consistently with Corollary 4.2.17), Sφ is not F-convex.
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Now let Y have distribution F with mean T (F ) = 0, and let X be independent
of Y with distribution P(X = 10) = P(X = 0) = 1

2 . Then

S̄(0, F ) = S(0, 0) = 0, S̄(5, F ) = S(5, 0) =
25

36
, S̄(10, F ) = S(10, 0) =

100

121
,

such that

E[S(X,Y )] =
50

121
<

25

36
= E

[
S(E[X], Y )

]
,

and (4.2.5) is violated.

Clearly, the assumption that A0 and Y are independent is quite restrictive, but
is fulfilled in some situations. One example is the case of i.i.d. observations (Yt)t∈N,
and the information set A0 for a fixed time t is generated by the past observations
Y1, . . . , Yt−1; see Section 2.2 and the arguments around equation (2.2.2).

For the general situation where A0 and Y are not independent, one can ap-
ply a similar reasoning. Then, the ideal forecast T (L(Y |A0)) is not necessarily
constant, but a σ(L(Y |A0))-measurable random variable. Again, one can argue
that the ‘closest’ σ(L(Y |A0))-measurable random variable to X, that is the L2-
projection of X to the space of σ(L(Y |A0))-measurable (and square-integrable)
random variables, which is the conditional expectation

E
[
X|σ(L(Y |A0))

]
,

should be deemed a better forecast. Similarly to (4.2.5), this is automatically
reflected by F-convex scoring functions and the conditional Jensen inequality.10

Indeed,

E[S(X,Y )] = E
[
E[S(X,Y ) | A0]

]
= E

[
S̄(X,L(Y |A0))

]

≥ E
[
S̄
(
E[X|σ(L(Y |A0))],L(Y |A0)

)]
= E

[
S(E[X|σ(L(Y |A0))], Y )

]
. (4.2.6)

In the following example, we illustrate this more general situation, and show that
the objects X, E[X|A0], and T (L(Y |A0)) do generally not coincide.

Example 4.2.10. Let T be again the mean functional, µ be some random variable
taking values in Z with a non-symmetric distribution and which is such that µ
takes positive and negative values with positive probability, τ be independent of
µ with distribution P(τ = 1) = P(τ = −1) = 1

2 and Y be an observation with
conditional distribution

L(Y |µ, τ) = N (τµ, 1).

Let X be a forecast, having only access to µ, that is, X is measurable with respect
to A0 = σ(µ). Then

L(Y |A0) = L(Y |µ) =
1

2
N (µ, 1) +

1

2
N (−µ, 1).

10We assume that the regular version of L(Y |A0) is in F with probability 1.

110



4.2. Convexity of scoring functions

Clearly, the ideal forecast with respect to A0 is

T (L(Y |A0)) =
1

2
(µ− µ) = 0.

Assume that, for some reason, the forecaster ignores the possibility that τ = −1.
Therefore, he issues the misspecified forecast X = µ. Now, let us determine the
conditional expectation of X given σ(L(Y |A0)). It holds that

L(Y |A0) = L(Y |X) = L(Y | −X),

so σ(L(Y |A0)) does not contain information about the sign of X. On the other
hand

E
[
Y 2|A0

]
= E

[
Y 2|X

]
=

1

2

(
1 +X2 + 1 + (−X)2

)
= 1 +X2.

Hence, σ(L(Y |A0)) = σ(L(Y |X)) = σ(X2) = σ(|X|). Moreover,

E
[
X|σ(|X|)

]
= |X|

(
P(X = |X|)− P(X = −|X|)

)
,

which is, due to our assumptions, different fromX and different from T (L(Y |A0)) =
0.

Recall that, given some information setA0, the ultimate goal of point forecasting
is to issue the ideal forecast T (L(Y |A0)). One can equivalently define this goal as
finding the minimizer of

E
[
(X − T (L(Y |A0)))2

]

over all (A0-measurable) random variables. Now, having defined this L2-distance
as an objective function, one can consider the usual bias-variance-decomposition.
We suggest the following definition of calibration in the context of point forecasts.

Definition 4.2.11 (Calibration). Given some observation Y , a functional T and
an information set A0, a (A0-measurable) forecast X is

(a) calibrated on average if

E[X − T (L(Y |A0))] = 0; (4.2.7)

(b) conditionally calibrated if

E
[
X − T (L(Y |A0)) |σ(T (L(Y |A0)))

]
= 0; (4.2.8)

(c) strongly conditionally calibrated if

E
[
X − T (L(Y |A0)) |σ(L(Y |A0))

]
= 0. (4.2.9)

Consistently, the left hand side of (4.2.7) is called calibration bias, and the left
hand side of (4.2.8) ((4.2.9)) is called (strong) conditional calibration bias.
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Clearly, strong conditional calibration implies conditional calibration which in
turn implies calibration on average.

Definition 4.2.12 (Sharpness). Given a probability space (Ω,A,P), a forecast
X(1) is sharper than a forecast X(2) if

Var(X(1)) ≤ Var(X(2)).

Clearly, the sharpness relation defines a total preorder on the set of L2-integrable
random variables on (Ω,A,P) where the constants are the sharpest forecasts.11

Having established this terminology, it is easy to check that the ideal forecast
is the unique forecast maximizing sharpness, subject to conditional calibration.12

Similarly to the concept in probabilistic forecasting, calibration is a joint prop-
erty of the prediction and the observation whereas sharpness is a property of the
forecast, only.

As demonstrated at (4.2.6), under all forecasts with the same strong calibration
bias, a convex scoring function obtains the smallest expected score for the sharpest
of all these forecasts.13

Incentives for cooperation between forecasters

Another motivation to consider convex scores could be that they incentivize co-
operations between different forecasters. To illustrate this, suppose there is a
competition between m different forecasters with predictions X(1), . . . , X(m) for
some outcome Y . Let S : A × O → R be a convex scoring function. If the fore-
casters were to be penalized according to their realized scores by the organizer of
the competition and they were allowed to negotiate and combine their respective
forecasts, they could enter the following game: They agree to a payment to the
group according to their individual realized scores with respect to the observa-
tion Y , that is, S(X(i), Y ) for i ∈ {1, . . . ,m}, and to redistribute equal shares to
everybody, that is

1

m

m∑

i=1

S(X(i), Y ) .

However, they agree to quote the same forecast to the organizer which is just
the average of the individual forecasts X̄ = 1

m

∑m
i=1X

(i). Then, they are able to
realize the saving

1

m

m∑

i=1

S(X(i), Y )− S(X̄, Y ) ≥ 0

11One could also think of different definitions of sharpness, e.g. in terms of generated σ-algebras.
Then X(1) would be sharper than X(2) if σ(X(1)) ⊆ σ(X(2)). This in turn would induce a
partial order on the space of random variables on (Ω,A,P) where, again, the constants are
the sharpest forecasts.

12Indeed, this assertion is true for both notions of sharpness.
13Again, this assertion is still true with the alternative concept of sharpness.
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4.2. Convexity of scoring functions

in contrast to their individual strategies.

If S is merely quasi-convex, there are still possibilities for a joint insurance be-
tween the forecasters. Suppose they are rather risk averse and fear to be penalized
by the worst fine, that is maxi∈{1,...,m} S(X(i), Y ), they can again agree to issue

a joint linearly combined forecast X̄c ∈ conv{X(1), . . . , X(m)}. Then, they are
better of by the amount

max
i∈{1,...,m}

S(X(i), Y )− S(X̄c, Y ) ≥ 0

in contrast to the worst case scenario (but not with respect to their individual
strategies). Such insurance type properties related to quasi-convex scores are also
discussed e.g. in Ehm et al. (2016, p. 558) or in Kascha and Ravazzolo (2010,
p. 237).

Depending on the particular goal at hand, these observations show that the
use of convex scoring functions can be double edged. Taking a forecaster’s per-
spective, this property can be desirable because it allows for a kind of arbitrage
by cooperating with his competitors. On the other hand, taking the organizer’s
angle, such cooperations between and combinations of competing forecasts dilute
the information given by the individual quotes. Consequently, the organizer is not
able to distinguish between the different forecasters. And more severe, the best
forecast is not visible any more. So an organizer using convex scoring functions
should be aware of this problematic and should prevent competing forecasters
from cooperation.

A definition of backtestability proposed by Acerbi and Székely (2017)

Acerbi and Székely (2017) proposed a new definition of backtestability. Using our
notation, they say that a real-valued functional T : F → R is F-backtestable if
there is an oriented and strict F-identification function V : R×R→ R for T such
that the expected identification function V̄ (·, F ) : R→ R is strictly increasing for
all F ∈ F . They call such a particular identification function a backtest function.
Consequently, if an F-backtestable functional T is elicitable (and in the setting
of Steinwart et al. (2014), this is the case), it has a strictly F-convex strictly F-
consistent scoring function, which can be obtained by integration of the backtest
function. Vice versa, if an elicitable functional has a strictly F-convex and strictly
F-consistent scoring function being sufficiently smooth (the expected score must
be differentiable for all F ∈ F), then the functional is F-backtestable. That
means that backtestability in the sense of Acerbi and Székely (2017) and convex
elicitability almost coincide (in the one-dimensional setting).

Acerbi and Székely (2017) motivate this definition of backtestability arguing
that an identification function fulfilling the additional properties of a backtest
function does not only allow for model validation in the sense of traditional back-
tests (see Fissler et al. (2016) or Nolde and Ziegel (2016, Section 2.2)), but also
allows for model selection in the sense of comparative backtests (see ibidem).
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What remains unclear so far is how to generalize this notion to the case of higher-
dimensional functionals. There appear to be (at least) three natural choices: (i)
One could require the functional T : F → Rk to have an identification function such
that each of its components is a backtest function of one argument only (which
induces a convex and componentwise order-sensitive scoring function); (ii) one
could say that a functional T : F → Rk is backtestable if it possesses a strictly F-
consistent and F-convex scoring function. A bit weaker could be the requirement
that (iii) T possesses a strictly F-consistent scoring function S : Rk×O→ R such
that

ψ : R→ R, ψ(s) = S̄(T (F ) + sv, F )

is convex for all F ∈ F and for all v ∈ Sk−1. Clearly, this would be very close to
(and a bit stronger than) our definition of order-sensitivity on line segments.

4.2.2. Determining convex scoring functions for popular
functionals

It is known that the α-pinball loss Sα(x, y) = (1{y ≤ x}−α)(x−y) (or asymmetric
linear loss) and the asymmetric squared loss Sτ (x, y) = |1{y ≤ x}− τ |(x− y)2 are
convex scoring functions that are strictly consistent for the α-quantile (relative
to the class of strictly increasing distributions with a finite mean), and for the
τ -expectile (relative to the class of distributions having a finite second moment).
It is natural to ask if those scoring functions are the only strictly consistent and
convex scoring functions for these functionals. In this section, we determine the
classes of F-convex strictly F-consistent scoring functions for quantiles and ex-
pectiles as well as for ratios of expectations, where we also give an extension to
the higher-dimensional setting, subject to smoothness and richness assumptions
on the respective class F .

The main message is that the flexibility one has in building convex scoring
functions crucially depends on the richness of the class F and in particular on the
image of the respective functional T (F). Roughly speaking, if T (F) = R (= Rk),
then there is only one F-convex and strictly F-consistent scoring function (up to
equivalence). On the other hand, if the image T (F) is bounded, there are other
F-convex scoring functions.

Towards the end of this section, we also consider functionals having non-elicitable
components. To illuminate this situation, we consider the prominent example of
the pair (VaR, ES), determine an F-quasi-convex scoring function and show that
under some richness assumptions on F , there is no F-convex scoring function.

In many parts this section, we assume the regularity assumptions of Fissler and
Ziegel (2016, Proposition 3.4) such that the strictly consistent scoring functions
are necessarily of the form given in the latter proposition.
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Quantiles

Steinwart et al. (2014, Corollary 10) state that the α-pinball loss (modulo inessen-
tial transformations) is the only convex strictly consistent scoring function for the
α-quantile. While they consider the situation of a class of distributions F where
each density f of a distribution F ∈ F is bounded away from 0, it is possible
to construct other convex scoring functions if one assumes that the densities are
uniformly bounded away from 0. To make the analysis a bit easier, we will assume
a bit more regularity conditions.

Proposition 4.2.13. Let α ∈ (0, 1) and let F be a class of continuously differ-
entiable probability distribution functions F on R with densities f = F ′ having a
unique α-quantile qα(F ). Let T = qα : F → A = (a, b) where −∞ ≤ a < b ≤ ∞.
Assume that T is surjective on (a, b) and that the densities are uniformly bounded
from below in (a, b) in the sense that there is an ε ≥ 0 such that for all F ∈ F
with density f = F ′ it holds that infx∈(a,b) f(x) ≥ ε. Then, any scoring function
S : (a, b)× O→ R of the form

S(x, y) =

∫ x

z
h(w)(1{y ≤ w} − α) dw, (4.2.10)

where z ∈ (a, b), h : (a, b)→ R is positive, differentiable and satisfies

|h′(x)| ≤ ε h(x)

max(α, 1− α)
∀x ∈ (a, b) (4.2.11)

is an F-convex strictly F-consistent scoring function for T .

Proof. Let F ∈ F with density f = F ′. If S is of the form given at (4.2.10)
such that (4.2.11) is satisfied, the second derivative of the expected score S̄(x, F ),
x ∈ (a, b), takes the form

h′(x)(F (x)− α) + h(x)f(x). (4.2.12)

Recall that the second summand h(x)f(x) is non-negative while h′(x) can have
both signs and F (x)−α definitely has both signs depending on whether x < qα(F )
or x > qα(F ). However, under (4.2.11) one obtains that

0 ≤ |h′(x)(F (x)− α)| ≤ |h′(x)|max(α, 1− α) ≤ h(x)ε ≤ h(x)f(x).

Consequently, (4.2.12) is non-negative and the the expected score S̄(·, F ) is F-
convex.

Example 4.2.14. There is a number of possible candidates for h satisfying
(4.2.11). For example, one can take

h(x) = c exp(δx)

with c > 0 and δ ∈ [−ε, ε].
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Remark 4.2.15. Obviously, the ε appearing in Proposition 4.2.13 can only be
strictly positive if A is bounded, that is, if a, b ∈ R. Otherwise, ε = 0 and the
only scoring functions of the form (4.2.10) satisfying (4.2.11) are equivalent to the
α-pinball loss.

Ratios of expectations

In Corollary 4.2.17, we retrieve the result of Caponnetto (2005) that the quadratic
loss (up to equivalence) is the only convex strictly consistent scoring function for
the mean when the class of distributions is sufficiently rich in the sense that
it is convex and the mean functional is surjective on R. However, up to our
knowledge, it has not been studied yet if (a) a similar statement is true for ratios
of expectations, and (b) if other strictly consistent scoring functions are convex if
the mean (and more generally, a ratio of expectations) is not surjective on R.

We first consider the one-dimensional case k = 1. Let p, q : O→ R and define the
functional T : F → A ⊆ R, T (F ) = EF [p(Y )]/EF [q(Y )] = p̄(F )/q̄(F ). Through-
out this section, without loss of generality, we shall assume that q̄(F ) > 0 for all
F ∈ F ; see Remark 4.1.23. In the following Proposition, we will work under the as-
sumptions of Fissler and Ziegel (2016, Proposition 4.4(i)). Note that the mixture-
continuity of T implies that int(T (F)) = (a, b) for some −∞ ≤ a ≤ b ≤ ∞.14

Proposition 4.2.16. Let the assumptions of Fissler and Ziegel (2016, Proposition
4.4 (i)) hold with k = 1 such that int(T (F)) = int(A) = (a, b) for some −∞ ≤ a ≤
b ≤ ∞. Suppose additionally that S̄(·, F ) : (a, b) → R is C2 for all F ∈ F . Then
h : (a, b)→ R is C1 and S̄(·, F ) : (a, b)→ R is convex for all F ∈ F if and only if

h(x) +h′(x)
(
x− a1{h′(x) < 0}− b1{h′(x) > 0}

)
= w(x) ∀x ∈ (a, b) (4.2.13)

for some non-negative C0-function w : (a, b)→ R. Moreover, if w is strictly posi-
tive, then S̄(·, F ) : (a, b)→ R is strictly convex for all F ∈ F .

Proof. Fix some F ∈ F . Due to Theorem 3.2 and Proposition 4.4 in Fissler and
Ziegel (2016) there is a positive function h : (a, b) → R such that ∂

∂x S̄(x, F ) =
h(x)(xq̄(F ) − p̄(F )). The expected score S̄(x, F ) is convex in x if and only if
∂2

(∂x)2
S̄(x, F ) ≥ 0 for all x ∈ (a, b) and this in turn is equivalent to

h(x) + h′(x) (x− T (F )) ≥ 0 ∀x ∈ (a, b). (4.2.14)

The inequality at (4.2.14) holds for all F ∈ F if and only if

h(x) + h′(x)
(
x− a1{h′(x) < 0} − b1{h′(x) > 0}

)
≥ 0 ∀x ∈ (a, b)

with the convention 0 · ∞ = 0 · (−∞) = 0.

14Note that, actually, one does not have to impose Assumption (V3) in Proposition 4.4 in Fissler
and Ziegel (2016). The standard identification function V (x, y) = q(y)x−p(y) is a polynomial
in x, so in particular, it is smooth.
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It is easy to see that (4.2.13) implies that h′ ≤ 0 if b =∞ and h′ ≥ 0 if a = −∞.

Corollary 4.2.17. Let T : F → R, T (F ) = EF [p(Y )]/EF [q(Y )] be a ratio of
expectations and F convex and containing all point measures. If T is surjective,
any convex strictly F-consistent C2-scoring function S : R × O → R for T is of
equivalent form as

S0(x, y) =
1

2
x2q(y)− xp(y). (4.2.15)

Proof. Let S : R×O→ R be a convex and strictly F-consistent C2-scoring function
for T . Due to Osband’s principle (Fissler and Ziegel, 2016, Theorem 3.2), there is
a C1-function h : R→ R such that

d

dx
S(x, y) = h(x)(xq(y)− p(y)) ∀(x, y) ∈ R× R.

With respect to Proposition 4.2.16, h must be constant such that S is of equivalent
form as S0 at (4.2.15).

This means in particular that the quadratic score is – up to equivalence – the
only convex strictly consistent scoring function for the mean functional provided
that the mean functional is surjective on R and the class of distributions is suffi-
ciently rich.

Given some non-negative C0-function w : (a, b) → R we are interested in C1-
solutions h for (4.2.13). We remark that due to the presence of the indicators,
the operator mapping h to the left hand side of (4.2.13) is generally non-additive
(but it is additive if h′ ≥ 0 or h′ ≤ 0). Let h ∈ C1((a, b)) and h > 0. Then the
continuity of h′ yields that

A− := {x ∈ (a, b) : h′(x) < 0} =
⋃

i∈I
(ai, bi),

A+ := {x ∈ (a, b) : h′(x) > 0} =
⋃

j∈J
(aj , bj),

A0 := {x ∈ (a, b) : h′(x) = 0}

for some index sets I,J and for a ≤ ai < bi ≤ b, a ≤ aj < bj ≤ b. For
notational convenience, we will assume that I and J are disjoint. To ensure a
unique representation, we assume that I and J are minimal implying that for all
i ∈ I, j ∈ J and ai, aj 6= a, bi, bj 6= b one has that ai, aj , bi, bj ∈ A0.15 Recall that
with respect to (4.2.13), if a = −∞ then I = ∅, and if b = ∞ then J = ∅. For
i ∈ I, j ∈ J respectively, (4.2.13) is satisfied on (ai, bi), (aj , bj) respectively, if
and only if

h(x) =
Wi(x)

x− a x ∈ (ai, bi), resp. h(x) =
Wj(x)

x− b x ∈ (aj , bj) (4.2.16)

15Actually, due to a compactness argument, I and J are then finite if a, b ∈ R.
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for some antiderivatives Wi, Wj of w. Since w ≥ 0, Wi,Wj are increasing. The
fact that h > 0 implies the following: If I 6= ∅, define a′ := infi∈I ai > −∞.
Then, for any sequence (i(n))n≥1 ⊂ I such that ai(n) → a′ and for any sequence
(xn)n≥1 such that xn ∈ (ai(n), bi(n)) and xn ↓ a′, the limit limn→∞Wi(n)(xn) =:
W (a′) must exist and must be greater or equal to 0. Analogously, if J 6= ∅, set
b′ := supj∈J bj < ∞. Then, for any sequence (j(n))n≥1 ⊂ J such that bj(n) → b′

and for any sequence (xn)n≥1 such that xn ∈ (aj(n), bj(n)) and xn ↑ b′, the limit
limn→∞Wj(n)(xn) =: W (b′) must exist and must be less or equal to 0. For the
sake of uniqueness, let W0 be a certain antiderivative of w chosen due to some
(not specified) normalization condition. Then we shall write Wi(x) = W0(x) + ci
and Wj(x) = W0(x)+cj with constants ci, cj ∈ R. In summary, the sign condition
h > 0 yields that

W0(ai) + ci ≥ 0, W0(bj) + cj ≤ 0 ∀i ∈ I, j ∈ J . (4.2.17)

Moreover, for all i ∈ I, the fact that h′(x) < 0 for x ∈ (ai, bi) implies that

0 < (W0(x) + ci) + (a− x)w(x) x ∈ (ai, bi). (4.2.18)

Analogously for all j ∈ J , the fact that h′(x) > 0 for x ∈ (aj , bj) implies that

0 < (−W0(x)− cj) + (x− b)w(x) x ∈ (aj , bj). (4.2.19)

Condition (4.2.17) plus the fact that W0 is increasing yields that the first summand
in brackets is non-negative in (4.2.18) and (4.2.19), and the fact that w ≥ 0 implies
that the second summand is non-positive, respectively. Moreover, it is important
to notice that on any open subset of A0, h can be of both forms at (4.2.16) (of
course, in these open sets w is necessarily constant). In the border cases, meaning
that x0 ∈ {ai : i ∈ I} ∪ {aj : j ∈ J } ∪ {bi : i ∈ I} ∪ {bj : j ∈ J } ⊂ A0 one has for
x0 ∈ {ai : i ∈ I} ∪ {bi : i ∈ I} ⊂ A0

ci = −W0(x0) + (x0 − a)w(x0),

such that

h(x0) =
W0(x0) + ci
x0 − a

= w(x0).

And on the other hand, for x0 ∈ {aj : j ∈ J } ∪ {bj : j ∈ J } ⊂ A0

cj = −W0(x0) + (x0 − b)w(x0),

such that

h(x0) =
W0(x0) + cj
x0 − b

= w(x0).

This shows that it is in principle possible to construct a global C1-solution h on
(a, b) satisfying (4.2.16), (4.2.17), (4.2.18), and (4.2.19).
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Example 4.2.18. Let a = 0, b = 1 and w(x) = min(x, 1− x). Then a solution of
(4.2.13) is

h(x) =





1
x

(
1
8 + x2

2

)
= 1

8x + x
2 , if x ∈ [0, 1/2]

1
1−x

(
1
8 + (1−x)2

2

)
= 1

8−8x + 1−x
2 , if x ∈ (1/2, 1].

Remark 4.2.19. If w ≡ 0 and a, b ∈ R, then a solution of (4.2.13) with h > 0 is
either globally of the form h(x) = ci/(x− a), ci > 0 or h(x) = cj/(x− b), cj < 0.

Example 4.2.20. Let a = 0, b = ∞ and consider the case of monomials for w,
that is w(x) = xα for x > 0 where α ∈ R. So we are in the situation where h′ ≤ 0
and h(x) = (W0(x) + c)/x for some antiderivative W0 of w. Since limx↓0W0(x)
must be finite, necessarily α > −1. And due to condition (4.2.18), necessarily
α ≤ 0. Finally, integration yields that S is of equivalent form as S′α(x, y) =
Sα(x, y) + c Slog(x, y) where

Sα(x, y) =
1

α+ 2
xα+2q(y)− 1

α+ 1
xα+1p(y) α ∈ (−1, 0], (4.2.20)

Slog(x, y) = xq(y)− p(y) log(x). (4.2.21)

Remark 4.2.21. It is worth mentioning that for the mean-functional, meaning
q ≡ 1 and p(y) = y with the action domain A = (0,∞), the scoring function Sα,
α ∈ (−1, 0], given at (4.2.20) is positively homogeneous of degree α+2. Moreover,
for O = A = (0,∞) (which is a reasonable assumption in the case of the mean
functional), Slog given at (4.2.21) is of equivalent form as

S′−1(x, y) = x− y log

(
x

y

)
,

which is positively homogeneous of degree 1.16 All those scoring functions men-
tioned above can be found (in an equivalent form) in Patton (2011, Proposition
4). However, note that not all positively homogeneous functions given in that
Proposition are convex (only those with b ∈ [−1, 0]).

Remark 4.2.22. We see that for the mean functional and the case of A = R,
the only convex scoring function and the only metrically order-sensitive scoring
function coincide (where ‘only’ should be understood in the ‘up-to-equivalence’-
sense). However, for the second moment, a natural assumption is A = [0,∞) or
A = (0,∞) and there are indeed more convex scoring functions than the only
metrically order-sensitive scoring function given at (4.1.19).

16If O∩(−∞, 0] 6= ∅, then for S(x, y) = x−y log(x) still the score difference (0,∞)×(0,∞)×R→
R, (x, x′, y) 7→ S(x, y)− S(x′, y) is homogeneous of degree 1.
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Expectiles

As it is quite often the case, expectiles share common features both with quantiles
and with ratios of expectations (and more precisely, with expectations). It is obvi-
ous that the canonical scoring function for the τ -expectile, that is, the asymmetric
quadratic loss

Sτ (x, y) = |1{y ≤ x} − τ |(x− y)2 (4.2.22)

is a convex scoring function. We shall show that under some richness assumptions
on the class of distributions F which imply that the image of the τ -expectile
corresponds to whole R, the asymmetric piecewise loss Sτ is the only F-convex
scoring function that is strictly F-consistent for the τ -expectile, up to equivalence.
On the other hand, a smaller class of F can result in more flexibility in the same
spirit as Proposition 4.2.16. However, the analysis is more involved compared to
the case of ratios of expectations.

We begin with the following lemma (which also holds for the case τ = 1/2).
Recall the standard identification function Vτ : R × R → R for the τ -expectile,
defined as

Vτ (x, y) = 2|1{y ≤ x} − τ |(x− y). (4.2.23)

Lemma 4.2.23. Let τ ∈ (0, 1) and let F be a class of distribution functions on R
with finite first moments and let T = µτ : F → R be the τ -expectile. If there is an
F0 ∈ F such that F0(· − λ) ∈ F for all λ ∈ R, then T (F) = {T (F ) : F ∈ F} = R
and for each x ∈ R

V̄ (x,F) := {V̄ (x, F ) : F ∈ F} = R.

Proof. Note that the τ -expectile is translation equivariant. Consequently, T (F (·−
λ)) = T (F ) + λ. Hence, T (F) = R. Moreover, for fixed x ∈ R the function
y 7→ Vτ (x, y) is piecewise linear with strictly negative slope. Hence, the second
claim follows.

For the next proposition, we assume that the strictly consistent scoring function
is of the form given via Propositions 3.4 and 4.2 in Fissler and Ziegel (2016).

Proposition 4.2.24. Let τ ∈ (0, 1) and F be a class of differentiable distribution
functions on R with finite mean. Let T = µτ : F → A ⊆ R be the τ -expectile,
and assume that T is surjective and A is an open interval. Define the functions
a, b : A→ R ∪ {−∞,∞}

a(x) := inf{V̄ (x, F ) : F ∈ F} ∈ R ∪ {−∞}, (4.2.24)

b(x) := sup{V̄ (x, F ) : F ∈ F} ∈ R ∪ {∞}. (4.2.25)

Define the strictly F-consistent scoring function S : A× R→ R via

S(x, y) =

∫ x

z
h(w)V (w, y) dw, (4.2.26)
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where z ∈ A, h : A → R is positive and differentiable. Then, the following two
assertions hold.

(i) If S is F-convex, then

h(x) max{2τ, 2− 2τ}+ h′(x)
(
1{h′(x) < 0}b(x) + 1{h′(x) > 0}a(x)

)
≥ 0

for all x ∈ A.

(ii) If

h(x) min{2τ, 2− 2τ}+ h′(x)
(
1{h′(x) < 0}b(x) + 1{h′(x) > 0}a(x)

)
≥ 0

(4.2.27)
for all x ∈ A, then S is F-convex.

(iii) If a(x) = −∞ and b(x) =∞ for all x ∈ A, then S is F-convex if and only if
h is constant.

Proof. Let S be of the form (4.2.26). For some F ∈ F , the second derivative of
the expected score S̄(x, F ) is

∂2

(∂x)2
S̄(x, F ) = h(x)

∂

∂x
V̄ (x, F ) + h′(x)V̄ (x, F ).

Now,
∂

∂x
V̄ (x, F ) = 2F (x)(1− 2τ) + 2τ ∈ conv({2τ, 2− 2τ})

for all x ∈ A and for all F ∈ F . S is F-convex if and only if for all x ∈ A and
F ∈ F ,

∂2

(∂x)2
S̄(x, F ) ≥ 0.

Observe that

inf
G∈F

h′(x)V̄ (x,G) = h′(x)
(
1{h′(x) < 0}b(x) + 1{h′(x) > 0}a(x)

)
.

Moreover, for any x ∈ A and any F ∈ F

h(x) max{2τ, 2− 2τ}+ h′(x)V̄ (x, F )

≥ ∂2

(∂x)2
S̄(x, F )

≥ inf
G∈F

∂2

(∂x)2
S̄(x,G)

≥ inf
G∈F

h(x)
∂

∂x
V̄ (x,G) + inf

G∈F
h′(x)V̄ (x,G)

≥ h(x) min{2τ, 2− 2τ}+ h′(x)
(
1{h′(x) < 0}b(x) + 1{h′(x) > 0}a(x)

)
.

Hence, assertions (i) and (ii) follow.

For (iii), one can combine (i) and (ii) such that S is F-convex if and only if
h ≡ 0. Then the claim follows by the fact that A is an open interval.
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One can see that under the assumptions of Lemma 4.2.23 and Proposition 4.2.24,
part (iii) yields that Sτ defined at (4.2.22) is the only F-convex scoring function
that is strictly F-consistent for the τ -expectile, of course, up to equivalence.

Remark 4.2.25. In practice, it might be somewhat involved to determine the
functions a(x), b(x) appearing at (4.2.24), (4.2.25). However, assuming that they
are known and that they satisfy sufficient regularity conditions, one can, in prin-
ciple, construct solutions to (4.2.27) in the same spirit as after Corollary 4.2.17 in
the case of the ratio of expectations.

Higher-dimensional functionals: Ratios of expectations with the same
denominator

From an abstract point of view, the characterization of the convexity of the (ex-
pected) scores is clear: Under sufficient regularity conditions, the (expected) score
is convex if and only if its Hessian is positive semi-definite. In the case where a
strictly consistent scoring function is the sum of strictly consistent scoring func-
tions for each component – for example if the functional is a vector of quantiles
and expectiles; see Fissler and Ziegel (2016, Proposition 4.2) – the convexity of the
expected score is equivalent to the fact that all summands are convex. Confining
our attention for a moment to functionals with elicitable components, the remain-
ing relevant examples are ratios of expectations with the same denominator. Even
though the computations are a bit more involved, the tenor of the one-dimensional
setting remains the same when passing to the higher-dimensional case: if the im-
age of the functional T is the whole space Rk, a strictly consistent scoring function
for T is convex if and only if the matrix valued function h from Osband’s principle
is constant (when working with the canonical identification function for the ratio
of expectations with the same denominator). On the other hand, if the image
of T is contained in the intersection of half-spaces (including the particular case
that the image is bounded), then there is a bit more flexibility and there are also
non-constant matrix-valued functions h which yield a convex score.

Proposition 4.2.26. Let T : F → A ⊆ Rk, T (F ) = p̄(F )/q̄(F ), be surjective and
a ratio of expectations with the same (positive) denominator. Let the assumptions
and the notation of Fissler and Ziegel (2016, Proposition 4.4 (i)) prevail. If A =
Rk, then a strictly F-consistent scoring function is F-convex if and only if h is
constant.

Proof. Let S be of the form given at Fissler and Ziegel (2016, Proposition 4.4 (i))
and assume that it is F-convex. Then, the Hessian of the expected score S̄(x, F ),
x ∈ int(A), F ∈ F , is

∇2S̄(x, F ) = q̄(F )
(
h(x) + mat(∂1h(x)(x− T (F )), . . . , ∂kh(x)(x− T (F )))

)

=: q̄(F )A(x, F ).
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Here, ∂mh denotes the (k × k)-matrix consisting of all partial derivatives of the
entries of h with respect to xm. Moreover, for column-vectors a1, . . . , ak ∈ Rk,
mat(a1, . . . , ak) is the (k × k)-matrix consisting of column-vectors a1, . . . , ak. A
necessary criterion for the positive semi-definiteness of the Hessian is that the
diagonal elements of A(x, F ) are non-negative for all x ∈ int(A) and all F ∈ F .
Let em, m ∈ {1, . . . , k}, be the mth canonical basis vector of Rk. Then

〈em, A(x, F )em〉 = hmm(x) + 〈∂mhm ·(x), x− T (F )〉,

where ∂mhm · denotes the mth row-vector of ∂mh. Since for all x ∈ Rk

{x− T (F ) : F ∈ F} = {T (F ) : F ∈ F} = Rk,

whence

{〈∂mhm ·(x), x− T (F )〉 : F ∈ F} =

{
{0}, if ∂mhm ·(x) = 0

R, else.

So the F-convexity of S implies that ∂mhm · ≡ 0. Now, let m,n ∈ {1, . . . , k},
m 6= n. Then

〈em + en, A(x, F )(em + en)〉
= hmm(x) + hnn(x) + 2hmn(x) + 2〈∂mhn ·(x), x− T (F )〉.

With the same argument as before, one can conclude that ∂mhn · ≡ 0. So we
have shown that h is necessarily locally constant. Since A = Rk is connected, h
is constant. For sufficiency, recall that h is positive definite, so S is even strictly
convex if h is constant.

Let F ′ ⊆ F such that T (F ′) ⊆ (a, b) for some a, b ∈ R̄k where (a, b) =∏k
m=1(am, bm). If (a, b) 6= Rk, then there are F ′-convex strictly F-consistent

scoring functions for T such that the link function h from Osband’s principle is
non-constant. The proof of this fact is straight forward: one can consider the sum
of strictly F-consistent scoring functions Sm for each component Tm where Sm
is constructed according to Proposition 4.2.16. For F ′-convex scoring functions
with a non-diagonal and non-constant function h, the construction is considerably
more involved, but in principle possible.

Remark 4.2.27. In case of the prominent examples for higher-dimensional func-
tionals functionals consisting of elicitable components – ratios of expectations with
the same denominator, vectors of quantiles and / or expectiles – it would be an
interesting question if there are (strictly consistent) quasi-convex scoring functions
besides the convex ones. Regretfully, this question seems to be more involved than
one would think, and hence, it is deferred to future work. However, it is possible
to answer that question in the case of strictly consistent scoring functions for the
pair (Value at Risk, Expected Shortfall) which will be done in the subsequent
paragraph.
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4. Scoring Functions Beyond Strict Consistency

(Quasi-)Convexity of strictly consistent scoring functions
for (VaR, ES)

We consider again the class of strictly consistent scoring functions for the pair
(VaRα,ESα), α ∈ (0, 1), given in Corollary 5.5 in Fissler and Ziegel (2016). As a
first result, we give an example of a class of F-quasi-convex scoring functions.

Proposition 4.2.28. Let α ∈ (0, 1). Let F be a class of distribution functions
on R with finite first moments, unique α-quantiles, continuous densities, and
ESα(F ) < 0 for all F ∈ F . Let A−0 = {x ∈ R2 : x1 ≥ x2, x2 < 0}. Then,
any scoring function S : A−0 × R→ R which is of equivalent form as

S0(x1, x2, y) =
x1

x2
− 1

α
1{y ≤ x1}

x1 − y
x2

+ log(−x2) (4.2.28)

is strictly F-consistent for T = (VaRα,ESα) and F-quasi-convex.

Moreover, if the elements of F have densities which are strictly positive at their
α-quantiles, any scoring function equivalent to S0 is strictly F-quasi-convex.

Remark 4.2.29. Nolde and Ziegel (2016) showed that S0 defined at (4.2.28) is
such that the score difference A−0 × A−0 × R → R, (x, x′, y) 7→ S0(x, y) − S0(x′, y)
is positively homogeneous of degree 0.

Proof. First of all, note and recall that equivalence of scoring functions preserves
strict consistency and quasi-convexity. So it is sufficient to consider the score S0.
This score is of the form given in Fissler and Ziegel (2016, Corollary 5.5) where
a ≡ −1, G1 ≡ 0 is increasing and F-integrable, and G(x2) = − log(−x2) is strictly
increasing and strictly convex (on (−∞, 0)). Hence, S0 is strictly F-consistent for
T .

To check if S0 is F-quasi-convex, we check the criterion given in Proposition
4.2.3. However, to be more transparent, we perform the calculation with the
general form of the scoring function given in Fissler and Ziegel (2016, Corollary
5.5). Let F ∈ F with density / derivative f , v = (v1, v2)> ∈ S1, x = (x1, x2)> ∈ A−0
and (v1, v2)∇S̄0(x, F ) = 0. Using (4.1.30), this is equivalent to

v1(F (x1)− α)

(
G′1(x1) +

1

α
G2(x2)

)

= −v2G
′
2(x2)

(
x2 −

1

α

∫ x1

−∞
y dF (y) +

1

α
x1(F (x1)− α)

)
. (4.2.29)

Using this identity, one obtains

(v1, v2)∇2S̄0(x1, x2, F )

(
v1

v2

)
= v2

1f(x1)

(
G′1(x1) +

1

α
G2(x2)

)
+ v2

2G
′
2(x2)

+ v1(F (x1)− α)

(
v1G

′′
1(x1) + v2

2

α
G′2(x2)− v2G

′′
2(x2)

G′1(x1) + 1
αG2(x2)

G′2(x2)

)
.

(4.2.30)
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4.2. Convexity of scoring functions

Due to the special choice of G1 and G2, the third summand vanishes. In particular,
one obtains

(v1, v2)∇2S̄0(x1, x2, F )

(
v1

v2

)
= −v

2
1f(x1)

αx2
+
v2

2

x2
2

,

which is strictly positive for v2 6= 0. For v2 = 0, the function ψ(s) = S̄(x1+s, x2, F )

has the second derivative ψ′′(s) = −f(x1+s)
αx2

≥ 0. So ψ is convex and in particular
quasi-convex and the claim follows with Proposition 4.2.3.

Moreover, observe that (4.2.29) can hold for v2 = 0 if and only if x1 equals

the α-quantile of F . So then ψ′′(0) = −f(x1)
αx2

is strictly positive if the density is
strictly positive at the α-quantile. Hence, the claim follows again by Proposition
4.2.3.

Remark 4.2.30. The similarity between the proof of Proposition 4.2.28 and
the determination of scoring functions which are order-sensitive on line segments
around Example 4.1.50 is obvious. In particular, the terms at (4.1.32) and (4.2.30)
are almost the same, and in both situations, one has to control its sign and show
that it is not negative. However, the slight difference is that for the first situation
at equation (4.1.32), one knows that v1(F (s̄∗)−α) < 0, whereas one cannot control
the sign of the corresponding expression at (4.2.30). That is also the very reason
why there is more flexibility for the choice of G1 when one wants to merely arrive
at order-sensitive scoring functions on line segments. One only needs to guarantee
that the bracket in the third summand is not positive, whereas the corresponding
term needs to vanish in the situation of Proposition 4.2.28.

As a second result, we show that there is no F-convex strictly F-consistent
scoring function for (VaRα,ESα) if the class F is sufficiently rich. In particular,
we make the following assumption.

Assumption (A1). Let α ∈ (0, 1). Let F be a class of distribution functions on
R which are continuously differentiable, have unique α-quantiles and finite first
moments. Assume moreover that for every x ∈ R there exist two distributions
F1, F2 ∈ F with densities / derivatives f1, f2 such that

F1(x) < α, F2(x) > α, f1(x) = f2(x) = 0.

Proposition 4.2.31. Let α ∈ (0, 1) and F be a class of distributions satis-
fying Assumption (A1). Then, any strictly F-consistent scoring function for
T = (VaRα,ESα) of the form given in Corollary 5.5 in Fissler and Ziegel (2016)
fails to be F-convex.

Proof. Assume that S is of the form given in Corollary 5.5 in Fissler and Ziegel
(2016) (which can also be found at (4.1.29)). Assume that S is F-convex. Then
necessarily ∂1∂1S̄(x1, x2, F ) ≥ 0 and ∂2∂2S̄(x1, x2, F ) ≥ 0 for all (x1, x2) ∈ A and
for all F ∈ F . From the form given at (4.1.30) and using Assumption (A1), one
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4. Scoring Functions Beyond Strict Consistency

concludes that G′′1 ≡ 0. Consider the determinant of the Hessian of S̄(x1, x2, F ),
that is,

f(x1)

(
G′1(x1) +

1

α
G2(x2)

)
∂2∂2S̄(x1, x2, F )−

(
1

α
G′2(x2)(F (x1)− α)

)2

.

Due to Assumption (A1) and the fact that G′2 > 0 there is an element in F such
that the determinant of the Hessian becomes negative which is a contradiction to
the F-convexity of S.

Remark 4.2.32. One can pose the question how restrictive Assumption (A1)
actually is. The idea how to ensure that this assumption is valid is that if for a
distribution F and some x ∈ R, F (x) < α and f(x) > 0, it is possible to change
the density only locally around x such that the resulting density vanishes at x,
but for the resulting distribution F̃ , still F̃ (x) < α.

For other higher-dimensional functionals consisting of at least one component
which is not elicitable, it is interesting how (quasi-)convexity behaves under the
revelation principle. The following result shows that under a linear bijection,
(quasi-)convexity is preserved.

Lemma 4.2.33 ((Quasi-)Convexity under the revelation principle). If S : A×O→
R is an F(-quasi)-convex and strictly F-consistent scoring function for some
functional T : F → A ⊆ Rk and g is a linear bijection from A to A′, then
Sg(x

′, y) = S(g−1(x′), y) is an F(-quasi)-convex strictly F-consistent scoring func-
tion for Tg = g ◦ T .

Proof. Let F ∈ F , x′1, x
′
2 ∈ A′ and λ ∈ [0, 1]. Due to the linearity of g−1 and the

F-convexity of S, one obtains

S̄g((1− λ)x′1 + λx′2, F ) = S̄((1− λ)g−1(x′1) + λg−1(x′2), F )

≤ (1− λ)S̄(g−1(x′1), F ) + λS̄(g−1(x′2), F )

= (1− λ)S̄g(x
′
1, F ) + λS̄g(x

′
2, F ).

If S is F-quasi-convex, one obtains

S̄g((1− λ)x′1 + λx′2, F ) = S̄((1− λ)g−1(x′1) + λg−1(x′2), F )

≤ max{S̄(g−1(x′1), F ), S̄(g−1(x′2), F )}
= max{S̄g(x′1, F ), S̄g(x

′
2, F )}.

This proves the claim.
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Final remark

So far, given a functional T : F → A, we have strived to determine strictly F-
consistent and F-(quasi-)convex scoring functions for T . We have seen many
examples where the richness of F imposes harsh constraints on the class of F-
(quasi-)convex scoring functions. However, in most situations described above,
there are other scoring functions that are F ′-convex for a subclass F ′ ⊂ F . How-
ever, they remain at least strictly F-consistent for whole F . So one can also
consider to use them if one cannot exclude distributions in F \ F ′ a priori, but
nevertheless, the main focus lies on distributions in F ′.

4.3. Equivariant functionals and order-preserving
scoring functions

Many statistical functionals have an invariance or equivariance property. For
example, the mean is a linear functional, and hence, it is equivariant under linear
transformations. So E[ϕ(X)] = ϕ(E[X]) for any random variable X and any linear
map ϕ : R→ R (of course, the same is true for the higher-dimensional setting). On
the other hand, the variance is invariant under translations, that is Var(X − c) =
Var(X) for any c ∈ R, but scales quadratically, so Var(λX) = λ2 Var(X) for any
λ ∈ R. The next definition strives to formalize such notions.

Definition 4.3.1 (π-equivariance). Let F be a class of probability distributions
on O and A be an action domain. Let Φ be a group of bijective transformations
ϕ : O→ O, Φ∗ another group of bijective transformations ϕ∗ : A→ A, and π : Φ→
Φ∗ be a map. A functional T : F → A is π-equivariant if for all ϕ ∈ Φ

T (L(ϕ(Y ))) = (πϕ)(T (L(Y )))

for all Y such that L(Y ) ∈ F .

From now on, we tacitly assume that Φ be a group of bijective transformations
on O and Φ∗ be a group of bijective transformations on A. We illustrate the notion
of π-equivariance with some examples.

Example 4.3.2. (i) For A = O = R, the mean functional is π-equivariant for
Φ = Φ∗ = {x 7→ x+ c, c ∈ R} the translation group and π the identity map,
or for Φ = Φ∗ = {x 7→ λx, λ ∈ R \ {0}} the multiplicative group and again π
the identity map.

(ii) For A = O = R, Value at Risk at level α, Expected Shortfall at level α
and the τ -expectile are π-equivariant for Φ = Φ∗ = {x 7→ x + c, c ∈ R} the
translation group and π the identity map, or for Φ = Φ∗ = {x 7→ λx, λ > 0}
the multiplicative group and again π the identity map.
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(iii) For A = [0,∞) and O = R, the variance is π-equivariant for Φ = {x 7→
x+c, c ∈ R} the translation group and Φ∗ = {idA} the trivial group consisting
of the identity on A, such that π is the constant map.

(iv) For A = [0,∞) and O = R, the variance is π-equivariant for Φ = Φ∗ = {x 7→
λx, λ ∈ R \ {0}} the multiplicative group, and π((x 7→ λx)) = (x 7→ λ2x).

(v) Let A = Rk, O = R and T be the functional whose mth component is the
mth moment. Then T is π-equivariant with Φ = {y 7→ λy, λ ∈ R \ {0}},
Φ∗ = {x 7→ (λmxm)km=1, λ ∈ R\{0}}, and π((y 7→ λy)) = (x 7→ (λmxm)km=1).

If a functional T is elicitable, π-equivariance can also be expressed in terms of
strictly consistent scoring functions; see also Gneiting (2011, p. 750).

Lemma 4.3.3. Let S : A×O→ R be a strictly F-consistent scoring function for
a functional T : F → A and let π : Φ→ Φ∗. Then, T is π-equivariant if and only
if for all ϕ ∈ Φ

arg min
x∈A

S̄(x,L(ϕ(Y ))) = (πϕ)
(

arg min
x∈A

S̄(x,L(Y ))
)

(4.3.1)

for all Y such that L(Y ) ∈ F .

The proof of Lemma 4.3.3 is direct. Note that (4.3.1) is equivalent to the
assertion that for all ϕ ∈ Φ

arg min
x∈A

S̄((πϕ)(x),L(ϕ(Y ))) = arg min
x∈A

S̄(x,L(Y )) (4.3.2)

for all Y such that L(Y ) ∈ F . This means that the scoring function

Sπ,ϕ : A× O→ R, (x, y) 7→ Sπ,ϕ(x, y) = S((πϕ)(x), ϕ(y)) (4.3.3)

is also strictly F-consistent for T . The fact that the map (S, ϕ) 7→ Sπ,ϕ preserves
strict F-consistency can be expressed as

sgn
(
S̄(x, F )− S̄(x′, F )

)
= sgn

(
S̄π,ϕ(x, F )− S̄π,ϕ(x′, F )

)

for all F ∈ F and for all x, x′ ∈ A whenever x = T (F ) or x′ = T (F ). So the ranking
of the correct forecast and any deliberately misspecified model is the same in terms
of S and Sπ,ϕ. In the same spirit as we have motivated order-sensitivity of scoring
functions, for fixed π : Φ → Φ∗, it is a natural requirement on a scoring function
S that for all ϕ ∈ Φ the ranking of any two forecasts is the same in terms of S
and in terms of Sπ,ϕ. This is encoded in the following definition.

Definition 4.3.4 (π-order-preservingness). Let π : Φ → Φ∗. A scoring function
S : A× O→ R is π-order-preserving with respect to F if for all ϕ ∈ Φ one has

sgn
(
S̄(x, F )− S̄(x′, F )

)
= sgn

(
S̄π,ϕ(x, F )− S̄π,ϕ(x′, F )

)

for all F ∈ F and for all x, x′ ∈ A, where Sπ,ϕ is defined at (4.3.3).
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We give a pointwise criterion which implies that S is π-order-preserving.

Definition 4.3.5. Let π : Φ → Φ∗. A scoring function S : A × O → R is linearly
π-order-preserving if for all ϕ ∈ Φ there is a λ > 0 such that

λ
(
S(x, y)− S(x′, y)

)
= Sπ,ϕ(x, y)− Sπ,ϕ(x′, y) (4.3.4)

for all y ∈ O and for all x, x′ ∈ A.

Lemma 4.3.6. Let π : Φ→ Φ∗. If a scoring function S : A×O→ R is linearly π-
order-preserving, it is π-order-preserving with respect to any class F of probability
distributions on O.

Proof. The proof of Lemma 4.3.6 is standard.

Now, we have settled the abstract theoretical framework. The two practically
most relevant examples are translation invariance and positive homogeneity of
scoring functions. They are described in the two subsequent subsections.

4.3.1. Translation invariance

Let A = O = Rk. Then a scoring function S : Rk×Rk → R is translation invariant
if for all x, y, z ∈ Rk

S(x− z, y − z) = S(x, y).

Analogously, an identification function V : Rk × Rk → Rk is translation invariant
if for all x, y, z ∈ Rk

V (x− z, y − z) = V (x, y).

Clearly, a translation invariant scoring function is linearly π-order-preserving with
λ = 1 where Φ = Φ∗ = {x 7→ x − z, z ∈ Rk} is the translation group and π is
the identity. Let π be fixed throughout this subsection. Then, given a certain
functional, one can wonder about the class of strictly consistent scoring functions
that are translation invariant. Clearly, with respect to Lemma 4.3.3 and Lemma
4.3.6, this class is empty if the functional T is not π-equivariant. On the other
hand, the following proposition yields that, under the conditions of Osband’s
principle, a π-equivariant functional possesses essentially at most one translation
invariant strictly consistent scoring function (the scoring function is unique up to
scaling and adding a constant, but the existence is not guaranteed). Instead of
writing π-equivariant, we shall customarily write translation equivariant in the
sequel.

Proposition 4.3.7. Let T : F → Rk be an identifiable functional with a trans-
lation invariant strict F-identification function V : Rk × Rk → Rk. Then T is
translation equivariant.

If additionally T is elicitable and has two translation invariant strictly F-consistent
scoring functions S, S′ : Rk × Rk → R such that Assumptions (V1), (V2), (S1),
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(F1), and (VS1) in Fissler and Ziegel (2016) hold, then there is some λ > 0 and
c ∈ R such that

S′(x, y) = λS(x, y) + c

for almost all (x, y) ∈ Rk × Rk.

In case of the mean functional on R, this Proposition was already shown by
Savage (1971) who showed that the squared loss is essentially the only strictly
consistent scoring function for the mean that is of prediction error form17.

Proof of Proposition 4.3.7. We use the following customary notation. If a random
variable Y has distribution F with F ∈ F , we write F − z for the distribution of
Y − z where z ∈ Rk.

For the first claim, consider any F ∈ F and z ∈ Rk. Then

0 = EF [V (T (F ), Y ) = EF [V (T (F )− z, Y − z)].

Since V is a strict F-identification function for T , T (F − z) = T (F )− z.
For the second claim, we can directly apply Fissler and Ziegel (2016, Propo-

sition 3.4). Assume that S and S′ are almost everywhere of the form given
there with corresponding matrix-valued functions h, h′ : Rk → Rk×k and functions
a, a′ : Rk → R. Since

S̄(x, F ) = S̄(x− z, F − z)
for all x, z ∈ Rk and F ∈ F , this yields for the gradient with respect to x the
identity

h(x)V̄ (x, F ) = h(x− z)V̄ (x− z, F − z) = h(x− z)V̄ (x, F ), (4.3.5)

where the second identity is due to the translation invariance of V . So (4.3.5) is
equivalent to

V̄ (x, F ) ∈ ker
(
h(x− z)− h(x)

)
.

Now, one can use Assumption (V1) which implies that

ker
(
h(x− z)− h(x)

)
= Rk.

Since x, z ∈ Rk were arbitrary, the function h is constant. Similarly, one can show
that h′ is constant. Consequently, there is a λ > 0 such that almost everywhere

S(x, y)− a(y) = λ(S′(x, y)− a′(y)).

This is equivalent to

S(x, y)− λS′(x, y) = a(y)− λa′(y).

Since the left-hand side is translation invariant, the right-hand side must be con-
stant, which yields the claim.

17That means that the scoring function is a function in x− y only.
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Of course, there are also other more general notions of translation invariance
for scoring functions, especially when A and O do not coincide. One prominent
example is the functional T = (VaRα,ESα) for some α ∈ (0, 1). Here, a natural
choice is A = A0 = {x ∈ R2 : x1 ≥ x2} and O = R. The functional T is π-
equivariant for Φ = {y 7→ y + c, c ∈ R} the translation group on R,

Φ∗ = {(x1, x2) 7→ (x1 + c, x2 + c), c ∈ R}

and

π((y 7→ y + c)) = ((x1, x2) 7→ (x1 + c, x2 + c)). (4.3.6)

Then, one could define translation invariance of a scoring function as being linearly
π-order-preserving for π defined at (4.3.6). In the following proposition, we give
a family of strictly consistent scoring functions for the pair (VaRα,ESα) which
are linearly π-order-preserving with λ = 1 in (4.3.4). That means, their score
differences are translation invariant.

Proposition 4.3.8. Let α ∈ (0, 1). Let F be a class of distribution functions with
finite first moments and unique α-quantiles. Define T = (VaRα,ESα) : F → R2.
The following assertions hold:

(i) Suppose there is some c > 0 such that

ESα(F ) + c > VaRα(F ) ∀F ∈ F . (4.3.7)

That is, T (F) ⊆ Ac := {(x1, x2) ∈ R2 : x2 + c > x1}. Then, any scoring
function S : Ac × R→ R, which is equivalent to

Sc(x1, x2, y) = (1{y ≤ x1} − α)cx1 − 1{y ≤ x1}cy (4.3.8)

+ α(x2
2/2 + x2

1/2− x1x2)

+ 1{y ≤ x1}(−x2(y − x1) + y2/2− x2
1/2),

is strictly F-consistent for T and has translation invariant score differences
in the sense that

Sc(x1 + z, x2 + z, y + z)− Sc(x′1 + z, x′2 + z, y + z)

= Sc(x1, x2, y)− Sc(x′1, x′2, y) (4.3.9)

for all (x1, x2), (x′1, x
′
2) ∈ Ac and for all z, y ∈ R.

(ii) Under the conditions of Theorem 5.2(iii) in Fissler and Ziegel (2016), there
are strictly F-consistent scoring functions for T with translation invariant
score differences if and only if there is some c > 0 such that (4.3.7) holds.
Then, any such scoring function is necessarily equivalent to Sd defined at
(4.3.8) almost everywhere with d ≥ c.
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4. Scoring Functions Beyond Strict Consistency

Proof. (i) First, one can see that Sc is of the form given at (5.2) in Fissler and
Ziegel (2016) with G1(x1) = −x2

1/2 + cx1 and G2(x) = (α/2)x2
2. This means

that G2 is strictly convex and the function x1 7→ x1G2(x2)/α + G1(x1) is
strictly increasing if and only if x2+c > x1, that is, if and only if (x1, x2) ∈ Ac.
Invoking Theorem 5.2(ii) in Fissler and Ziegel (2016), this shows the strict
F-consistency of Sc.

Now, consider the score

S′c(x1, x2, y) = Sc(x1, x2, y) + αcy (4.3.10)

= (1{y ≤ x1} − α)c(x1 − y)

+ α(x2
2/2 + x2

1/2− x1x2)

+ 1{y ≤ x1}(−x2(y − x1) + y2/2− x2
1/2).

A direct computation yields that S′c(x1 + z, x2 + z, y + z) = S′c(x1, x2, y) for
all (x1, x2) ∈ Ac, y ∈ R and for all z ∈ R. This proves (4.3.9).

(ii) Under the conditions of Theorem 5.2(iii) in Fissler and Ziegel (2016), any
strictly F-consistent scoring function S : A × R → R, where A = T (F), is
almost everywhere of the form

S(x1, x2, y) =
(
1{y ≤ x1} − α

)
G1(x1)− 1{y ≤ x1}G1(y) (4.3.11)

+G2(x2)

(
x2 − x1 +

1

α
1{y ≤ x1}(x1 − y)

)
− G2(x2) + a(y).

Here, G2 is strictly convex, G′2 = G2, for all x2 ∈ A′2, and the function

A′1,x2 → R, x1 7→ x1G2(x2)/α+G1(x1)

is strictly increasing. Moreover, the proof of Theorem 5.2(iii) in Fissler and
Ziegel (2016) yields that G1 and G2 are differentiable (under the condition
of that theorem). The translation invariance of the score differences is equiv-
alent to the fact that the function Ψ: R× A× A× R→ R defined as

Ψ(z, x1, x2, x
′
1, x
′
2, y) = S(x1 + z, x2 + z, y + z)− S(x′1 + z, x′2 + z, y + z)

− S(x1, x2, y) + S(x′1, x
′
2, y)

is constant. Let z, y ∈ R and (x1, x2), (x′1, x
′
2) ∈ A. Then

∂

∂x2
Ψ(z, x1, x2, x

′
1, x
′
2, y)

=
(
x2 − x1 +

1

α
1{y ≤ x1}(x1 − y)

)
(G′2(x2 + z)−G′2(x2)).

But since ∂
∂x2

Ψ(z, x1, x2, x
′
1, x
′
2, y) must vanish for all z, y ∈ R and (x1, x2),

(x′1, x
′
2) ∈ A, one obtains that necessarily G′2 ≡ 0. That is, G2(x2) = d1x

2
2 +
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4.3. Equivariant functionals and order-preserving scoring functions

d2x2 + d3 with d1 > 0 (ensuring the strict convexity of G2) and d2, d3 ∈ R.
Similarly, the derivative of Ψ with respect to z must vanish for all z, y ∈ R
and (x1, x2), (x′1, x

′
2) ∈ A. One can calculate that

∂

∂z
Ψ(z, x1, x2, x

′
1, x
′
2, y)

=
(
1{y ≤ x1} − α

)
G′1(x1 + z)− 1{y ≤ x1}G′1(y + z)

−
(
1{y ≤ x′1} − α

)
G′1(x′1 + z) + 1{y ≤ x′1}G′1(y + z)

+ 2d1

( 1

α
1{y ≤ x1}(x1 − y)− x1

)

− 2d1

( 1

α
1{y ≤ x′1}(x′1 − y)− x′1

)
.

This implies that necessarily G′1(x1) = (−2d1/α)x1 + d4 for some d4 ∈ R.
Hence, G1(x1) = (−d1/α)x2

1 + d4x1 + d5 for some d5 ∈ R. Now, consider the
function

ψx2(x1) = x1G2(x2)/α+G1(x1)

= x1(2d1x2 + d2)/α− d1x
2
1/α+ d4x1 + d5.

The function ψx2 is strictly increasing if and only if

x2 +
d2 + d4α

2d1
> x1.

This condition is satisfied for all (x1, x2) ∈ A = T (F) if and only there is a
c > 0 such that T (F) ⊆ Ac and

d :=
d2 + d4α

2d1
≥ c. (4.3.12)

Then, the resulting scoring function at (4.3.11) with

G2(x2) = d1x
2
2 + d2x2 + d3, d1 > 0, d2, d3 ∈ R (4.3.13)

G1(x1) = (−d1/α)x2
1 + d4x1 + d5, d4, d5 ∈ R (4.3.14)

is equivalent to Sd defined at (4.3.8), which concludes the proof.

Remark 4.3.9. The scoring function Sc at (4.3.7) upon choosing d1 = α/2,
d2 = d3 = 0, d4 = c and d5 = 0 in (4.3.13) and (4.3.14). Obviously, the condition
at (4.3.12) is satisfied.

Remark 4.3.10. The scoring function S′c defined at (4.3.10) has a close rela-
tionship to the class of scoring functions proposed by Acerbi and Székely (2014);
see equation (5.6) in Fissler and Ziegel (2016). Indeed, S′c(x1, x2, y) = c

(
1{y ≤

x1}−α
)
(x−y)+SW (x1, x2, y) with W = 1 where SW is defined at equation (5.6)
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4. Scoring Functions Beyond Strict Consistency

in Fissler and Ziegel (2016). That means it is the sum of the standard α-pinball
loss for VaRα – which is translation invariant – and S1. Similarly, the condition
at (4.3.7) is similar to the one at equation (5.7) in Fissler and Ziegel (2016). Since
ESα ≤ VaRα, the maximal action domain where Sc or S′c are strictly consistent is
the stripe {(x1, x2) ∈ R2 : x1 ≥ x2 > x1 − c}. Of course, by letting c → ∞, one
obtains the maximal sensible action domain A0 = {(x1, x2) ∈ R2 : x1 ≥ x2} for the
pair (VaRα,ESα). However, considering the properly normalized version Sc/c or
S′c/c, this converges to a strictly consistent scoring function for VaRα as c → ∞,
but which is independent of the forecast for ESα. That means, there is a caveat
concerning the tradeoff between the size of the action domain and the sensitivity
in the ES-forecast. This might cast doubt on the usage of scoring functions with
translation invariant score differences for (VaRα,ESα) in general.

4.3.2. Homogeneity

For A ⊆ Rk, O ⊆ Rd such that for any λ > 0, and any x ∈ A, y ∈ O, one has
λx ∈ A, λy ∈ O (for example, A and O can be convex cones), a scoring function
S : A× O→ R is called positively homogeneous of degree b ∈ R if

S(λx, λy) = λbS(x, y)

for all (x, y) ∈ A × O and λ > 0. Nolde and Ziegel (2016, p. 14) summarize
arguments in favor of using positively homogeneous scoring functions given in the
literature:

“Efron (1991) argues that it is a crucial property of a scoring function to
be positive homogeneous in estimation problems such as regression. Patton
(2011) underlines the importance of positive homogeneity of the scoring func-
tion for forecast ranking. Acerbi and Székely (2014) argue in favor of using
positive homogeneous scoring functions because they are so-called “unit con-
sistent”. That is, if r and x are given in U.S. dollars, for example, then, for
a positive homogeneous scoring function S, the score S(r, x) will have unit

(U.S. dollars)
b
.”

Furthermore – and in line with our argumentation – they argue that for forecast
ranking and comparison, only the positive homogeneity of the score difference
is important. Clearly, this amounts to π-order-preservingness for the canonical
isomorphism between the respective multiplicative groups

π((y 7→ λy)) = (x 7→ λx).

For the most important functionals in practice, the class of strictly consistent
positively homogeneous scoring functions (strictly consistent scoring functions in-
ducing a positively homogeneous score difference) has already been determined.
We confine ourselves to give references for the corresponding results in the litera-
ture:
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• mean: Patton (2011, Proposition 4), Gneiting (2011, Equations (19) and
(20));

• quantiles: Gneiting (2011, Equation (26)), Nolde and Ziegel (2016, Theo-
rem 2.4);

• expectiles: Nolde and Ziegel (2016, Theorem 2.5);

• (VaR, ES): Nolde and Ziegel (2016, Theorem 2.6).

4.4. Possible applications

Recall that the usage of strictly consistent scoring functions in applications is
two-fold: On the one hand, they can be used to rank and compare competing
forecasts; on the other hand, they can serve as a tool in the context of learning
via M -estimation, and regression. Clearly, the main focus of the preceding results
concerning applications typically lies on either of the sides.

The notion of π-order-preserving scoring functions introduced in Section 4.3 is
clearly motivated from the context of forecast comparison and is mainly benefi-
cial there. On the contrary, (linear) π-order-preserving scoring functions can be
also advantageous for M -estimation. Clearly, if the functional to be estimated
is π-equivariant, then by equation (4.3.2) any M -estimator induced by a strictly
consistent scoring function is π-equivariant as well. However, suppose the mini-
mization procedure of M -estimation has some inaccuracies (maybe due to numer-
ical imprecision), then it is not clear if the resulting inaccurate M -estimator is
π-equivariant. But if the scoring function is strongly linearly π-order-preserving
in the sense that equation (4.3.4) holds not only for score differences, but for the
score itself, then the inaccurately calculated M -estimator still is π-equivariant.

Convexity of scoring functions discussed in Section 4.2 has a multitude of dif-
ferent motivations which we have already detailed in Subsection 4.2.1. These
motivations and possible applications stem from both realms – learning and fore-
cast ranking. However, the advantages in the context of learning / regression might
seem to be more obvious.

Order-sensitivity, to which we have devoted Section 4.1 of this thesis, is certainly
helpful in the context of forecast comparison. Nevertheless, there appear to be
two exceptions from that rule: First, self-calibration (see Subsection 4.1.4) can
ensure the asymptotic consistency of the M -estimator in the context of learning.
Second, Subsection 4.1.3 with its main result, Proposition 4.1.16, asserting that the
expected score of any strictly consistent scoring function for a mixture-continuous
functional has only one local minimum, can turn out to be numerically attractive
for M -estimation. It opens the way to use different minimization algorithms to
numerically determine the minimizer of the expected score. We briefly describe
one method we have in mind, namely steepest descent with a sort of perturbation:
One can use the steepest descent method. Then, one eventually reaches the global
minimum, or a local maximum, or a saddle-point. Then, if one applies a small
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4. Scoring Functions Beyond Strict Consistency

perturbation and and calculates some iterations of the steepest descent method,
one will again approach the global minimum in the first case, and in the two latter
cases, one gets away from the critical points and will eventually end up also at the
global minimum.
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5. Implications for Backtesting

The content of this chapter is the joint article Fissler et al. (2016), which appeared
in Risk Magazine. It shows how one can use the result of Fissler and Ziegel (2016,
Corollary 5.5) that Expected Shortfall is jointly elicitable with Value at Risk in
the context of backtesting. More generally, we commented in this note on the role
of elicitability for backtesting problems in general, thereby suggesting the usage of
comparative backtests of Diebold-Mariano style. Two other insightful references
on the relationship between elicitability and backtesting are the articles Acerbi
and Székely (2014), Acerbi and Székely (2017) and Nolde and Ziegel (2016).

Due to copyright reasons, the article is not in the journal style. However, its
content corresponds literally to the same version which appeared in the journal.
Again, two preprint versions can be found at https://arxiv.org/abs/1507.

00244.

137

https://arxiv.org/abs/1507.00244
https://arxiv.org/abs/1507.00244


Expected Shortfall is jointly elicitable with Value at Risk –

Implications for backtesting

Tobias Fissler∗ Johanna F. Ziegel∗ Tilmann Gneiting†

September 1, 2015

Abstract

In this note, we comment on the relevance of elicitability for backtesting risk mea-
sure estimates. In particular, we propose the use of Diebold-Mariano tests, and show
how they can be implemented for Expected Shortfall (ES), based on the recent result
of Fissler and Ziegel (2015) that ES is jointly elicitable with Value at Risk (VaR).

Joint elicitability of ES and VaR

There continues to be lively debate about the appropriate choice of a quantitative risk
measure for regulatory purposes or internal risk management. In this context, it has been
shown by Weber (2006) and Gneiting (2011) that Expected Shortfall (ES) is not elicitable.
Specifically, there is no strictly consistent scoring (or loss) function S : R2 → R such that,
for any random variable X with finite mean, we have

ESα(X) = arg mine∈R E[S(e,X)].

Recall that ES of X at level α ∈ (0, 1) is defined as

ESα(X) =
1

α

∫ α

0
VaRβ(X) dβ,

where Value at Risk (VaR) is given by VaRα(X) = inf{x ∈ R : P(X ≤ x) ≥ α}. In contrast,
VaR at level α ∈ (0, 1) is elicitable for random variables with a unique α-quantile. The
possible strictly consistent scoring functions for VaR are of the form

SV (v, x) = (1{x ≤ v} − α)(G(v) − G(x)), (1)

where G is a strictly increasing function such that the expectation E[G(X)] exists.
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However, it turns out that ES is elicitable of higher order in the sense that the pair
(VaRα, ESα) is jointly elicitable. Indeed, we have that

(VaRα(X),ESα(X)) = arg min(v,e)∈R2 E[SV,E(v, e,X)],

where possible choices of SV,E are given by

SV,E(v, e, x) = (1{x ≤ v} − α)(G1(v) − G1(x)) (2)

+
1

α
G2(e)1{x ≤ v}(v − x) + G2(e)(e − v) − G2(e),

with G1 and G2 being strictly increasing continuously differentiable functions such that
the expectation E[G1(X)] exists, limx→−∞ G2(x) = 0 and G′

2 = G2; see Fissler and Ziegel
(2015, Corollary 5.5). One can nicely see the structure of SV,E: The first summand in
(2) is exactly a strictly consistent scoring function for VaRα given at (1) and hence only
depends on v, whereas the second summand cannot be split into a part depending only
on v and one depending only on e, respectively, hence illustrating the fact that ESα itself
is not elicitable. Acerbi and Székely (2014) were first to suggest that the pair (VaRα,
ESα) is jointly elicitable. They proposed a strictly consistent scoring function under the
additional assumption that there exists a real number w such that ESα(X) > w VaRα(X)
for all assets X under consideration. Despite encouraging simulation results, there is
currently no formal proof available of the strict consistency of their proposal. In contrast,
the scoring functions given at (2) do not require additional assumptions, and it has been
formally proven that they provide a class of strictly consistent scoring functions.

The role of elicitability in backtesting

The lack of elicitability of ES (of first order) has led to a lively discussion about whether
or not and how it is possible to backtest ES forecasts; see, for example, Acerbi and Székely
(2014), Carver (2014), and Emmer et al. (2015). It is generally accepted that elicitability
is useful for model selection, estimation, generalized regression, forecast comparison, and
forecast ranking. Having provided strictly consistent scoring functions for (VaRα, ESα),
we take the opportunity to comment on the role of elicitability in backtesting.

The traditional approach to backtesting aims at model verification. To this end, one
tests the null hypothesis:

HC
0 : “The risk measure estimates at hand are correct.”

Specifically, suppose we have sequences (xt)t=1,...,N and (vt, et)t=1,...,N , where xt is the
realized value of the asset at time point t, and vt and et denote the estimated VaRα and
ESα given at time t−1 for time point t, respectively. A backtest uses some test statistic T1,
which is a function of (vt, et, xt)t=1,...,N , such that we know the distribution of T1 (at least
approximately) if the null hypothesis of correct risk measure estimates holds. If we reject
HC

0 at some small level, the model or the estimation procedure for the risk measure is
deemed inadequate. Traditional backtests have a wealth of legitimate and important uses,
particularly when a single internal risk model is checked and monitored over time. For this
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approach of model verification, elicitability of the risk measure is not relevant, as pointed
out by Acerbi and Székely (2014) and Davis (2014). However, tests of this type can be
problematic as a basis of decision making for adapting or changing an internal model, or,
in regulatory practice, notably in view of the anticipated revised standardised approach
(Bank for International Settlements, 2013, pp. 5–6), which “should provide a credible fall-
back in the event that a bank’s internal market risk model is deemed inadequate”. If the
internal model fails the backtest, the standardised approach may fail the test, too, and in
fact it might be inferior to the internal model. Conversely, the internal model might pass
the backtest, despite a more informative standardised model being available, as illustrated
in the numerical example below. Generally, tests of the hypothesis HC

0 are not aimed at,
and do not allow for, model comparison and model ranking.

Alternatively, one could use the following null hypothesis in backtesting:

H−
0 :

“The risk measure estimates at hand are at least as good
as the ones from the standard procedure.”

Here, the standard procedure could be a method specified by the regulator, or it could
be a technique that has been used in the past. An important caveat is that the standard
procedure needs to provide daily VaRα and ESα predictions on a bank’s portfolio. For
internal use at banks, this requirement should not pose problems. In the regulatory setting,
the revised standardised approach proposed by the Bank for International Settlements
(2013, 2014) only gives the capital charge based on exposures, and thus the approach
would need to be adapted for VaRα and ESα predictions to become available. Let us
now write (v∗

t , e
∗
t )t=1,...,N for the sequence of VaRα and ESα estimates by the standard

procedure. Making use of the elicitability of (VaRα, ESα), we take one of the scoring
functions SV,E given at (2) to define the test statistic

T2 =
S̄V,E − S̄∗

V,E

σN
, (3)

where

S̄V,E =
1

N

N∑

t=1

SV,E(vt, et, xt), S̄∗
V,E =

1

N

N∑

t=1

SV,E(v∗
t , e

∗
t , xt),

and σN is a suitable estimate of the respective standard deviation. Under H−
0 , the test

statistic T2 has expected value less than or equal to zero. Following the lead of Diebold
and Mariano (1995), comparative tests that are based on the asymptotic normality of the
test statistics T2 have been employed in a wealth of applications.

Under both HC
0 and H−

0 , the backtest is passed if the null hypothesis fails to be rejected.
However, as Fisher (1949, p. 16) noted, “the null hypothesis is never proved or established,
but it is possibly disproved, in the course of experimentation.” In other words, a passed
backtest does not imply the validity of the respective null hypothesis. Passing the backtest
simply means that the hypothesis of correctness (HC

0 ) or superiority (H−
0 ), respectively,

could not be falsified.
In the case of comparative backtests, a more conservative approach could be based on

the following null hypothesis:

H+
0 :

“The risk measure estimates at hand are at most as good
as the ones from the standard procedure.”
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S̄∗
V,E

1.64 σN 1.64 σN S̄V,E

H−
0 pass fail

H+
0 pass fail

Figure 1: Decisions taken in comparative backtests under the null hypotheses H−
0 and H+

0

at level 0.05. In the yellow region the two backtests entail distinct decisions. See the text
for details.

This can also be tested using the statistic T2 in (3), which has expected value greater than
or equal to zero under H+

0 . The backtest now is passed when H+
0 is rejected. The decisions

taken in comparative backtesting under H−
0 and H+

0 are illustrated in Figure 1, where the
colours relate to the three-zone approach of the Bank for International Settlements (2013,
pp. 103–108). In regulatory practice, the distinction between Diebold-Mariano tests un-
der the two hypotheses amounts to a reversed onus of proof. In the traditional setting,
it is the regulator’s burden to show that the internal model is incorrect. In contrast, if a
backtest is passed when H+

0 is rejected, banks are obliged to demonstrate the superiority
of the internal model. Such an approach to backtesting may entice banks to improve their
internal models, and is akin to regulatory practice in the health sector, where market
authorisation for medicinal products hinges on comparative clinical trials. In the health
context, decision-making under H−

0 corresponds to equivalence or non-inferiority trials,
which are “not conservative in nature, so that many flaws in the design or conduct of the
trial will tend to bias the results”, whereas “efficacy is most convincingly established by
demonstrating superiority” under H+

0 (European Medicines Agency, 1998, p. 17). Tech-
nical detail is available in a specialized strand of the biomedical literature; for a concise
review, see Lesaffre (2008).

Numerical example

We now give an illustration in the simulation setting of Gneiting et al. (2007). Specifically,
let (µt)t=1,...,N be a sequence of independent standard normal random variables. Condi-
tional on µt, the return Xt is normally distributed with mean µt and variance 1, denoted
N (µt, 1). Under our Scenario A, the standard method for estimating risk measures uses
the unconditional distribution N (0, 2) of Xt, whereas the internal procedure takes advan-
tage of the information contained in µt and uses the conditional distribution N (µt, 1).
Therefore,

(vt, et) = (VaRα(N (µt, 1)),ESα(N (µt, 1))) =

(
µt + Φ−1(α), µt − 1

α
ϕ(Φ−1(α))

)
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Table 1: Percentage of decisions in the green, yellow, and red zone in traditional and
comparative backtests. Under Scenario A, a decision in the green zone is desirable and in
the joint interest of banks and regulators. Under Scenario B, the red zone corresponds to
a decision in the joint interest of all stakeholders.

Scenario A Green Yellow Red

Traditional VaR0.01 89.35 10.65 0.00
Traditional ES0.025 93.62 6.36 0.02
Comparative VaR0.01 88.23 11.77 0.00
Comparative (VaR0.025,ES0.025) 87.22 12.78 0.00

Scenario B Green Yellow Red

Traditional VaR0.01 89.33 10.67 0.00
Traditional ES0.025 93.80 6.18 0.02
Comparative VaR0.01 0.00 11.77 88.23
Comparative (VaR0.025,ES0.025) 0.00 12.78 87.22

and

(v∗
t , e

∗
t ) = (VaRα(N (0, 2)),ESα(N (0, 2))) =

(
√

2Φ−1(α), −
√

2

α
ϕ(Φ−1(α))

)
,

where ϕ and Φ denote the density and the cumulative distribution function of the standard
normal distribution, respectively. Under Scenario B, the roles of the standard method and
the internal procedure are interchanged: The standard model now uses the conditional dis-
tribution N (µt, 1), whereas the internal model uses the unconditional distribution N (0, 2).
Consequently, under Scenario A the desired decision is to pass the backtest. Under Sce-
nario B the backtest should be failed.

As tests of traditional type, we consider the coverage test for VaR0.01 described by the
Bank for International Settlements (2013, pp. 103–108) and the generalized coverage test
for ES0.025 proposed by Costanzino and Curran (2015). As shown by Clift et al. (2015), the
latter performs similarly to the approaches of Wong (2008) and Acerbi and Székely (2014),
but is easier to implement. The outcome of the test is structured into green, yellow, and
red zones, as described in the aforementioned references. For the comparative backtest
for (VaR0.025,ES0.025), we use the functions G1(v) = v and G2(e) = exp(e)/(1 + exp(e))
in (2) and define the zones as implied by Figure 1. Finally, our comparative backtest for
VaR0.01 uses the function G(v) = v in (1), which is equivalent to putting G1(v) = v and
G2(e) = 0 in (2). For σN in the test statistic T2 in (3) we use the standard estimator.

Table 1 summarizes the simulation results under Scenario A and B, respectively. We
use sample size N = 250 and repeat the experiment 10,000 times. The traditional back-
tests are performed for the internal model in the scenario at hand. Under Scenario A,
the four tests give broadly equivalent results. The benefits of the comparative approach
become apparent under Scenario B, where the traditional approach yields highly unde-
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sirable decisions, in that the simplistic internal model passes the backtest, while a more
informative standard model would be available. This can neither be in banks’ nor in regu-
lators’ interests. We emphasize that this problem will arise with any traditional backtest,
as a traditional backtest assesses optimality only with respect to the information used for
providing the risk measure estimates.

Comparative tests based on test statistics of the form T2 in (3) can be used to com-
pare forecasts in the form of full predictive distributions, provided a proper scoring rule is
used (Gneiting and Raftery, 2007), or to compare risk assessments, provided the risk mea-
sure admits a strictly consistent scoring function, so elicitability is crucial. In particular,
proper scoring rules and consistent scoring functions are sensitive to increasing information
utilized for prediction; see Holzmann and Eulert (2014). However, as consistent scoring
functions are not unique, a question of prime practical interest is which functions ought
to be used in regulatory settings or internally. In the present context, initial numerical
experiments show that the choice of the functions G1 and G2 in (2) affects the discrimina-
tion ability of the backtest but does not lead to contradictory decisions. That is, with a
different choice of G1, G2, the number of decisions in the yellow zone may vary but it was
observed extremely rarely that a decision was changed from green to red or vice versa. A
comprehensive analysis is beyond the scope of our note and left to future work.

Discussion

We have raised the idea of comparative backtesting. In contrast to the traditional approach,
comparative backtests provide a credible fall-back in case a risk measure estimate does
not pass the backtest. Elicitability of the risk measure is not relevant for traditional
backtesting, whereas it is crucial for comparative backtesting. Hence, the recent result of
Fissler and Ziegel (2015) that the pair (VaRα, ESα) is jointly elicitable open the possibility
for comparative backtests of risk measure estimates for this pair.

Arguably, now may be the time to revisit and investigate fundamental statistical issues
in banking supervision. Chances are that comparative backtests, where a bank’s internal
risk model is held accountable relative to an agreed-upon standardised approach, turn out
to be beneficial to all stakeholders, including banks, regulators, and society at large.
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6. Discussion

6.1. Reception in the literature

Our two joint articles Fissler and Ziegel (2016) and Fissler et al. (2016), discussed
in the first part of this thesis, have gained considerable attention, on the one hand
for the theoretical issues they are concerned with (Frongillo and Kash, 2015a,c;
Frongillo et al., 2016; Ehm et al., 2016; Grushka-Cockayne et al., 2016; Maume-
Deschamps et al., 2016; Embrechts et al., 2016; Liu and Wang, 2016; Zwingmann
and Holzmann, 2016; Bayer and Dimitriadis, 2017), on the other hand due to the
practical implications they have on the discussion about the best choice of a risk
measure (Kou and Peng, 2015; Jakobsons and Vanduffel, 2015; Lerch et al., 2015;
Davis, 2016; Nolde and Ziegel, 2016; Allen et al., 2016; Asimit et al., 2016; Burzoni
et al., 2016; Corbetta and Peri, 2016; Clift et al., 2016; Pitera and Schmidt, 2016).

6.2. Outlook for possible future research projects

Besides the questions that could be answered in this part of the thesis, there is
certainly a plenitude of remaining or newly arisen open questions. We confine
ourselves to a list of possible future projects in this area, tackling some of these
questions.

6.2.1. Vector-valued risk measures in the context of systemic risk

Most of the vector-valued functionals investigated in the literature on elicitability
are on the one hand vectors consisting of elicitable components (such as the vector
of ratios of expectations with the same denominator) or bijections thereof; and
on the other hand, functionals have been studied that consist of a non-elicitable
component one is actually interested in and some other components being elic-
itable, but only having the character of auxiliary components making the whole
vector elicitable. A prominent example for the second case is the pair (VaR, ES);
see Fissler and Ziegel (2016), and for a general explanation of this phenomenon
Frongillo and Kash (2015c).

An interesting class of functionals is given by vector-valued risk measures which
naturally take values in Rk or which are set-vector-valued taking values in 2R

k
.

These risk measures often appear in the assessment of systemic risk (Jouini et al.,
2004; Armenti et al., 2016; Feinstein et al., 2016). After getting an overview of the
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most important choices of such risk measures one can tackle the canonical question
if they are elicitable and/or identifiable which would open the way to classical and
comparative backtesting (Fissler et al., 2016; Nolde and Ziegel, 2016). While the
findings of project 6.2.3 can help to give a characterization of the class of strictly
consistent scoring functions for systemic risk measures, the results of Chapter 4
could lead the way to characterize the subclass of order-sensitive and (quasi-)-
convex strictly consistent scoring functions.

6.2.2. Testing the tail of the P&L-distribution

It is often argued in the literature that probabilistic forecasts are superior to
point forecasts since they account for the uncertain nature of future events. For
the evaluation and ranking of competing probabilistic forecasts, one commonly
uses strictly proper scoring rules.

However, in the framework of quantitative risk management, one is usually not
interested in assessing the whole Profit&Loss-distribution. Instead, the risk of an
asset is only related to one tail of the P&L-distribution; see Liu and Wang (2016).
Here, the definition of tail can have different forms, e.g. an absolute threshold
(for example, only losses should be interesting for assessing the risk), or a relative
threshold like an α-quantile or -expectile. This induces a tail operator T : F → F0

where F ,F0 are some adequate classes of probability distributions. One can also
regard this tail operator as an infinite dimensional functional. Then it is natural
to investigate the classical questions of point forecasts, namely, mutatis mutandis,
is T elicitable, what is the class of strictly consistent scoring functions, and are
there some particularly ‘good’ choices of scoring functions. It is clear that a
strictly consistent scoring function for the tail operator induces a proper scoring
rule which is not strictly proper on purpose (if T is not the identity operator).

Gneiting and Ranjan (2011) proposed the ‘threshold-weighted continuous ranked
probability score’

S(F, y) =

∫ ∞

−∞

(
F (z)− 1{y ≤ z}

)2
w(z) dz, (6.2.1)

whereas Diks et al. (2011) suggested the ‘censored likelihood score function’

Scsl(F, y) = −w(y) log(f(y))− (1− w(y)) log
(

1−
∫
w(z)f(z) dz

)
, (6.2.2)

where w(y) = 1{y ≤ a} for some threshold a ∈ R and f is the density of the pre-
dictive tail F ; see also Lerch et al. (2015). Both suggestions are strictly consistent
scoring functions for the threshold-tail. As already indicated, a natural question
is whether these suggestions are the only strictly consistent scoring functions. It
appears that one can generalize the form of Scsl to a whole class of strictly consis-
tent scoring functions for the threshold-tail which are also more flexible in terms of
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regularity assumptions. The key is that one needs a joint scoring function for the
infinite dimensional tail and the one dimensional functional F 7→ EF [1{Y ≤ a}].

Gneiting and Ranjan (2011) also proposed the ‘quantile-weighted version of the
continuous ranked probability score’

S(F, y) =

∫ 1

0
2
(
1{y ≤ F−1(β)} − β

)
(F−1(β)− y)ν(β) dβ, (6.2.3)

where ν is a nonnegative weight function on [0, 1] and F−1 is the generalized inverse
of the predictive tail F . Upon choosing ν(β) = 1{β ≤ α}, one obtains a strictly
consistent scoring function for the α-quantile tail. Also in this case, it is clear that
there are further strictly consistent scoring functions of a similar form. Moreover,
it is an open question whether there is also an approach similar to the censored
likelihood score function in that one elicits jointly the α-tail and the α-quantile.
Moreover, it is not clear if there exists an ‘expectile-weighted’ analogon of (6.2.3).
Another interesting approach could consist in considering scoring functions of the
form (6.2.2) and choosing the threshold a as some quantile or expectile. Then,
one would need a joint scoring function for the quantile- or expectile-tail and the
corresponding quantile or expectile, respectively.

Note that the recent approach of Emmer et al. (2015) aims at evaluating quan-
tiles at different levels, thus approximating the α-tail. Moreover, in practical
situations, institutions usually first calculate a predictive distribution and then a
risk measure based on that distributional forecast (Cont et al., 2010; Pitera and
Schmidt, 2016). Consequently, quite often the predictive tail is already available
such that it can be directly evaluated.

In some sense, this project could fill the gap between point forecasts, where
one considers finite dimensional functionals, and probabilistic forecasts, where
one considers one particular infinite dimensional functional, namely the identity
operator; see the recent paper Grushka-Cockayne et al. (2016).

Some advances in this direction have been achieved by the very recent paper
Holzmann and Klar (2016).

6.2.3. A sufficient condition for higher order elicitability

Since Osband’s (1985) doctoral thesis it is well known that the convexity of the
level sets of a functional is a necessary condition for its elicitability, both in the
one and in the higher-dimensional setting. That means if a functional T : F → Rk
is elicitable, then for every F0, F1 ∈ F such that T (F0) = T (F1) = t and for
all λ ∈ (0, 1), T ((1 − λ)F0 + λF1) = t whenever (1 − λ)F0 + λF1 ∈ F . For
k = 1, Steinwart et al. (2014) showed that under continuity assumptions on T ,
the convexity of the level sets of T is also sufficient for the elicitability. Their
proof uses a separation theorem and hence relies heavily on the total order of R.
Moreover, the continuity assumptions also appear to be crucial since the mode
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functional is generally not elicitable despite having convex level sets; see Heinrich
(2014).

It is an open and highly non trivial question if the convexity of the level sets of
T continues to be a sufficient criterion for elicitability under appropriate regularity
assumptions when k > 1. And if not, is there another sufficient condition on T
which can be verified efficiently?
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Part II.

Limit Theorems on the Poisson
and Wiener Space
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7. Introduction

Whereas Part I of this thesis belongs to the field of mathematical statistics and in
many parts has its inspirations from direct applications, it is doubtless that Part II
is more probabilistic in nature. Its main content are the papers Fissler and Thäle
(2016a) in Chapter 8 and Fissler and Thäle (2016b) in Chapter 9. In both articles,
the objects of research are (non-linear) Gaussian and Poisson functionals. Even
though the two articles are self-contained, we shall give a very brief overview and
introduction into (i) the chaos representation of Gaussian and Poisson functionals
in terms of multiple Wiener-Itô integrals, and (ii) Stein’s method (for the sake of
brevity and clarity just for the normal approximation, the Gamma approximation
being similar in nature) and how the Malliavin Calculus and Stein’s method can be
fruitfully combined. This introduction is not intended to give a detailed exposition
of this subject – which could, indeed, be the content of a whole thesis on its own.
Instead, it gives many references to the literature and also to the main articles
Fissler and Thäle (2016a) and Fissler and Thäle (2016b) where we detailed on it.

Please note that the notations of Part I and Part II of this thesis are completely
independent (of course, with the exception of standard notation in stochastics).
Since the focus of the two articles Fissler and Thäle (2016a) and Fissler and Thäle
(2016b) is slightly different, also the notation differs in some aspects between
Chapter 8 and Chapter 9. However, since the articles are self-contained, the
correspondences should be clear. For this introduction, we stick to the notation
of Chapter 8.

Part II concludes with a short discussion in Chapter 10 providing an outlook to
future research.

7.1. Chaos representation of Gaussian and Poisson
functionals

Let (Ω,F ,P) be an underlying common probability space which is rich enough
to support all subsequent random objects. A Gaussian (Poisson) functional is a
real-valued random variable which is measurable with respect to the σ-algebra
generated by a Gaussian process G (a Poisson process η) on (Ω,F ,P). As men-
tioned in Fissler and Thäle (2016b), some examples for Gaussian functionals are
the power and bi-power variation of Gaussian processes, which can be important
in the context of risk quantification, the Euler characteristic of a Gaussian excur-
sion set, or the statistics appearing around the Breuer-Major theorem. On the
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other hand, most examples for Poisson functionals are from the fields of geometric
probability or stochastic geometry, but also U -statistics; see e.g. Hug and Reitz-
ner (2016), Lachièze-Rey and Reitzner (2016), Schulte and Thäle (2016), and the
references in Fissler and Thäle (2016a).

A both unifying and generalizing perspective on Gaussian and Poisson function-
als can be provided in terms of so-called completely random measures, commonly
denoted by ϕ; see Peccati and Taqqu (2011, Section 5.1) and Fissler and Thäle
(2016a, Section 2.1). In a nutshell, one assumes that the underlying (Gaussian or
Poisson) process is indexed by the family Zµ = {Z ∈ Z : µ(Z) < ∞} of Borel-
measurable sets with finite measure of an underlying Polish space Z with a Borel
σ-algebra Z , equipped with a non-atomic and σ-finite reference measure µ. For
the most interesting cases that ϕ coincides with a centered Gaussian measure G
or a compensated Poisson measure η̂, one can show that the space of square-
integrable functionals of ϕ, denoted by L2(σ(ϕ),P), admits a chaos decomposition
or chaos representation (Peccati and Taqqu, 2011, Section 5.9). That is, the space
L2(σ(ϕ),P) has a representation in terms of a direct orthogonal sum

L2(σ(ϕ),P) =

∞⊕

q=0

Wϕ
q , (7.1.1)

where Wϕ
q is the Wiener chaos of order q. More precisely, Wϕ

q is the image of the
multiple Wiener-Itô integral of order q with respect to ϕ, that is a map

Iϕq : L2
s(Zq,Z ⊗q, µ⊗q)→ L2(σ(ϕ),P),

which is linear and continuous. The elements of L2
s(Zq,Z ⊗q, µ⊗q) are symmetric

and square-integrable functions on Zq in the sense that the arguments are µ⊗q-
a.e. invariant under permutations. Moreover, Iϕ0 is defined as the identity map
on R. For a construction of the multiple Wiener-Itô integrals with respect to a
completely random measure we refer to Peccati and Taqqu (2011, Section 5), as
well as to Nualart (2006) for the Gaussian case and to Last (2016) for the Poisson
case. The decomposition (7.1.1) corresponds to the fact that for any square-
integrable functional F ∈ L2(σ(ϕ),P) there are (µ⊗q-a.e.) uniquely determined
kernels fq ∈ L2

s(Zq,Z ⊗q, µ⊗q) such that

F = E[F ] +
∞∑

q=1

Iϕq (fq), (7.1.2)

where the series converges in L2(P). The orthogonality relation in (7.1.1) is re-
flected by the so-called Itô isometry, asserting that

E[Iϕp (f)Iϕq (g)] =

{
0 if p 6= q

q!〈f, g〉L2
s(Zq ,Z ⊗q ,µ⊗q) if p = q

(7.1.3)

for any integers p, q ≥ 1 and any f ∈ L2
s(Zp,Z ⊗p, µ⊗p) and g ∈ L2

s(Zq,Z ⊗q, µ⊗q).
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Not only the expectation of the product of two multiple integrals can be neatly
expressed, but also the product Iϕp (f)Iϕq (g) itself in terms of a chaos representation
in the flavor of (7.1.2). The corresponding formulae are called multiplication
formulae and can be found in Fissler and Thäle (2016a, Lemma 2.1) for the
Poisson case and Fissler and Thäle (2016a, Remark 2.4) for the Gaussian case.
It is remarkable that (i) the two formulae are similar in nature, but the one
for the Poisson case has a more involved structure; (ii) in both cases, the chaotic
representation is finite in the sense that the representation of the product contains
integrals only up to order min{p, q}; and (iii) the integrands of the respective
integrals are so-called contractions of f and g; see Fissler and Thäle (2016a, Section
2.5).

Malliavin Calculus

An important toolbox when dealing with Gaussian and Poisson functionals is the
so-called Malliavin Calculus, which can be considered is an infinite-dimensional
differential calculus on the Wiener space L2(σ(ϕ),P). Its main ingredients are the
following operators: the Malliavin derivative D, its adjoint operator, the diver-
gence δ (also called Skorohod integral), as well as the Ornstein-Uhlenbeck genera-
tor L and its pseudo-inverse L−1. The action of these operators can be expressed
in terms of the chaos representation (7.1.2) and the operators are closely related.
For the case of Gaussian integrals, we gave an exposition of the Malliavin opera-
tors in Fissler and Thäle (2016b, Section 2). For a detailed introduction, we refer
to Nualart (2006, Chapter 1) for the Gaussian case, and to Bourguin and Peccati
(2016) for the Poisson case.

7.2. Stein’s method

The paper Fissler and Thäle (2016a) is concerned with qualitative non-central
limit theorems for a sequence of Poisson functionals living inside a fixed chaos to-
wards a centered Gamma limit. In particular, it investigates the question when the
convergence of the first four moments of such a sequence to the ‘correct’ moments
of the limiting distribution is equivalent to the sequence converging in distribution.
On the other hand, in Fissler and Thäle (2016b), we considered quantitative cen-
tral limit theorems for a sequence of Gaussian functionals with a possibly infinite
chaos representation at (7.1.2). That means, we established rates of convergence
for the distance of the respective distribution of a sequence of Gaussian function-
als (Fn)n∈N from a normal law in terms of different probability metrics such as
the total variation distance, the Kolmogorov distance or the Wasserstein distance.
Besides the Malliavin Calculus, the results of both papers deeply rely on Stein’s
method for the normal and the Gamma approximation (and, more precisely, on
the combination of the two methods). Valuable references for Stein’s method are
Nourdin and Peccati (2012, Chapter 3) as well as Chen et al. (2011) and Bourguin
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and Peccati (2016) for the normal approximation; for the Gamma approximation,
we refer to the PhD-theses Luk (1994), Pickett (2004) as well as to Chen et al.
(2011, Example 13.2), and to the articles Gaunt et al. (2016) and Ley et al. (2017).
Since we did not elaborate on Stein’s method in the two subsequent papers Fissler
and Thäle (2016a,b), we give here a brief summary of the heuristic behind Stein’s
method restricting on the case of the normal approximation and following the ex-
position in Nourdin and Peccati (2012, Chapter 3), remarking that the rationale
behind the Gamma approximation via Stein’s method is similar in nature.

Stein’s method for normal approximation

The starting point of Stein’s method for normal approximation is the following
characterization of the law of a standard normal random variable, known as Stein’s
lemma.

Lemma 7.2.1 (Stein’s lemma). A real-valued random variable X has the dis-
tribution of a standard normal random variable N ∼ N (0, 1) if and only if, for
every differentiable function f : R→ R such that E[|f ′(N)|] <∞, the expectations
E[|Xf(X)|] and E[|f ′(X)|] are finite, and

E[f ′(X)−Xf(X)] = 0. (7.2.1)

A natural question is whether there is a quantitative version of Stein’s lemma in
the sense that if the left hand side of (7.2.1) is ‘close’ to zero for a sufficiently rich
class of test functions f , then the law of X is also ‘close’ to the law of N ∼ N (0, 1).
To give this vague statement a clearer meaning, recall the notion of a probability
metric dH between the laws of two random variables X,Y

dH(X,Y ) := sup
h∈H
|E[h(X)− E[h(Y )]| . (7.2.2)

Here, H is a certain separating class of real-valued test functions h such that
E[|h(X)|] <∞ and E[|h(Y )|] <∞ for all h ∈ H. Recall that H is called separating
if dH(X,Y ) = 0 implies that the laws of X and Y coincide. Many well known
metrics can be written in such a form, amongst them

• the total variation distance dTV := dHTV , where
HTV = {1B : B ⊆ R a Borel set};

• the Kolmogorov distance dK := dHK , where HK = {1(−∞,x] : x ∈ R};
• the Wasserstein distance dW := dHW , where HW = {h : ‖h‖Lip ≤ 1} with

‖h‖Lip := sup
x 6=y

|h(x)− h(y)|
|x− y| .

To give a link between these probability distances and the left hand side of (7.2.1),
Stein’s equation comes into play. This is the ordinary differential equation

f ′(x)− xf(x) = h(x)− E[h(N)], x ∈ R. (7.2.3)
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whereN ∼ N (0, 1), h : R→ R is a Borel-measurable function such that E[|h(N)|] <
∞. For h fixed, the solution to Stein’s equation (7.2.3) is denoted by fh. A solution
fh which is such that E[|fh(N)|] <∞ for N ∼ N (0, 1), is of the form

fh(x) = ex
2/2

∫ x

−∞

(
h(y)− E[h(N)]

)
e−y

2/2 dy.

For a certain class H, one can determine a class of possible solutions FH ⊇
{fh : h ∈ H}, such that one ends up with the estimate

dH(X,N) = sup
h∈H
|E[h(X)]− E[h(N)]|

= sup
h∈H
|E[f ′h(X)−Xfh(X)]|

≤ sup
f∈FH

|E[f ′(X)−Xf(X)]|, (7.2.4)

where X is a generic random variable and N ∼ N (0, 1). A key observation is that
for H ∈ {HTV ,HK ,HW }, there is a constant K > 0 such that

FH = {f : ‖f ′‖∞ ≤ K}. (7.2.5)

Combining Stein’s method with the Malliavin Calculus

The inequality at (7.2.4) gains its power by combining it with the Malliavin Cal-
culus. E.g. if X = F ∈ L2(σ(G),P) is a Gaussian functional satisfying certain
regularity conditions, one can show the identity

E[Ff(F )] = E
[
f ′(F )〈DF,−DL−1F 〉L2(µ)

]
. (7.2.6)

Hence, combining (7.2.4) and (7.2.5), one obtains for dH ∈ {dTV , dK , dW } (Nour-
din and Peccati, 2012, Proposition 5.1.1)

dH(F,N) ≤ K E
[
|1− 〈DF,−DL−1F 〉L2(µ)|

]
. (7.2.7)

The power of the estimate (7.2.7) is that on its right hand side, no test function
h or fh shows up, which makes it easier to discuss this bound.

For the case that F ∈ L2(σ(η),P) is a Poisson functional, one can derive a
similar bound like (7.2.7) in terms of the Wasserstein distance. In particular, if
E[F ] = 0 and F ∈ domD, Peccati et al. (2010, Theorem 3.1) yields that

dW (F,N) ≤ E
[
|1− 〈DF,−DL−1F 〉L2(µ)|

]
+

∫

Z
E
[
|DzF |2 |DzL

−1F |
]
µ(dz).

(7.2.8)
We remark that similar estimates like (7.2.7) and (7.2.8) can be obtained also
for the Gamma approximation; see Nourdin and Peccati (2009, Theorem 3.11)
for Gaussian functionals and Peccati and Thäle (2013, Theorem 2.1) for Poisson
functionals.

157



7. Introduction

The two subsequent research articles are a modest part of overall more than
250 research papers since 2004, dedicated to and relying on the combination
of the Malliavin Calculus and Stein’s method. For a bibliographical overview,
we refer to the constantly updated webpage https://sites.google.com/site/

malliavinstein/home.
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8. A four moments theorem for
Gamma limits on a Poisson chaos

The content of this chapter is the joint research article Fissler and Thäle (2016a).
The main concern of this article is to establish a non-central ‘four moments the-
orem’ for Poisson functionals belonging to a fixed chaos. That is, we investigated
under which conditions the convergence in distribution of a sequence of Poisson
functionals on a fixed chaos to a Gamma limit is equivalent to the convergence
of the first four moments of that sequence to the corresponding moments of the
Gamma limit.

We included the journal version which appeared in ALEA, the Latin American
Journal of Probability and Mathematical Statistics, which is available at http:

//alea.impa.br/english/index_v13.htm.

After the publication (and just before finishing this thesis, in January 2017),
Giovanni Peccati and Christian Döbler pointed out to us that condition (b) of
the main Theorem 3.5 implies that assertion (i) of the stated equivalence can
actually never be true. That is, the sequence of multiple Wiener-Ito integrals
with respect to a Poisson measure cannot converge to a centered Gamma limit, if
the kernels are non-positive. Strictly speaking, the assertion of Theorem 3.5(b) is
still true in the sense that the equivalence still holds. However, the result lost its
original motivation to give a sufficient condition for convergence in distribution
to a Gamma limit in terms of the convergence of the first four moments to the
‘correct’ moments. To avoid misunderstandings, we submitted an erratum for
that paper which can be found directly after the paper, giving a new condition
under which the convergence can actually hold and which is in line with the recent
findings of Döbler and Peccati (2017).
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Abstract. This paper deals with sequences of random variables belonging to a
fixed chaos of order q generated by a Poisson random measure on a Polish space.
The problem is investigated whether convergence of the third and fourth moment
of such a suitably normalized sequence to the third and fourth moment of a centred
Gamma law implies convergence in distribution of the involved random variables.
A positive answer is obtained for q = 2 and q = 4. The proof of this four moments
theorem is based on a number of new estimates for contraction norms. Applications
concern homogeneous sums and U -statistics on the Poisson space.

1. Introduction

Probabilistic limit theorems for sequences of multiple stochastic integrals have
found considerable attention during the last decade. One of the most remark-
able results in this direction is the fourth moment theorem of Nualart and Peccati
(2005). It asserts that a sequence of suitably normalized multiple stochastic inte-
grals of order q ≥ 2 with respect to a Gaussian random measure on a Polish space
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164 T. Fissler and C. Thäle

satisfies a central limit theorem if and only if the sequence of their fourth mo-
ments converges to 3, the fourth moment of a standard Gaussian distribution. This
drastic simplification of the method of moments has stimulated a large number
of applications, for example to Gaussian random processes or fields, mathemati-
cal statistics, random matrices or random polynomials (we refer the reader to the
monograph Nourdin and Peccati (2012) and also to the constantly updated web-
page https://sites.google.com/site/malliavinstein/home for further details
and references).

Besides the fourth moment theorem mentioned above, there is also a ‘non-central’
version dealing with the approximation of a sequence of multiple stochastic inte-
grals by a centred Gamma-distributed random variable, cf. Nourdin and Peccati
(2009). Again, the result is a drastic simplification of the method of moments as
it delivers convergence in distribution if and only if a certain linear combination of
the third and the fourth moment of the involved random variables converges to the
corresponding expression for centred Gamma random variables. In view of normal-
ization conditions we see that in fact the first four moments of the random variables
are involved, which gives rise to the name ‘four moments theorem’ for such a result.
To simplify the terminology, we will also speak about a four moments theorem in
the case of normal approximation.

The present paper asks whether a similar non-central limit theorem is available
for sequences of multiple stochastic integrals with respect to a Poisson random
measure on a Polish space. In this set-up, a central four moments theorem has
been derived in Lachièze-Rey and Peccati (2013) under an additional sign condi-
tion (see also Eichelsbacher and Thäle, 2014), which, on the Poisson space, seems
to be unavoidable. While Gamma approximation on the Poisson space in the spirit
of the Malliavin-Stein method has been dealt with in Peccati and Thäle (2013), the
problem of a four moments theorem similar to that for Gaussian multiple stochastic
integrals mentioned above remained open in general. The main result of our paper,
Theorem 3.5, delivers a four moments theorem for sequences of Poisson stochastic
integrals of order q = 2 and q = 4. For this reason, the present work can be seen as a
natural continuation of Peccati and Thäle (2013), where the case q = 2 has already
been settled under additional assumptions, which we are able to overcome. The
proof of our four moments theorem relies on a couple of new estimates for norms
of so-called contraction kernels and the combinatorially involved multiplication for-
mula for stochastic interals on the Poisson space. It is precisely this combinatorial
complexity which allows us to obtain positive result only for sequences of Poisson
stochastic integrals of order q = 2 and q = 4. However, all intermediate steps in
our proof will be formulated for general q ≥ 2 to make as transparent as possible
and to highlight, in which argument the restrictive condition on the order of the in-
tegrals arises. The main difference between the central and the non-central version
of the four moments theorem is that in the non-central case one has to deal with a
linear combination of the third and the fourth moment of the stochastic integrals,
while the central case only requires an analysis of the fourth moment. Even under
additional conditions on the integrands, this leads to difficulties, which we can over-
come only for q = 2 and q = 4. We have to leave it as an open problem for future
research to extend our result to arbitrary even q by other methods. In the case
of Gaussian stochastic integrals, one can a priori exclude that an integral of odd
order converges in distribution to a Gamma-type limit; see Nourdin and Peccati
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A four moments theorem for Gamma limits on a Poisson chaos 165

(2009, Remark 1.3). However, it remains unclear whether a Poisson integral of odd
order can or cannot converge to such a Gamma-type limit. We also have to leave
this issue as another open problem.

The main result of our paper is applied to a universality question for homoge-
neous sums on a Poisson chaos as well as to a non-central analogue of de Jong’s
theorem for completely degenerate U -statistics of order two and four. This par-
tially complements the results for Gamma and normal approximation obtained in
Eichelsbacher and Thäle (2014), Peccati and Thäle (2013) and Peccati and Zheng
(2014). We emphasize in this context that limit theorems for non-linear functionals
of Poisson random measures have recently found numerous applications especially in
geometric probability or stochastic geometry; see Eichelsbacher and Thäle (2014),
Lachièze-Rey and Peccati (2013), Last et al. (2014), Last et al. (2015+), Peccati and
Thäle (2013), Schulte and Thäle (2012), Schulte and Thäle (2014) and in the the-
ory of Lévy processes Eichelsbacher and Thäle (2014), Last et al. (2015+), Peccati
et al. (2010), Peccati and Zheng (2010).

Our paper is structured as follows. In Section 2, we introduce and collect neces-
sary background material. To contrast our results with those available for Gaussian
multiple stochastic integrals, we shall present them in the context of completely
random measures, which captures both settings. Our main results are the con-
tent of Section 3, while Section 4 contains applications to homogeneous sums and
U -statistics. The proof of Theorem 3.5 is presented in the final Section 5.

2. Preliminaries

In this section, we introduce the basic definitions, mainly related to Poisson
stochastic integrals. For further details and background material we refer the reader
to the monograph Peccati and Taqqu (2011) as well as to the papers Nualart and
Vives (1990) and Peccati et al. (2010).

2.1. Completely random measures. Without loss of generality, we assume that all
objects are defined on a common probability space (Ω, F , P). Let Z denote a Polish
space with Borel σ-field Z , which is equipped with a non-atomic σ-finite measure
µ. We define the class Zµ = {B ∈ Z : µ(B) < ∞} and let ϕ = {ϕ(B) : B ∈ Zµ}
indicate a completely random measure on (Z, Z ) with control measure µ. That is,
ϕ is a set of random variables such that

(i) for every collection of pairwise disjoint elements B1, . . . , Bn ∈ Zµ, the random
variables ϕ(B1), . . . , ϕ(Bn) are independent;

(ii) for every B, C ∈ Zµ, one has the identity E[ϕ(B)ϕ(C)] = µ(B ∩ C).

If E[ϕ(B)] = 0 and ϕ(B) ∈ L2(P) (i.e., ϕ(B) is square-integrable with respect to
P) for every B ∈ Zµ, then the mapping Zµ → L2(P), B 7→ ϕ(B), is σ-additive in
the sense that for every sequence (Bn)n≥1 of pairwise disjoint elements of Zµ, one
has that

ϕ

( ∞∪

n=1

Bn

)
=

∞∑

n=1

ϕ(Bn) P-a.s., (2.1)

where the right-hand side converges in L2(P). By σ(ϕ) we denote the σ-field gen-
erated by ϕ.
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166 T. Fissler and C. Thäle

In this paper, we shall deal with two special and prominent instances of com-
pletely random measures, namely a centred Gaussian and a compensated Poisson
measure.

(a) A centred Gaussian measure with control measure µ is denoted by G and
is a completely random measure such that the elements of G are jointly
Gaussian and centred.

(b) A compensated Poisson measure with control measure µ is indicated by η̂

and is a completely random measure such that for every B ∈ Zµ, η̂(B)
d
=

η(B) − µ(B), where η(B) is a Poisson random variable with mean µ(B).

By definition, both G and η̂ are centred families in L2(P), implying that (2.1) is
satisfied. Moreover, for P-almost every ω ∈ Ω, η̂(·, ω) is a signed measure on (Z, Z ),
while G does not satisfy this property, cf. Peccati and Taqqu (2011, Example 5.1.7
(iii)).

2.2. L2-spaces. Let q ≥ 1 be an integer. We shall use the shorthand notation
L2(µq) for the space L2(Zq, Z q, µq) of (deterministic) functions that are square-
integrable with respect to µq. The symbol L2

s(µ
q) stands for the subspace of L2(µq)

consisting of symmetric functions, i.e. functions that are µq-a.e. invariant under
permutations of their arguments. For f, g ∈ L2(µq) we define the scalar product

〈f, g〉L2(µq) =
´

Zq fg dµq and the norm ‖f‖L2(µq) = 〈f, f〉1/2
L2(µq). If there is no risk of

confusion, we suppress in what follows the dependency on q and µ, and merely write
〈 · , · 〉 and ‖·‖, respectively. Moreover, let L2(σ(ϕ), P) denote the space of all square-
integrable functionals of ϕ, where ϕ is either a Poisson measure η̂ or a Gaussian
measure G. If F ∈ L2(σ(ϕ), P), we shall sometimes write F = F (ϕ) in order
to underpin the dependency of F on ϕ. As a convention, we shall use lower case
variables for elements of L2(µq) and capitals for elements of L2(σ(ϕ), P). Finally, we
introduce the space L2(P, L2(µ)) = L2(Ω×Z, F⊗Z , P⊗µ) as the space of all jointly
square-integrable measurable mappings u : Ω×Z → R. If u, v ∈ L2(P, L2(µ)), their
scalar product is defined as 〈u, v〉L2(P,L2(µ)) =

´

Ω

´

Z u(ω, z)v(ω, z)µ(dz)P(dω) and
we denote by ‖ · ‖L2(P,L2(µ)) the norm induced by it.

2.3. Multiple stochastic integrals. Let ϕ = η̂ or ϕ = G. For every integer q ≥ 1 we
denote the multiple stochastic integral of order q with respect to ϕ by Iϕ

q . It is a

mapping Iϕ
q : L2

s(µ
q) → L2(σ(ϕ), P), which is linear and continuous. Additionally,

for f ∈ L2
s(µ

q), the random variable Iϕ
q (f) is centred. Moreover, the multiple

stochastic integral satisfies the Itô isometry

E[Iϕ
p (f)Iϕ

q (g)] =

{
0 if q 6= p

q!〈f, g〉L2
s(µq) if q = p

(2.2)

for any integers p, q ≥ 1 and f ∈ L2
s(µ

p), g ∈ L2
s(µ

q). For general f ∈ L2(µq), we

put Iϕ
q (f) = Iϕ

q (f̃), where

f̃(z1, . . . , zq) =
1

q!

∑

π∈Πq

f(zπ(1), . . . , zπ(q))

is the canonical symmetrization of f , and Πq is the group of all q! permutations π of
the set {1, . . . , q}. We emphasize that due to Jensen’s inequality and the convexity
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A four moments theorem for Gamma limits on a Poisson chaos 167

of norms, we have the inequality ‖f̃‖ ≤ ‖f‖. As a convention, we set Iϕ
0 : R → R

equal to the identity map on R.
Since this article is mostly concerned with Poisson integrals, we shall write Iq

instead of I η̂
q .

2.4. Chaos decomposition. The Itô isometry in (2.2) formalizes an orthogonality
relation between multiple stochastic integrals of different order. Even more, one
has the following so-called chaos decomposition (see Nualart and Vives, 1990):

L2(σ(ϕ), P) =
∞⊕

q=0

Wϕ
q , (2.3)

where Wϕ
0 = R and Wϕ

q = {Iϕ
q (f) : f ∈ L2

s(µ
q)} for ϕ = η̂ or ϕ = G, q ≥ 1.

Depending on the choice of ϕ, we shall often use the terms Poisson chaos and
Gaussian chaos of order q for Wϕ

q , respectively.

A consequence of (2.3) is that any F ∈ L2(σ(ϕ), P), with ϕ = η̂ or ϕ = G,
admits a chaotic decomposition

F = E[F ] +
∞∑

q=1

Iϕ
q (fq) ,

where the kernels fq ∈ L2
s(µ

q) are unique µq-a.e. and the series converges in L2(P).

2.5. Contractions. Fix integers p, q ≥ 1 and functions f ∈ L2
s(µ

p), g ∈ L2
s(µ

q). For
any r ∈ {0, . . . , p∧q}, ` ∈ {1, . . . , r} we define the contraction f ?`

rg : Zp+q−r−` → R
which acts on the tensor product f ⊗ g and reduces the number of variables from
p + q to p + q − r − ` in the following way: r variables are identified and among
these, ` are integrated out with respect to µ. More formally,

f ?`
r g(γ1, . . . , γr−`, t1, . . . , tp−r, s1, . . . , sq−r)

=

ˆ

Z`

f(z1, . . . , z`, γ1, . . . , γr−`, t1, . . . , tp−r)

× g(z1, . . . , z`, γ1, . . . , γr−`, s1, . . . , sq−r)µ`(d(z1, . . . , z`)) ,

and for ` = 0 we put

f ?0
r g(γ1, . . . , γr, t1, . . . , tp−r, s1, . . . , sq−r)

= f(γ1, . . . , γr, t1, . . . , tp−r)g(γ1, . . . , γr, s1, . . . , sq−r) .

Note that even if f and g are symmetric, the contraction f ?`
r g is not necessarily

symmetric. We denote the canonical symmetrization of f ?`
r g by

f ?̃
`
rg(z1, . . . , zp+q−r−`) =

1

(p + q − r − `)!

∑

π∈Πp+q−r−`

f ?`
r g(zπ(1), . . . , zπ(p+q−r−`)).

We also emphasize that for f ∈ L2
s(µ

p) and g ∈ L2
s(µ

q), the contraction f ?`
r

g is neither necessarily well-defined nor necessarily an element of L2(µp+q−r−`).
At least, by using the Cauchy-Schwarz inequality, we can deduce that f ?r

r g ∈
L2(µp+q−2r) for any r ∈ {0, . . . , p ∧ q}. For this reason and to circumvent any
complications in the calculations, we make the following technical assumptions.
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168 T. Fissler and C. Thäle

2.6. Technical assumptions (A). We use the same set of technical assumptions as
in Lachièze-Rey and Peccati (2013), Peccati et al. (2010) and Peccati and Thäle
(2013). For a detailed explanation of the conditions and their consequences, we
refer to these works.

For a sequence Fn = Iq(fn), n ≥ 1, of multiple integrals of fixed order q ≥ 1
with fn ∈ L2(µq

n) for every n ≥ 1 (we allow the non-atomic and σ-finite measure to
vary with n), we assume that the following three technical conditions are satisfied:

(a) for any r ∈ {1, . . . , q}, the contraction fn ?q−r
q fn is an element of L2(µr

n);

(b) for any r ∈ {1, . . . , q}, ` ∈ {1, . . . , r} and (z1, . . . , z2q−r−`) ∈ Z2q−r−`, the
quantity (|fn| ?`

r |fn|)(z1, . . . , z2q−r−`) is well-defined and finite;
(c) for any k ∈ {0, . . . , 2(q − 1)} and any r and ` satisfying k = 2(q − 1)− r − `,

we have that

ˆ

Z

(
ˆ

Zk

(
fn(z, ·) ?`

r fn(z, ·)
)2

dµk
n

)1/2

µn(dz) < ∞ .

2.7. Multiplication formula. A very convenient property of multiple stochastic in-
tegrals is that one can express the product of two such integrals as a linear com-
bination of multiple integrals of contraction kernels. More precisely, we have the
following multiplication formula for Poisson integrals, which is taken from Last
(2014, Proposition 6.1), but see also Peccati and Taqqu (2011, Proposition 6.5.1)
for a version that holds under stronger integrability assumptions and for diffuse
controls µ only.

Lemma 2.1 (Multiplication formula for Poisson integrals). Let f ∈ L2
s(µ

p) and
g ∈ L2

s(µ
q), p, q ≥ 1. Suppose that f ?`

r g ∈ L2(µp+q−r−`) for every r ∈ {0, . . . , p∧q}
and every ` ∈ {0, . . . , r}. Then

Ip(f)Iq(g) =

p∧q∑

r=0

r!

(
p

r

)(
q

r

) r∑

`=0

Ip+q−r−`(f ?̃
`
rg). (2.4)

We remark that if a kernel f ∈ L2
s(µ

q) satisfies the technical assumptions (A),
the assumptions of Lemma 2.1 are automatically satisfied if g = f , implying that
Iq(f)2 ∈ L2(σ(η̂), P). To simplify our notation, for f ∈ L2

s(µ
q) we put Gq

0f = q!‖f‖2

and

Gq
pf =

q∑

r=0

r∑

`=0

1(2q − r − ` = p)r!

(
q

r

)2(
r

`

)
f ?̃

`
rf (2.5)

for p ∈ {1, . . . , 2q}. In other words, the operator Gq
p turns a function of q variables

into a function of p variables. We can now re-write (2.4) in a simplified form as

Iq(f)2 =

2q∑

p=0

Ip(G
q
pf)

with I0(G
q
0f) = Gq

0f = q!‖f‖2.
The multiplication formula paves the way for the computation of moments of

multiple stochastic integrals. In particular, we have the following expressions for
the third and the fourth moment of a multiple Poisson integral.
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A four moments theorem for Gamma limits on a Poisson chaos 169

Lemma 2.2 (Third and fourth moment of Poisson integrals). Fix an integer q ≥ 1.
Let f ∈ L2

s(µ
q) such that the technical assumptions (A) are satisfied. Then Iq(f) ∈

L4(P). Moreover, we have that

E[Iq(f)3] = q!

q∑

r=0

r∑

`=0

1(q = r + `)r!

(
q

r

)2(
r

`

)
〈f ?̃

`
rf, f 〉, (2.6)

E[Iq(f)4] =

2q∑

p=0

p!‖Gq
p f‖2. (2.7)

Proof : The technical assumptions (A) ensure that all symmetrized contraction ker-

nels f ?̃
`
rf appearing in (2.6) and (2.7) are elements of L2(µ2q−r−`), which implies

that the third and the fourth moment of Iq(f) are finite. The explicit formulae in
(2.6) and (2.7) follow directly from the isometry property (2.2) and the multiplica-
tion formula (2.4). �
Remark 2.3. Note that for even q ≥ 2, (2.6) reduces to

E[Iq(f)3] = q!

q∑

r=q/2

r!

(
q

r

)2(
r

q − r

)
〈f ?̃

q−r
r f, f 〉 . (2.8)

Remark 2.4. There is also a multiplication formula for the Gaussian case. It reads

IG
p (f)IG

q (g) =

p∧q∑

r=0

r!

(
p

r

)(
q

r

)
IG
p+q−2r(f ?̃

r
rg),

where p, q ≥ 1 and f ∈ L2
s(µ

p), g ∈ L2
s(µ

q), see Peccati and Taqqu (2011, Propo-
sition 6.4.1). As a consequence, we see that the third and fourth moment of a
Gaussian multiple integral have a more compact form compared to the Poisson
case. Indeed, for an integer q ≥ 1 and f ∈ L2

s(µ
q), one has that

E[IG
q (f)3] =

(q!)3

(q/2!)2
〈f ?̃

q/2
q/2f, f 〉1(q is even) , (2.9)

E[IG
q (f)4] =

q∑

r=0

(r!)2
(

q

r

)4

(2q − 2r)!‖f ?̃
r
rf‖2 .

In particular, the third moment of a Gaussian integral of odd order vanishes, while
this is in general not the case for a Poisson integral.

3. Four moments theorems

This section contains the main results of our paper, namely a four moments
theorem for Gamma approximation on a Poisson chaos of fixed order. To allow
for an easier comparison with the existing literature, we first recall known results
on a Gaussian chaos and also a version of the four moments theorem for normal
approximation on a Poisson chaos.

3.1. Four moments theorems on a Gaussian chaos. The classical method of mo-
ments yields a central limit theorem for a normalized sequence of random variables
under the condition that all moments converge to those of the standard Gauss-
ian distribution. The four moments theorem on a Gaussian chaos is a drastical
simplification of the method of moments as it provides a central limit theorem for
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170 T. Fissler and C. Thäle

a sequence of normalized Gaussian multiple stochastic integrals under the much
weaker condition that only the fourth moment converges to 3 (which is the fourth
moment of the standard Gaussian distribution). Alternatively, this statement can
be re-formulated in terms of the convergence of norms of contractions. In what
follows we write X ∼ L if a random variable X has distribution L.

Theorem 3.1 (see Theorem 1 in Nualart and Peccati, 2005). Fix an integer q ≥ 2
and let {fn : n ≥ 1} ⊂ L2

s(µ
q) be such that

lim
n→∞

q!‖fn‖2 = lim
n→∞

E[IG
q (fn)2] = 1 .

Further, let N ∼ N (0, 1) be a standard Gaussian random variable. Then the fol-
lowing three assertions are equivalent:

(i) As n → ∞, the sequence {IG
q (fn) : n ≥ 1} converges in distribution to N ;

(ii) lim
n→∞

E[IG
q (fn)4] = 3;

(iii) lim
n→∞

‖fn ?r
r fn‖ = 0 for every r ∈ {1, . . . , q − 1}.

In the subsequent work Nourdin and Peccati (2009), the authors have shown
a ‘non-central’ version of Theorem 3.1 where the limiting distribution is a centred
Gamma distribution. To state the result properly, let us recall the formal definition
of the latter limit law.

Definition 3.2 (Centred Gamma distribution). A random variable Y has a centred
Gamma distribution Γν with parameter ν > 0, if

Y
d
= 2X − ν,

where X has the usual Gamma law with mean and variance both equal to ν/2 and

where
d
= stands for equality in distribution. The probability density of Γν is given

by

gν(x) =
2−ν/2

Γ(ν/2)
(x + ν)ν/2−1e−(x+ν)/21(x > −ν),

and the the first four moments of Y are

E[Y ] = 0 , E[Y 2] = 2ν , E[Y 3] = 8ν , E[Y 4] = 12ν2 + 48ν .

We are now in the position to re-phrase the following non-central analogue of
Theorem 3.1.

Theorem 3.3 (see Theorem 1.2 in Nourdin and Peccati, 2009). Let ν > 0 and fix
an even integer q ≥ 2. Let {fn : n ≥ 1} ⊂ L2

s(µ
q) be such that

lim
n→∞

q!‖fn‖2 = lim
n→∞

E[IG
q (fn)2] = 2ν .

Further, let Y ∼ Γν be a centred Gamma-distributed random variable with param-
eter ν. Then the following three assertions are equivalent:

(i) As n → ∞, the sequence {IG
q (fn) : n ≥ 1} converges in distribution to Y ;

(ii) lim
n→∞

E[IG
q (fn)4] − 12E[IG

q (fn)3] = 12ν2 − 48ν;

(iii) lim
n→∞

‖fn ?r
r fn‖ = 0 for every r ∈ {1, . . . , q − 1} \ {q/2}, and

lim
n→∞

‖fn ?̃
q/2
q/2fn − cq fn‖ = 0 with cq = 4

(q/2)!( q
q/2)

2 .
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A four moments theorem for Gamma limits on a Poisson chaos 171

It is a characterizing feature of the centred Gamma-distribution that the so-

called ‘middle-contraction’ fn ?
q/2
q/2 fn plays a special role in condition (iii). The fact

that the middle-contraction does not vanish goes hand in hand with the appearance
of the third moment in condition (ii), recall (2.9).

3.2. Four moments theorems on a Poisson chaos. We now turn to four moments
theorems on a Poisson chaos of fixed order q ≥ 2. To this end, let, for each n ≥ 1,
µn be a σ-finite non-atomic measure on (Z, Z ) and denote by η̂n a compensated
Poisson random measure with control µn. Further let {fn : n ≥ 1} be a sequence
of symmetric function such that fn is square-integrable with respect to µq

n for each
n ≥ 1, in short fn ∈ L2

s(µ
q
n). In this set-up, ‖fn‖ denotes the norm of fn with

respect to µq
n, and fn ?`

r fn stands for the contraction taken with respect to µn.
Finally, define Fn = Iq(fn), where for each n the stochastic integral is defined with
respect to η̂n.

As in the Gaussian case discussed in the previous section, we start with the case
of a standard normal limiting distribution.

Theorem 3.4 (see Theorem 3.12 in Lachièze-Rey and Peccati, 2013). Let {µn : n ≥
1} be a sequence of σ-finite and non-atomic measures such that lim

n→∞
µn(Z) = ∞

and fix q ≥ 2. Let fn ∈ L2
s(µ

q
n), n ≥ 1, be a sequence such that for each n ≥ 1

either fn ≥ 0 or fn ≤ 0. Suppose that the technical assumptions (A) and the
normalization condition

lim
n→∞

q!‖fn‖2 = lim
n→∞

E[Iq(fn)2] = 1 (3.1)

are satisfied. Further, suppose that {Iq(fn)4 : n ≥ 1} is uniformly integrable and
let N ∼ N (0, 1) be a standard Gaussian random variable. Then the following three
assertions are equivalent:

(i) As n → ∞, the sequence {Iq(fn) : n ≥ 1} converges in distribution to N ;
(ii) lim

n→∞
E[Iq(fn)4] = 3;

(iii) lim
n→∞

‖fn ?`
r fn‖ = 0 for all r ∈ {1, . . . , q} and ` ∈ {1, . . . , r ∧ (q − 1)}, and

lim
n→∞

‖fn‖L4(µq
n) = 0.

Let us comment on the differences between Theorem 3.1 and Theorem 3.4.

(1) In the Poisson case, one has to ensure that the involved control measures are
infinite measures, at least in the limit, as n → ∞. The reason for this is that
otherwise, the normalization (3.1) and the condition that lim

n→∞
‖fn‖L4(µq

n) =

0 are mutually exclusive, see also the remark after Assumption N in Peccati
and Taqqu (2008) for a brief discussion of this problem.

(2) One has to assume that the functions fn have a constant sign, that is for
each n ≥ 1 either fn ≥ 0 or fn ≤ 0. The reason for this is that in the Poisson
case, besides of the contraction norms ‖fn ?`

r fn‖, also scalar products of
the form 〈fn ?`1

r1
fn, fn ?`2

r2
fn〉 enter the expression of the fourth moments

E[Iq(fn)4]. The sign condition then allows to control the signs of these
scalar products, which rules out cancellation effects.

(3) In the Poisson case, one also has to assume that the sequence {Iq(fn)4 : n ≥
1} is uniformly integrable, while in the Gaussian case, this condition is
automatically fulfilled thanks to the hypercontractivity property of Gauss-
ian integrals (see e.g. Nourdin and Peccati, 2012, Theorem 2.7.2). This is
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needed to ensure that the convergence in distribution of Iq(fn) to N implies
the convergence of the first four moments.

For general q ≥ 2 and general sequences fn ∈ L2
s(µ

q
n), n ≥ 1, there is no known

version of a four moments theorem on a Poisson chaos relaxing one of the conditions
discussed above. However, for q = 2 the sign condition is not necessary as shown
by Theorem 2 in Peccati and Taqqu (2008). Moreover, for general q ≥ 2 and if the
sequence {fn : n ≥ 1} is tamed (see Definition 4.2 below), Theorem 3.2 in Peccati
and Zheng (2014) provides a four moments theorem without a sign condition. In
this case, also condition (iii) can be relaxed by assuming – besides the condition on
the L4-norm of fn – only that lim

n→∞
‖fn ?r

r fn‖ = 0 for all r ∈ {1, . . . , q − 1}.

After having discussed the four moments theorem for normal approximation on
the Poisson space, we now turn to the main result of the present work, namely a
version of Theorem 3.3 for Poisson integrals of order q = 2 and q = 4. The reason
for this rather restrictive condition on the order of the involved integrals will be
discussed below.

Theorem 3.5 (Four moments theorem for Poisson integrals). Fix ν > 0. Let q ≥ 2
be even and fn ∈ L2

s(µ
q
n), n ≥ 1, be a sequence satisfying the technical assumptions

(A) and the normalization condition

lim
n→∞

q!‖fn‖2 = lim
n→∞

E[Iq(fn)2] = 2ν .

Furthermore, let the sequence {Iq(fn)4 : n ≥ 1} be uniformly integrable and let Y ∼
Γν be a random variable following a centred Gamma distribution with parameter ν.
If one of the conditions

(a) q = 2 and lim
n→∞

‖f2
n‖ = 0,

(b) q = 4 and fn ≤ 0 for all n ≥ 1

is satisfied, then the following three assertions are equivalent:

(i) As n → ∞, the sequence {Iq(fn) : n ≥ 1} converges in distribution to Y ;
(ii) lim

n→∞
E[Iq(fn)4] − 12E[Iq(fn)3] = 12ν2 − 48ν;

(iii) lim
n→∞

‖fn ?`
r fn‖ = 0 for all r ∈ {1, . . . , q} and ` ∈ {1, . . . , r ∧ (q − 1)} such

that (r, `) 6= (q/2, q/2), lim
n→∞

‖fn‖L4(µq
n) = 0, and lim

n→∞
‖fn ?̃

q/2
q/2fn − cq fn‖ = 0

with cq = 4

(q/2)!( q
q/2)

2 .

Remark 3.6. Under condition (a), Theorem 3.5 is a version of Proposition 2.9 in
Peccati and Thäle (2013). However, in that paper one has to assume that for
each n ≥ 1 the reference measure µn is finite. As discussed earlier in this section,
this is a quite restrictive assumption. We provide a proof which circumvents this
technicality.

The implication (i) =⇒ (ii) of Theorem 3.5 is a direct consequence of the uniform
integrability assumption. That (iii) implies (i) follows from a generalization of
Theorem 2.6 in Peccati and Thäle (2013) stated as Proposition 5.1 below. Showing
the implication (ii) =⇒ (iii) is the main part of the proof. While the proof of the
corresponding implication in Theorem 3.4 is rather straight forward and works for
arbitrary q ≥ 2, the proof here is based on a couple of new estimates and arguments.
They are of independent interest and might also be helpful beyond the context of
the present paper. In sharp contrast to Theorem 3.4, our arguments show that the
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‘usual’ technique (relying on the multiplication formula for Poisson integrals similar
as in the proofs of Theorems 3.1, 3.3 or 3.4) for proving the implication (ii) =⇒ (iii)
only works in case that q = 2 and q = 4 and cannot be improved. The main reason
for this is the involved combinatorial structure on a Poisson chaos implied by the
multiplication formula (2.4). The proof of Theorem 3.5 is the content of Section 5
below.

Theorem 3.5 has a counterpart in a free probability setting, see Bourguin (2015).
Here, one studies the approximation of the law of a sequence of elements belong-
ing to a fixed chaos of order q ≥ 1 of the so-called free Poisson algebra by the
Marchenko-Pastur law (also called free Poisson law). It is interesting to see that in
this case, the proof works for arbitrary q ≥ 1 and does not need a sign condition on
the kernels. This is explained by the relatively simple combinatorial structure on a
free Poisson chaos, which is inherited from the free multiplication formula in which
all combinatorial coefficients are equal to one. This causes that the expressions for
the third and fourth moment are much simpler compared to the classical set-up of
the present paper and implies that a proof of the corresponding free four moments
theorem works in full generality.

Comparing Theorem 3.4 and Theorem 3.5, it is natural to ask whether there
exists a version of Theorem 3.5 dealing with a sequence of non-negative kernels.
Indeed, Corollary 3.8 below provides such a version, but it deals with a different
limiting law, namely what we call a centred reflected Gamma distribution. In case
of a limiting Gaussian law, this phenomonon is not visible, since a Gaussian law is
symmetric, see also the discussion in Remark 5.10.

Definition 3.7 (Centred reflected Gamma distribution). A random variable Y has

a centred reflected Gamma distribution Γ̂ν with parameter ν > 0, if −Y ∼ Γν .

Note that if Y ∼ Γ̂ν follows a centred reflected Gamma distribution with param-
eter ν, the first four moments of Y are given by

E[Y ] = 0 , E[Y 2] = 2ν , E[Y 3] = −8ν , E[Y 4] = 12ν2 + 48ν .

Moreover, while the centred Gamma distribution has support [−ν, ∞), the cen-
tred reflected Gamma distribution is supported on (−∞, ν]. The next result is an

immediate consequence of Theorem 3.5 and the definition of Γ̂ν .

Corollary 3.8 (Four moments theorem for Poisson integrals with non-negative
kernels). Fix ν > 0. Let q ≥ 2 be an even integer and fn ∈ L2

s(µ
q
n), n ≥ 1, be a

sequence of kernels satisfying the technical assumptions (A) and the normalization
condition

lim
n→∞

q!‖fn‖2 = lim
n→∞

E[Iq(fn)2] = 2ν .

Let the sequence {I4
q (fn) : n ≥ 1} be uniformly integrable and suppose that Y ∼ Γ̂ν

is a random variable having a centred reflected Gamma distribution with parameter
ν. If one of the conditions

(a) q = 2 and lim
n→∞

‖f2
n‖ = 0,

(b) q = 4 and fn ≥ 0 for all n ≥ 1

is satisfied, then the following three assertions are equivalent:

(i) As n → ∞, the sequence {Iq(fn) : n ≥ 1} converges in distribution to Y ;
(ii) lim

n→∞
E[Iq(fn)4] + 12E[Iq(fn)3] = 12ν2 − 48ν;
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(iii) lim
n→∞

‖fn ?`
r fn‖ = 0 for all r ∈ {1, . . . , q}, ` ∈ {1, . . . , r ∧ (q − 1)} such that

(r, `) 6= (q/2, q/2), lim
n→∞

‖f2
n‖ = 0, and lim

n→∞
‖fn ?̃

q/2
q/2fn + cq fn‖ = 0 with

cq = 4

(q/2)!( q
q/2)

2 .

Remark 3.9. We emphasize that one could derive our main result, Theorem 3.5, also
for the two-parametric centred Gamma distribution Γa,λ, a, λ > 0, with probability
density

ha,λ(x) =
λa

Γ(a)
(x + a/λ)a−1e−(λx+a) 1(x > −a/λ).

The one-parametric centred Gamma distribution Γν then arises by putting a =
ν/2 and λ = 1/2. In order to allow for a better comparison with the existing
literature Nourdin and Peccati (2009) and Peccati and Thäle (2013), and to keep
the presentation transparent, we have decided to restrict to the one-parametric
case.

4. Application to homogeneous sums and U-statistics

4.1. Homogeneous sums. According to Peccati and Zheng (2014) a universality
result is a ‘mathematical statement implying that the asymptotic behaviour of a
large random system does not depend on the distribution of its components’. Such
results are at the heart of modern probability and the class of examples comprises
the classical central limit theorem or the semicircular law in free probability. In
this section, we shall derive a universality result for so-called homogeneous sums
based on a sequence of independent centred Poisson random variables. For further
background material concerning universality results for homogeneous sums we refer
to the monograph Nourdin and Peccati (2012) as well as to the original papers
Nourdin et al. (2010) and Peccati and Zheng (2014).

We start by introducing the notion of a particularly well-behaved class of kernels.

Definition 4.1 (Index functions). Fix an integer q ≥ 1. A function h : Nq → R is
an index function of order q, if

(a) h is symmetric in the sense that h(i1, . . . , iq) = h(iπ(1), . . . , iπ(q)) for all
(i1, . . . , iq) ∈ Nq and all permutations π ∈ Πq;

(b) h vanishes on diagonals meaning that for (i1, . . . , iq) ∈ Nq, h(i1, . . . , iq) = 0
whenever ik = i` for some k 6= `.

Fix an integer N ≥ 1. If g and h are two index functions of order q, we define their
scalar product by

〈g, h〉(N,q) =
∑

1≤i1,...,iq≤N

g(i1, . . . , iq)h(i1, . . . , iq)

and write ‖h‖(N,q) = 〈h, h〉1/2
(N,q) for the corresponding norm. We frequently suppress

the subscript (N, q) if it is clear from the context.

As in Section 3, we denote by {µn : n ≥ 1} a sequence of σ-finite non-atomic
measures on some Polish space (Z,Z ). The following definition should not be con-
fused with the definition of a tamed sequence given in Bourguin (2015) or Bourguin
and Peccati (2014).
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Definition 4.2 (Tamed sequences). Fix an integer q ≥ 1. A sequence fn ∈ L2
s(µ

q
n),

n ≥ 1, is tamed if there exists a sequence of integers {Nn : n ≥ 1} with Nn → ∞,
as n → ∞, and an infinite measurable partition {Bi : i ≥ 1} of Z verifying the
following conditions:

(a) there exists an α ∈ (0, ∞) such that α < µn(Bi) < ∞ for every i, n ≥ 1,
(b) there is a sequence of index functions {hn : n ≥ 1} of order q, such that fn

has the representation

fn(z1, . . . , zq) =
∑

1≤i1,...,iq≤Nn

hn(i1, . . . , iq)

q∏

k=1

1Bik
(zk)

√
µn(Bik

)
. (4.1)

Remark 4.3. (a) It follows from the definition that if a sequence fn ∈ L2
s(µ

q
n),

n ≥ 1, is tamed, we necessarily must have that µn(Z) = ∞ for every n ≥ 1.
(b) If fn ∈ L2

s(µ
q
n), n ≥ 1, is a tamed sequence with a representation as at (4.1),

we have that ‖hn‖(Nn,q) = ‖fn‖L2(µq
n) < ∞.

(c) One easily verifies that tamed sequences automatically satisfy the technical
assumptions (A).

Definition 4.4 (Homogeneous sums). Fix integers N, q ≥ 1 and let X = {Xi : i ≥
1} be a sequence of random variables. Let h be an index function of order q. Then

Qq(N, h,X) =
∑

1≤i1,...,iq≤N

h(i1, . . . , iq)Xi1 · · · Xiq

is the homogeneous sum of h of order q based on the first N elements of X.

If X = {Xi : i ≥ 1} is a sequence of independent and centred random variables
with unit variance, then

E[Qq(N, h,X)] = 0, E[Qq(N,h,X)2] = q!‖h‖2
(N,q).

In what follows, two particular classes of random variables play a special role. By
G = {Gi : i ≥ 1} we indicate a sequence of independent and identically distributed
random variables, such that Gi ∼ N (0, 1) for every i ≥ 1. Moreover, we shall write
P = {Pi : i ≥ 1} for a sequence of independent random variables verifying

Pi
d
=

Po(λi) − λi√
λi

, i ≥ 1 ,

where Po(λi) indicates a Poisson random variable with mean λi, such that α =
inf{λi : i ≥ 1} > 0.

There is a close connection between homogeneous sums based on P (or G) and
multiple stochastic integrals with respect to a centred Poisson measure η̂n (or a
Gaussian measure Gn) of tamed sequences. Namely, if q ≥ 1 is a fixed integer and
fn ∈ L2

s(µ
q
n), n ≥ 1, is a tamed sequence with representation (4.1), then there is

a sequence of centred Poisson measures {η̂n : n ≥ 1} (or a sequence of Gaussian
measures {Gn : n ≥ 1}) such that

I η̂n
q (fn) = Qq(Nn, hn,P), IGn

q (fn) = Qq(Nn, hn,G). (4.2)

Vice versa, given a sequence of index functions {hn : n ≥ 1} of order q ≥ 1 and
a sequence of integers {Nn : n ≥ 1} diverging to infinity, as n → ∞, such that
‖hn‖(Nn,q) < ∞ for every n ≥ 1, then there is a tamed sequence {fn : n ≥ 1} with
representation (4.1) and sequences of centred Poisson measures {η̂n : n ≥ 1} and
Gaussian measures {Gn : n ≥ 1} such that (4.2) holds.

172



176 T. Fissler and C. Thäle

The following result is a version of Nourdin et al. (2010, Theorem 1.8) and
Nourdin et al. (2010, Theorem 1.12). Notice that there, the results are stated for
integer-valued parameters ν ≥ 1, but they continue to hold for any ν > 0.

Theorem 4.5 (Gamma universality of homogeneous sums on a fixed Gaussian
chaos). Fix ν > 0, let q ≥ 2 be even and fn ∈ L2

s(µ
q
n), n ≥ 1, be a tamed sequence

with representation (4.1) that satisfies the normalization condition

lim
n→∞

q!‖fn‖2 = lim
n→∞

E[IG
q (fn)2] = lim

n→∞
E[Qq(Nn, hn,G)2] = 2ν.

Let Y ∼ Γν be a centred Gamma random variable with parameter ν. Then the
following five assertions are equivalent:

(i) As n → ∞, the sequence {Qq(Nn, hn,G) : n ≥ 1} converges in distribution to
Y ;

(ii) lim
n→∞

E[Qq(Nn, hn,G)4] − 12E[Qq(Nn, hn,G)3] = 12ν2 − 48ν;

(iii) lim
n→∞

‖fn ?r
r fn‖ = 0 for every r ∈ {1, . . . , q − 1} \ {q/2}, and

lim
n→∞

‖fn ?̃
q/2
q/2fn − cq fn‖ = 0 with cq = 4

(q/2)!( q
q/2)

2 ;

(iv) for every sequence X = {Xi : i ≥ 1} of independent centred random variables
with unit variance which is such that supi E|Xi|2+ε < ∞ for some ε > 0, the
sequence {Qq(Nn, hn,X) : n ≥ 1} converges in distribution to Y , as n → ∞;

(v) for every sequence X = {Xi : i ≥ 1} of i.i.d. centred random variables with
unit variance, the sequence {Qq(Nn, hn,X) : n ≥ 1} converges in distribution
to Y , as n → ∞.

The following result answers the question whether Theorem 4.5 continues to hold
if in (i) and (ii) the class G is replaced by P. Due to the discussion in Section 3.2,
we cannot avoid additional assumptions in the Poisson case. In particular, we have
to assume that either q = 2 or q = 4.

Theorem 4.6 (Gamma universality of homogeneous sums on a fixed Poisson
chaos). Fix ν > 0 and let q ≥ 2 be even and fn ∈ L2

s(µ
q
n), n ≥ 1, be a tamed

sequence with representation (4.1) that satisfies the normalization condition

lim
n→∞

q!‖fn‖2 = lim
n→∞

E[Iq(fn)2] = lim
n→∞

E[Qq(Nn, hn,P)2] = 2ν. (4.3)

Let Y ∼ Γν be a random variable following a centred Gamma distribution with
parameter ν. If one of the conditions

(a) q = 2 and lim
n→∞

‖f2
n‖ = 0,

(b) q = 4 and fn ≤ 0 for all n ≥ 1

is satisfied, then the following five assertions are equivalent:

(i) As n → ∞, the sequence {Qq(Nn, hn,P) : n ≥ 1} converges in distribution to
Y ;

(ii) lim
n→∞

E[Qq(Nn, hn,P)4] − 12E[Qq(Nn, hn,P)3] = 12ν2 − 48ν;

(iii) lim
n→∞

‖fn ?r
r fn‖ = 0 for all r ∈ {1, . . . , q − 1} \ {q/2}, and

lim
n→∞

‖fn ?̃
q/2
q/2fn − cq fn‖ = 0 with cq = 4

(q/2)!( q
q/2)

2 ;

(iv) for every sequence X = {Xi : i ≥ 1} of independent centred random variables
with unit variance which is such that supi E|Xi|2+ε < ∞ for some ε > 0, the
sequence {Qq(Nn, hn,X) : n ≥ 1} converges in distribution to Y , as n → ∞;
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(v) for every sequence X = {Xi : i ≥ 1} of i.i.d. centred random variables with
unit variance, the sequence {Qq(Nn, hn,X) : n ≥ 1} converges in distribution
to Y , as n → ∞.

Proof : At first, we observe that due to Theorem 4.5, the assertions (iii), (iv) and
(v) are equivalent. In Peccati and Zheng (2014, Subsection 4.2), it has been argued
that

sup
i≥1

E|Pi|p < ∞ (4.4)

for all p ≥ 1. This means that P is a special instance of a sequence with the
properties in assertion (iv) such that we obtain the implication (iv) =⇒ (i). More-
over, (4.4) implies together with the normalization condition (4.3) and Nourdin
et al. (2010, Lemma 4.2) that the sequence {Qq(Nn, hn,P)4 : n ≥ 1} is uniformly
integrable such that we get the implication (i) =⇒ (ii).

To prove (ii) =⇒ (iii), we apply Theorem 3.5. For this, one has to observe that
assertion (iii) in Theorem 3.5 implies assertion (iii) in Theorem 4.6. �

Remark 4.7. Theorem 4.6 shows that one can dispense with the assumption on the
uniform integrability of the sequence {Iq(fn)4 : n ≥ 1} in Theorem 3.5 whenever
the sequence fn ∈ L2

s(µ
q
n), n ≥ 1, is tamed.

Remark 4.8. Replacing in (b) the condition that fn ≤ 0 by fn ≥ 0, in (ii) the
moment condition by lim

n→∞
E[Qq(Nn, hn,P)4] + 12E[Qq(Nn, hn,P)3] = 12ν2 − 48ν

and in (iii) the condition on the middle-contraction by ‖fn ?̃
q/2
q/2fn + cq fn‖ → 0,

one arrives at a version of Theorem 4.6 with a centred reflected Gamma limiting

random variable Y ∼ Γ̂ν in assertion (i), (iv) and (v).

4.2. U -statistics. Our second application is concerned with U -statistics. To in-
troduce them, fix an integer d ≥ 1 and let Y = {Yi : i ≥ 1} be a sequence of
i.i.d. random vectors in Rd, whose distribution has a density p(·) with respect to
the Lebesgue measure on Rd. Next, for any n ≥ 1, let Nn be a Poisson random
variable with mean n and define

ηn =

Nn∑

i=1

δYi . (4.5)

Clearly, ηn is a Poisson random measure on Rd with control measure µn(dx) =
np(x) dx, implying that µn(Rd) = n → ∞, as n → ∞. Now, we put η̂n = ηn − µn

and set µ = µ1 for the sake of convenience. By a Poisson U -statistic of order q ≥ 2
based on ηn we mean in this paper a random variable of the form

Un =
∑

1≤i1<···<iq≤Nn

hn(Yi1 , . . . , Yiq ) , n ≥ 1 ,

where the kernel hn : (Rd)q → R is an element of L1
s(µ

q). On the other hand, a

classical U -statistic is a random variable Ûn such that

Ûn =
∑

1≤i1<···<iq≤n

hn(Yi1 , . . . , Yiq ) , n ≥ 1 .

The difference between Un and Ûn is that Un involves a random number
(
Nn

q

)
of

summands, while the number of summands in the definition of Ûn is fixed (namely
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(
n
q

)
). We say that a (Poisson or classical) U -statistic is completely degenerate if

ˆ

Rd

hn(x, z1, . . . , zq−1) p(x) dx = 0

for µq−1-almost every (z1, . . . , zq−1) ∈ (Rd)q−1. In particular, this implies that

E[Un] = E[Ûn] = 0. Moreover, we suppose that Un and Ûn are square-integrable.
We recall the following particular case of a celebrated theorem of de Jong, which

provides a simple moment condition under which a central limit theorem for a
sequence of completely degenerate U -statistics is guaranteed.

Theorem 4.9 (de Jong, 1987, 1990). Let q ≥ 2 and {hn : n ≥ 1} be a se-

quence of non-zero elements of L4
s(µ

q). Suppose that the U -statistics Un and Ûn

are completely degenerate and define σ2(n) = Var(Un). Then the moment condition

lim
n→∞

E[U4
n]/σ(n)4 = 0 implies that, as n → ∞, the sequences Un/σ(n) and Ûn/σ(n)

converge in distribution to a standard Gaussian random variable.

In our paper, we are interested in the Gamma approximation of Poisson and
classical U -statistics. The next result generalizes Theorem 2.13 (B) in Peccati and
Thäle (2013), where the authors had to restrict to the case q = 2. Here, we add a
corresponding limit theorem in case that q = 4 under an additional sign condition.
It can be seen as a non-central version of de Jong’s theorem, Theorem 4.9. We shall
see that in the non-central case a similar result is true under a suitable condition
involving only the third and the fourth moment.

Theorem 4.10. Suppose that q ∈ {2, 4}. For each n ≥ 1 let hn ∈ L4
s(µ

q) be a
function such that

sup
n≥1

´

h4
n dµq

n

(
´

h2
n dµq

n)2
< ∞

and suppose that the U -statistics Un and Ûn are completely degenerate. Further
assume that there exists ν > 0 such that lim

n→∞
E[U2

n] = 2ν and that

(a) lim
n→∞

‖h2
n‖ = 0 if q = 2,

(b) fn ≤ 0 for all n ≥ 1 if q = 4.

Then the moment condition lim
n→∞

E[U4
n] − 12E[U3

n] = 12ν2 − 48ν implies that both

random variables Un and Ûn converge in distribution to Y ∼ Γν , as n → ∞.

Proof : Using the fact that the Poisson U -statistics Un is an element of the sum
of the first q Poisson chaoses with respect to η̂n as introduced after (4.5) (see
Reitzner and Schulte, 2013, Theorem 3.6), as well as the fact that Un is completely
degenerate, one obtains that Un = Iq(hn) for every n ≥ 1. The result for the
Poisson U -statistics Un then follows immediately from Theorem 3.5. Moreover, it
is known from Dynkin and Mandelbaum (1983) that E[(Un − Ûn)2] = O(n−1/2), as

n → ∞. This yields the result also for Ûn. �

Remark 4.11. Using Theorem 2.6 in Peccati and Thäle (2013) or its generalization
Proposition 5.1 below, one can add a rate of convergence (for a certain smooth prob-

ability distance) between Un or Ûn and the limiting random variable Y . However,
we do not pursue such quantitative results in this paper.
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Remark 4.12. In assumption (b) of Theorem 4.10 one can replace the sign condition
fn ≤ 0 by fn ≥ 0 and at the same time the moment condition E[U4

n] − 12E[U3
n] →

12ν2 − 48ν by E[U4
n] + 12E[U3

n] → 12ν2 − 48ν. In this case, the limiting random

variable Y has a centred reflected Gamma distribution Γ̂ν with parameter ν > 0.

5. Proof of Theorem 3.5

5.1. Strategy of the proof. Before entering the details of the proof of Theorem 3.5,
let us briefly summarize the overall strategy.

First of all, the implication (i) =⇒ (ii) of Theorem 3.5 is a direct consequence of
the uniform integrability of the sequence {Iq(fn)4 : n ≥ 1}. Next, the implication
(iii) =⇒ (i) will follow from a generalization of the main result of Peccati and
Thäle (2013), which has been derived by the Malliavin-Stein method. It delivers a
criterion in terms of contraction norms, which ensures centred Gamma convergence
on a fixed Poisson chaos of even order and is presented as Proposition 5.1 below.
The main part of proof of Theorem 3.5 consists in showing that (ii) implies (iii). It
is based on the technical Lemmas 5.2 and 5.4, which establish new inequalities for
norms of contraction kernels, that are also of independent interest. Next, in Lemma
5.6 we derive an asymptotic lower bound for the moment expression E[Iq(fn)4] −
12E[Iq(fn)3] in terms of contraction norms. Finally, Lemma 5.7 shows under the
conditions of Theorem 3.5 that if the lower bound for E[Iq(fn)4] − 12E[Iq(fn)3]
converges to the ‘correct’ quantity, the contraction conditions in (iii) are satisfied.
Lemma 5.9 proves that this lower bound actually converges.

We emphasize that we state all intermediate steps of the proof of Theorem 3.5
as general as possible in order to highlight in which step the restrictive condition
that q = 2 or q = 4 and the sign condition on the kernels arise.

5.2. Preparatory steps. We start our investigations with a generalization of Theo-
rem 2.6 in Peccati and Thäle (2013). The main difference between that result and
Proposition 5.1 is that for technical reasons it has been assumed in Peccati and
Thäle (2013) that µn is a finite measure for each n ≥ 1 such that µn(Z) → ∞, as
n → ∞. Our next result shows that one can dispense with this assumption.

Proposition 5.1. Fix ν > 0 and an even integer q ≥ 2. Let the sequence
fn ∈ L2

s(µ
q
n), n ≥ 1, satisfy the technical assumptions (A) and the normalization

condition

lim
n→∞

q!‖fn‖2 = lim
n→∞

E[Iq(fn)2] = 2ν .

Then, if

lim
n→∞

‖fn ?`
r fn‖ = 0 for all r ∈ {1, . . . , q}, ` ∈ {1, . . . , r ∧ (q − 1)}

with (r, `) 6= (q/2, q/2) ,

lim
n→∞

‖f2
n‖ = 0 ,

lim
n→∞

‖fn ?̃
q/2
q/2fn − cq fn‖ = 0 with cq =

4

(q/2)!
(

q
q/2

)2 ,

the sequence {Iq(fn) : n ≥ 1} converges in distribution to Y ∼ Γν , as n → ∞.
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Proof : In principle, one can follow the proof of Peccati and Thäle (2013, Theorem
2.6). The only part where the assumption about the finiteness of the measures µn

enters is Peccati and Thäle (2013, Proposition 2.3). To circumvent this problem,
one uses the modified integration-by-parts formula Schulte (2016, Lemma 2.3) and
concludes as in the proof of Theorem 4.1 of Eichelsbacher and Thäle (2014). Since
the computations are quite straight forward, we omit the details. �

We now present two estimates of the norm of a symmetrized contraction kernel
in terms of non-symmetrized contraction norms. In particular, our first lemma
generalizes Peccati and Taqqu (2011, Identity (11.6.30)). We recall for f ∈ L2

s(µ
q),

q ≥ 1, that ‖f ?̃
q
qf‖2 = ‖f ?q

q f‖2 = ‖f‖4 and ‖f ?0
0 f‖2 = ‖f‖4.

Lemma 5.2. Let q ≥ 1 be an integer and f ∈ L2
s(µ

q) be a kernel satisfying the
technical assumptions (A). Then

‖f ?̃
0
0f‖2 =

(q!)2

(2q)!

(
2‖f‖4 +

q−1∑

p=1

(
q

p

)2

‖f ?p
p f‖2

)
. (5.1)

Furthermore, for any r ∈ {1, . . . , q − 1} one has the inequality

‖f ?̃
r
rf‖2 ≤ ((q − r)!)2

(2(q − r))!

(
2‖f ?r

r f‖2 +

q−r−1∑

p=1

(
q − r

p

)2

‖f ?p
p f‖2

)
. (5.2)

If q ≥ 2 is an even integer, Equation (5.2) yields that

‖f ?̃
q/2
q/2f‖2 ≤ ((q/2)!)2

q!

(
2‖f ?

q/2
q/2 f‖2 +

q/2−1∑

p=1

(
q/2

p

)2

‖f ?p
p f‖2

)
. (5.3)

This inequality will turn out to be crucial in what follows.
Before entering the proof of Lemma 5.2, we introduce some notation. Recall that

for an integer p ≥ 1, we denote the group of p! permutations of the set {1, . . . , p}
by Πp. For a kernel g ∈ L2(µp) and a permutation π ∈ Πp, we use the shorthand
g(π) for the mapping Zp 3 (z1, . . . , zp) 7→ g(π)(z1, . . . , zp) = g(zπ(1), . . . , zπ(p)).
We can immediately see that ‖g‖ = ‖g(π)‖ for all π ∈ Πp such that automatically
g(π) ∈ L2(µp). In the following, we use the convention that π0 ∈ Πp is the identity
map, meaning that g(π0) = g.

For any integer M ≥ 1, any two permutations π, σ ∈ Π2M and any p ∈
{0, . . . ,M} we shall use the notation

π ∼p σ

if and only if

|{π(1), . . . , π(M)} ∩ {σ(1), . . . , σ(M)}| = p ,

where | · | stands for the cardinality of the argument set. If π ∼p σ, then clearly
|{π(M +1), . . . , π(2M)}∩{σ(M +1), . . . , σ(2M)}| = p. In the proof of Peccati and
Taqqu (2011, Proposition 11.2.2), there is an explanation that, given a permutation

π ∈ Π2M and an integer p ∈ {0, . . . , M}, there are exactly (M !)2
(
M
p

)2
permutations

σ ∈ Π2M such that π ∼p σ.
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Proof of Lemma 5.2: Let q ≥ 1 be an integer and f ∈ L2
s(µ

q) be a kernel satisfying
the technical assumptions (A). Fix r ∈ {0, 1, . . . , q − 1}. We have that

‖f ?̃
r
rf‖2 = 〈f ?r

r f, f ?̃
r
rf〉 =

1

(2q − 2r)!

∑

π∈Π2q−2r

〈f ?r
r f, f ?r

r f(π)〉

=
1

(2q − 2r)!

q−r∑

p=0

∑

π∼pπ0

〈f ?r
r f, f ?r

r f(π)〉.
(5.4)

To prove (5.1), let r = 0 and π ∼0 π0 or π ∼q π0. Then we get

〈f ?0
0 f, f ?0

0 f(π)〉

=

ˆ

Z2q

f(z1, . . . , zq)f(zq+1, . . . , z2q)

× f(zπ(1), . . . , zπ(q))f(zπ(q+1), . . . , zπ(2q))µ
2q(d(z1, . . . , z2q))

=

(
ˆ

Zq

f(w1, . . . , wq)
2µq(d(w1, . . . , wq))

)2

= ‖f‖4.

Now, let π ∼p π0 with p ∈ {1, . . . , q − 1}. Then

〈f ?0
0 f, f ?0

0 f(π)〉

=

ˆ

Z2q

f(z1, . . . , zq)f(zq+1, . . . , z2q)

× f(zπ(1), . . . , zπ(q))f(zπ(q+1), . . . , zπ(2q))µ
2q(d(z1, . . . , z2q))

=

ˆ

Z2q−2p×Zp×Zp

f(z1, . . . , zq)f(zπ(1), . . . , zπ(q))

× f(zq+1, . . . , z2q)f(zπ(q+1), . . . , zπ(2q))µ
2q(d(z1, . . . , z2q))

(?)
=

ˆ

Z2q−2p

f ?p
p f(w1, . . . , w2q−2p)

× f ?p
p f(w1, . . . , w2q−2p)µ

2q−2p(d(w1, . . . , w2q−2p))

= ‖f ?p
p f‖2 .

We note that the assumption that f is symmetric is essential to get the identity
highlighted by (?). In view of (5.4), we obtain

‖f ?̃
0
0f‖2

=
1

(2q)!

( ∑

π∼0π0

〈f ?0
0 f, f ?0

0 f(π)〉 +
∑

π∼qπ0

〈f ?0
0 f, f ?0

0 f(π)〉

+

q−1∑

p=1

∑

π∼pπ0

〈f ?0
0 f, f ?0

0 f(π)〉
)

=
1

(2q)!

(
2(q!)2‖f‖4 +

q−1∑

p=1

(q!)2
(

q

p

)2

‖f ?p
p f‖2

)
,
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such that (5.1) follows. Now, let r ∈ {1, . . . , q − 1} and observe that for π ∼q−r π0

one has that

〈f ?r
r f, f ?r

r f(π)〉

=

ˆ

Z2q−2r

(
ˆ

Zr

f(x1, . . . , xr, z1, . . . , zq−r)

× f(x1, . . . , xr, zq−r+1, . . . , z2q−2r)µ
r(d(x1, . . . , xr))

)

×
(
ˆ

Zr

f(y1, . . . , yr, zπ(1), . . . , zπ(q−r))

× f(y1, . . . , yr, zπ(q−r+1), . . . , zπ(2q−2r))µ
r(d(y1, . . . , yr))

)

µ2q−2r(d(z1, . . . , z2q−2r))

=

ˆ

Z2q

f(x1, . . . , xr, z1, . . . , zq−r)f(y1, . . . , yr, zπ(1), . . . , zπ(q−r))

× f(x1, . . . , xr, zq−r+1, . . . , z2q−2r)f(y1, . . . , yr, zπ(q−r+1), . . . , zπ(2q−2r))

µ2q(d(x1, . . . , xr, y1, . . . , yr, z1, . . . , z2q−2r))

=

ˆ

Z2r×Zq−r×Zq−r

f(x1, . . . , xr, z1, . . . , zq−r)f(y1, . . . , yr, zπ(1), . . . , zπ(q−r))

× f(x1, . . . , xr, zq−r+1, . . . , z2q−2r)f(y1, . . . , yr, zπ(q−r+1), . . . , zπ(2q−2r))

µ2q(d(x1, . . . xr, y1, . . . , yr, z1, . . . , z2q−2r))

=

ˆ

Z2r

(
f ?q−r

q−r f(x1, . . . , xr, y1, . . . , yr)
)2

µ2r(d(x1, . . . xr, y1, . . . , yr))

= ‖f ?q−r
q−r f‖2

= ‖f ?r
r f‖2 .

Similarly, we obtain for the case that π ∼0 π0,

〈f ?r
r f, f ?r

r f(π)〉 = ‖f ?r
r f‖2 .

Now, let π ∼p π0 with p ∈ {1, . . . , q − r − 1}. Then, there is a permutation
σ ∈ Π2q−2p such that

〈f ?r
r f, f ?r

r f(π)〉 (5.5)

=

ˆ

Z2q

f(x1, . . . , xr, z1, . . . , zq−r)f(y1, . . . , yr, zπ(1), . . . , zπ(q−r))

× f(x1, . . . , xr, zq−r+1, . . . , z2q−2r)f(y1, . . . , yr, zπ(q−r+1), . . . , zπ(2q−2r))

µ2q(d(x1, . . . , xr, y1, . . . , yr, z1, . . . , z2q−2r))

=

ˆ

Z2q−2p×Zp×Zp

f(x1, . . . , xr, z1, . . . , zq−r)f(y1, . . . , yr, zπ(1), . . . , zπ(q−r))

× f(x1, . . . , xr, zq−r+1, . . . , z2q−2r)f(y1, . . . , yr, zπ(q−r+1), . . . , zπ(2q−2r))

µ2q(d(x1, . . . , xr, y1, . . . , yr, z1, . . . , z2q−2r))
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=

ˆ

Z2q−2p

f ?p
p f(w1, . . . , w2q−2p)

× f ?p
p f(wσ(1), . . . , wσ(2q−2p))µ

2q−2p(d(w1, . . . , w2q−2p))

= 〈f ?p
p f, f ?p

p f(σ)〉
≤ ‖f ?p

p f‖ ‖f ?p
p f(σ)‖

= ‖f ?p
p f‖2 .

Note that contrary to the case r = 0, σ shows up because of the appearance of the
variables x1, . . . , xr, y1, . . . , yr. Therefore, we need to apply the Cauchy-Schwarz
inequality once, which is the very reason for the inequality in (5.2). At this stage,
(5.2) follows by (5.4) and

‖f ?̃
r
rf‖2 =

1

(2q − 2r)!


 ∑

π∼0π0

〈f ?r
r f, f ?r

r f(π)〉 +
∑

π∼q−rπ0

〈f ?r
r f, f ?r

r f(π)〉

+

q−r−1∑

p=1

∑

π∼pπ0

〈f ?r
r f, f ?r

r f(π)〉




≤ 1

(2q − 2r)!

(
2((q − r)!)2‖f ?r

r f‖2 +

q−r−1∑

p=1

((q − r)!)2
(

q − r

p

)2

‖f ?p
p f‖2

)
.

This completes the proof. �

Remark 5.3. A combinatorial argument shows that the permutation σ ∈ Π2q−2p

appearing in (5.5) cannot be such that f ?p
p f(σ) = f ?p

p f (in particular, σ cannot
be the identity). Hence, we cannot omit applying Cauchy-Schwarz in this case.

In Lemma 5.2 no condition on the sign of f was necessary. However, if we assume
that f has constant sign, we are able to deduce a ‘reverse’ counterpart of (5.2).

Lemma 5.4. Let q ≥ 1 be an integer and f ∈ L2
s(µ

q) a kernel satisfying the
technical assumptions (A). If f ≤ 0 or f ≥ 0, then, for any r ∈ {0, 1, . . . , q − 1},
one has that

‖f ?̃
r
rf‖2 ≥ 2((q − r)!)2

(2q − 2r)!
‖f ?r

r f‖2 . (5.6)

Proof : The left-hand side of (5.6) satisfies the identity at (5.4). Using the fact
that f has constant sign, the right-hand side of (5.4) becomes smaller if we sum
only over a subset of Π2q−2r, namely over all π ∈ Π2q−2r such that π ∼0 π0 or
π ∼q−r π0. Hence, we end up with

‖f ?̃
r
rf‖2 ≥ 1

(2q − 2r)!


 ∑

π∼0π0

〈f ?r
r f, f ?r

r f(π)〉 +
∑

π∼q−rπ0

〈f ?r
r f, f ?r

r f(π)〉




=
2((q − r)!)2

(2(q − r))!
‖f ?r

r f‖2 ,

which completes the proof. �

Remark 5.5. In view of Remark 5.3, inequality (5.6) is optimal under the conditions
of Lemma 5.4.
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5.3. Proof of the implication (ii) =⇒ (iii). Let us introduce some notation. We
shall write an � bn for two real-valued sequences {an : n ≥ 1}, {bn : n ≥ 1},
whenever lim

n→∞
an − bn = 0. Be aware that this does not necessarily imply that

one of the individual sequences converges, but of course ensures the convergence of
both sequences whenever one of them converges.

The next lemma establishes an asymptotic lower bound for the linear combi-
nation of the fourth and third moment E[Iq(fn)4] − 12E[Iq(fn)3] of a sequence of
Poisson integrals of even order q ≥ 2 where fn ∈ L2

s(µ
q
n), n ≥ 1. It is one of the

main ingredients to show the implication (ii) =⇒ (iii) in Theorem 3.5. Note that
this bound holds for general even q ≥ 2. Moreover, at this point we do not need an
assumption on the sign of the kernels.

Lemma 5.6. Let ν > 0 and q ≥ 2 be an even integer. Let fn ∈ L2
s(µ

q
n), n ≥ 1, be a

sequence of kernels such that the technical assumptions (A) and the normalization
condition

lim
n→∞

q!‖fn‖2 = 2ν

are satisfied. Then one has that

E[Iq(fn)4] − 12E[Iq(fn)3] � 12ν2 − 48ν + A(Iq(fn)) + R(Iq(fn)) , (5.7)

where the terms on the right-hand side of (5.7) satisfy A(Iq(fn)) ≥ A′(Iq(fn)) with

A′(Iq(fn)) =

q/2−1∑

p=1

(q!)4

(p!)2

(
2

(q − p)!2
− 1

2
(
(q/2)!(q/2 − p)!

)2

)
‖fn ?p

p fn‖2

+

2q−1∑

p=1,p6=q

p!‖Gq
p fn‖2 + q!

q∑

p=q/2+1

(p!)2
(

p

q

)4(
p

q − p

)2

‖fn ?̃
q−p
p fn‖2

+ 24q!‖c−1
q fn ?̃

q/2
q/2 fn − fn‖2

(5.8)

with cq = 4

(q/2)!( q
q/2)

2 , and

R(Iq(fn)) = q!

q∑

r,p=q/2
r 6=p

r! p!

(
q

r

)2(
q

p

)2(
r

q − r

)(
p

q − p

)
〈fn ?̃

q−r
r fn, fn ?̃

q−p
p fn 〉

− 12q!

q∑

p=q/2+1

p!

(
q

p

)2(
p

q − p

)
〈fn ?̃

q−p
p fn, fn 〉 .

(5.9)
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Proof of Lemma 5.6: In view of Lemma 2.2 and since q is even, one has that

E[Iq(fn)4] − 12E[Iq(fn)3]

=

2q∑

p=0

p!‖Gq
p fn‖2 − 12q!

q∑

p=q/2

p!

(
q

p

)2(
p

q − p

)
〈fn ?̃

q−p
p fn, fn 〉

= (q!)2‖fn‖4 + (2q)!‖fn ?̃
0
0fn‖2 +

2q−1∑

p=1

p!‖Gq
pfn‖2

− 12q!

q∑

p=q/2

p!

(
q

p

)2(
p

q − p

)
〈fn ?̃

q−p
p fn, fn 〉

= 3(q!)2‖fn‖4 +

q−1∑

p=1

(q!)4
(
p!(q − p)!

)2 ‖fn ?p
p fn‖2 +

2q−1∑

p=1

p!‖Gq
pfn‖2

− 12q!

q∑

p=q/2

p!

(
q

p

)2(
p

q − p

)
〈fn ?̃

q−p
p fn, fn 〉

= 3(q!)2‖fn‖4 + T1(Iq(fn)) + T2(Iq(fn)) + T3(Iq(fn)) ,

where the third equality stems from (5.1). The terms T1, T2, T3 read as follows:

T1(Iq(fn)) =

q−1∑

p=1
p 6=q/2

(q!)4
(
p!(q − p)!

)2 ‖fn ?p
p fn‖2 +

2q−1∑

p=1,p 6=q

p!‖Gq
pfn‖2,

T2(Iq(fn)) =
(q!)4

(q/2)!4
‖fn ?

q/2
q/2 fn‖2 + q!‖Gq

qfn‖2 − 12q!(q/2)!

(
q

q/2

)2

〈fn ?̃
q/2
q/2fn, fn 〉,

T3(Iq(fn)) = −12q!

q∑

p=q/2+1

p!

(
q

p

)2(
p

q − p

)
〈fn ?̃

q−p
p fn, fn 〉.

We use (5.3) to see that

(q!)4

(q/2)!4
‖fn ?

q/2
q/2 fn‖2

≥ (q!)5

2(q/2)!6
‖fn ?̃

q/2
q/2fn‖2 − 1

2

q/2−1∑

p=1

(q!)4
(
(q/2)!p!(q/2 − p)!

)2 ‖fn ?p
p fn‖2.

Using the definition of Gq
qfn given at (2.5), we have the estimate

T2(Iq(fn)) ≥ q!


∥∥

q∑

r=q/2

r!

(
q

r

)2(
r

q − r

)
fn ?̃

q−r
r fn

∥∥2
+

1

2

(q!)4

(q/2)!6
‖fn ?̃

q/2
q/2fn‖2

−12(q/2)!

(
q

q/2

)2

〈fn ?̃
q/2
q/2fn, fn 〉

)

− 1

2

q/2−1∑

p=1

(q!)4
(
(q/2)!p!(q/2 − p)!

)2 ‖fn ?p
p fn‖2
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= q!

(
3

2

(q!)4

(q/2)!6
‖fn ?̃

q/2
q/2fn‖2 − 12

(q!)2

(q/2)!3
〈fn ?̃

q/2
q/2fn, fn 〉

)

+ q!

q∑

r=q/2+1

(r!)2
(

q

r

)4(
r

q − r

)2

‖fn ?̃
q−r
r fn‖2

+ q!

q∑

r,p=q/2
r 6=p

r!p!

(
q

r

)2(
q

p

)2(
r

q − r

)(
p

q − p

)
〈fn ?̃

q−r
r fn, fn ?̃

q−p
p fn 〉

− 1

2

q/2−1∑

p=1

(q!)4
(
(q/2)!p!(q/2 − p)!

)2 ‖fn ?p
p fn‖2.

Using the relation ‖fn ?p
p fn‖ = ‖fn ?q−p

q−p fn‖, valid for all p ∈ {1, . . . , q − 1}, we
obtain

q−1∑

p=1
p 6=q/2

(q!)4
(
p!(q − p)!

)2 ‖fn ?p
p fn‖2 − 1

2

q/2−1∑

p=1

(q!)4
(
(q/2)!p!(q/2 − p)!

)2 ‖fn ?p
p fn‖2

=

q/2−1∑

p=1

(q!)4

(p!)2

(
2

(q − p)!2
− 1

2
(
(q/2)!(q/2 − p)!

)2

)
‖fn ?p

p fn‖2.

The proof is concluded by observing that

q!

(
3

2

(q!)4

((q/2)!)6
‖fn ?̃

q/2
q/2fn‖2 − 12

(q!)2

((q/2)!)3
〈fn ?̃

q/2
q/2fn, fn 〉

)

=
3

2
q!

(
(q!)4

((q/2)!)6
‖fn ?̃

q/2
q/2fn‖2 − 2 × 4

(q!)2

((q/2)!)3
〈fn ?̃

q/2
q/2fn, fn 〉 + 16‖fn‖2

)

− 24q!‖fn‖2

= 24q!‖c−1
q fn ?̃

q/2
q/2 fn − fn‖2 − 24q!‖fn‖2

and by recalling condition (a), which implies that 3(q!)2‖fn‖4−24q!‖fn‖2 converges
to 12ν2 − 48ν. �

While all previous results did not use the assumptions on the order of the integral
and the sign of the kernels, in the next lemma we need that q ∈ {2, 4} and that the
kernels have constant sign.

Lemma 5.7. Let ν > 0 and q ∈ {2, 4}. Let fn ∈ L2
s(µ

q
n), n ≥ 1, be a sequence

of kernels such that the technical assumptions (A) and the normalization condition
lim

n→∞
q!‖fn‖2 = 2ν are satisfied. Assume that for each n ≥ 1 either fn ≤ 0 or

fn ≥ 0. Then the following two assertions concerning the term A′(Iq(fn)) defined
at (5.8) are true:

(1) A′(Iq(fn)) ≥ 0 for all n ≥ 1;
(2) If A′(Iq(fn)) → 0, as n → ∞, then

lim
n→∞

‖fn ?`
r fn‖ = 0 (5.10)

for all r ∈ {1, . . . , q} and ` ∈ {1, . . . , r∧(q−1)} such that (r, `) 6= (q/2, q/2),

lim
n→∞

‖f2
n‖ = 0, (5.11)
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lim
n→∞

‖fn ?̃
q/2
q/2 fn − cqfn‖ = 0 with cq =

4

(q/2)!
(

q
q/2

)2 . (5.12)

Proof : We start by showing the first assertion of the lemma. The only term that
might be negative on right-hand side of (5.8) is the first sum. For the case q = 2,
this does not play any role, because then the sum vanishes. Hence, A′(Iq(fn)) is a
positive linear combination of non-negative terms.

Now, let q ≥ 4 be even. Using the fact that fn has constant sign, ‖fn ?p
p fn‖ =

‖fn ?q−p
q−p fn‖ for all p ∈ {1, . . . , q − 1} as well as Lemma 5.4, we obtain the estimate

2q−1∑

p=1, p 6=q

p!‖Gq
p fn‖2 ≥

2q−1∑

p=1, p 6=q

p!

q∑

r=0

r∑

`=0

1(2q − r − ` = p)r!2
(

q

r

)4(
r

`

)2

‖fn ?̃
`
rfn‖2

≥
2q−1∑

p=1, p 6=q,
p even

p!((q − p/2)!)2
(

q

q − p/2

)4

‖fn ?̃
q−p/2
q−p/2fn‖2

=

q−1∑

p=1, p 6=q/2

(2p)!((q − p)!)2
(

q

q − p

)4

‖fn ?̃
q−p
q−pfn‖2

=

q−1∑

p=1, p 6=q/2

(2(q − p))!(p!)2
(

q

p

)4

‖fn ?̃
p
pfn‖2

≥
q−1∑

p=1, p 6=q/2

2((q − p)!)2(p!)2
(

q

p

)4

‖fn ?p
p fn‖2

=

q/2−1∑

p=1

4(q!)4

((q − p)!)2(p!)2
‖fn ?p

p fn‖2.

Hence, we end up with

q/2−1∑

p=1

(q!)4

(p!)2

(
2

(q − p)!2
− 1

2
(
(q/2)!(q/2 − p)!

)2

)
‖fn ?p

p fn‖2 +

2q−1∑

p=1,p6=q

p!‖Gq
p fn‖2

≥
q/2−1∑

p=1

(q!)4

(p!)2

(
6

(q − p)!2
− 1

2
(
(q/2)!(q/2 − p)!

)2

)
‖fn ?p

p fn‖2. (5.13)

For q = 4, p = 1 we have that

6

(q − p)!2
− 1

2
(
(q/2)!(q/2 − p)!

)2 =
1

24
> 0 .

So, for q = 4 (and q = 2), the term A′(Iq(fn)) is bounded from below by a lin-
ear combination with positive coefficients of the norms of the contraction kernels
appearing in (5.10), (5.11) and (5.12) (while for all even q ≥ 6 this cannot be
guaranteed any more). This proves both statements of the lemma. �

Remark 5.8. As anticipated, for all even q ≥ 6 there are combinatorial coefficients in
(5.13) which are negative, implying that our proof cannot be generalized to Poisson
integrals of arbitrary order. The reason is that one would need a sharper version
of Lemma 5.4, which is in general not available as discussed in Remark 5.5. As a
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consequence, we have to leave it as an open problem to establish a four moments
theorem for the Gamma approximation for Poisson integrals of order q ≥ 6 by
different methods.

It remains to check whether the conditions of Theorem 3.5 are sufficient to imply
that A′(Iq(fn)) → 0. The following lemma shows that this is indeed the case.

Lemma 5.9. Let ν > 0 and q ∈ {2, 4}. Let fn ∈ L2
s(µ

q
n), n ≥ 1, be a sequence of

kernels satisfying the technical assumptions (A) and the normalization condition

lim
n→∞

q!‖fn‖2 = lim
n→∞

E[Iq(fn)2] = 2ν .

Let the sequence {Iq(fn)4 : n ≥ 1} be uniformly integrable. If one of the conditions

(a) q = 2 and lim
n→∞

‖f2
n‖ = 0,

(b) q = 4 and fn ≤ 0 for all n ≥ 1,

is satisfied, then the following implication is true. If

lim
n→∞

E[Iq(fn)4] − 12E[Iq(fn)3] = 12ν2 − 48ν

then
lim

n→∞
‖fn ?`

r fn‖ = 0 (5.14)

for all r ∈ {1, . . . , q} and ` ∈ {1, . . . , r ∧ (q − 1)} such that (r, `) 6= (q/2, q/2),

lim
n→∞

‖f2
n‖ = 0, (5.15)

lim
n→∞

‖fn ?̃
q/2
q/2 fn − cqfn‖ = 0 with cq =

4

(q/2)!
(

q
q/2

)2 . (5.16)

Proof : First apply Lemma 5.6 to deduce that A(Iq(fn))+R(Iq(fn)) → 0, as n → ∞.
Assume that q = 2 and ‖f2

n‖ → 0. Then (5.15) is satisfied by assumption.
Moreover,

R(I2(fn)) = 32〈fn ?̃
1
1fn, fn ?̃

0
2fn〉 − 48〈fn ?̃

0
2fn, fn〉.

By the Cauchy-Schwarz inequality, we see that

|〈fn ?̃
1
1fn, fn ?̃

0
2fn〉| ≤ ‖fn ?̃

1
1fn‖ ‖fn ?̃

0
2fn‖, |〈fn ?̃

0
2fn, fn〉| ≤ ‖fn‖ ‖fn ?̃

0
2fn‖.

With respect to the definition of the contractions, we see that fn ?̃
0
2fn = f2

n. We

shall argue now that the sequence ‖fn ?̃
1
1fn‖ is bounded. For this, observe that for

any fixed (s, t) ∈ Z2, we obtain by the Cauchy-Schwarz inequality that

|fn ?1
1 fn(t, s)| =

∣∣∣∣
ˆ

Z
fn(z, t)fn(z, s)µ(dz)

∣∣∣∣

≤
(
ˆ

Z
f2

n(z, t)µ(dz)

)1/2(ˆ

Z
f2

n(z, s)µ(dz)

)1/2

.

Consequently,

‖fn ?̃
1
1fn‖2 ≤ ‖fn ?1

1 fn‖2 =

ˆ

Z2

|fn ?1
1 fn(t, s)|2µ2(d(s, t)) ≤ ‖fn‖4.

By assumption, we have that ‖fn‖2 → ν, so the sequence is bounded. Now, the fact
that ‖f2

n‖ → 0 implies that R(I2(fn)) → 0. Hence, A(I2(fn)) → 0, which implies
that A′(I2(fn)) → 0 using Lemma 5.7(1). Now, we apply Lemma 5.7(2) to see that
(5.14) and (5.16) follow.
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Next, let q = 4 and suppose that fn ≤ 0. Recall that the tensor product is
bi-linear and it is easily verified that the contraction operation preserves this bi-
linearity. Now, the fact that the kernels are non-positive ensures that R(Iq(fn)) ≥ 0
and we can again apply Lemma 5.7(1) to see that 0 ≤ A′(Iq(fn)) ≤ A(Iq(fn)).
Hence, we deduce that A(Iq(fn)) → 0. This directly implies that A′(Iq(fn)) → 0,
such that the claim follows again by Lemma 5.7(2). �

Remark 5.10. Let us explain in some more detail why in contrast to the case of
normal approximation the kernels have to be non-positive for Gamma approxima-
tions. An inspection of the proof of Theorem 3.5 shows that a constant sign of
the kernels is necessary to control the sign of scalar products. This is necessary
in Lemma 5.4 and therefore also in Lemma 5.7 to control the signs of A(Iq(fn))
and A′(Iq(fn)), respectively. On the other hand, this is also necessary in part b)
of Lemma 5.9, where one has to control the sign of R(Iq(fn)). In this context,

scalar products of the form 〈fn ?̃
q−p
p fn, fn〉, p ∈ {q/2 + 1, . . . , q}, appear. They

are thrice-linear in fn, such that fn ≤ 0 implies that 〈fn ?̃
q−p
p fn, fn〉 ≤ 0 and we

can conclude that R(Iq(fn)) ≥ 0. In summary, knowing that A′(Iq(fn)) ≥ 0 and
R(Iq(fn)) ≥ 0 enables us to use part (2) of Lemma 5.7 to get the implication (ii)
=⇒ (iii) in Theorem 3.5. Note that the latter scalar products in R(Iq(fn)) actually
stem from the third moment in assertion (ii) of Theorem 3.5 (see also (2.8)).

It is worth mentioning that this asymmetry in the assertions for Theorem 3.5
(and also in Theorem 3.3) is actually an intrinsic property of the Gamma distri-
bution which contrasts the normal case. For the central limit theorem in a Pois-
son chaos, it can be easily seen that if the law of the sequence {Iq(fn) : n ≥ 1}
converges to a standard normal law N (0, 1), then also the law of {Iq(−fn) : n ≥
1} = {−Iq(fn) : n ≥ 1} converges to N (0, 1), since the standard normal law is
symmetric. Consistently, assertions (ii) and (iii) in the four moments theorem
for normal approximation are invariant under a sign change of the kernels. In
sharp contrast, the assertions for Gamma approximations are not invariant un-
der such a sign change because of the lack of symmetry of the target distribution.
This means that if the law of {Iq(fn) : n ≥ 1} converges to Γν then that law of

{Iq(−fn) : n ≥ 1} = {−Iq(fn) : n ≥ 1} cannot converge to Γν . Consistently, asser-
tions (ii) and (iii) in Theorem 3.5 inherit this asymmetry, which is reflected by the

appearance of the third moment in (ii) and the term ‖fn ?̃
q/2
q/2fn − cq fn‖ in (iii),

both of them not being invariant under a change of the sign of fn.

5.4. An alternative approach to the four moments theorem. In Remark 5.10 we
explained that the sign condition on the kernels in part (b) of Theorem 3.5 ensures
that R(Iq(fn)) ≥ 0. Together with A′(Iq(fn)) ≥ 0, this is sufficient in combination
with part (2) of Lemma 5.7 to get the implication (ii) =⇒ (iii) in Theorem 3.5.
On the other hand, for part (a) of Theorem 3.5, dealing with the case q = 2,
the assumption that ‖f2

n‖ → 0 yields that R(I2(fn)) → 0, an assertion also being
sufficient in combination with A′(Iq(fn)) ≥ 0 to deduce the implication (ii) =⇒ (iii)
in Theorem 3.5 from part (2) of Lemma 5.7. From this point of view, it is natural
to ask whether the latter condition can be generalized to arbitrary q ≥ 2. Our next
result shows that this is indeed possible, but leads to a result which is weaker than
Theorem 3.5. Moreover, the proof again only works for q = 4 and we still have to
impose a sign condition on the sequence of kernels.
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Proposition 5.11. Fix ν > 0. Let fn ∈ L2
s(µ

4
n), n ≥ 1, be a sequence of kernels

such that fn ≥ 0 for all n ≥ 1 and such that the technical assumptions (A) and the
normalization condition

lim
n→∞

4!‖fn‖2 = lim
n→∞

E[I4(fn)2] = 2ν

are satisfied. Assume additionally that

lim
n→∞

‖f2
n‖ = 0, and lim

n→∞
‖fn ?1

3 fn‖ = 0. (5.17)

If the sequence {I4(fn)4 : n ≥ 1} is uniformly integrable, then the equivalence stated
in Theorem 3.5 remains valid.

Proof : The implication (i) =⇒ (ii) follows from the uniform integrability of the
sequence {I4(fn)4 : n ≥ 1} and (iii) =⇒ (i) is a consequence of Proposition 5.1. To
establish the implication (ii) =⇒ (iii), we apply Lemma 5.6 and show that the term
R(I4(fn)) defined at (5.9) converges to zero, as n → ∞. With the Cauchy-Schwarz
inequality we obtain for p ∈ {3, 4} that

|〈fn ?̃
4−p
p fn, fn〉| ≤ ‖fn ?4−p

p fn‖ ‖fn‖ → 0 ,

since ‖fn ?4−p
p fn‖ → 0 and ‖fn‖2 → ν

12 . Moreover, for p, r ∈ {2, 3, 4} with p 6= r
we also get

|〈fn ?̃
4−p
p fn, fn ?̃

4−r
r fn〉| ≤ ‖fn ?̃

4−p
p fn‖ ‖fn ?̃

4−r
r fn‖ → 0 .

The convergence is ensured by condition (5.17) if p, r > 2. If otherwise p ∧ r = 2,
we use condition (5.17) together with the observation that ‖fn ?0

2 fn‖ = ‖fn ?2
4 fn‖

and ‖fn ?2
2 fn‖ ≤ ‖fn ?4

4 fn‖ as a consequence of Fubini’s theorem and the Cauchy-
Schwarz inequality. Summarizing, we see that R(I4(fn)) → 0, which in turn implies
that A(Iq(fn)) → 0 thanks to Lemma 5.6. We can then conclude as in the proof of
part (b) of Lemma 5.9. �
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Mehler’s formula, second order Poincaré inequalities and stabilization (2015+).
To appear in Probab. Theory Related Fields.

G. Last, M. D. Penrose, M. Schulte and C. Thäle. Moments and central limit
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Erratum to: “A four moments theorem for
Gamma limits on a Poisson chaos”

Tobias Fissler∗ Christoph Thäle†

24th January 2017

Abstract

This note corrects a condition in Theorem 3.5 in our paper Fissler and Thäle (2016).

It has been pointed out to us that the assertions of the equivalence stated in Theorem 3.5(b) of
our paper Fissler and Thäle (2016) cannot be satisfied by a sequence of kernels fn ∈ L2

s (µqn)
in the case q = 4. Indeed, the sign condition fn ≤ 0 implies that E[Iq( fn)3] ≤ 0 in view
of equation (2.8) in Fissler and Thäle (2016). On the other hand, if Iq( fn) converges in
distribution to Y ∼ Γν, as n→∞, the uniform integrability of {Iq( fn)4 : n ≥ 1} implies that

lim
n→∞E[Iq( fn)

3] = E[Y3] = 8ν > 0,

which is a contradiction. In line with the equivalence, neither assertion (ii) nor (iii) can
be satisfied if fn ≤ 0. E.g. c2

q ‖ fn‖2 ≤ ‖ fn ?̃
q/2
q/2 fn − cq fn‖2 → 0 for fn ≤ 0, but at the

same time q!‖ fn‖2 → 2ν > 0. This contradiction also affects the results based on Theorem
3.5(b), namely Corollary 3.8(b), Theorem 4.6(b), and Theorem 4.10(b).

In Section 5.4 and, in particular, in Proposition 5.11 of Fissler and Thäle (2016), we described
an alternative way to a four moments theorem in the case q = 4 and for non-negative
kernels under stronger conditions on the contraction norms of the kernels fn. Against this
background, Theorem 3.5 holds upon replacing condition (b) there by

(b’) q = 4, fn ≥ 0 for all n ≥ 1 and lim
n→∞ ‖ fn ?

q−p
p fn‖ = 0 for all p ∈ {q/2 + 1, . . . , q}.

Mutatis mutandis, condition (b) in Corollary 3.8 should be replaced by

(b’) q = 4, fn ≤ 0 for all n ≥ 1 and lim
n→∞ ‖ fn ?

q−p
p fn‖ = 0 for all p ∈ {q/2 + 1, . . . , q};

condition (b) in Theorem 4.6 should be replaced by

(b’) q = 4, fn ≥ 0 for all n ≥ 1 and lim
n→∞ ‖ fn ?

q−p
p fn‖ = 0 for all p ∈ {q/2 + 1, . . . , q};

and condition (b) in Theorem 4.10 should be replaced by
∗University of Bern, Department of Mathematics and Statistics, Institute of Mathematical Statistics and

Actuarial Science, Sidlerstrasse 5, CH-3012 Bern, Switzerland. E-mail: tobias.fissler@stat.unibe.ch
†Ruhr University Bochum, Faculty of Mathematics, D-44780 Bochum, Germany. E-mail:

christoph.thaele@rub.de
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(b’) hn ≥ 0 for all n ≥ 1 and lim
n→∞ ‖hn ?

q−p
p hn‖ = 0 for all p ∈ {q/2 + 1, . . . , q} if q = 4.

We remark that also under the new condition (b’) in Theorem 3.5, all the technical lemmas
established in (Fissler and Thäle, 2016, Section 5) are needed to prove the result.

We finally remark that in (Fissler and Thäle, 2016, Lemma 5.7), we assumed that the kernels
fn have constant sign, i.e., that either fn ≤ 0 or fn ≥ 0. However, for q = 2, one can dispense
with the sign condition. Indeed, using the notation from Fissler and Thäle (2016), we have
that

A′(I2( fn)) = ‖G2
1 fn‖2 + 6‖G2

3 fn‖2 + 8‖ fn ?̃
0
2 fn‖2 + 48‖ fn ?̃

1
1 fn − fn‖2

= 16‖ fn ?1
2 fn‖2 + 96‖ fn ?̃

0
1 fn‖2 + 8‖ f 2

n ‖2 + 48‖ fn ?̃
1
1 fn − fn‖2.

Hence, assertions (1) and (2) follow directly. This is of importance because in Lemma 5.9(a)
we imposed no sign condition, but referred to Lemma 5.7.

Theorem 1.6 of the recent paper Döbler and Peccati (2017) is very close to establishing a
four moments theorem for Poisson integrals with a Gamma limit. However, as discussed in
Remark 1.7 ibidem, one sufficient condition which implies the four moments theorem is that
certain contraction norms of the kernels converge to zero in the L2-sense. This corresponds
to our additional assumption from (b’) above. However, the theory developed in Döbler and
Peccati (2017) allows to remove our restrictive condition on the order of the integrals as well
as the sign condition on the kernels fn.
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9. A new quantitative central limit
theorem on the Wiener space with
applications to Gaussian processes

This chapter contains the joint article Fissler and Thäle (2016b). It is devoted
to establish quantitative central limit theorems for Gaussian functionals with a
possibly infinite chaos decomposition. The applicability is demonstrated in terms
of the Breuer-Major theorem.

The article has been submitted, but is currently under review. The version
included in this thesis is identical in its content to the arXiv-version, which is
available at https://arxiv.org/abs/1610.01456. The formatting is almost the
same with some slight adaptations to allow for a better inclusion into the thesis.
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A new quantitative central limit theorem on the
Wiener space with applications to Gaussian processes

Tobias Fissler∗ Christoph Thäle†

Abstract
Quantitative limit theorems for non-linear functionals on the Wiener space are con-

sidered. Given the possibly infinite sequence of kernels of the chaos decomposition
of such a functional, an estimate for different probability distances between the func-
tional and a Gaussian random variable in terms of contraction norms of these kernels
is derived. The applicability of this result is demonstrated by means of the Breuer-
Major theorem, unfolding thereby a new connection between the Hermite rank of the
considered function and a chaotic gap. Especially, power variations of the fractional
Brownian motion and processes belonging to the Cauchy class are studied.

Keywords. Breuer-Major theorem, central limit theorem, chaos decomposition, chaotic
gap, fractional Brownian motion, Gaussian process, Hermite rank, Malliavin-Stein
method, power variation, Wiener space
MSC. Primary 60F05, 60G15; Secondary 60G22, 60H05, 60H07.

1 Introduction
Central limit theorems for non-linear functionals of Gaussian random processes (or meas-
ures) have triggered an enormous development in probability theory and mathematical
statistics during the last decade. A cornerstone in this new area is the so-called fourth
moment theorem of Nualart and Peccati. It says that a sequence Iq( f (n)) of Gaussian
multiple stochastic integrals of a fixed order q ≥ 2 satisfying the normalization condition
E[Iq( f (n))2] = 1 for all n ≥ 1 converges in distribution, as n → ∞, to a standard Gaussian
random variable Z if and only if the sequence E[Iq( f (n))4] of their fourth moments converges
to 3, the fourth moment of Z . This qualitative limit theorem has been extended by Nourdin
and Peccati in [7] to a quantitative statement in that the distance between the laws of Iq( f (n))
and Z is measured in a suitable probability metric. For example, the total variation distance
dTV (Iq( f (n)), Z) between Iq( f (n)) and the Gaussian variable Z can be bounded from above
by

(1) dTV (Iq( f (n)), Z) ≤ C
√
E[Iq( f (n))] − 3

with a constant C ∈ (0,∞) only depending on q. More recently, Nourdin and Peccati
[9] derived the optimal rate of convergence, removing thereby the square-root in (1). We
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†Ruhr University Bochum, Faculty of Mathematics, D-44780 Bochum, Germany. E-mail:
christoph.thaele@rub.de

1194



emphasize that the proof of the estimate (1) is based on a combination of Stein’s method for
normal approximation with the Malliavin calculus of variations on the Wiener space. For
further information and background material, we refer the reader to the monograph [8].

While theMalliavin-Stein approach provides useful estimates in case of a sequence of random
elements living inside a fixed Wiener chaos or inside a finite sum of Wiener chaoses, the
bounds become less tractable in cases in which the functionals belong to an infinite sum of
Wiener chaoses, that is, if the functional F has the representation

(2) F =
∞∑
q=0

Iq( fq)

with infinitely many of the functions fq (called kernels in the sequel) being non-zero. On
the other hand, functionals of this type often appear in concrete applications. Distinguished
examples are the number of zeros of a random trigonometric polynomial [1], the power
and the bi-power variation of a Gaussian random process [2], the Euler characteristic of
a Gaussian excursion set [4] or the statistics appearing around the Breuer-Major theorem
[3, 10], to name just a few. One way to obtain quantitative central limit theorems in these
cases is to apply the so-called second-order Poincaré inequality developed by Nourdin,
Peccati and Reinert [11]. This method has the advantage that it is not necessary to specify
the chaos decomposition of F as at (2) explicitly, that is, to compute the functions fq there
explicitly. On the other hand, a major drawback of this approach is that it typically leads to
a suboptimal rate of convergence. Moreover, in many situations the kernels fq are in fact
explicitly known and for this reason it is natural to ask for a purely analytical upper bound
on the probability distance between F and Z in terms of the sequence of kernels fq. The
main goal of the present paper is to provide such an estimate (also for probability metrics
different from the total variation distance) and to demonstrate its applicability by means of
representative examples related to the classical Breuer-Major theorem. More precisely, we
shall look at random variables of the form

Fn =
1√
n

n∑
k=1
{g(Xk) − E[g(Xk)]} ,

where X = (Xk)k∈Z is a stationary Gaussian process and g : R → R is a suitable function.
For example, X could be obtained from the increments of a fractional Brownian motion and
g(x) = |x |p − E|X1 |p, p > 0, in which case Fn becomes a so-called power variation of the
fractional Brownian motion. In this context, our quantitative central limit theorem for Fn

unfolds a new and unexpected feature, namely that the rates of convergence are influenced
by the interplay of the Hermite rank of the function g and what we call the chaotic gap of
Fn (in addition to the asymptotic behavior of the covariance function of X , of course). We
would like to emphasize that in the context of power variations of a fractional Brownian
motion we will show that the rate of convergence in the central limit theorem is universal,
that is, independent of the parameter p, and coincides with the known rate for the quadratic
variation, where p = 2. The same phenomenon also applies to processes that belong to the
Cauchy class.

Our text is structured as follows. In Section 2, we summarize some basic elements of
Gaussian analysis and, in particular, recall the definitions of the four basic operators from
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Malliavin calculus that are crucial for our theory. Our main result, Theorem 3.1, is presented
in Section 3. Our applications to Gaussian random processes are the content of Section 4.
Finally, in Section 5 we present a multivariate exteions of our main result. The Appendix
gathers some technical lemmas.

2 Elements of Gaussian analysis
2.1 Wiener chaos, chaos decomposition and multiplication formula
We let H be a real separable Hilbert space with inner product 〈 · , · 〉H and norm ‖ · ‖H.
Moreover, for integers q ≥ 1 we denote by H⊗q the qth tensor power and by H�q the qth
symmetric tensor power of H. The space H⊗q is supplied with the canonical scalar product
〈 · , · 〉H⊗q and the canonical norm ‖ · ‖H⊗q , whileH�q is equippedwith the norm

√
q!‖ · ‖H⊗q .

An isonormal Gaussian processW = {W(h) : h ∈ H} over H is a family of Gaussian random
variables defined on a common probability space (Ω, F , P) and indexed by the elements of
H such that

E[W(h)] = 0 and E[W(h)W(h′)] = 〈h, h′〉H , h, h′ ∈ H .
In what follows we will implicitly assume that the σ-field F is generated by W , that is,
F = σ(W). Let us write L2(Ω) for the space of square-integrable functions over Ω. For
integers q ≥ 1 we denote by Cq the qth Wiener chaos over H. That is, Cq is the closed linear
subspace of L2(Ω) generated by random variables of the form Hq(W(h)). Here, Hq is the
qth Hermite polynomial and h ∈ H satisfies ‖h‖H = 1. Recall that H0 ≡ 0 and that

Hq(x) = (−1)q exp(x2/2) dq

dxq
exp(−x2/2), q ≥ 1 ,(3)

E[Hq(X)Hp(Y )] =
{

p! (E[XY ])p : p = q
0 : otherwise ,

(4)

for jointly Gaussian X,Y and integers p, q ≥ 1. For convenience, we also define C0 := R.
The mapping h⊗q 7→ Hq(W(h)) can be extended to a linear isometry, denoted by Iq, from
H�q to the qth Wiener chaos Cq, see Chapter 2 in [8]. We put Iq(h) := Iq(h̃) for general
h ∈ H⊗q where h̃ ∈ H�q is the canonical symmetrization of h, and we use the convention
that I0 : R → R is the identity map. In particular, if H = L2(A) with a σ-finite non-atomic
measure space (A,A, µ), then Iq possesses an interpretation as a multiple stochastic integral
of order q with respect to the Gaussian random measure on A with control measure µ. We
refer to Chapter 2.7 in [8] for further details and explanations.
According to Theorem 2.2.4 in [8], every F ∈ L2(Ω) admits a chaotic decomposition. In
particular, this means that

F =
∞∑
q=0

Iq(hq)

with h0 = E[F] :=
∫

F dP and uniquely determined elements hq ∈ H�q, q ≥ 1, that
are called the kernels of the chaotic decomposition. We also mention that, for q ≥ 1,
E[Iq(hq)] = 0 and that

(5) E[Ip(hp)Iq(hq)] =
{

p!〈hp, hq〉H⊗q : p = q
0 : otherwise
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for hp ∈ H�p, hq ∈ H�q, p, q ≥ 1, which implies that the variance of F satisfies

(6) var(F) := E[F2] − (E[F])2 =
∞∑
q=1

q!‖hq ‖2H⊗q .

More generally, the covariance of F =
∑∞

q=0 Iq(hq) ∈ L2(Ω) and G =
∑∞

q=0 Iq(h′q) ∈ L2(Ω)
is given by

(7) cov(F,G) := E[FG] − E[F]E[G] =
∞∑
q=1

q!〈hq, h′q〉H⊗q .

Another crucial fact is that the product of two multiple stochastic integrals can be expressed
as a linear combination of multiple stochastic integrals. More generally, let p, q ≥ 1 be
integers and h ∈ H�p, h′ ∈ H�q. Then one has the multiplication formula

(8) Iq(h)Ip(h′) =
min(p,q)∑

r=0
r!

(
q
r

) (
p
r

)
Ip+q−2r (h⊗̃rh′) ,

where h⊗̃rh′ :=�h ⊗r h′ stands for the canonical symmetrization of the contraction h⊗r h′ ∈
H⊗p+q−2r . Note that for h = h1⊗· · ·⊗hp ∈ H⊗p and h′ = h′1⊗· · ·⊗h′q ∈ H⊗q the contraction
can be defined as

(9) h ⊗r h′ := 〈h1, h′1〉H · · · 〈hr, h′r 〉H [hr+1 ⊗ · · · ⊗ hp ⊗ h′r+1 ⊗ · · · ⊗ h′q] .

By linearity, the contraction operation can be extended to any h ∈ H⊗p and h′ ∈ H⊗q. In
the case that H = L2(A) with a σ-finite non-atomic measure space (A,A, µ), we have that
H⊗q = L2(Aq) := L2(Aq,A⊗q, µ⊗q) and that H�q coincides with the space L2

sym(Aq) of
µ⊗q-almost everywhere symmetric functions on Aq. Moreover,

( f ⊗r g)(y1, . . . , yp+q−2r ) :=
∫
Ar

f (x1, . . . , xr, y1, . . . , yp−r )

× g(x1, . . . , xr, yp−r+1, . . . , yp+q−2r ) µ⊗r (d(x1, . . . , xr ))

with f ∈ L2
sym(Ap), g ∈ L2

sym(Aq) and y1, . . . , yp+q−2r ∈ A.

Convention. Through our paper, we will adopt the following convention that whenever
the Hilbert space H coincides with an L2(A)-space we write f instead of h for an element of
L2(A) to underline that we are dealing with functions. Furthermore, we use the shorthand
notation ‖ · ‖q for ‖ · ‖H⊗q for all integers q ≥ 1.

2.2 Malliavin operators
In this section, we recall the definition of the four basic operators from Malliavin calculus
and summarize those properties which are needed later. For that purpose and to simplify our
presentation we assume from now on that H = L2(A) with a σ-finite non-atomic measure
space (A,A, µ). Note that because of isomorphy of Hilbert spaces, this is no restriction of
generality. For further details we direct the reader to the monographs [6, 8, 12].
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Malliavin derivative. Suppose that F ∈ L2(Ω) has a chaos decomposition

(10) F =
∞∑
q=0

Iq( fq), fq ∈ L2
sym(Aq) ,

and suppose that
∞∑
q=1

q q!‖ fq ‖2q < ∞. In this case we say that F belongs to the domain of

D, formally we indicate this by writing F ∈ dom(D). For F ∈ dom(D) and x ∈ A we define
the Malliavin derivative of F in direction x as

(11) DxF :=
∞∑
q=1

qIq−1( fq(x, · )) ,

where fq(x, · ) ∈ L2
sym(Aq−1) stands for the function fq with one of its variables fixed to be

x (which one is irrelevant, since the functions fq are symmetric).
We further define for all integers k ≥ 1 the iterated Malliavin derivative DkF as

Dk
x1,...,xk

F :=
∞∑
q=k

q(q − 1) · · · (q − k + 1) Iq−k( fq(x1, . . . , xk, · )) , x1, . . . , xk ∈ A ,

whenever F ∈ dom(Dk), that is, if F =
∑∞

q=0 Iq( fq) satisfies
∑∞

q=k q(q − 1) · · · (q − k +
1)‖ fq ‖2q < ∞.
Finally, we introduce the subspace D1,4 of dom(D) containing all F ∈ L4(Ω) such that

E‖DF‖41 = E
��� ∫

A

|DxF |2 µ(dx)
���2 < ∞ ,

see Chapter 2.3 in [8] for a formal construction. Moreover, we recall that the Malliavin
derivative can be used to compute the kernels fq in the chaotic decomposition of a given
functional F. Namely, assuming that F ∈ dom(Dq) for some q ≥ 1, Stroock’s formula [8,
Corollary 2.7.8] says that

(12) fq =
1
q!
E[DqF] .

Divergence. We write L2(A × Ω) := L2(A × Ω,A ⊗ F , µ ⊗ P) for the space of square-
integrable random processes u = (ux)x∈A on A. Fix such a process u ∈ L2(A × Ω) and
suppose that it satisfies ���E∫

A

(DxF) ux µ(dx)
��� ≤ c E[F2]

for all F ∈ dom(D) and some constant c > 0 that is allowed to depend on u. We denote the
class of such processes by dom(δ) and define for u ∈ dom(δ) the divergence δ(u) of u by the
duality relation

E[Fδ(u)] = E
∫
A

(DxF) ux µ(dx) , F ∈ dom(D) .

That is, δ is the operator which is adjoint to the Malliavin derivative D.
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The divergence can also be defined in terms of chaotic decompositions. Suppose that
u ∈ dom(δ) such that ux ∈ L2(A × Ω) for all x ∈ A. Then there are kernels fq ∈ L2(Aq+1),
q ≥ 0, such that

ux =

∞∑
q=0

Iq( fq(x, · )) , x ∈ A ,

and fq(x, · ) ∈ L2
sym(Aq). Moreover, u ∈ dom(δ) if and only if

∞∑
q=0
(q + 1)!‖ f̃q ‖2 < ∞ and in

this case δ(u) is given by
δ(u) =

∞∑
q=0

Iq+1( f̃q) ,

where
f̃q(x1, . . . , xq+1) :=

1
(q + 1)!

∑
π

f (xπ(1), . . . , xπ(q+1))

denotes the canonical symmetrization of fq ∈ L2(Aq+1) with the sum running over all
permutations π of {1, . . . , q + 1}.

Ornstein-Uhlenbeck generator and its pseudo-inverse. Let F ∈ L2(Ω) be a square
integrable functional with chaos decomposition as at (10) and define

LF := −
∞∑
q=0

qIq( fq) ,

whenever the series converges in L2(Ω). The domain dom(L) of L is the set of those
F ∈ L2(Ω) for which

∞∑
q=1

q2 q!‖ fq ‖2q < ∞. The operator L is called the generator of the

Ornstein-Uhlenbeck semigroup associated with the Gaussian random measure on A having
control measure µ. By L−1 we denote its pseudo-inverse acting on centred F ∈ L2(Ω) as
follows:

(13) L−1F := −
∞∑
q=1

1
q

Iq( fq) .

For non-centred F ∈ L2(Ω)we put L−1F := L−1(F−E[F]). Clearly, for centred F ∈ dom(L)
one has that LL−1F = L−1LF = F. Moreover, the operators D, δ and L are related by

δ(DF) = −LF , F ∈ dom(L) .

In fact, according to [12, Proposition 1.4.8], F ∈ dom(L) is equivalent to F ∈ dom(D) and
DF ∈ dom(δ).

3 A quantitative central limit theorem
Let W be an isonormal Gaussian process defined on a probability space (Ω, F , P) and over
a Hilbert space H as in the previous section. Further, let F ∈ L2(Ω). Then, as we have seen
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above, F admits the chaos decomposition

(14) F =
∞∑
q=0

Iq(hq)

with h0 = E[F] and kernels hq ∈ H�q, q ≥ 1.
Our aim is to measure the distance between F and a centred Gaussian random variable
with the same variance as F. We do this in terms of different probability metrics. To
define them, recall that a collection Φ of measurable functions ϕ : R → R is said to be
separating if for any two random variables Y and Y ′, E[ϕ(Y )] = E[ϕ(Y ′)] for all ϕ ∈ Φ with
E[ϕ(Y )],E[ϕ(Y ′)] < ∞ implies that Y and Y ′ are identically distributed. For such a class of
functions Φ we define the probability metric dΦ by putting

dΦ(Y,Y ′) := sup
ϕ∈Φ

��E[ϕ(Y )] − E[ϕ(Y ′)]�� ,
where Y and Y ′ are random variables satisfying E[ϕ(Y )],E[ϕ(Y ′)] < ∞ for all ϕ ∈ Φ.
Examples for such probability metrics are

• the total variation distance dTV := dΦTV , where ΦTV = {1B : B ⊂ R a Borel set},
• the Kolmogorov distance dK := dΦK , where ΦK = {1(−∞,x] : x ∈ R},
• the Wasserstein distance dW := dΦW , where ΦW is the class of Lipschitz functions
ϕ : R → R with ‖ϕ‖Lip ≤ 1, where ‖ϕ‖Lip := sup{|ϕ(x) − ϕ(y)|/|x − y | : x, y ∈
R, x , y},

• the bounded Wasserstein distance dbW := dΦbW
, in which case ΦbW is the class of

functions ϕ : R→ R with ‖ϕ‖Lip + ‖h‖∞ ≤ 1, where ‖ϕ‖∞ := sup{|ϕ(x)| : x ∈ R}.
If F is as above and such that E[F] = 0, and Z ∼ N(0, σ2) with σ2 := E[F2] denotes a
Gaussian random variable, the main result of the seminal paper [7] (see also Chapter 5 in [8])
provides an upper bound for dΦ(F, Z) by combining Stein’smethod for normal approximation
with the Malliavin formalism as introduced in Section 2. Here, dΦ ∈ {dTV, dK, dW, dbW }
is one of the four probability distances introduced above. We use this bound to provide an
estimate for dΦ(F, Z) in terms of the kernels hq appearing in the chaotic representation (14)
of F.

Theorem 3.1. Let F ∈ L2(Ω) be centred and such that E[F2] = σ2 > 0 and F ∈ D1,4.
Let Z ∼ N(0, σ2) be a centred Gaussian random variable with variance σ2 and denote by
hq ∈ H�q, q ≥ 0, the kernels in the chaotic decomposition (14) of F. Then,

dbW (F, Z) ≤ dW (F, Z) ≤ c
σ

∞∑
p=1

p
p−1∑
r=1
(r − 1)!

(
p − 1
r − 1

)2√
(2(p − r))! ‖hp ⊗r hp ‖H⊗2(p−r )

+
c
σ

∞∑
p,q=1
p,q

p
min(p,q)∑

r=1
(r − 1)!

(
p − 1
r − 1

) (
q − 1
r − 1

)√
(p + q − 2r)! ‖hp ⊗r hq ‖H⊗p+q−2r

(15)
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with c =
√

2/π. In addition, if F has a density with respect to the Lebesgue measure on R,
then the same bound also holds with c = 2/σ in case of the total variation distance and
c = 1/σ for the Kolmogorov distance.

Remark 3.2. The combination of Stein’s method with techniques from Malliavin calculus
has also been applied to functionals of Poisson random measures. In this context, a limit
theorem that has the same spirit as our Theorem 3.1 was derived in [5] and, in fact, it was
this paper that inspired us to consider a similar question for Gaussian functionals. Also
our proof follows the principal idea developed in [5]. However, since such functionals are
much easier from a combinatorial point of view, Theorem 3.1 has a much more neat form
compared to its Poissonian analogue in [5].

Remark 3.3. By applying the Cauchy-Schwarz inequality, we have for hp ∈ H�p, hq ∈ H�q,
p, q ≥ 1, the estimate

‖hp ⊗r hq ‖H⊗p+q−2r ≤
√
‖hp ⊗p−r hp ‖H⊗2r ‖hq ⊗q−r hq ‖H⊗2r(16)

≤ 1
2
(‖hp ⊗p−r hp ‖H⊗2r + ‖hq ⊗q−r hq ‖H⊗2r

)
(17)

=
1
2
(‖hp ⊗r hp ‖H⊗2(p−r ) + ‖hq ⊗r hq ‖H⊗2(q−r )

)
,

see also [8, Equation (6.2.4)]. Hence, the right hand side of (15) can in principle be expressed
solely in terms of the contraction norms ‖hp ⊗r hp ‖H⊗2(p−r ) , p ≥ 1, r = 1, . . . , p. However, in
the course of such an approach, the term ‖hp ⊗p hp ‖H⊗0 = ‖hp ‖2H⊗p , p ≥ 1, shows up, which
in turn is not present in (15). This term stems from the contraction norm ‖hp ⊗p hq ‖H⊗q−p ,
p < q, and it is precisely this term that forces us to deal with the chaotic gap arising in the
context of Theorem 4.1 below.

Proof of Theorem 3.1. To simplify our presentation it is no loss of generality to assume that
H = L2(A) for some σ-finite non-atomic measure space (A,A, µ). In this case, we shall
write ‖ · ‖q instead of ‖ · ‖H⊗q for integers q ≥ 1. Moreover, in order to underline that
the elements of the Hilbert space we are dealing with are functions, we use the symbols
f and g instead of h and h′ and denote the kernels of the chaotic decomposition of F by
fq ∈ L2

sym(Aq), q ≥ 0, building thereby on the notation aleady introduced in the previous
section.
We prove the result only for the unit variance case σ2 = 1, the general result then follows by
a scaling argument exactly as in the proof of Theorem 5.1.3 in [8]. In this set-up, the same
result provides an upper bound for dW (F, Z), dbW (F, Z), dK (F, Z) and dTV (F, Z) in terms
of the Malliavin operators D and L−1. Formally, due to the fact that F ∈ D1,4 implies that∫
A
(DxF)(−DxL−1F) µ(dx) ∈ L2(Ω) as shown in Proposition 5.1.1 in [8], one has that

(18) dΦ(F, Z) ≤ cΦ

√
E
[(

1 −
∫
A

(DxF)(−DxL−1F) µ(dx
)2]

with

(19) cΦ =




√
2
π : Φ = ΦW or Φ = ΦbW

1 : Φ = ΦK

2 : Φ = ΦTV ,
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where we implicitly used the assumption that F has a density in case of the Kolmogorov and
the total variation distance, see [8]. Let us abbreviate the term under the above square-root
by T(F). Using the variance representation (6) and the definitions (11) and (13) of D and
L−1, respectively, T(F) can be re-written as

T(F) = E
[( ∫

A

∞∑
p=1

pIp−1( fp(x, · ))
∞∑
q=1

Iq−1( fq(x, · )) µ(dx) −
∞∑
n=1

n!‖ fn‖2n
)2

]
.

Thus, applying the inequality
√
var(X + Y ) ≤

√
var(X) +

√
var(Y ) yields that

√
T(F) can be

estimated from above by
∞∑

p,q=1
p

(
E

[( ∫
A

Ip−1( fp(x, · ))Iq−1( fq(x, · )) µ(dx)

− E
∫
A

Ip−1( fp(x, · ))Iq−1( fq(x, · )) µ(dx)
)2

])1/2

=

∞∑
p,q=1

p

(
var

( ∫
A

Ip−1( fp(x, · ))Iq−1( fq(x, · )) µ(dx)
))1/2

,

where we used the Itô isometry (5) to get an alternative expression for the term
∞∑
n=1

n!‖ fn‖2n.
Next, we compute the variance, using that

var
( ∫

A

Ip−1( fp(x, · ))Iq−1( fq(x, · )) µ(dx)
)
= T1(F) − T2(F)2

with T1(F) and T2(F) given by

T1(F) :=
∫
A

∫
A

E
[
Ip−1( fp(x, · ))Iq−1( fq(x, · ))Ip−1( fp(y, · ))Iq−1( fq(y, · ))

]
µ(dy)µ(dx)

and
T2(F) := E

∫
A

Ip−1( fp(x, · ))Iq−1( fq(x, · )) µ(dx) .

To compute T1(F) we use twice the multiplication formula (8) together with the stochastic
Fubini theorem [13, Theorem 5.13.1] and the isometry property (5). We obtain that

T1(F) =
∫
A

∫
A

E

[ min(p−1,q−1)∑
r=0

min(p−1,q−1)∑
s=0

r!s!
(
p − 1

r

) (
q − 1

r

) (
p − 1

s

) (
q − 1

s

)

× Ip+q−2(r+1)( fp(x, · ) ⊗r fq(x, · ))Ip+q−2(s+1)( fp(y, · ) ⊗s fq(y, · ))
]
µ(dy)µ(dx)

=

min(p−1,q−1)∑
r=0

min(p−1,q−1)∑
s=0

r!s!
(
p − 1

r

) (
q − 1

r

) (
p − 1

s

) (
q − 1

s

)

× E[Ip+q−2(r+1)( fp ⊗r+1 fq)Ip+q−2(s+1)( fp ⊗s+1 fq)
]

=

min(p,q)∑
r=1
((r − 1)!)2

(
p − 1
r − 1

)2 (q − 1
r − 1

)2
(p + q − 2r)! ‖ fp ⊗̃r fq ‖2p+q−2r .
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On the other hand, we have

T2(F) = 1(p = q)
∫
A

(p − 1)!‖ fp(x, · )‖2p−1 µ(dx) = 1(p = q) (p − 1)!‖ fp ‖2p ,

which is just the square root of the last summand in the expression for T1(F) for p = q.
Consequently, combining the expressions for T1(F) and T2(F) yields

T1(F) − T2(F)2

= 1(p = q)
p−1∑
r=1
((r − 1)!)2

(
p − 1
r − 1

)4
(2(p − r))!‖ fp ⊗̃r fp ‖22(p−r)

+ 1(p , q)
min(p,q)∑

r=1
((r − 1)!)2

(
p − 1
r − 1

)2 (q − 1
r − 1

)2
(p + q − 2r)! ‖ fp ⊗̃r fq ‖2p+q−2r .

Together with the elementary inequality
√

a + b ≤ √a +
√

b, valid for all a, b ≥ 0, and the
fact that, by Jensen’s inequality, ‖g̃‖p ≤ ‖g‖p for all g ∈ L2(Ap), p ≥ 1, this implies that

dΦ(F, Z) ≤ cΦ
∞∑
p=1

p
p−1∑
r=1
(r − 1)!

(
p − 1
r − 1

)2√
(2(p − r))! ‖ fp ⊗̃r fp ‖2(p−r)

+ cΦ
∞∑

p,q=1
p,q

p
min(p,q)∑

r=1
(r − 1)!

(
p − 1
r − 1

) (
q − 1
r − 1

)√
(p + q − 2r)! ‖ fp ⊗̃r fq ‖p+q−2r

≤ cΦ
∞∑
p=1

p
p−1∑
r=1
(r − 1)!

(
p − 1
r − 1

)2√
(2(p − r))! ‖ fp ⊗r fp ‖2(p−r)

+ cΦ
∞∑

p,q=1
p,q

p
min(p,q)∑

r=1
(r − 1)!

(
p − 1
r − 1

) (
q − 1
r − 1

)√
(p + q − 2r)! ‖ fp ⊗r fq ‖p+q−2r .

The proof is thus complete. �

Remark 3.4. It appears that the formula for the scalar product
∫
A
(DxF)(−DxL−1F) µ(dx)

has already been computed in Equation (6.3.2) in [8]. However, it has not been used in [8]
to derive a quantitative central limit theorem.

Note that the assumption F ∈ D1,4 in Theorem 3.1 justifies the inequality at (18), but does
not necessarily imply that the sums on the right hand side of (15) converge. For this to hold,
extra assumptions are needed. However, it turns out that they are not too restrictive in the
applications we have in mind, see Theorem 4.1.
Let us briefly consider two special cases, namely that F belongs to a singleWiener chaos or to
a finite sum ofWiener chaoses. Here, the result reduces to Proposition 3.2 or Proposition 3.7
in [7], respectively. Note that in these cases [8, Theorem 2.10.1] ensures that the functional
F has a density with respect to the Lebesgue measure on R. Moreover, one easily verifies
that F ∈ D1,4. For simplicity we decided to restrict to the unit variance case only, which is,
as explained above, no restriction of generality.
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Corollary 3.5. Let Z be a centred Gaussian random variable with unit variance and let dΦ
be one of the probability metrics dTV, dK, dW or dbW .

(a) If F = Iq(h) for some integer q ≥ 2 and an element h ∈ H�q such that E[F2] = 1.
Then there is a constant c1 ∈ (0,∞) only depending on q and the choice of the
probability metric such that

dΦ(F, Z) ≤ c1 max
r=1,...,q−1

‖h ⊗r h‖H⊗2(q−r ) .

(b) If F = Iq1(h1) + . . . + Iqn (hn) for integers n, q1, . . . , qn ≥ 1 and elements hi ∈ H�qi ,
i = 1, . . . , n, such that E[F2] = 1. Then there are constants c1, c2 ∈ (0,∞) only
depending on q1, . . . , qn and on the choice of the probability metric such that

dΦ(F, Z) ≤ c1 max
r=1, . . .,qi−1
i=1, . . .,n

‖hi ⊗r hi ‖ + c2 max
r=1, . . .,min(qi ,qj )

1≤i< j≤n

‖hi ⊗r hj ‖ .

4 Application to Gaussian processes
4.1 The Breuer-Major Theorem
Let (an)n∈N, (bn)n∈N be two positive sequences. Then wewrite an . bn if an/bn is bounded,
and an ∼ bn whenever an . bn and bn . an.
Consider a one-dimensional centred and stationary Gaussian process X = (Xk)k∈Z with unit
variance and a covariance function

(20) ρ( j) = E[X1X1+j] , j ∈ Z .

In what follows we will assume that

(21) |ρ( j)| ∼ | j |−α

for some α > 0. Recall that the Cauchy-Schwarz implies that |ρ( j)| ≤ ρ(0) = 1 for all
j ∈ Z. For technical reasons, we assume that for any n ≥ 1 the vector (X1, . . . , Xn) is jointly
Gaussian with a non-degenerate covariance matrix. As an example, one can think of X
being obtained from the increments of a fractional Brownian motion BH = (BH

t )t∈R with
Hurst parameter H ∈ (0, 1), that is, Xk = BH

k+1 − BH
k

for all k ∈ Z. In that case

ρ( j) = 1
2
( | j + 1|2H + | j − 1|2H − 2| j |2H )

and thus (21) is satisfied with α = 2 − 2H, see Chapter 7.4 in [8].
Let g : R→ R be a non-constant measurable function with E|g(X1)|2 < ∞ and consider the
partial sum

(22) Fn =
1√
n

n∑
k=1
{g(Xk) − E[g(Xk)]} , n ∈ N .

We will assume that g has Hermite rank equal to m ∈ N. That is, for each polynomial
p : R → R with degree ∈ {1, . . . ,m − 1} one has that E[(g(X1) − E[g(X1)])p(X1)] = 0 and
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E[g(X1)Hm(X1)] , 0, where Hm is the mth Hermite polynomial. The Hermite rank can also
be described in a different manner. Namely, due to the moment condition E|g(X1)|2 < ∞, g
has the following Hermite expansion:

(23) g(x) − E[g(X1)] =
∞∑
q=1

cqHq(x) with cq =
1
q!
E[g(X1)Hq(X1)] .

For g to have Hermite rank m means that cq = 0 for all q ∈ {1, . . . ,m − 1} and that cm , 0.
(The existence of such an m is implied by the fact that g is non-constant.)
It turns out that the rates in Theorem 4.1 below do not only depend on α and the Hermite
rank m, but also on a quantity γ ∈ N ∪ {∞} that we call the chaotic gap of g. Roughly
speaking, it is the minimal distance between two active chaoses a functional lives in. More
precisely, if cq = 0 for all q , m, we set γ = ∞. If there is a p ≥ 1 such that cp , 0 and
cp+1 , 0, we set γ = 1. Otherwise, γ ≥ 2 and it is uniquely characterized by the following
two conditions:

(i) for all q ≥ 1: if cq , 0 then cq+1 = · · · = cq+γ−1 = 0,

(ii) there exists p ≥ 1 such that cp , 0 and cp+γ , 0.

Of course, if g = Hq for some q ≥ 1, then m = q and γ = ∞. Also if g is a linear
combination of Hermite polynomials, one can directly determine the rank and the chaotic
gap. More general examples involve even and odd functions, both having a chaotic gap of
γ = 2, and the exponential function having a chaotic gap of γ = 1. Another interesting
example is the indicator function g = 1[0,∞), which satisfies m = 1 and γ = 2.
Using the parameters α, γ and m we can now formulate our quantitative central limit theorem
for the random variables Fn defined at (22).

Theorem 4.1. Let g : R → R be a measurable and non-constant function. Suppose that
E|g(X1)|2 < ∞, E|g((2 + ε)X1)|2 < ∞ for some ε > 0, that g has Hermite rank equal
to m ≥ 2, that ρ(0) = 1 and that |ρ( j)| ∼ | j |−α for some α > 1/m. Further, denote by
γ ∈ N ∪ {∞} the chaotic gap of g and let Z be a standard Gaussian variable. Then the
following assertions are true for each of the probability metrics dΦ ∈ {dW, dbW } and also
for dTV and dK in the case that Fn has a density with respect to the Lebesgue measure on R.

(a) If m = 2 and γ = 1 it holds that

(24) dΦ

(
Fn√

var(Fn)
, Z

)
.

1
var(Fn) ×




n−1/2 : α > 1
n−α/2 : α ∈

(
2
3, 1

)
n1−2α : α ∈

(
1
2,

2
3

]
.

(b) If m = 2 and γ ≥ 2 it holds that

(25) dΦ

(
Fn√

var(Fn)
, Z

)
.

1
var(Fn) ×

{
n−1/2 : α > 3

4

n1−2α : α ∈
(

1
2,

3
4

)
.
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(c) If m ≥ 3 and γ = 1 it holds that

(26) dΦ

(
Fn√

var(Fn)
, Z

)
.

1
var(Fn) ×




n−1/2 : α > 1
n−α/2 : α ∈

(
1

m− 1
2
, 1

)
n1−mα : α ∈

(
1
m,

1
m− 1

2

]
.

(d) If m ≥ 3 and γ ≥ 2 it holds that

(27) dΦ

(
Fn√

var(Fn)
, Z

)
.

1
var(Fn) ×




n−1/2 : α > 1
2

n−α : α ∈
(

1
m−1,

1
2

)
n1−mα : α ∈

(
1
m,

1
m−1

)
.

Moreover, as n→∞, one has that

var(Fn) → σ2 := var(g(X1)) + 2
∞∑
k=1

cov[g(X1), g(X1+k)] ∈ [0,∞) .

Remark 4.2. In Theorem 4.1 we have excluded some boundary cases, for example in part
(b) the case that α = 3/4. It is possible to fill these gaps and to derive rates of convergence,
which involve logarithmic terms. For sake of simplicity we have excluded them from our
discussion.

Let us briefly comment on the assumptions made in Theorem 4.1. At first, one might
wonder whether the condition E|g((2 + ε)X1)|2 < ∞ for some ε > 0 is already implied
by the condition that E|g(X1)|2 < ∞. Whilst this is true for many choices of g such as
g(x) = |x |p, this is not generally the case as the following example shows. Due to our
assumptions, X1 ∼ N(0, 1) has a standard Gaussian distribution and we observe that

M(a) := E
[
eaX

2
1
]
=

1√
2π

∫ ∞

−∞
e(a−

1
2 )x2

dx =

{
1√

1−2a
: a < 1

2

∞ : a ≥ 1
2 .

Thus, taking g(x) := ex
2/8 we conclude that E|g(X1)|2 = M(1/4) =

√
2, while E|g((2 +

ε)X1)|2 = M(1 + ε + ε2/4) = ∞ for all ε > 0. Moreover, the motivation to impose the
moment condition E|g((2 + ε)X1)|2 < ∞ for some ε > 0 is to ensure the convergence of the
corresponding sums in (15), thus also implying that 〈DFn,−DLFn〉H ∈ L2(Ω) such that one
can formally apply Theorem 3.1. As a consequence and in contrast to Section 6 in [11], we
do not need moment assumptions involving derivatives of g such as E|g′(X1)|4 < ∞, which
would in turn imply that Fn ∈ D1,4. Hence, we can dispense with additional smoothness or
regularity assumptions on g and are able to handle even non-continuous choices of g.
Theorem 4.1 also raises the question under which conditions the partial sums Fn have
a density with respect to the Lebesgue measure on the real line. To give an answer to
this question which goes beyond the (somehow restrictive) conditions of the transformation
theorem for densities, we introduce the notion of a 0-measure-preservingmap. Ameasurable
function f : R→ R is called 0-measure-preserving if for all Lebesgue null sets B ⊂ R also
the preimage f −1(B) ⊂ R is a Lebesgue null set. Using the technical assumption that
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(X1, . . . , Xn) is jointly Gaussian with a non-degenerate covariance matrix, it turns out that
Fn has a density with respect to the Lebesgue measure on R if and only if g is 0-measure-
preserving. An argument is given in the Appendix. Examples of functions g where Fn

has no density are given by locally constant functions, including, for example, the case of
indicator functions. In turn, the power function g(x) = |x |p is 0-measure-preserving such
that the functionals considered in Subsection 4.2 below possess a density for any choice of
p > 0.

Some parts of the proof that involve convolutions of sequences with finite support and
require an application of Young’s inequality are inspired by [3]. We write `p(Z) for the
space of sequences u = (uk)k∈Z such that ‖u‖`p (Z) :=

( ∑
k∈Z |uk |p

)1/p
< ∞ if p ∈ [1,∞)

and ‖u‖`∞(Z) := supk∈Z |uk | < ∞ if p = ∞. Now, recall that the convolution of two sequences
u, v on Z with finite support is defined as

(u ∗ v)(k) :=
∑
j∈Z

u( j)v(k − j) , k ∈ Z ,

and that u ∗ v has again a finite support. Due to Young’s inequality, it holds that for
1 ≤ p, q, r ≤ ∞ with 1/p + 1/q = 1 + 1/r ,

(28) ‖u ∗ v‖`r (Z) ≤ ‖u‖`p (Z) ‖v‖`q (Z)
for sequences u and v with finite support.

Proof of Theorem 4.1. It is no loss of generality to assume that E[g(X1)] = 0. Then, since
g is assumed to have Hermite rank equal to m, we have the unique Hermite expansion

(29) g(x) =
∞∑

q=m

cqHq(x) with cq =
1
q!
E[g(X1)Hq(X1)] ,

where the sum converges in the L2-sense, meaning that E|g(X1) −
∑n

q=m cqHq(X1)|2 → 0,
as n → ∞. Moreover due to our assumption that E|g((2 + ε)X1)|2 < ∞ and thanks to (4),
we have that

(30)
∞∑

q=m

q! c2
q (2 + ε)2q < ∞ ,

see e.g. [8, Proposition 1.4.2].
The next is to observe that one can consider the Gaussian process X = (Xk)k∈Z as a subset
of an isonormal Gaussian process {W(h) : h ∈ H}, say, where H is a real separable Hilbert
space with scalar product 〈 · , · 〉H. This means that for every k ∈ Z there exists an element
hk ∈ H such that Xk = W(hk) and, consequently,

(31) 〈hk, h`〉H = ρ(k − `) for all k, ` ∈ Z ,

see [8, Proposition 7.2.3] for details. Using that for h ∈ H, Iq(h⊗q) = Hq(W(h)) (Hq is
again the qth Hermite polynomial), we see that g(Xk) =

∑∞
q=m cq Iq(h⊗qk

) and hence

(32) Fn =

∞∑
q=m

Iq( fq,n) with fq,n =
cq√

n

n∑
k=1

h⊗q
k
∈ H�q .

14 207



For p, q ≥ m and r = 1, . . . ,min(p, q) we compute

‖ fq,n‖2H⊗q =
c2
q

n

n∑
k,`=1

ρq(k − `) ,

fp,n ⊗r fq,n =
cp cq

n

n∑
k,`=1

ρr (k − `) [h⊗p−r
k

⊗ h⊗q−r
`
] ,

‖ fp,n ⊗r fq,n‖2H⊗p+q−2r =
c2
p c2

q

n2

n∑
i, j,k,`=1

ρr (i − j)ρr (k − `) ρp−r (i − k)ρq−r ( j − `) .

Since
∑

k∈Z |ρ(k)|q < ∞ for all q ≥ m, one has by dominated convergence that

‖ fq,n‖2H⊗q = c2
q

n−1∑
k=−(n−1)

n − |k |
n

ρq(k) → c2
q

∑
k∈Z

ρq(k) ≤ c2
q

∑
k∈Z
|ρ(k)|m < ∞ ,

as n→ ∞. With respect to the summability condition (30) and the variance representation
(6), this implies that, as n→∞,

(33) σ2
n := var(Fn) =

∞∑
q=m

q!‖ fq,n‖2 → σ2 :=
∞∑

q=m

q! c2
q

∑
k∈Z

ρq(k) ∈ [0,∞) .

In view of our main bound (15) we need to compute the asymptotic order of the quantity

(34) An(p, q, r) :=
1
n2

n∑
i, j,k,`=1

|ρ(i − j)|r |ρ(k − `)|r |ρ(i − k)|p−r |ρ( j − `)|q−r , p, q ≥ m

for r = 1, . . . ,min(p, q) if p , q and for r = 1, . . . , q − 1 if p = q. We assume without loss
of generality that p ≤ q and distinguish two cases. First, let r = 1, . . . , p − 1. Then

An(p, q, r) ≤ An(p, p, r) = An(p, p, p − r) ≤ An(m,m,min(r, p − r,m − 1)) .

Second, assume that m ≤ r = p < q such that there exists some integer t ≥ 1 with p+ t = q.
Note that we only have to consider those cases where t is greater than or equal to the chaotic
gap γ. Then

An(p, q, p) ≤ An(m,m + t,m) ≤ An(m,m + γ,m) .
By index shifting, one obtains

An(p, q, r) = 1
n2

n−1∑
i, j,k,`=0

|ρ(|i − j |)|r |ρ(|k − ` |)|r |ρ(|i − k |)|p−r |ρ(| j − ` |)|q−r

=
1
n2

n−1∑
`=0

n−1−`∑
j=−l

n−1−j∑
i=−j

n−1−`∑
k=−`

|ρ(|i |)|r |ρ(|k |)|r |ρ(|i + j − k |)|p−r |ρ(| j |)|q−r

≤ 1
n

∑
| j | ≤n−1

n−1−j∑
i=−j

∑
|k | ≤n−1

|ρ(|i |)|r |ρ(|k |)|r |ρ(|k − (i + j)|)|p−r |ρ(| j |)|q−r .
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This means that in the second case we get

An(p, p + t, p) ≤ An(m,m + γ,m) ≤ 1
n

(∑
k∈Z
|ρ(k)|m

)2 ∑
| j | ≤n−1

|ρ( j)|γ

.

{
n−1 : α > 1

γ

n−αγ : α < 1
γ .

(35)

Now, let us come back to the first case and let r = 1, . . . ,m − 1. For any integer s ≥ 1
introduce the truncated sequence

(36) ρs,n(k) = |ρ(k)|s 1(|k | ≤ n − 1) .
Then, using again a careful index shifting, we see that

An(m,m, r) = 1
n2

n−1∑
i, j,k,`=0

ρr,n(|i − j |)ρr,n(|k − ` |)ρm−r,n(|i − k |)ρm−r,n(| j − ` |)

≤ 1
n2

n−1∑
i, j=0
(ρr,n ∗ ρm−r,n)(|i − j |)2

≤ 1
n

∑
| j | ≤n−1

(ρr,n ∗ ρm−r,n)( j)2

≤ 1
n
‖ρr,n ∗ ρm−r,n‖2`2(Z) .

Now, we apply Young’s inequality (28) to derive a rate for ‖ρr,n ∗ ρm−r,n‖2`2(Z). For m = 2
it holds that

‖ρ1,n ∗ ρ1,n‖2`2(Z) ≤ ‖ρ1,n‖4`4/3(Z) =
©«

∑
|k | ≤n−1

|ρ(k)|4/3ª®¬
3

.

{
1 : α > 3

4
n3−4α : α < 3

4

and if m > 2 we find that

‖ρr,n ∗ ρm−r,n‖2`2(Z) ≤ ‖ρr,n‖2`2(Z)‖ρm−r,n‖2`1(Z) .

Moreover,

‖ρr,n‖2`2(Z) =
∑
|k | ≤n−1

|ρ(k)|2r .
{

1 : α > 1
2r

n1−2rα : α < 1
2r ,

(37)

‖ρm−r,n‖2`1(Z) =
©«

∑
|k | ≤n−1

|ρ(k)|m−rª®¬
2

.

{
1 : α > 1

m−r
n2−2(m−r)α : α < 1

m−r .
(38)

Consequently, by changing the roles of ρr,n and ρm−r,n, one has the estimate

‖ρr,n ∗ ρm−r,n‖2`2(Z) ≤ max
r=1,...,[(m−1)/2]

‖ρr,n‖2`2(Z)‖ρm−r,n‖2`1(Z)

.




1 : α > 1
2

n1−2α : α ∈
(

1
m−1,

1
2

)
n3−2mα : α < 1

m−1 .
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In summary, we arrive at the bounds

An(2, 2, 1) .
{

n−1 : α > 3
4

n2−4α : α < 3
4 ,

(39)

An(m,m, r) .



n−1 : α > 1
2

n−2α : α ∈
(

1
m−1,

1
2

)
n2−2mα : α < 1

m−1 .

(40)

Now, one can plug-in the estimates into the right hand side of (15) and obtain by defining
An :=

(
maxr=1,...,[(m−1)/2] An(m,m, r) + An(m,m + γ,m)

)1/2 that

∞∑
p=m

p
p−1∑
r=1
(r − 1)!

(
p − 1
r − 1

)2√
(2(p − r))!

 fp,n
σn
⊗r fp,n

σn


2(p−r)

+

∞∑
p,q=m
p,q

p
min(p,q)∑

r=1
(r − 1)!

(
p − 1
r − 1

) (
q − 1
r − 1

)√
(p + q − 2r)!

 fp,n
σn
⊗r fq,n

σn


p+q−2r

≤ An

σ2
n

{ ∞∑
p=m

c2
p p

p−1∑
r=1
(r − 1)!

(
p − 1
r − 1

)2√
(2(p − r))!

+

∞∑
p,q=m
p,q

|cp | |cq | p
min(p,q)∑

r=1
(r − 1)!

(
p − 1
r − 1

) (
q − 1
r − 1

)√
(p + q − 2r)!

}
.(41)

The claim follows upon proving that the two sums in the brackets converge. Put

(42) B1(p) :=
p−1∑
r=1
(r − 1)!

(
p − 1
r − 1

)2√
(2(p − r))! ,

note that due to (30), the first sum converges provided that B1(p) . (p−1)! 4p . (p−1)! (2+
ε)2p. However, using the Cauchy-Schwarz inequality, Vandermonde’s identity for binomial
coefficients and Stirling’s formula, we see that

B1(p)
(p − 1)! =

p−1∑
r=1

(
p − 1
r − 1

) (
2(p − r)

p − r

)1/2
≤

(
p−1∑
r=1

(
p − 1
r − 1

)2
)1/2 (

p−1∑
r=1

(
2(p − r)

p − r

))1/2

=

((
2(p − 1)

p − 1

)
− 1

)1/2 (
p−1∑
r=1

(
2r
r

))1/2

≤ (p − 1)1/2
(
2(p − 1)

p − 1

)
∼ 4p−1
√
π
.

To show that the sum in (41) converges, it is sufficient to prove that

(43)
∞∑

p,q=m
p,q

(c2
p + c2

q) p
min(p,q)∑

r=1
(r − 1)!

(
p − 1
r − 1

) (
q − 1
r − 1

)√
(p + q − 2r)! < ∞ ,
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thanks to the inequality ab ≤ a2 + b2, valid for all a, b ∈ R. To this end, observe that for
p ≥ m + 1, again by Stirling’s formula,

p−1∑
q=m

q∑
r=1
(r − 1)!

(
p − 1
r − 1

) (
q − 1
r − 1

)√
(p + q − 2r)!

≤ (p − 1)!
p−1∑
q=m

q∑
r=1

(
q − 1
r − 1

) (
2(p − r)

p − r

)1/2

≤ (p − 1)!
p−1∑
q=m

(
2(q − 1)

q − 1

)1/2
q1/2

(
2(p − 1)

p − 1

)1/2

≤ (p − 1)! (p − 1)3/2
(
2(p − 1)

p − 1

)

∼ (p − 1)! (p − 1)4
p−1
√
π

. (p − 1)! (2 + ε)
2p−2

√
π

,

for any ε > 0, which implies (43) in view of (30). Thus, one can formally apply Theorem
3.1 such that there is a constant C ∈ (0,∞) only depending on the class Φ and g (or more
specifically on the sequence (cq)q∈N) such that

dΦ

(
Fn

σn
, Z

)
≤ C

An

σ2
n

.

The proof is complete. �

Remark 4.3. If c2q , 0 for some q ≥ 1, it follows immediately that ‖ f2q,n‖2 →
c2

2q
∑

k∈Z ρ2q(k) > 0, as n → ∞, and hence σ2 > 0. As a consequence, we see that
in this situation, the variance of Fn has no influence on the rates in Theorem 4.1.
Remark 4.4. The chaotic gap γ of the function g is visible in Theorem 4.1 only in the case
γ = 1. As our proof shows, this is just a coincidence, since for γ = 2 the terms involving
the chaotic gap are of the same size as the other leading terms and for γ > 2 become even
subdominant in our situation. Consequently, for γ ≥ 2 one gets exactly the same rates as for
γ = ∞, and the rates in Theorem 4.1 coincide with the rates given in [3, Proposition 2.15].
Let us finally in this section consider the set-up of Theorem 4.1 in the special case that
g has Hermite rank m = 1 (which has been excluded in the statement). Clearly, if g is
linear (so m = 1 and γ = ∞), Fn is already centred Gaussian and Fn/

√
var(Fn) coincides

in distribution with the standard Gaussian random variable Z . However, an inspection of
the proof of Theorem 4.1 shows that for non-linear g with m = 1 and arbitrary chaotic
gap 1 ≤ γ < ∞ the leading term in (15) is ‖ f1,n ⊗1 f1+γ,n‖, which finally yields a rate of
convergence of order n−1/2 as long as α > 1 = 1/m.

4.2 Power variations of the fractional Brownian motion and processes from
the Cauchy class

We build on the example we have seen in the previous section and let again X = (Xk)k∈Z
be a one-dimensional centred and stationary Gaussian process with unit variance and with
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covariance function ρ such that the assumption (21) is satisfied. Moreover, we assume
again that for any n ≥ 1 the vector (X1, . . . , Xn) is jointly Gaussian with a non-degenerate
covariance matrix. As function g we take now

(44) g(x) := |x |p − µp , p > 0 , where µp = E|X1 |p .

In this situation, our random variable Fn defined by (22) becomes a so-called (centred)
power variation of the Gaussian process X . The asymptotic behaviour of these functionals
has attracted considerable interest in probability theory and mathematical statistics, see
[2, 3], for example, as well as the references cited therein.
Now, we notice that unless in the special case p = 2 of the quadratic variation, the Hermite
expansion of the function g at (44) is not finite. Moreover, since g is an even function it
holds that the Hermite rank of g is m = 2 and, if p , 2, that the chaotic gap is γ = 2.
Consequently, part (b) of Theorem 4.1 applies. (Note also that E|g(X1)|2 = µ2p < ∞ and
E|g((2 + ε)X1)|2 < ∞.)
Instead of repeating the bounds, let us consider a more concrete situation. We assume that
the Gaussian process X = (Xk)k∈Z is obtained from the increments of a fractional Brownian
motion BH = (BH

t )t∈R with Hurst parameter H ∈ (0, 1). Let us recall that this means that
BH is a centred Gaussian process in continuous time with covariance function given by

E[BH
s BH

t ] =
1
2
( |s |2H + |t |2H − |s − t |2H )

, s, t ∈ R ,

and that Xk = BH
k+1 − BH

k
for all k ∈ Z. Then X has covariance function

ρ( j) = 1
2
( | j + 1|2H + | j − 1|2H − 2| j |2H )

and (21) is satisfied with α = 2 − 2H. Moreover, since (X1, . . . , Xn) possesses a non-
degenerate covariance function,

Fn =
1√
n

n∑
k=1
{|Xk |p − µp}

has a density and moreover, it is known that var(Fn) converges, as n → ∞, to a positive
and finite constant; see Remark 4.3. Thus, the following result is a direct consequence of
Theorem 4.1.

Corollary 4.5. Let dΦ be one of the probability distances dTV, dK, dW or dbW . Then

dΦ

(
Fn√

var(Fn)

)
.

{
n−1/2 : H ∈ (

0, 5
8
)

n4H−3 : H ∈ ( 5
8,

3
4
)
.

To the best of our knowledge, the previous corollary is the only known result showing that for
general power variations with p > 0 the speed of convergence in the central limit theorem
is universal. By this we mean that the rate we obtain for general p > 0 coincides with
the known rate for the quadratic variation functional, where p = 2. This should also be
compared with the discussion in Remark 4.4 and especially with the result in [3, Proposition
2.15].
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Remark 4.6. We emphasize that for H > 3/4 the fluctuations of Fn are no more Gaussian,
while for the boundary case H = 3/4 one can derive a logarithmic rate of convergence.
However and as already discussed in Remark 4.2, we will not pursue this direction in the
present paper.

Another flexible and prominent class of random processes X = (Xk)k∈Z to which our theory
applies are the members of the so-called Cauchy class. These processes are centred Gaussian
and their covariance function is given by

ρ( j) = (1 + | j |β)−α/β , j ∈ Z ,

where the parameters α and β have to satisfy α > 0 and β ∈ (0, 2], see [2]. It is clear
that these processes satisfy the assumptions made in the previous secion and that Theorem
4.1 can be applied. This shows that, if α > 1/2, the normalized power variations Fn with
parameter p > 0 satisfy the quantitative central limit theorem

dΦ

(
Fn√

var(Fn)

)
.

{
n−1/2 : α > 3

4
n1−2α : α ∈ ( 1

2,
3
4
)
,

where dΦ can be any of the probability distances dTV, dK, dW or dbW , adding thereby to the
limit theorems developed in [2]. Again, the rate of convergence is universal and does not
depend on the choice of the power p.

4.3 Functionals of Gaussian subordinated processes in continuous time revis-
ited

Finally, we apply our methods to functionals of Gaussian subordinated processes in con-
tinuous time. More precisely, we revisit the example from Section 6 in [11] and show
that the rate of convergence there can be improved by our methods, confirming thereby
the conjecture made in Remark 6.2 in [11]. That is, we consider a centred Gaussian pro-
cess X = (Xt )t∈R in continuous time with stationary increments. For example, X could
be a (two-sided) fractional Brownian motion. The covariance function of X is defined by
ρ(u − v) := E[(Xu+1 − Xu)(Xv+1 − Xv)], u, v ∈ R. It is clear that X might be considered as a
suitable isonormal Gaussian process, see Example 2.1.5 in [8].
Let g : R→ R be a non-constant and measurable function and fix two real numbers a < b.
For any T > 0 define the functional

(45) FT =
1√
T

∫ bT

aT

{g(Xu+1 − Xu) − E[g(Z)]} du ,

where Z ∼ N(0, 1) denotes a standard Gaussian random variable. To present the next result,
we adopt the .-notation for sequences to the continuous case. In particular, we shall write
a(T) . b(T) for two functions a, b : (0,∞) → R if the quotient a(T)/b(T) stays bounded for
all T . For simplicity, we restrict ourself to the case of the Wasserstein distance and do not
investigate under which conditions the functionals FT posess a density.

Proposition 4.7. Assume that ρ(0) = 1 and that
∫
R
|ρ(u)| du < ∞. Further, suppose that

g : R → R is a non constant and measurable function, for which E|g(X1)|2 < ∞ and
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E|g((2 + ε)X1)|2 < ∞ for some ε > 0. Then, as T →∞, one has that

(46) dW

(
FT√

var(FT )
, Z

)
.

T−1/2

var(FT ) ,

Moreover, if g is symmetric, then

dW

(
FT√

var(FT )
, Z

)
. T−1/2 .

Proof. The proof is almost literally the same as that for Theorem 4.1: the sums there have to
be replaced by integrals and estimated using the integrability assumption of the covariance
function, which corresponds to the caseα > 1 in the proof of Theorem4.1. All combinatorial
considerations remain unchanged. We also remark that according to Proposition 6.3 in [11]
the symmetry of the function g implies the asymptotic variance σ2 := var(FT ) exists in
(0,∞), see also Remark 4.3. This leads to the second bound. We leave the details to the
reader. �

We would like to emphasize that the central limit theorem for FT in [11], which is based
on an application of the second-order Poincaré inequality on the Wiener space, only works
under considerably stronger smoothness assumptions on the function g. In particular, g has
to be twice continuously differentiable. In this sense, Proposition 4.7 improves and extends
the result of Section 6 in [11].

5 A multivariate extension
The purpose of this final section is to provide a multivariate extension of Theorem 3.1. To
this end, we measure the distance between two d-dimensional (d ≥ 2) random vectors X
and Y by the multivariate Wasserstein distance

dmW (X,Y) := sup
��E[ϕ(X)] − E[ϕ(Y)]�� ,

where the supremum is running over all Lipschitz functions ϕ : Rd → R with Lipschitz
constant less than or equal to 1. The following result can be seen as the natural multi-
dimensional generalization of Theorem 3.1.

Theorem 5.1. Fix d ≥ 2 and let C = (Ci j)di, j=1 be a positive definite d × d matrix. Suppose
that F = (F1, . . . , Fd) is a centred d-dimensional random vector with covariance matrix C,
and such that Fi ∈ L2(Ω) and Fi ∈ D1,4 for all i ∈ {1, . . . , d}. Further, let Z ∼ N(0,C) be a
centredGaussian random vector with covariancematrixC and denote for each i ∈ {1, . . . , d}
and q ≥ 0 by hq,i ∈ H�q the kernels of the chaotic decomposition of Fi. Then

dmW (F,Z) ≤ c
d∑

i, j=1

∞∑
p=1

p
p−1∑
r=1
(r − 1)!

(
p − 1
r − 1

)2√
(2(p − r))! ‖hp,i ⊗r hp, j ‖H⊗2(p−r )

+ c
d∑

i, j=1

∞∑
p,q=1
p,q

p
min(p,q)∑

r=1
(r − 1)!

(
p − 1
r − 1

) (
q − 1
r − 1

)√
(p + q − 2r)! ‖hp,i ⊗r hq, j ‖H⊗p+q−2r ,
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where c =
√

d ‖C−1‖op‖C‖1/2op and ‖ · ‖op indicates the operator norm of the argument
matrix.

Proof. As in the proof of Theorem 3.1 we assume without loss of generality that H = L2(A)
for some σ-finite non-atomic measure space (A,A, µ), write ‖ · ‖q instead of ‖ · ‖H⊗q and
fq,i for hq,i, i ∈ {1, . . . , d}.
From Theorem 6.1.1 in [8] we have that

dmW (F,Z) ≤
√

d ‖C−1‖op‖C‖1/2op

( d∑
i, j=1
E
[(

Ci j −
∫
A

(DxFi)(−DxL−1Fj) µ(dx)
)2] ) 1

2

.

The covariance representation (7) as well as the definitions (11) and (13) of D and L−1,
respectively, imply that the expectation is bounded by

E
[( ∫

A

∞∑
p=1

pIp−1( fi,p(x, · ))
∞∑
q=1

Iq−1( fq, j(x, · )) µ(dx) −
∞∑
n=1

n!〈 fn,i, fn, j〉n
)2]

and hence

dmW (F,Z) ≤ c
d∑

i, j=1

∞∑
p,q=1

p
(
E
[( ∫

A

Ip−1( fp,i(x, · ))Iq−1( fq, j(x, · )) µ(dx)

− E
∫
A

Ip−1( fp,i(x, · ))Iq−1( fq, j(x, · )) µ(dx)
)2] )1/2

= c
d∑

i, j=1

∞∑
p,q=1

p
(
var

( ∫
A

Ip−1( fp,i(x, · ))Iq−1( fq, j(x, · )) µ(dx)
))1/2

The variance in the last expression equals T1(F,G) − T2(F,G)2 with

T1(F,G) =
∫
A

∫
A

E[Ip−1( fp,i(x, · ))Iq−1( fq, j(x, · ))

× Ip−1( fp,i(y, · ))Iq−1( fq, j(y, · ))] µ(dy)µ(dx)

and

T2(F,G) = E
∫
A

Ip−1( fp,i(x, · ))Iq−1( fq, j(x, · )) µ(dx) .

Arguing as in the proof of Theorem 3.1, we see that

T1(F,G) =
min(p,q)∑

r=1
((r − 1)!)2

(
p − 1
r − 1

)2 (q − 1
r − 1

)2
(p + q − 2r)!‖ fp,i ⊗̃r fq, j ‖2p+q−2r

we well as

T2(F,G) = 1(p = q)(p − 1)!〈 fp,i, fp, j〉p .
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As a consequence, we find that

T1(F,G) − T2(F,G)2

= 1(p = q)
p−1∑
r=1
((r − 1)!)2

(
p − 1
r − 1

)4
(2(p − r))!‖ fp,i ⊗̃r fp, j ‖22(p−r)

+ 1(p , q)
min(p,q)∑

r=1
((r − 1)!)2

(
p − 1
r − 1

)2 (q − 1
r − 1

)2
(p + q − 2r)!‖ fp,i ⊗̃r fq, j ‖2p+q−2r

and finally

dmW (F,Z) ≤ c
d∑

i, j=1

∞∑
p=1

p
p−1∑
r=1
(r − 1)!

(
p − 1
r − 1

)2√
(2(p − r))!‖ fp,i ⊗r fp, j ‖2(p−r)

+ c
d∑

i, j=1

∞∑
p,q=1
p,q

p
min(p,q)∑

r=1
(r − 1)!

(
p − 1
r − 1

) (
q − 1
r − 1

)√
(p + q − 2r)!‖ fp,i ⊗r fq, j ‖p+q−2r .

This completes the proof. �

6 Appendix
Let B̄(Rn) be the completion of the Borel σ-field B(Rn) with respect to the n-dimensional
Lebesgue measure λn : B̄(Rn) → [0,∞]. We call a B̄(R)-measurable function f : Rn → Rn
0-measure-preserving if λn(B) = 0 for all B ∈ B̄(Rn) implies that λn( f −1(B)) = 0.

Lemma 6.1. Let g : R→ R be a B̄(R)-measurable function. For fixed n ≥ 1 define themeas-
urable function gn : Rn → Rn by applying g to each coordinate, that is, gn(x1, . . . , xn) :=
(g(x1), . . . , g(xn)), (x1, . . . , xn) ∈ Rn. Then g is 0-measure-preserving if and only if gn is
0-measure-preserving.

Proof. If n = 1, then there is nothing to show. So, we let n > 1 and assume that g is
0-measure-preserving. Now, the assertion follows by induction on n. For this reason, it is
sufficient to restrict to the case that n = 2. For any B ∈ B̄(R2) and any x ∈ R we write
Bx := {y ∈ R : (x, y) ∈ B}, which is an element of B̄(R).
Choose a B ∈ B̄(R2) with λ2(B) = 0. Then

λ2(B) =
∫
R
λ1(Bx) λ1(dx) = 0 .

As a consequence, the set N := {x ∈ R : λ1(Bx) > 0} satisfies λ1(N) = 0. Now, let
A := g−1

2 (B). Then, for each y ∈ R, one has that
Ay = {z ∈ R : (y, z) ∈ A} = {z ∈ R : (g(y), g(z)) ∈ B}
= {z ∈ R : g(z) ∈ Bg(y)} = g−1(Bg(y)) .

Due to our assumptions on g it holds that {y ∈ R : λ1(Ay) > 0} = {y ∈ R : λ1(Bg(y)) > 0} =
g−1(N), which is a set of Lebesgue measure 0. Now, the claim follows upon observing that

λ2(A) =
∫
R
λ1(Ay) λ1(dy) =

∫
g−1(N )

λ1(Ay) λ1(dy) = 0 .
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On the other hand, if gn is 0-measure-preserving, then g is also 0-measure-preserving by
considering sets of the form B1×· · ·×Bn for Bi ∈ B̄(R)whereλ1(B1) = · · · = λ1(Bn) = 0. �

Lemma 6.2. Let µ be a measure on B̄(Rn), which is equivalent to the Lebesgue measure λn
and let f : Rn → Rn be measurable function. Then µ ◦ f −1 is absolutely continuous with
respect to λn if and only if f is 0-measure-preserving.

Proof. The proof is standard. �

Lemma 6.3. If a random vector (X1, . . . , Xn) has a density with respect to λn for some
n ∈ N, then also X1 + · · · + Xn has a density with respect to λ1.

Proof. The claim follows by means of the transformation theorem. �
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10. Discussion

The two research articles Fissler and Thäle (2016a) and Fissler and Thäle (2016b)
can be regarded as complementary in many aspects: Whereas the first one consid-
ers qualitative Gamma approximations of Poisson functionals inside a fixed chaos,
the second one studies quantitative normal approximations of Gaussian function-
als with a possibly infinite chaos representation. The dichotomy also applies to
future research plans based on the respective articles.

As already discussed in the original article Fissler and Thäle (2016a), the con-
ditions of the results are quite restrictive in view of the order of the integrals and
the sign conditions. In the new light of the corresponding erratum, one has to
impose even more conditions to ensure the equivalence stated in the four moments
theorem (Theorem 3.5). In Remark 5.8, we called for new methods to establish
a four moments theorem for Poisson integrals with a centered Gamma limit for
higher orders. In fact, Döbler and Peccati (2017, Theorem 1.6) established a more
general and satisfying result, being able to treat arbitrary orders (and also odd
orders!) and to dispense with the sign condition on the kernels. However, even
with their refined methods, their result still does not yield a four moments theo-
rem unless one imposes some more conditions on the contractions of the kernels;
see Döbler and Peccati (2017, Remark 1.7). This corresponds to our additional
assumptions of (b’) in the erratum. In summary, we do not see a promising ansatz
how to tackle the discussed problem under less restrictive assumptions.

On the contrary, the article Fissler and Thäle (2016b) establishes a method
how to derive quantitative central limit theorems for situations where it seemed
impossible until now. As we have already discussed in the article, we plan to apply
the technique also to other Gaussian functionals, such as the number of zeros of a
random trigonometric polynomial (Azäıs et al., 2016), or the Euler characteristic
of a Gaussian excursion set (Estrade and León, 2016). Further promising objects
to study with this method are non-stationary Gaussian processes such as Volterra
processes discussed in Nourdin et al. (2016).
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