285,136 research outputs found

    Finding All Nash Equilibria of a Finite Game Using Polynomial Algebra

    Full text link
    The set of Nash equilibria of a finite game is the set of nonnegative solutions to a system of polynomial equations. In this survey article we describe how to construct certain special games and explain how to find all the complex roots of the corresponding polynomial systems, including all the Nash equilibria. We then explain how to find all the complex roots of the polynomial systems for arbitrary generic games, by polyhedral homotopy continuation starting from the solutions to the specially constructed games. We describe the use of Groebner bases to solve these polynomial systems and to learn geometric information about how the solution set varies with the payoff functions. Finally, we review the use of the Gambit software package to find all Nash equilibria of a finite game.Comment: Invited contribution to Journal of Economic Theory; includes color figure

    Irregularity of an analogue of the Gauss-Manin systems

    Get PDF
    In the D-modules theory, Gauss-Manin systems are defined by the direct image of the structure sheaf O by a morphism. A major theorem says that these systems have only regular singularities. This paper examines the irregularity of an analogue of the Gauss-Manin systems. It consists in the direct image complex of a D-module twisted by the exponential of a polynomial g by another polynomial f, where f and g are two polynomials in two variables. The analogue of the Gauss-Manin systems can have irregular singularities (at finite distance and at infinity). We express an invariant associated with the irregularity of these systems by the geometry of the map (f,g)

    Yang-Lee zeroes for an urn model for the separation of sand

    Full text link
    We apply the Yang-Lee theory of phase transitions to an urn model of separation of sand. The effective partition function of this nonequilibrium system can be expressed as a polynomial of the size-dependent effective fugacity zz. Numerical calculations show that in the thermodynamic limit, the zeros of the effective partition function are located on the unit circle in the complex zz-plane. In the complex plane of the actual control parameter certain roots converge to the transition point of the model. Thus the Yang-Lee theory can be applied to a wider class of nonequilibrium systems than those considered previously.Comment: 4 pages, 3 eps figures include

    Asymptotic Moments for Interference Mitigation in Correlated Fading Channels

    Full text link
    We consider a certain class of large random matrices, composed of independent column vectors with zero mean and different covariance matrices, and derive asymptotically tight deterministic approximations of their moments. This random matrix model arises in several wireless communication systems of recent interest, such as distributed antenna systems or large antenna arrays. Computing the linear minimum mean square error (LMMSE) detector in such systems requires the inversion of a large covariance matrix which becomes prohibitively complex as the number of antennas and users grows. We apply the derived moment results to the design of a low-complexity polynomial expansion detector which approximates the matrix inverse by a matrix polynomial and study its asymptotic performance. Simulation results corroborate the analysis and evaluate the performance for finite system dimensions.Comment: 7 pages, 2 figures, to be presented at IEEE International Symposium on Information Theory (ISIT), Saint Petersburg, Russia, July 31 - August 5, 201

    Frequency Response of Uncertain Systems: Strong Kharitonov-Like Results

    Full text link
    In this paper, we study the frequency response of uncertain systems using Kharitonov stability theory on first order complex polynomial set. For an interval transfer function, we show that the minimal real part of the frequency response at any fixed frequency is attained at some prescribed vertex transfer functions. By further geometric and algebraic analysis, we identify an index for strict positive realness of interval transfer functions. Some extensions and applications in positivity verification and robust absolute stability of feedback control systems are also presented.Comment: 18 pages, 8 figure

    Nondegenerate three-dimensional complex Euclidean superintegrable systems and algebraic varieties

    Get PDF
    A classical (or quantum) second order superintegrable system is an integrable n-dimensional Hamiltonian system with potential that admits 2n−1 functionally independent second order constants of the motion polynomial in the momenta, the maximum possible. Such systems have remarkable properties: multi-integrability and multiseparability, an algebra of higher order symmetries whose representation theory yields spectral information about the Schrödinger operator, deep connections with special functions, and with quasiexactly solvable systems. Here, we announce a complete classification of nondegenerate (i.e., four-parameter) potentials for complex Euclidean 3-space. We characterize the possible superintegrable systems as points on an algebraic variety in ten variables subject to six quadratic polynomial constraints. The Euclidean group acts on the variety such that two points determine the same superintegrable system if and only if they lie on the same leaf of the foliation. There are exactly ten nondegenerate potentials. ©2007 American Institute of Physic

    Nondegenerate 3D complex Euclidean superintegrable systems and algebraic varieties

    Full text link
    A classical (or quantum) second order superintegrable system is an integrable n-dimensional Hamiltonian system with potential that admits 2n-1 functionally independent second order constants of the motion polynomial in the momenta, the maximum possible. Such systems have remarkable properties: multi-integrability and multi-separability, an algebra of higher order symmetries whose representation theory yields spectral information about the Schroedinger operator, deep connections with special functions and with QES systems. Here we announce a complete classification of nondegenerate (i.e., 4-parameter) potentials for complex Euclidean 3-space. We characterize the possible superintegrable systems as points on an algebraic variety in 10 variables subject to six quadratic polynomial constraints. The Euclidean group acts on the variety such that two points determine the same superintegrable system if and only if they lie on the same leaf of the foliation. There are exactly 10 nondegenerate potentials.Comment: 35 page

    Integrability and explicit solutions in some Bianchi cosmological dynamical systems

    Get PDF
    The Einstein field equations for several cosmological models reduce to polynomial systems of ordinary differential equations. In this paper we shall concentrate our attention to the spatially homogeneous diagonal G_2 cosmologies. By using Darboux's theory in order to study ordinary differential equations in the complex projective plane CP^2 we solve the Bianchi V models totally. Moreover, we carry out a study of Bianchi VI models and first integrals are given in particular cases
    corecore