19 research outputs found

    Stochastic Development Regression on Non-Linear Manifolds

    Full text link
    We introduce a regression model for data on non-linear manifolds. The model describes the relation between a set of manifold valued observations, such as shapes of anatomical objects, and Euclidean explanatory variables. The approach is based on stochastic development of Euclidean diffusion processes to the manifold. Defining the data distribution as the transition distribution of the mapped stochastic process, parameters of the model, the non-linear analogue of design matrix and intercept, are found via maximum likelihood. The model is intrinsically related to the geometry encoded in the connection of the manifold. We propose an estimation procedure which applies the Laplace approximation of the likelihood function. A simulation study of the performance of the model is performed and the model is applied to a real dataset of Corpus Callosum shapes

    Bayesian Estimation of White Matter Atlas from High Angular Resolution Diffusion Imaging

    Full text link
    We present a Bayesian probabilistic model to estimate the brain white matter atlas from high angular resolution diffusion imaging (HARDI) data. This model incorporates a shape prior of the white matter anatomy and the likelihood of individual observed HARDI datasets. We first assume that the atlas is generated from a known hyperatlas through a flow of diffeomorphisms and its shape prior can be constructed based on the framework of large deformation diffeomorphic metric mapping (LDDMM). LDDMM characterizes a nonlinear diffeomorphic shape space in a linear space of initial momentum uniquely determining diffeomorphic geodesic flows from the hyperatlas. Therefore, the shape prior of the HARDI atlas can be modeled using a centered Gaussian random field (GRF) model of the initial momentum. In order to construct the likelihood of observed HARDI datasets, it is necessary to study the diffeomorphic transformation of individual observations relative to the atlas and the probabilistic distribution of orientation distribution functions (ODFs). To this end, we construct the likelihood related to the transformation using the same construction as discussed for the shape prior of the atlas. The probabilistic distribution of ODFs is then constructed based on the ODF Riemannian manifold. We assume that the observed ODFs are generated by an exponential map of random tangent vectors at the deformed atlas ODF. Hence, the likelihood of the ODFs can be modeled using a GRF of their tangent vectors in the ODF Riemannian manifold. We solve for the maximum a posteriori using the Expectation-Maximization algorithm and derive the corresponding update equations. Finally, we illustrate the HARDI atlas constructed based on a Chinese aging cohort of 94 adults and compare it with that generated by averaging the coefficients of spherical harmonics of the ODF across subjects

    Extrinsic Local Regression on Manifold-Valued Data

    Get PDF
    We propose an extrinsic regression framework for modeling data with manifold valued responses and Euclidean predictors. Regression with manifold responses has wide applications in shape analysis, neuroscience, medical imaging and many other areas. Our approach embeds the manifold where the responses lie onto a higher dimensional Euclidean space, obtains a local regression estimate in that space, and then projects this estimate back onto the image of the manifold. Outside the regression setting both intrinsic and extrinsic approaches have been proposed for modeling i.i.d manifold-valued data. However, to our knowledge our work is the first to take an extrinsic approach to the regression problem. The proposed extrinsic regression framework is general, computationally efficient and theoretically appealing. Asymptotic distributions and convergence rates of the extrinsic regression estimates are derived and a large class of examples are considered indicating the wide applicability of our approach

    Doctor of Philosophy

    Get PDF
    dissertationThe statistical study of anatomy is one of the primary focuses of medical image analysis. It is well-established that the appropriate mathematical settings for such analyses are Riemannian manifolds and Lie group actions. Statistically defined atlases, in which a mean anatomical image is computed from a collection of static three-dimensional (3D) scans, have become commonplace. Within the past few decades, these efforts, which constitute the field of computational anatomy, have seen great success in enabling quantitative analysis. However, most of the analysis within computational anatomy has focused on collections of static images in population studies. The recent emergence of large-scale longitudinal imaging studies and four-dimensional (4D) imaging technology presents new opportunities for studying dynamic anatomical processes such as motion, growth, and degeneration. In order to make use of this new data, it is imperative that computational anatomy be extended with methods for the statistical analysis of longitudinal and dynamic medical imaging. In this dissertation, the deformable template framework is used for the development of 4D statistical shape analysis, with applications in motion analysis for individualized medicine and the study of growth and disease progression. A new method for estimating organ motion directly from raw imaging data is introduced and tested extensively. Polynomial regression, the staple of curve regression in Euclidean spaces, is extended to the setting of Riemannian manifolds. This polynomial regression framework enables rigorous statistical analysis of longitudinal imaging data. Finally, a new diffeomorphic model of irrotational shape change is presented. This new model presents striking practical advantages over standard diffeomorphic methods, while the study of this new space promises to illuminate aspects of the structure of the diffeomorphism group

    Wasserstein Regression

    Full text link
    The analysis of samples of random objects that do not lie in a vector space is gaining increasing attention in statistics. An important class of such object data is univariate probability measures defined on the real line. Adopting the Wasserstein metric, we develop a class of regression models for such data, where random distributions serve as predictors and the responses are either also distributions or scalars. To define this regression model, we utilize the geometry of tangent bundles of the space of random measures endowed with the Wasserstein metric for mapping distributions to tangent spaces. The proposed distribution-to-distribution regression model provides an extension of multivariate linear regression for Euclidean data and function-to-function regression for Hilbert space valued data in functional data analysis. In simulations, it performs better than an alternative transformation approach where one maps distributions to a Hilbert space through the log quantile density transformation and then applies traditional functional regression. We derive asymptotic rates of convergence for the estimator of the regression operator and for predicted distributions and also study an extension to autoregressive models for distribution-valued time series. The proposed methods are illustrated with data on human mortality and distributional time series of house prices
    corecore