9 research outputs found

    Polynomial-time reducibilities and “almost all” oracle sets

    Get PDF
    AbstractIt is shown for every k>0 and for almost every tally setT, {A|A ⩽Pk−ttT} ≠ {A|A ⩽P(k+1)−ttT}. In contrast, it is shown that for every set A, the following holds: (a) for almost every set B,A ⩽ Pm B if and only if A ⩽ P(logn)−T B; and (b) for almost every set B, A ⩽Ptt B if and only ifA ⩽PTB

    Weak Completeness Notions for Exponential Time

    Get PDF
    Abstract The standard way for proving a problem to be intractable is to show that the problem is hard or complete for one of the standard complexity classes containing intractable problems. Lutz (1995) proposed a generalization of this approach by introducing more general weak hardness notions which still imply intractability. While a set A is hard for a class C if all problems in C can be reduced to A (by a polynomial-time bounded many-one reduction) and complete if it is hard and a member of C, Lutz proposed to call a set A weakly hard if a nonnegligible part of C can be reduced to A and to call A weakly complete if in addition A 2 C. For the exponential-time classes E = DTIME(2lin) and EXP = DTIME(2poly), Lutz formalized these ideas by introducing resource bounded (Lebesgue) measures on these classes and by saying that a subclass of E is negligible if it has measure 0 in E (and similarly for EXP). A variant of these concepts, based on resource bounded Baire category in place of measure, was introduced by Ambos-Spies (1996) where now a class is declared to be negligible if it is meager in the corresponding resource bounded sense. In our thesis we introduce and investigate new, more general, weak hardness notions for E and EXP and compare them with the above concepts from the literature. The two main new notions we introduce are nontriviality, which may be viewed as the most general weak hardness notion, and strong nontriviality. In case of E, a set A is E-nontrivial if, for any k 1, A has a predecessor in E which is 2kn complex, i.e., which can only be computed by Turing machines with run times exceeding 2kn on infinitely many inputs; and A is strongly E-nontrivial if there are predecessors which are almost everywhere 2kn complex. Besides giving examples and structural properties of the E-(non)trivial and strongly E-(non)trivial sets, we separate all weak hardness concepts for E, compare the corresponding concepts for E and EXP, answer the question whether (strongly) E-nontrivial sets are typical among the sets in E (or among the computable sets, or among all sets), investigate the degrees of the (strongly) E-nontrivial sets, and analyze the strength of these concepts if we replace the underlying p-m-reducibility by some weaker polynomial-time reducibilities

    Resource Bounded Immunity and Simplicity

    Get PDF
    Revisiting the thirty years-old notions of resource-bounded immunity and simplicity, we investigate the structural characteristics of various immunity notions: strong immunity, almost immunity, and hyperimmunity as well as their corresponding simplicity notions. We also study limited immunity and simplicity, called k-immunity and feasible k-immunity, and their simplicity notions. Finally, we propose the k-immune hypothesis as a working hypothesis that guarantees the existence of simple sets in NP.Comment: This is a complete version of the conference paper that appeared in the Proceedings of the 3rd IFIP International Conference on Theoretical Computer Science, Kluwer Academic Publishers, pp.81-95, Toulouse, France, August 23-26, 200

    Finite-State Genericity : on the Diagonalization Strength of Finite Automata

    Get PDF
    Algorithmische Generizit¨atskonzepte spielen eine wichtige Rolle in der Berechenbarkeitsund Komplexit¨atstheorie. Diese Begriffe stehen in engem Zusammenhang mit grundlegenden Diagonalisierungstechniken, und sie wurden zur Erzielung starker Trennungen von Komplexit¨atsklassen verwendet. Da f¨ur jedes Generizit¨atskonzept die zugeh¨origen generischen Mengen eine co-magere Klasse bilden, ist die Analyse generischer Mengen ein wichtiges Hifsmittel f¨ur eine quantitative Analyse struktureller Ph¨anomene. Typischerweise werden Generizit¨atskonzepte mit Hilfe von Erweiterungsfunktionen definiert, wobei die St¨arke eines Konzepts von der Komplexit¨at der zugelassenen Erwiterungsfunktionen abh¨angt. Hierbei erweisen sich die sog. schwachen Generizit¨atskonzepte, bei denen nur totale Erweiterungsfunktionen ber¨ucksichtigt werden, meist als wesentlich schw¨acher als die vergleichbaren allgemeinen Konzepte, bei denen auch partielle Funktionen zugelassen sind. Weiter sind die sog. beschr¨ankten Generizit¨atskonzepte – basierend auf Erweiterungen konstanter L¨ange – besonders interessant, da hier die Klassen der zugeh¨origen generischen Mengen nicht nur co-mager sind sondern zus¨atzlich Maß 1 haben. Generische Mengen diesen Typs sind daher typisch sowohl im topologischen wie im maßtheoretischen Sinn. In dieser Dissertation initiieren wir die Untersuchung von Generizit¨at im Bereich der Theorie der Formalen Sprachen: Wir f¨uhren finite-state-Generizit¨atskonzepte ein und verwenden diese, um die Diagonalisierungsst¨arke endlicher Automaten zu erforschen. Wir konzentrieren uns hierbei auf die beschr¨ankte finite-state-Generizit¨at und Spezialf ¨alle hiervon, die wir durch die Beschr¨ankung auf totale Erweiterungsfunktionen bzw. auf Erweiterungen konstanter L¨ange erhalten. Wir geben eine rein kombinatorische Charakterisierung der beschr¨ankt finite-state-generischen Mengen: Diese sind gerade die Mengen, deren charakteristische Folge saturiert ist, d.h. jedes Bin¨arwort als Teilwort enth¨alt. Mit Hilfe dieser Charakterisierung bestimmen wir die Komplexit¨at der beschr¨ankt finitestate- generischen Mengen und zeigen, dass solch eine generische Menge nicht regul¨ar sein kann es aber kontext-freie Sprachen mit dieser Generizit¨atseigenschaft gibt. Die von uns betrachteten unbeschr¨ankten finite-state-Generizit¨atskonzepte basieren auf Moore-Funktionen und auf Verallgemeinerungen dieser Funktionen. Auch hier vergleichen wir die St¨arke der verschiedenen korrespondierenden Generizit¨atskonzepte und er¨ortern die Frage, inwieweit diese Konzepte m¨achtiger als die beschr¨ankte finite-state-Generizit ¨at sind. Unsere Untersuchungen der finite-state-Generizit¨at beruhen zum Teil auf neuen Ergebnissen ¨uber Bi-Immunit¨at in der Chomsky-Hierarchie, einer neuen Chomsky-Hierarchie f¨ur unendliche Folgen und einer gr¨undlichen Untersuchung der saturierten Folgen. Diese Ergebnisse – die von unabh¨angigem Interesse sind – werden im ersten Teil der Dissertation vorgestellt. Sie k¨onnen unabh¨angig von dem Hauptteil der Arbeit gelesen werden

    Parameterized analysis of complexity

    Get PDF
    corecore