8,970 research outputs found

    Optimal designs for rational function regression

    Full text link
    We consider optimal non-sequential designs for a large class of (linear and nonlinear) regression models involving polynomials and rational functions with heteroscedastic noise also given by a polynomial or rational weight function. The proposed method treats D-, E-, A-, and Φp\Phi_p-optimal designs in a unified manner, and generates a polynomial whose zeros are the support points of the optimal approximate design, generalizing a number of previously known results of the same flavor. The method is based on a mathematical optimization model that can incorporate various criteria of optimality and can be solved efficiently by well established numerical optimization methods. In contrast to previous optimization-based methods proposed for similar design problems, it also has theoretical guarantee of its algorithmic efficiency; in fact, the running times of all numerical examples considered in the paper are negligible. The stability of the method is demonstrated in an example involving high degree polynomials. After discussing linear models, applications for finding locally optimal designs for nonlinear regression models involving rational functions are presented, then extensions to robust regression designs, and trigonometric regression are shown. As a corollary, an upper bound on the size of the support set of the minimally-supported optimal designs is also found. The method is of considerable practical importance, with the potential for instance to impact design software development. Further study of the optimality conditions of the main optimization model might also yield new theoretical insights.Comment: 25 pages. Previous version updated with more details in the theory and additional example

    Definable Ellipsoid Method, Sums-of-Squares Proofs, and the Isomorphism Problem

    Get PDF
    The ellipsoid method is an algorithm that solves the (weak) feasibility and linear optimization problems for convex sets by making oracle calls to their (weak) separation problem. We observe that the previously known method for showing that this reduction can be done in fixed-point logic with counting (FPC) for linear and semidefinite programs applies to any family of explicitly bounded convex sets. We use this observation to show that the exact feasibility problem for semidefinite programs is expressible in the infinitary version of FPC. As a corollary we get that, for the isomorphism problem, the Lasserre/Sums-of-Squares semidefinite programming hierarchy of relaxations collapses to the Sherali-Adams linear programming hierarchy, up to a small loss in the degree

    Definable ellipsoid method, sums-of-squares proofs, and the isomorphism problem

    Get PDF
    The ellipsoid method is an algorithm that solves the (weak) feasibility and linear optimization problems for convex sets by making oracle calls to their (weak) separation problem. We observe that the previously known method for showing that this reduction can be done in fixed-point logic with counting (FPC) for linear and semidefinite programs applies to any family of explicitly bounded convex sets. We use this observation to show that the exact feasibility problem for semidefinite programs is expressible in the infinitary version of FPC. As a corollary we get that, for the graph isomorphism problem, the Lasserre/Sums-of-Squares semidefinite programming hierarchy of relaxations collapses to the Sherali-Adams linear programming hierarchy, up to a small loss in the degree. © 2018 ACM.Peer ReviewedPostprint (author's final draft

    On semidefinite representations of plane quartics

    Full text link
    This note focuses on the problem of representing convex sets as projections of the cone of positive semidefinite matrices, in the particular case of sets generated by bivariate polynomials of degree four. Conditions are given for the convex hull of a plane quartic to be exactly semidefinite representable with at most 12 lifting variables. If the quartic is rationally parametrizable, an exact semidefinite representation with 2 lifting variables can be obtained. Various numerical examples illustrate the techniques and suggest further research directions

    Hyperbolic Polynomials and Generalized Clifford Algebras

    Full text link
    We consider the problem of realizing hyperbolicity cones as spectrahedra, i.e. as linear slices of cones of positive semidefinite matrices. The generalized Lax conjecture states that this is always possible. We use generalized Clifford algebras for a new approach to the problem. Our main result is that if -1 is not a sum of hermitian squares in the Clifford algebra of a hyperbolic polynomial, then its hyperbolicity cone is spectrahedral. Our result also has computational applications, since this sufficient condition can be checked with a single semidefinite program

    Design of First-Order Optimization Algorithms via Sum-of-Squares Programming

    Full text link
    In this paper, we propose a framework based on sum-of-squares programming to design iterative first-order optimization algorithms for smooth and strongly convex problems. Our starting point is to develop a polynomial matrix inequality as a sufficient condition for exponential convergence of the algorithm. The entries of this matrix are polynomial functions of the unknown parameters (exponential decay rate, stepsize, momentum coefficient, etc.). We then formulate a polynomial optimization, in which the objective is to optimize the exponential decay rate over the parameters of the algorithm. Finally, we use sum-of-squares programming as a tractable relaxation of the proposed polynomial optimization problem. We illustrate the utility of the proposed framework by designing a first-order algorithm that shares the same structure as Nesterov's accelerated gradient method
    corecore