4,808 research outputs found

    The deduction theorem for strong propositional proof systems

    Get PDF
    This paper focuses on the deduction theorem for propositional logic. We define and investigate different deduction properties and show that the presence of these deduction properties for strong proof systems is powerful enough to characterize the existence of optimal and even polynomially bounded proof systems. We also exhibit a similar, but apparently weaker condition that implies the existence of complete disjoint NP-pairs. In particular, this yields a sufficient condition for the completeness of the canonical pair of Frege systems and provides a general framework for the search for complete NP-pairs

    The Deduction Theorem for Strong Propositional Proof Systems

    Get PDF
    This paper focuses on the deduction theorem for propositional logic. We define and investigate different deduction properties and show that the presence of these deduction properties for strong proof systems is powerful enough to characterize the existence of optimal and even polynomially bounded proof systems. We also exhibit a similar, but apparently weaker condition that implies the existence of complete disjoint NPUnknown control sequence '\mathsf' -pairs. In particular, this yields a sufficient condition for the completeness of the canonical pair of Frege systems and provides a general framework for the search for complete NPUnknown control sequence '\mathsf' -pairs

    Positivity Problems for Low-Order Linear Recurrence Sequences

    Full text link
    We consider two decision problems for linear recurrence sequences (LRS) over the integers, namely the Positivity Problem (are all terms of a given LRS positive?) and the Ultimate Positivity Problem} (are all but finitely many terms of a given LRS positive?). We show decidability of both problems for LRS of order 5 or less, with complexity in the Counting Hierarchy for Positivity, and in polynomial time for Ultimate Positivity. Moreover, we show by way of hardness that extending the decidability of either problem to LRS of order 6 would entail major breakthroughs in analytic number theory, more precisely in the field of Diophantine approximation of transcendental numbers

    On Recurrent Reachability for Continuous Linear Dynamical Systems

    Full text link
    The continuous evolution of a wide variety of systems, including continuous-time Markov chains and linear hybrid automata, can be described in terms of linear differential equations. In this paper we study the decision problem of whether the solution x(t)\boldsymbol{x}(t) of a system of linear differential equations dx/dt=Axd\boldsymbol{x}/dt=A\boldsymbol{x} reaches a target halfspace infinitely often. This recurrent reachability problem can equivalently be formulated as the following Infinite Zeros Problem: does a real-valued function f:R0Rf:\mathbb{R}_{\geq 0}\rightarrow\mathbb{R} satisfying a given linear differential equation have infinitely many zeros? Our main decidability result is that if the differential equation has order at most 77, then the Infinite Zeros Problem is decidable. On the other hand, we show that a decision procedure for the Infinite Zeros Problem at order 99 (and above) would entail a major breakthrough in Diophantine Approximation, specifically an algorithm for computing the Lagrange constants of arbitrary real algebraic numbers to arbitrary precision.Comment: Full version of paper at LICS'1

    On the Positivity Problem for Simple Linear Recurrence Sequences

    Full text link
    Given a linear recurrence sequence (LRS) over the integers, the Positivity Problem} asks whether all terms of the sequence are positive. We show that, for simple LRS (those whose characteristic polynomial has no repeated roots) of order 9 or less, Positivity is decidable, with complexity in the Counting Hierarchy.Comment: arXiv admin note: substantial text overlap with arXiv:1307.277

    Quadratic Word Equations with Length Constraints, Counter Systems, and Presburger Arithmetic with Divisibility

    Full text link
    Word equations are a crucial element in the theoretical foundation of constraint solving over strings, which have received a lot of attention in recent years. A word equation relates two words over string variables and constants. Its solution amounts to a function mapping variables to constant strings that equate the left and right hand sides of the equation. While the problem of solving word equations is decidable, the decidability of the problem of solving a word equation with a length constraint (i.e., a constraint relating the lengths of words in the word equation) has remained a long-standing open problem. In this paper, we focus on the subclass of quadratic word equations, i.e., in which each variable occurs at most twice. We first show that the length abstractions of solutions to quadratic word equations are in general not Presburger-definable. We then describe a class of counter systems with Presburger transition relations which capture the length abstraction of a quadratic word equation with regular constraints. We provide an encoding of the effect of a simple loop of the counter systems in the theory of existential Presburger Arithmetic with divisibility (PAD). Since PAD is decidable, we get a decision procedure for quadratic words equations with length constraints for which the associated counter system is \emph{flat} (i.e., all nodes belong to at most one cycle). We show a decidability result (in fact, also an NP algorithm with a PAD oracle) for a recently proposed NP-complete fragment of word equations called regular-oriented word equations, together with length constraints. Decidability holds when the constraints are additionally extended with regular constraints with a 1-weak control structure.Comment: 18 page
    corecore