73 research outputs found

    CAREER: adaptive intrusion detection systems

    Get PDF
    Issued as final reportNational Science Foundation (U.S.

    Mahalanobis Distance Map Approach for Anomaly Detection

    Get PDF
    Web servers and web-based applications are commonly used as attack targets. The main issues are how to prevent unauthorised access and to protect web servers from the attack. Intrusion Detection Systems (IDSs) are widely used security tools to detect cyber-attacks and malicious activities in computer systems and networks. In this paper, we focus on the detection of various web-based attacks using Geometrical Structure Anomaly Detection (GSAD) model and we also propose a novel algorithm for the selection of most discriminating features to improve the computational complexity of payload-based GSAD model. Linear Discriminant method (LDA) is used for the feature reduction and classification of the incoming network traffic. GSAD model is based on a pattern recognition technique used in image processing. It analyses the correlations between various payload features and uses Mahalanobis Distance Map (MDM) to calculate the difference between normal and abnormal network traffic. We focus on the detection of generic attacks, shell code attacks, polymorphic attacks and polymorphic blending attacks. We evaluate accuracy of GSAD model experimentally on the real-world attacks dataset created at Georgia Institute of Technology. We conducted preliminary experiments on the DARPA 99 dataset to evaluate the accuracy of feature reduction

    Survey on Security Enhancement at the Design Phase

    Get PDF
    Pattern classification is a branch of machine learning that focuses on recognition of patterns and regularities in data. In adversarial applications like biometric authentication, spam filtering, network intrusion detection the pattern classification systems are used [6]. In this paper, we have to evaluate the security pattern by classifications based on the files uploaded by the users. We have also proposed the method of spam filtering to prevent the attack of the files from other users. We evaluate our approach for security task of uploading word files and pdf files. DOI: 10.17762/ijritcc2321-8169.150314

    Pattern Recognition Approach for Anomaly Detection of Web-based Attacks

    Full text link
    The universal use of the Internet has made it more difficult to achieve high security. Attackers target web applications instead of Telnet ports. Cyber-attacks and breaches of information security are increasing in frequency. The goal of Intrusion Detection Systems (IDSs) is to monitor network traffic and detect web-based attacks. Common IDSs are either signature based or anomaly based. Signature based IDS is unable to detect novel attack (Le., zero-day) or polymorphic attacks, until the signature database is updated. On the other hand, an anomaly-based IDS can detect new attacks and polymorphic attacks. However, anomaly based system has a relatively high number of false positives

    SECURITY EVALUATION OF PATTERN CLASSIFIERS UNDER ATTACK

    Get PDF
    Pattern classification systems are commonly used in adversarial applications, like biometric authentication, network intrusion detection, and spam filtering, in which data can be purposely manipulated by humans to undermine their operation. As this adversarial scenario is not taken into account by classical design methods, pattern classification systems may exhibit vulnerabilities, whose exploitation may severely affect their performance, and consequently limit their practical utility. In this paper, we address one of the main open issues: evaluating at design phase the security of pattern classifiers, namely, the performance degradation under potential attacks they may incur during operation. We propose a framework for empirical evaluation of classifier security that formalizes and generalizes the main ideas proposed in the literature, and give examples of its use in three real applications. Reported results show that security evaluation can provide a more complete understanding of the classifier’s behavior in adversarial environments, and lead to better design choice

    Randomized Anagram Revisited

    Get PDF
    When compared to signature-based Intrusion Detection Systems (IDS), anomaly detectors present the potential advantage of detecting previously unseen attacks, which makes them an attractive solution against zero-day exploits and other attacks for which a signature is unavailable. Most anomaly detectors rely on machine learning algorithms to derive a model of normality that is later used to detect suspicious events. Such algorithms, however, are generally susceptible to evasion by means of carefully constructed attacks that are not recognized as anomalous. Different strategies to thwart evasion have been proposed over the last years, including the use of randomization to make somewhat uncertain how each packet will be processed. In this paper we analyze the strength of the randomization strategy suggested for Anagram, a well-known anomaly detector based on n-gram models. We show that an adversary who can interact with the system for a short period of time with inputs of his choosing will be able to recover the secret mask used to process packets. We describe and discuss an efficient algorithm to do this and report our experiences with a prototype implementation. Furthermore, we show that the specific form of randomization suggested for Anagram is a double-edged sword, as knowledge of the mask makes evasion easier than in the non-randomized case. We finally discuss a simple countermeasure to prevent our attacks.Publicad
    • …
    corecore