142 research outputs found

    High-Resolution Contact Printing with Chemically Patterned Flat Stamps Fabricated by Nanoimprint Lithography

    Get PDF
    Chemically patterned flat stamps provide an effective solution to avoid mechanical stamp-stability problems currently encountered in microcontact printing. A new method is developed to fabricate chemical patterns on a flat PDMS stamp using nanoimprint lithography. Sub-100 nm gold patterns are successfully replicated by these chemically patterned flat PDMS stamps. \ud \u

    Micro-tribology

    Get PDF

    The rational design of polymeric EUV resist materials by QSPR modelling

    Get PDF
    We present the initial results of the development of a qualitative structure property relationship (QSPR) model to guide in the design and synthesis of high-sensitivity, non-CAR materials for EUV lithography. The model was developed using the fragmentation data of low molecular weight species at 70 eV using a mass spectrometer (MS) with an electron ionization source as the input parameter. The preliminary model has highlighted a number of structural elements which will be important in the future design of resists, however, limitations with the current set of input data for molecules which fragment readily have been identified and these are currently being addressed. Additionally, a correlation between gamma (1 MeV) and EUV (92 eV) radiolysis of selected polymers has been established and it is proposed that the higher energy (1 MeV) irradiation source is a suitable model process for EUV and can, therefore, be used in the future screening of polymeric materials

    Traceable Standard for Sub - 100nm Metrology

    Get PDF
    As we approach the 65nm technological node, transistor gates with dimensions of the order of 40nm are being manufactured. As the device performance is directly related to the dimensions of the gate, critical dimension (CD) control becomes an important part of the fabrication process. Characterization of these small feature size, generally referred to as Metrology, is an indispensable ingredient of the semiconductor manufacturing processes. Metrology relies not only on the precision, but also the accuracy of commercially used metrology tools like the CD-SEM. To facilitate the magnification calibration of the CD-SEM, an easy access to standard reference artifact traceable to international specifications is an added advantage. Considerable literature is available for CD-SEM, which relies on in-house artifacts or general test objects. The absence of commercially available artifacts hinders evaluation of different CD-SEM. The objective of this abstract is to introduce the fabrication and characterization of artifacts for the sub-100nm metrology, which can be made available in wafer form at low cost. In this work, artifacts have been designed and fabricated for precise magnification calibration of the CD-SEM. The designing of the artifacts takes into account the proximity effect, a problem associated with the e-beam exposure, to produce dense grid type structure in the sub-100nm region. The structures are fabricated using the e-beam lithography tool, operated at 50KeV. The artifacts have been fabricated on a thin layer of negative resist HSQ spun on silicon substrate. Subsequent development in 0.26N TMAH gives a structure on silicon wafer, thereby eliminating contamination issues. Furthermore, characterization of the artifacts for line pitch determination is carried out using “Measure” (Spectel Corp.), which provides an absolute calibration of the image pixel size that can then be used to measure other features. The low values for the line edge roughness (LER) further facilitate precise linewidth metrology.\u3e/p\u3

    CuInSeâ‚‚ Nanotube Arrays for Efficient Solar Energy Conversion

    Get PDF
    Highly uniform and vertically aligned p-type CuInSe2 (CISe) nanotube arrays were fabricated through a unique protocol, incorporating confined electrodeposition on lithographically patterned nanoelectrodes. This protocol can be readily adapted to fabricate nanotube arrays of other photoabsorber and functional materials with precisely controllable design parameters. Ternary CISe nanotube arrays were electrodeposited congruently from a single electrolytic bath and the resulting nanotube arrays were studied through powder X-ray diffraction as well as elemental analysis which revealed compositional purity. Detailed photoelectrochemical (PEC) characterizations in a liquid junction cell were also carried out to investigate the photoconversion efficiency. It was observed that the tubular geometry had a strong influence on the photocurrent response and a 29.9% improvement of the photoconversion efficiency was observed with the nanotube array compared to a thin film geometry fabricated by the same process. More interestingly such enhancement in photoconversion efficiency was obtained when the electrode coverage with the nanotube arrays as photoactive material was only a fraction (~10%) of that for the thin film device. Apart from enhancement in photoconversion efficiency, this versatile technique provides ample opportunities to study novel photovoltaic materials and device design architectures where structural parameters play a key role such as resonant light trapping

    Monte Carlo Simulation of Spatial Resolution Limits in Electron Beam Lithography

    Get PDF
    Computer simulation of high energy primary electron scattering and subsequent generation of fast secondary electrons in thin film targets is demonstrated with Monte Carlo techniques. The hybrid model of Murata et al. (1981) is utilized to calculate the generation and subsequent spatial trajectory of each secondary electron in the target. The 3-dimensional spatial distribution of energy dissipation by such fast secondary electrons is shown to be the fundamental resolution limit for electron beam lithography with high-voltage beams (100 keV) and thin film polymer targets. The dependence of resolution on beam voltage and film thickness is presented, and quantitative comparison is made between these new Monte Carlo calculations and the limited amount of experimental data available in the scientific literature
    • …
    corecore