617 research outputs found

    A Pseudopolynomial Algorithm for Alexandrov's Theorem

    Full text link
    Alexandrov's Theorem states that every metric with the global topology and local geometry required of a convex polyhedron is in fact the intrinsic metric of a unique convex polyhedron. Recent work by Bobenko and Izmestiev describes a differential equation whose solution leads to the polyhedron corresponding to a given metric. We describe an algorithm based on this differential equation to compute the polyhedron to arbitrary precision given the metric, and prove a pseudopolynomial bound on its running time. Along the way, we develop pseudopolynomial algorithms for computing shortest paths and weighted Delaunay triangulations on a polyhedral surface, even when the surface edges are not shortest paths.Comment: 25 pages; new Delaunay triangulation algorithm, minor other changes; an abbreviated v2 was at WADS 200

    The Metric Nearness Problem

    Get PDF
    Metric nearness refers to the problem of optimally restoring metric properties to distance measurements that happen to be nonmetric due to measurement errors or otherwise. Metric data can be important in various settings, for example, in clustering, classification, metric-based indexing, query processing, and graph theoretic approximation algorithms. This paper formulates and solves the metric nearness problem: Given a set of pairwise dissimilarities, find a ā€œnearestā€ set of distances that satisfy the properties of a metricā€”principally the triangle inequality. For solving this problem, the paper develops efficient triangle fixing algorithms that are based on an iterative projection method. An intriguing aspect of the metric nearness problem is that a special case turns out to be equivalent to the all pairs shortest paths problem. The paper exploits this equivalence and develops a new algorithm for the latter problem using a primal-dual method. Applications to graph clustering are provided as an illustration. We include experiments that demonstrate the computational superiority of triangle fixing over general purpose convex programming software. Finally, we conclude by suggesting various useful extensions and generalizations to metric nearness

    Solution to the generalized lattice point and related problems to disjunctive programming

    Get PDF
    Issued as Pre-prints [1-5], Progress reports [1-2], Final summary report, and Final technical report, Project no. E-24-67

    Nonlinear Integer Programming

    Full text link
    Research efforts of the past fifty years have led to a development of linear integer programming as a mature discipline of mathematical optimization. Such a level of maturity has not been reached when one considers nonlinear systems subject to integrality requirements for the variables. This chapter is dedicated to this topic. The primary goal is a study of a simple version of general nonlinear integer problems, where all constraints are still linear. Our focus is on the computational complexity of the problem, which varies significantly with the type of nonlinear objective function in combination with the underlying combinatorial structure. Numerous boundary cases of complexity emerge, which sometimes surprisingly lead even to polynomial time algorithms. We also cover recent successful approaches for more general classes of problems. Though no positive theoretical efficiency results are available, nor are they likely to ever be available, these seem to be the currently most successful and interesting approaches for solving practical problems. It is our belief that the study of algorithms motivated by theoretical considerations and those motivated by our desire to solve practical instances should and do inform one another. So it is with this viewpoint that we present the subject, and it is in this direction that we hope to spark further research.Comment: 57 pages. To appear in: M. J\"unger, T. Liebling, D. Naddef, G. Nemhauser, W. Pulleyblank, G. Reinelt, G. Rinaldi, and L. Wolsey (eds.), 50 Years of Integer Programming 1958--2008: The Early Years and State-of-the-Art Surveys, Springer-Verlag, 2009, ISBN 354068274

    On duality and fractionality of multicommodity flows in directed networks

    Get PDF
    In this paper we address a topological approach to multiflow (multicommodity flow) problems in directed networks. Given a terminal weight Ī¼\mu, we define a metrized polyhedral complex, called the directed tight span TĪ¼T_{\mu}, and prove that the dual of Ī¼\mu-weighted maximum multiflow problem reduces to a facility location problem on TĪ¼T_{\mu}. Also, in case where the network is Eulerian, it further reduces to a facility location problem on the tropical polytope spanned by Ī¼\mu. By utilizing this duality, we establish the classifications of terminal weights admitting combinatorial min-max relation (i) for every network and (ii) for every Eulerian network. Our result includes Lomonosov-Frank theorem for directed free multiflows and Ibaraki-Karzanov-Nagamochi's directed multiflow locking theorem as special cases.Comment: 27 pages. Fixed minor mistakes and typos. To appear in Discrete Optimizatio
    • ā€¦
    corecore