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PREFACE

The disjunctive cut principle of Balas and Jeroslow, and the related
polyhedral annexation principle of Glover, provide new insights into cutting
plane theory. This has resulted in its ability to not only subsume many known
vaiid cuts but also improve upon them. Originally a set of notes were written
for the purpose of putting together in a common terminology and framework
significant results of Glover and others using a geometric approach, referred to
in the literature as convexity cuts, and the algebraic approach of Balas and
Jeroslow known as Disjunctive cuts, As it turned out subsequently the polyhedral
annexation approach of Glover is also closely connected with the basic disjunctive
principle of Balas and Jeroslow. In this monograph we have included these results
and have also added several published results which seem to be of strong interest
to researchers in the area of developing strong cuts for disjunctive programs.
In particular, several results due to Balas [4,5,6,7], Glover [18,19] and
Jeroslow [23,25,26] have been used in this monograph. The appropriate theorems
are given without proof. The notes also include several results yet to be
published [32,34,35] obtained under a research contract with the National Science
Foundation to investigate solution methods for disjunctive programs.

The monograph is self-contained and complete in the sense that it attempts
to pool together existing results which the authors viewed as important to
future research on optimization using the disjunctive cut approach. However,
we have not attempted to record and discuss all important known valid inequalities,
and methods to develop them, We have also listed only a minimum of references.
An interested researcher will find readily a larger and more meaningful list of
references in [4,5,6,7,18,19,20,23,25,26].

In writing this monograph and in reporting the research results, the
authors found the works of Egon Balas, Fred Glover and Bob Jeroslow fundamental

and extremely thought provoking. These publications initiated this study, and




we are deeply indebted to them. We are also indebted to the National Science

Foundation for supporting the research endeavor on Disjunctive Programming under

their grant No. ENG 77-23683 and to Mike Thomas, Director of the School of

Industrial Engineering at the Georgia Institute of Technology, for the support

we have received in successfully completing this project. Finally, we are

thankful to Mrs. Joene Owen for her cooperation and an excellent typing of this

manuscript.

Hanif D, Sherali

School of Industrial Engineering
and Operations Research

Virginia Polytechnic Institute and
State University

Blacksburg, VA 24061

C. M. Shetty

School of Industrial and Systems
Engineering

Georgla Institute of Technology

Atlanta, GA 30332
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Chapter 1
INTRODUCTION

1.1 Basic Concepts

A disjunctive program is an optimization problem where the constraints
represent logical conditions. In this monograph we are concerned with such condi-
tions expressed as linear constraints. The methods associated with disjunctive
programming are by no means novel. Some of the methods proposed over two decades
ago to solve integer programming problems used cutting planes derived from logical
statements implying integrality. It can be shéwn that these problems can be viewed
as disjunctive programs and the cutting planes used in integer programming are
special applications of the principal theorem in disjunctive programming. As amply
demonstrated by the recent works of Balas, (lover and Jeroslow, the disjunctive
programming approach has provided a powerful unifying theory of all cutting plane
solution strategies. Furthermore, it has provided a completely different per-
spective to examine this theory and has enabled one to derive deeper insights into
existing knowledge. In the exposition that follows, we will be presenting the
existing and new thoughts on disjunctive programming so that a reader can readily
understand the developments thus far, and appreciate the potentials for research
in this area.

Let us first introduce some fundamental concepts involved in our investiga-

tion. By the term disjunctive program, we mean a linear or nonlinear program which

contains logical conditions stated as linear conmstraints. In our context, logical
conditions include the following operations, stated in terms of say, conditions
A and B,
(i) Conjunction - denoted by AAB, this asserts that both conditions A and
B must hold. As an example, a polyhedral set may be viewed as a con—-
junction of several linear inequalities or half spaces.
(11) Disjunction - denoted by AVB, this asserts that either condition A or

B (or both) must hold. A common example of this, as mentioned above,




arises in linear zero—one programs. There, in the presence of the
restriction 0 < x < 1 on each variable, one has the disjunction that
either x < 0 or x > 1 must hold.

(iii) Negation or Complement - denoted by A this asserts that condition A

must not hold. For example, one might assert in some context that the
total cost 2x; + 3x5, say, must not exceed 7 units. Thus, condition

A is 2%y + 3x, > 7 and the relevant negation is 2xy + 3%y < 7.

(iv) Implication - denoted by A => B, this asserts that if A holds, then B

must hold. As an example one might say in some context that if a plant
i is located at a certain potential site, then the total output from it
must be at least py units. Letting y; = 1 or 0 according as the plant
i is located or not, and letting Z x4 denote the total output from it,

J
the implication condition is

yi=1=>zxijipi
3

Note that this implication is equivalent to the disjunction

{y; =0} V{} x5 > pyl
J

In general, A => B is equivalent to the disjunction AVB.

Hence, examining the above logical conditions, one may note that conjunctions and
negations stated in terms of linear inequalities lead to polyhedral sets which
are, as it is well known, convex. Moreover, implications are essentially dis-
junctions as shown above. Now, it is the operation of disjunction which leads to
nonconvexities and renders the problem of interest to us.

Let us now proceed to formulate a disjunctive program in a general setting
and then cite and briefly examine several important problems which are special
cases of this problem. The notations we use throughout this study are, as far as
possible, consistent with those in existing literature.

Consider the following constraint sets Sy, where he€H, an index set which

may or may not be of finite cardinality.




s, = {x: A" > bP, x >0}, hen (1.1)

In terms of the sets S, one may state a disjunction

xe U S, or simply V {aPx > D

heH heH

, x >0} (1.2)

This disjunction may be imbedded into a general problem called a disjunctive pro-

gram as follows:

DP: minimize f(x)
subject to xeX
x € U {Ahx_>_bh, xz_O}
heH
where f: R™ + R 1s lower semlcontinuous and where X, is a closed subset of the

nonnegative orthant of R".

The application of disjunctive methods to solve problems of type DP above,

involve the derivation of suitable cutting planes or valid linear inequalities
defined as follows:

Definition ~ An inequality mx > Ty is said to be a valid inequality for the dis-

Junction x € U Sh if
heH

xe€S = U S, implies mx > 7 (1.3)

heH 0

Before proceeding any further, let us pause and examine some special cases
of Problem DP which have been of interest to researchers. These problems, dis-
cussed along with their applications in the next section, include the generalized
lattice point problem, the cardinality constrained linear program, the binary
mixed-integer linear program, the extreme point optimization problem, the linear
complementarity problem, and numerous others. Later in Chapter VIII we will discuss

in some detall certain specific problems viewed as disjunctive programs.



1.2 Special Cases of Disjunctive Programs and Their Applications

1.2.1 The Generalized Lattice Point Problem

This problem may be stated mathematically as follows

GLPP: minimize ctx
subject to v=d-Dx >0 (1.4)
u=b-~Ax >0
and at least q components of u, corresponding to linearly}
(1.5)

independent rows of A, must be zero.

Note that the superscript t will, unless otherwise stated, be used to denote the
matrix transpose operation. Here, we assume that D is of dimension mxn and A is of
dimension pxn. Now let us take different combinations of q out of p components of
u which correspond to linearly independent rows of A, Thus, suppose that there
are h f.(z) such combinations and let H denote the index set {1,...,3}. For any

such combination, say heH, define the set

Sy = {u: uy = 0 if i is the index of one of the q components of

u corresponding to h}, for heH (1.6)

Then, Problem GLPP may be restated in a form, usually referred to as the

disjunctive normal form, as follows:

minimize c X
subject to v=d-Dx>0
u=b-~Ax>0
ue U Sy, (1.7)
heH
Note that conmstraints (1.5) or equivalently, constraint (1.7) with Sy, defined in
(1.6), essentially states that u must be an interior point with respect to at most
a p-q dimensional face of the set U = {u: u; > O for each i}. We remark that one

may relax constraint (1.5) to simply assert that at least q of the p components




h A oot

of u must be zero, whence, ﬁ = (2).
Problem GLPP has been used as a special subroutine for minimizing a concave

function over a convex region and for determining the most degenerate solution to

a linear programming problem. In the latter context, such a solution is desirable,

for example, in a fixed charge problem which has large fixed costs and linear

variable costs. 1In this case, the most degenerate linear programming solution

yields a good lower bound and/or starting point for any other scheme. Among

other applications, the multiple choice problem is of significant importance.

1.2.2 The Cardinality Constrained Linear Program

This problem is a special case of the generalized lattice point problem,

and may be stated as follows,

CCLP: minimize cx

subject to bx < d

x>0

|x|* < n—q (1.8)

where D is of dimension mxn and |x|+ denotes the number of positive components

of the vector x. Again, as before, we may transform constraint (1.8) to restate
the problem in the normal disjunctive form, For this purpose, define the index
set H = {l,...,(g)} and let each h€H correspond to q particular components of x

such that set H exhausts all such combinations. Hence, define

Sy = {x: the q components of x corresponding to h are equal to

zero} (1.9)
Thus, Equation (1.8) may be replaced by

xe U s (1.10)
heH
As an application, one may consider the manufacture of several (n) items
at a production facility and let x; denote the volume of production for item or

product i, i=1,...,n. The constraints Dx < d may represent resource limitations




and the disjunctive constraints (1.8), or equivalently (1.10) with (1.9), may
restrict the production to at most (n-q) items.

In a like manner, one may be concerned with the location of (n-q) facili-
ties at a subset of a number of potential sites. These facilities are required to
satisfy a certain demand. The problem then may be to optimally locate these
facilities and determine their capacity so as to minimize costs while satisfying
demands.

There is a generalization of Problem CCLP known as the Element Constrained
Linear Program (ECLP). Here, decision variables yy, i=l,...,n are defined
according to

1 if x5 > 0
¥y = for i=1,...,n
0 otherwise
The decision vector y=(yl,...,yn) then is restricted according to a constraint
set Fy < f, Thus, Problem CCLP 1s a speclal case of Problem ECLP with Fy < f
denoting the single constraint

n
I vy <mm

i=1
Hence, in the first example cited above for Problem CCLP, one may have certain
contingency constraints between products or certain products may be mutually
exclusive. Such interactions between products would convert the problem into
an element constrained linear program.

1.2.3 The Binary Mixed Integer Linear Program

This problem is also a special case of Problem GLPP., It may be formulated

mathematically as follows:

BMILP: minimize c{xl + chz
subject to Dyxy + szz_i d
x> 0

Xpq = 0 or 1 for each 1=1,...,n (1.11)




where D, is of dimension mxn, To write Problem BMILP in the disjunctive normal

form, note that (1.11) is equivalent to the following constraints:

Xo; tuy = 1 i=1,440,0

Xpis Uy 2 0 i=l,...,n

{At least n components of (x5,u) are zero!l (1.12)
2

Now one may transform Equation (1.12) in a manner identical to that used for
transforming (1.8) to (1.10) through the definition (1.9). Problem BMILP has
several well known applications such as the multiple choice programming problem,

the knapsack problem, the fixed-charge location-allocation problem, and others.

1.2.4 The Extreme Point Optimization Problem

This problem is closely related to Problem GLPP, and may be stated as

follows:
EPP: minimize ctx
subject to Dx = d
x is an extreme point of P = {x: Ax.= b, x > 0} (1.13)

Hence, D is of dimension mxn and A is of dimension (pxn). Let us attempt to
re-write Equation (1.13). Consider any point x € X and identify those components
Xy of this point x which satisfy x; = 0. Let J = {3: Xy = 0} < {1,...,n}. Now
construct a matrix 1 whose rows are comprised of unit vectors eys each row
corresponding to a j €J, where ey has all components zero except for a unity in
position j. Then consider the matrix (?) . Then one may easily see that a
point x EX is an extreme point of X if and.only if (?) has rank n.

Thus, to write Problem EPP in a disjunctive normal form, consider an
enumeration of all subsets Jy, of the set {1,...,n} such that if one constructs
a matrix Iy for each such Jy, where I has rows comprised of vectors ey for jeJy,

then the matrix (?h) has rank n., Further, let H contain the indices h correspond-

ing to such sets J,. Then let us define




Sp = {x: x4y <0 for each jeJp, x > 0} for each heH (1.14)

Using (1.14), we may now re-write (1.13) to formulate Problem EPP in a disjunctive

normal form as follows:

minimize ctx
subject to Dx = d
Ax = b
xe U Sh
heH

Applications of Problem EPP include several bilinear programming problems such as
the location~allocation problem using rectilinear distance measure. The problem
of minimizing inventory and changeover costs for a single machine scheduling
situation has also been formulated as Problem EPP, Another application is its
use as a subroutine in a cutting plane procedure to find an extreme point of a
set which is also feasible to a system of cuts generated at any stage.

1,2.5 The Linear Complementarity Problem

This problem may be stated mathematically as

LCP: minimize ctx
subject to Dx =d
x>0

x x. = 0 for each (p,q) € 2

where Z is an appropriate set of two-tuple indices. Now, consider the construc-

|z|

tion of 2 distinct sets Jy, heH = {1,...,2|Z|}, where each Jy has exactly ome

of the indices p,q for each (p,q) € Z. Define

Sp = {x: x; <0 for JeJy, x > 0} for each heH.

Then Problem LCP may be restated in the disjunctive normal form as




minimize etx
subject to Dx =d
x € U Sy
heH

When the cardinality of the set H is small, Problem DP can easily be
solved using the solution of |H| problem as shown by Theorem 1.1 below. When
this direct approach is not available, we need more sophisticated tools. This is
the subject of discussion over the next few chapters,

Theorem 1.1,

Consider Problem DP stated above and assume |H| < =. Define problems

DP,: minimize {f(x): xexN Sh} for each heH (1.15)

h#*

Let xh solve DPy. Then x solves DP, where

£(x™) = minimum  {£(xM)} (1.16)
heH

Proof. By contradiction, suppose x* solves DP with f(x*) < f(xh*), and

~

h solves

assume that x* ESﬁ for some heH. Since x* is feasible to DPQ and x
DPp, we must have £f(x*) z_f(xﬁ) z_f(xh*), a contradiction. This completes the
proof.

Essentially, Theorem 1.1 involves the solution of IHI problems in order
to recover an optimal solution to Problem DP. This may be a viable approach for
some special problems for which the cardinality of H is not too large, For
example, one may be considering a production planning problem in which each set
S, may represent the restrictions on the process accruing from the implementation
of production method heH. On the other hand, for zero-one linear integer
programs for example, the application of Theorem 1.1 is tantamount to total
enumeration and for a complementarity problem which requires, say, ugvs = 0 for

j=1,...,m, one would need to solve 2™ problems to obtain an optimal solution.

It is for the solution of such problems, that we devote this study.
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We now discuss some basic concepts and principles involved in disjunctive
programming methods, An attempt is made in this chapter to present thoughts
and ideas and to derive results so that the development is intuitively appealing.
Thereafter, we discuss in a general context, the derivation of deep disjunctive
cuts and also look at certain specializations, We then digress momentarily to
demonstrate how the depth of cut that can be derived depends upon the formulation
of the disjunctive statement, Based on this exposition, we discuss procedures
for strengthening given valid cuts. This is then related to the supports and
facets of the convex hull of feasible points. Following this, we show that dis-
junctive cutting planes subsume all other types of cutting planes by recovering
several known cutting planes from a general form of a disjunctive cutting plane.
Finally, we treat specilal cases of disjunctive programs. First, we demonstrate
how the notion of the convex hull of feasible points admits two finitely con-
vergent procelures for a special class of disjunctive programs known as facial
disjunctive programs. Thereafter, we discuss, some specific applications.

1.3 Notes and References

Owen [29] considered a class of problems where at least one variable from
each of several sets is required to be equal to zero. Applications of this
formulation include integer programming, the linear complementary problem and
the concave minimization problem., Since valid inequalities were derived from
certain logical disjunctions, Owen called these valid inequalities disjunctive
constraints. He noted that the cuts derived are indeed special cases of valid
inequalities derived by Glover and Klingman [15] in the context of generalized
Lattice Point problems. In his paper, Owen has really given a primitive algorithm,
but. the spirit of the approach is that of the cutting plane algorithms proposed
by Gomory, Balas, Young and others for Integer Programming, by Tui, Balas, and
Ritter in the context of nonconvex problems with linear constraints. It is
covered by the general theory of convexity cuts of Glover [16,18], and overlaps

with the work of Balas [2,3] and Burdet [10,12] using polarity.




1"
An excellent survey of disjunctive programming principles and applications
r in the spirit of this chapter may be found in the several works of Balas [6,7],

and Jeroslow [23,25].




Chapter II
BASIC CONCEPTS AND PRINCIPLES

2.1 Introduction

In this chapter, we will lead the reader to the most important and
fundamental results in disjunctive programming. In order to enable the reader
to appreciate the subject matter and to gain better insight into it, we will
develop these results from first principles through well known facts. Toward
this end, let us commence our discussion with the following well known concept,

2.2 Surrogate Constraints

Let us consider the following constraint set

S1 = {x: .Z aijxj > bi for each i_te, x > 0} (2.1)
JEN
where N = {1,...,n} is index set for the x-variables and Q; is an index set for

the linear constraints in S, aside from the nonnegativity restrictions. Now
let us multiply each of these linear constraints by corresponding nonnegative
parameters Ai’ i€Qq. Then clearly, x¢ Sl implies that
.Z Aiaijxj > Ajbg for each ieQg . (2.2)
JEN .
By simply summing up the constraints (2.2), the following well known result is
easily established.
Lemma 2.1

Let S; be the constraint set of Equation (2.1). Then x€ 5, implies that

lsz 1 Ab. (2.3)

11

3 3 Aiai'
jeN | ieQq o i€Q,
for any set of nonnegative parameters Ai’ i.EQl.
Let us consider the converse of Lemma 2.1. In doing so, we are addressing
the following question. Suppose that we are given an inequality Tx > To which

is implied by the constraint set Sl' That is, x€S implies Tx > Tys Then, does
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there exist a surrogate constraint of the form (2.3) obtained through suitable
parameters >‘i > 0, ieQ; such that this surrogate constraint uniformly dominates
the given inequality? The answer is yes. We are able to specify parameters
A; > 0, i€Q such that if x satisfies (2.3) using these parameters A; > O,
ieQqs then x must satisfy mx > Toe We establish this result below and then
illustrate it through an example.
Lemma 2.2

Let 7x > T, be any inequality implied by S; of Equation (2.1) and suppose

that §; is consistent. Then, there exists a set of nonnegative multipliers

Aj» 1€Qp such that
5 Aiaij < Trj for each jEN and Ty £ z )‘ibi (2.4)
ieQq 15Q1
Proof. Consider the following linear program P and its dual D
P: minimize {z Trjxj: z aijxj > bi’ ieQy, x> O}
JEN jeN
= minimize Z TiXs
S jeN 3
X€8y 3
D: maximize {Z Agb;: Z Aiaij < Ty JeEN, Ay > O}
1£Ql 1:—:(21
for each iEQl
Now, since x€ §; implies Z Tr,xj > Toys the primal problem is bounded
jeN
below by m. and hence the feasible region of D is non-empty. Further, since

0

S; is consistent, there exists an optimal solution to Problem D, It is easy
to see now that the required result holds for any set of dual optimal variables
Aj» 1€Qq. This completes the proof.

Let us illustrate the above result with an example. Consider

§ = {x: x, + 2}(2 > 2, 3k + x5 > 3, Xq>%9 > 0}
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Now x; + 2x2_3 2, X1, Xy > 0 imply that 2x; + 2x2 > 2 or that Xy + x5 > 1.
Alternatively, 3xl + % >3, X5 % > 0 imply that 3x; + 3x2 > 3 or that

%] + %9 > 1. Hence, the inequality x; + xp > 1 is implied by S;. Can we find
a surrogate constraint which uniformly dominates this conmstraint? For this

purpose, we consider Problem D in the proof of Lemma 2.2, namely,

D: maximize 2+ 3x,
subject to Kl + 3%2.i 1

22 + Az_i 1

Al, Az >0
One may readily verify that Al = %, KZ --% solves this problem. The
surrogate constraint resulting from this is Xy + xz_z-% . It is also interesting
to note that this was a unique optimal solution to Problem D above. Thus, in
this case what Problem D essentially did was to tramslate the cutting plane

X1+ %y > 1 parallel to itself until it supported the feasible region Sj.

This is illustrated in Figure 2,1 below.

X2

X1

j) N
X1+'X2=1 .1—-;\

2
N _17
[ T X1+x2——5

Figure 2.1. Dominance of a Surrogate Constraint
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In faect, if mx = Ty does not support §; and Tx > Ty is a valid inequality
for 5, then clearly, x€3S; implies Tx > Mg, Thus, if one solves the problem
P defined in the proof of Lemma 2.2 and obtains therefrom ﬁo = minimum (Tx)

XESy

~
then %0 > M, and hence, Tx > T, striectly dominates mx > My. Moreover, mx > ﬁO

0
is a valid inequality for S;. Thus, Lemma 2.2 would then yield a surrogate
constraint which uniformly dominates mx 2-“0' In other words, non-dominated

surrogate constraints support Sl'

2.3 Pointwise-Supremal Cuts

We now proceed to recall another well known, pertinent concept, Suppose

that the sets Sy of Equation (1.1) are comprised of a single linear comstraint

and are given by

Sy ={x: ] alx. >bl, x>0/ for each hen (2.5)

jen
We use the above notation so as to be consistent with the case wherein each
Sk, heH may contain several constraints as introduced later. We are considering
at this point the disjunction x € U Sh.
heH
For example, let S; = {x: 2x; - 3x; > 5, x > 0} and S, = {x: x; + 3x,
2_4, X 2_0} and consider the statement that x satisfies Sl or 5,. Then, it
is a well known fact that x must satisfy [max{Z,l}]xl + [max{—3,3}]x2 Z_min{S,é}
or 2xq + 3x9 > 4. Thus 2x; + 3xy > 4 is a valid inequality for the disjunction
x € U 5, since it is implied by each of 54 and Sp. This fact is generalized
heH ’

and formalized below. First consider the following definition. Then, Lemma

2,3 establishes the required result.

Definition

h h h
Consider a set of vectors {vh: heH} where for each heH, v = ViseoosVpy »

Then, the pointwise supremum of this set of vectors, denoted by sup vh, is a
heH

vector v=(Vy,...,v;) with components

v, = supremum {v?} for j=1,...,n

3 heH




In a like manner, we define the pointwise infimum of a set of vectors.

Lemma 2,3
Consider the constraint sets Sp» heH as defined in Equation (2.5).
Then, for the disjunction x € U Sy, the following inequality is valid.

heH

L Yix; >Yn, where Y = sup {ah}, Y. = inf {bh} (2.6)
jdiL'o 1 0 1
§EN heH heH

A
Proof. Consider any x € U S+ Hence, there exists an h€H for which

heH
l a?jij 2.b?' x>0
jeN

This implies that

- - h = . h
Z Yixy = Z sup a?j ]xj > Z a) 4% > by > inf (bl) =Yy

h
jeN jeN | helt ~ jeN - 1= heH

and the proof is complete.
We will now put Lemmas (2.1), (2.2) and (2.3) together to show that this
leads to the fundamental result of disjunctive programming.

2.4 Basic Disjunctive Cut Principle

Suppose that we have constraint sets of the form (1.1), that is.

Sh==x: Z a];jszb]; for each i€Qy, x > 0y, hel (2.7)
JEN
where Q@ is an appropriate index set for the constraints in Sh» h €H.
Consider the disjunction x € U Sp. Let us now use our discussion in
the two proceeding sections to derivzesalid inequalities for this disjunction,
First of all, note that when each Sy, heH has only a single linear
constraint, then from Section 2.3 we are able to derive valid inequalities for
the disjunction x € U S§;. Hence, let us use surrogate constraints to trans-
heHn

from the given sets S, into singleton constraint sets and then use the

concepts of Section 2.3,
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h
More specifically, let }‘i' ieQ,, heH be any set of nonnegative para-
h
meters. For each heH, let us use the corresponding multipliers )\i, ieQ,, and
from the surrogate constraints
h
) ) )‘iaki]j I xg > ) Kk}b;} for each heH (2.8)
JEN lieq, ieQ,
Next, let us define sets §h, heH as follows

S, = {x: Equation (2.8) is satisfied, x > 0} (2.9)

Now clearly, x&:Sh implies that xegh. Hence, the disjunction x € U Sh
N heH
may be replaced by the (weaker) disjunction x € U Sp. But then, from
hel
Lemma (2.3), valid inequalities for the latter disjunction are of the form

) [Sup I Aia*i‘jl] xy > inf | ] ;\*i‘b‘;I (2.10)
jen Lnen lieq, hel lieq,

This result is known as the forward part of the Basic Disjunctive Cut Principle.

To arrive at the converse statement, consider any valid inequality Z ﬂjxj >

iEN 0
implied by x € U 8y, and assume that each 8}, is consistent. Thus, since
heH
x €5y, implies x € Sh, then mx > To is a valid inequality for each Sy heH.
heH -

Now, applying Lemma 2.2 for each heH, we may hence assert that there exist

nonnegative parameters )\?, 1 €Qy such that

) A?a?j < my for each jEN and m; < ) Agbglfor each heH
ieQy, iEQh

This in turn implies that

sup 2 A:a: < 1rj for each j €N and L < inf 7 A:b},‘ (2.11)
heit | 1eqy i hel | ieq, Tt

This result is known as the reverse part of the Basic Disjunctive Cut Principle.

Hence, the forward part gives us a set of valid inequalities for the disjunction

x€e U Sys one for each choice of )\2, iEQh, h€H. The reverse part then
heH
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asserts that if each Sy is consistent, then any valid inequality may be uniformly
dominated by a disjdnctive cut of the type (2.10). These results are stated
formally below.

Theorem 2.1 (Basic Disjunctive Cut Principle)

Let Sy, heH be constraint sets given by Equation (1.1). Here, |H|
may or may not be finite., Suppose that at least one of the linear inequality
systems Sy, heH must hold. Then, for any choice of nonnegative vectors

h h

A= (Xi, i EQh), the inequality

th h
sup (Xh) A x > inf (Xh)tb
heH heH
is a valid disjunctive cut, where the superscript t denotes the transpose
operation.

Furthermore, if every system S, is consistent, then for any valid

inequality X n.xj > Tos there exist nonnegative vectors Xh, h €H, such that

JEN

T, < inf (>\h)t‘nh and for each j €N, the jth component of sup(kh)tAh does not
hel heH

exceed ﬂj.

Thus far, we have demonstrated that (2.10) yields valid inequalities
with no mention being made regarding the selection of values for the parameters
h
Ai’ 1€Qp, heH. This is the subject matter of the next chapter.

2,5 Notes and References

The basic disjunctive cut discussed in Section 2.4 is due to Balas,
Glover, and Jeroslow., The forward part appears in Balas [4,6] and the
converse in Jeroslow [25]., The same result in a different setting was given

by Glover [18,19].




Chapter I[II

) GENERATION OF DEEP CUTS USING THE FUNDAMENTAL
DISJUNCTIVE INEQUALITY

3.1 Introduction

Recall from Chapter I that our motivation in using disjunctive programming

methods is to aid us in solving nonconvex problems of the type

DP: minimize f(x)
subject to xeX (3.1)
xe U s (3.2)
heH

where f: R > R is lower semicontinuous, X is a closed subset of the nonnegative

orthant of R" and each $;, heH is given by Equation (1.1).

Adopting a relaxation strategy to solve Problem DP suppose we relax con-—
straint (3.2). If a solu:ion to the resulting problem is feasible to (3.2), then
it solves Problem DP. Otherwise, we have a point infeasible to the disjunction
(3.2). We thus derive a cut which is valid in the semse that it deletes the
current point, but deletes no point satisfying (3.2). We add this inequality to
the relaxed problem and update the current solution. Thus, at any stage, we
solve the problem to minimize f(x) subject to x €X and x satisfies the linear
disjunctive inequalities or cuts generated thus far. The procedure terminates
when a solution to such a problem satisfies (3.2).

How in Chapter II we demonstrated that (2.10) defines valid cuts for the
disjunctive statement (3.,2), Given the current point infeasible to (3.2), we
now address the question of selecting nonnegative values for the parameters
AE, 1eQy, heH in the inequality (2.10) so as to derive a deep disjunctive cut.
We will be devoting our attention to the following two disjunctions titled DC1 and
DC2. We remark that numerous disjunctive statements can be cast in the format of

DCl or DC2.
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Suppose that each system S, is comprised of a single linear inequality,

that is, let

n
S, = x:{ } alx, > b2, x>0} for hel={1,...,h} (3.3)
h 121 1375 = 1 hll

where we assume that h = |H| < = and that each inequality in S;, heH is stated

with the origin as the current point at which the disjunctive cut is being
generated. Then, the disjunctive statement DCl is that at least one of the sets
St heH must be satisfied. Since the current point (origin) does not satisfy

this disjunction, we must have bl;_ > 0 for each hell., Further, we will assume,

without loss of generality, that for each h€H, a?j > 0 for some je{l,...,n}
or else, Sh is inconsistent and we may disregard it.
DC2:
Suppose each system Sh is comprised of a set of linear inequalitites, that
is, let

S, = lx: E al;jxj > bl; for each i€Q,, x> 0] for heH={1,...,h} (3.4)
j=1

where Qs h€H are appropriate constraint index sets. Again, we assume that

ﬁ = |H| < o and that the representation in (3.4) is with respect to the current

point as the origin. Then, the disjunctive statement DC2 is that at least ome of

the sets Sy, he€H must be satisfied, Although it is not necessary here for b? >0

for all i€Qy one may still state a valid disjunction by deleting all constraints

with b? <0, iEQh from each set Sy» heH. Clearly a valid cut for the relaxed

constraint set is valid for the original constraint set. We will thus obtain a

cut which possibly is not as strong as may be derived from the original constraints.

To aid in our development, we will therefore assume henceforth that b? >0, ieQ,,

heH., Figure 3.1 below illustrates the possible weakening of the cuts derived

by such a deletion of constraints. Observe that since a valid cut defines a

closed half-space which contains U Sp» this half space must also contain the
heH
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the closure of the convex hull of U Sp. Since the closure of the convex hull
heH

of the union of the sets S, h €H resulting after the deletion of the constraints

h?
as above contains the closure of the convex hull of the union of the original
sets Sy, heH, the family of valid cuts derived by the new disjunction are a
subset of those that are valid for the original disjunction. Incidentally, one
may also note that facets of the closure of the convex hull of feasible points
are desirable deep cuts.

Before proceeding with our analysis, let us briefly comment on the need
for deep cuts. Although intuitively desirable, it is not always necessary to
seek a deepest cut. For example, if one is using cutting planes to implicitly
search a feasible region of discrete points, then all cuts which delete the same
subset of this discrete region may be equally attractive irrespective of their
depth relative to the convex hull of this discrete region. On the other hand,
if one is confronted with the problem of iteratively exhausting a feasible region

which is not finite, then indeed deep cuts are meaningful and desirable.

convex hull of the new U Sy after deletion of
heH
constraints 1,2,3 and 4

> convex hull of the original

>>>f bk °
el

777 /7 777 77

7

S N N N O WO U WO . O . WO . W ¥

Figure 3.1. Formulation of the Disjunction DC2
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3.2 Defining Suitable Criteria for Evaluating the Depth of a Cut

In this section, we will lay the foundation for the concepts we propose to
use in deriving deep cuts. Specifically, we will explore the following two
criteria for deriving a deep cut:

(1) Maximize the euclidean distance between the origin and the nonnegative

region feasible to the cutting plane
(ii) Maximize the rectilinear distance between the origin and the nonnegative
region feasible to the cutting plane.

Let us briefly discuss the choice of these criteria. Referring to Figure
3.2(a) below, one may observe that simply attempting to maximize the euclidean
distance from the origin to the cut can favor a weaker cut over stronger cuts.
However, since one is only interested in the subset of the nonnegative orthant
feasible to the cuts, the choice of criterion (i) above avoids such anamolies.
0f course, as Figure 3.2(b) indicates, it is possible for this criterion to be
unable to recognize dominance and treat one cut and another one which dominates

it as alternative optimal cuts.

X2 X2

criterion

% ' )
Y

]
: criterion value for
f either cut

|

!

‘/" \’xz ~ ! .

(a) (b)

Figure 3.2, Recognition of Dominance
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Let us now proceed to characterize the euclidean distance from the origin

to the nonnegative region feasible to a cut

n
) z5%;4 2 2y, where z; > 0, z4 > 0 for some jell,...,n} (3.5
j=1

The required distance is clearly given by

18

6, = minimum Ulx|): Zi%5 2 205 X 2 o} (3.6)

=1 7

where Hx” = ‘ x§ » Consider the following result

J

nHe~o
=

Lemma 3.1

Let Ge be defined by Equation (3,5) and (3.6). Then

y = (yl:""yn)’ yj maximum {O;Zj}, J=lyee.sm

z
0
Proof. Note that the solution x* =(—— y is feasible to the problem

2
z Iyl
in (3.6) with ||x*||= ——9— . Moreover, for any x feasible to (3,6), we have,

Il vl .
n n ZO
zg < L ozx, <} yy%5 < Il vl x|l , or that,||x|| > ———— . This completes
=1 10T Iyl
the proof.

Now, let us consider the second criterion. The motivation for this

criterion is similar to that for the first criterion and moreover, as we shall

see below, the use of this criterion has intuitive appeal. First of all, given a
cut (3.5), let us characterize the rectilinear distance from the origin to the

nonnegative region feasible to this cut,

This distance is given by
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n
6, = minimum {x]: ¥ z5%y 225 X > o0} (3.9

3=1

where [x| = |xj|. Consider the following result.

H ~13
=

3

Lemma 3.2

Let Gr be defined by Equations (3.5) and (3.9). Then,

z
0
6 = — where z_ = maximum =z (3.10)
r z m - h|
m 3=l,...,n
; 20 . th
Proof. Note that the solution x* = (0,...,;—,...,0), with the m
— m
z
component being non-zero, is feasible to the problem in (3.9) with |x*| = Eg .

Moreover, for any x feasible to (3.9), we have,

z n z n
I - I S
Zn ~ 41 2m 7J ~ =1 h|

This completes the proof.

Note from Equation (3.10) that the objective of maximizing Br is equivalent
to finding a cut which maximizes the smallest positive intercept made on any axis.
Hence, the intuitive appeal of this criterion,

3.3 Deriving Deep Cuts for DCl

It is very encouraging to note that for the disjunction DCl we are able
to derive a cut which not only simultaneously satisfies both the criterion of
Section 3,2, but which is also a facet of the set S defined by (3.11) below.

S = closure convex hull of U Sh (3.11)
heH

This is a powerful statement since all valid inequalities are given through
(2.10) and none of these can strictly dominate a facet of S.

We will find it more convenient to state our results if we normalize the
linear inequalities (3.3) by dividing through by their respective, positive,

right-hand-sides. Hence, let us assume without loss of generality that
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~1g

Spo={x: ] alyx; 21, x> 0p for hei={l,...,h} (3.12)

i=1

Then the application of Theorem 2.1 to the disjunction DCl yields valid cuts of

the form:

It~

) {max A?agj} %5 z_min{A?} (3.13)

i heH heH

h
where Al’ heH are nonnegative scalars. Again, there is no loss of generality in

assuming that

I Al =1, a0 > 0, new={1,...,R} (3.14)
hel
since we will not allow all Ag, heH to be zero. This is equivalent to normalizing
h
(3.13) be dividing through by [ ALe
heH

Theorem 3.1 below derives two cuts of the type (3.13), both of which
simultaneously achieve the two criteria of the foregoing section. However, the
second cut uniformly dominates the first cut. In fact, no cut can strictly
dominate the second cut since it is shown to be a facet of S defined by (3.11).
Theorem 3,1

Consider the disjunctive statement DCl where 5y, is defined by (3.12) and

is assumed to be consistent for each h€H, Then the following results hold

(a) Both the criteria of Section 3,2 are satisfied by letting
)\? =1/h = AT‘, say, for heH (3.15)
in inequality (3.13) to obtain the cut

n
* * h
T a¥.x. > 1, where aj, = max a,., i=l,...,n (3.16)
j=1 1573 131 g U
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(b) Further, defining

y? = minimum {a¥./al.} > 0, hewH (3.17)
1 jrab,>0 137°1j
1ayy
and letting
h h h**
Ai=Y1 ZH YE =A] , say, for heH (3.18)
pe!

in inequality (3.13), we obtain a cut of the form

T xx
T oaltx, >1 (3.19)

which again satisfies both the criteria of Sectiom 3.2,

(¢) The cut (3.19) uniformly dominates the cut (3.16); in fact,

* *
= aj, if aj; > 0
1 1
alj S . (3.20)

£ .
<
< alj if alj <0

(d) The cut (3.19) is a facet of the set S of Equation (3.11).

Proof.

(a) Clearly, Xi = l/ﬁ, heH leads to the cut (3.16) from (3.13). HNow
consider the euclidean distance criterion of maximizing Be (or Sz) of Equation

(3.7). For cut (3.16), the value of Si is given by
(052 - 3///3 (y;)2 > 0 where y; = max{0,ay}, 3=1,...,n (3.21)
j=1
Now, for any choice A?, heH,

n n
2 2 2
02 = [nnH|2/ ] v = aDY/ T v] say, (3.22)
hel j=1 j=1

where vy = max {0,max X?agj}. If Ag = 0, then 8, = 0 and noting (3.21), such a
heH
choice of parameters X?, he€H is suboptimal. Hence, AE > 0, whence (3.22) becomes
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2 fyi\2
92 = l/z (—% . But since ()x /)xl) > 1 for each heH, we get
A
1

Ah *
1 -
j/}‘l = max{0, max 3 } > max{0, max alj} = yj

hel A3 hel
Thus BZ' < (8:)2 or that the first criterion is satisfied.
Now consider the maximization of Br of Equations (3.9), (3.10). For the

choice (3.15), the value of 8, is given by

8~ = ___l_;_ >0 (3.23)
max alj

i

Now, for any choice )\;_1, heH, from Equations (3.10), (3.6) we get

G m1n )\ max max )\ a A }\p max max Ahah , say.
1 lj 1 1915
heH j heH j heH

As before, )\l]:’_ = 0 implies a value of Br inferior to G:. Thus, assume Xg > 0.
P
A
Then, 6_ = 1 / max max 2L ah.. But ()\h/)\p) > 1 for each h€H and in evaluating
B J heH Ap 1] VA=
Gr, we are interested only in those je{l,...,n} for which a;_lj > 0 for some he€H.
*
Thus 8, < 1/max max ag_lj = Gr, or that the second criterion is also satisfied.
] heH
This proves part (a).
(b) ‘and (¢). First of all, let us consider the values taken by Y}l, heH.
Note from the assumption of consistency that Y}‘, h€H are well defined. From

(3.16), (3.17), we must have Yg_l > 1 for each heH. Moreover, if we define from

(3.16)
= {heH: a;lk = aIk > 0 for some ke{l,...,n}} (3.24)
then clearly H* # {¢} and for heH*, Equation (3.17) implies Y}]'. < 1. Thus,
=1 for heH*

Y (3.25)
> 1 for h}:H*
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Hence,

min Y] = 1 (3.26)
heH

or that, using (3.18) in (3.13) yields a cut of the type (3.19), where,
a** = max ah Yh j=1 n (3.27)
1j h 1j 1 ] seeces .

Now, let us establish relationship (3.20). Note from (3.16) that if
a;j < 0, then a?j < 0 for each heH and hence, using (3.25), (3.27), we get that
(3.20) holds. Next, consider aij > 0 for some je{l,...,n}. From (3.24), (3.25),

(3.27), we get

aif = max{max ahj, max a?jY?} (3.28)
J heH hed*
h
alj>0

where we have not considered h ¢H* with a?j < 0 since aig > 0., But for hé:H*

with an > 0, we get from (3.16), (3.17)

max al max al
. 1k h 13
ah.Yh = a? min e < ayy red - = max al. (3.29)
1371 3 k:all >0 ah - J al ren 13
Ay 1k 1j

Using (3.29) in (3.28) yields a;; = aij, which establishes (3.20),

Finally, we show that (3.19) satisfies both the criteria of Section 3.2.
This part follows immediately from (3.20) by noting that the cut (3.16) yields
0o = 6: of (3.21) and 6. = B: of (3.23). This completes the proofs of parts (b)
and (c).

(d) Note that since (3,19) is valid, any xeS satisfies (3.19). Hence, in
order to show that (3.,19) defines a facet of S, it is sufficient to identify n
affinely independent points of S which satisfy (3.19) as an equality, since

clearly, S is of dimension n, Define

Jy = {jef1,...,n}: aig > 0} and let Jy = {1,...,n} - 3y (3.30)
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Consider any peJ;, and let

e, = (o,...,ai* seees0),  PEJ; (3.31)
1p

have the non-zero term in the pth position., Now, since pEJl, (3.20) yields

*% *
aj, = ap, = max a?p = a?g , say.

heH

Hence, e €8S, and so, e S and moreover, e, satisfies (3.19) as an equality.
P

p p

Thus, ep,peJl qualify as |J1| of the n affinely independent points we are seeking.

Now consider a qeJg. Let us show that there exists an Shq satisfying

h h, X%
q q =
Yl alp ajp for some peJy
and (3.32)

h h
¥'q 59 =
1 %19 7 %1q

. *k h _h hq h
From Equation (3.27), we get a, = max a, Y, = a,}y.9, say. Theén for this h,eH,
1q hel 1q'1 1q'1 q
. h * h, * h, .
Equation (3.17) yields qu = minimum {alj/al§} = alp/alg , say. Or, using (3.20)
j:ahQ>O
1j

h, h, * *k
q q = = > .
Yl alp a1p alp 0, Thus (3.32) holds. For convenience, let us rewrite the

set Shq below as

h, h h,
= {x: q
Shq {x: alg x, + alg xq * j#% . a;d x4 >1, x > 0} (3.33)
’

Now, consider the direction

1 1 *%
(o,oo.,;*—*' seany ";;;, ..-,0) if a1q<0
1
dq = P la (3.34)
Kk
(Oyeeey 0 4uuny A, ...,0) if alq =0

where A > 0, Let us shown that dq is a direction for Shq. Clearly, if aiz =0,
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h
then from (3.32) alg = 0 and thus (3.33) establishes (3.34). Further, if aiz <0

then one may easily verify from (3.32), (3.33), (3.34) that

~ h *% A~ h,
= q
e (0,...,Y1q//a1p,...,0) [ Shq and e + 5[Y1 dq] £ Shq for each § > 0

where €. has the non-zero term at position p, Thus, d, is a direction for Shq.

P q

It can be easily shown that this implies dq is a direction for S. Since

= 1
ep = (0,000, s

alp

ye«+,0) of Equation (3.31) belongs to S, then so does (ep + dq).

But (ep + dq) clearly satisfies (3.19) as an equality. 1lence, we have identified

n points of S, which satisfy the cut (3.19) as an equality, of the type

1
*k
alp

e = (0,000, sese50) for pely
(3.35)

eq = dq-l-ep for some PEJY, for each qeJ,

where dq is given by (3.34). Since these n points are clearly affinely independent,
this completes the proof.

Thus, in view of Theorem 3.1, it is "optimal" to derive a cut (3.19) for
the disjunction DCl. 1In generalizing this to disjunction DC2, we find that such
an ideal situation no longer exists., Nevertheless, we are able to obtain some
meaningful results. But before proceeding to DC2, let us illustrate the above
concepts through an example,
Example

Let H = {1,2}, n=3 and let DCl be formulated through the sets
5, = {x: Xy + 2xy - 4xq > 1, x Z_O}, S, = {x: — + =
The cut (3.16), i.e., Z a;jxj > 1, is Xy + 2xy - 2x5 > 1, From (3.17),

1 1 2, 2 _ 1 2.
Yl = min {T"2} = 1 and Yl = min{175’,1/3} = 2
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Thus, through (3.18), or more directly, from (3.27), the cut (3.19), i.e.,

z ai? Xy >1lis % + 2x, - 4x3 > 1. This cut strictly dominates the cut (3.16) in
this example, though both have the same values l/v@'and 1/2 respectively for

Be and Br of Equations (3.6) and (3.9) respectively.

3.4 Deriving Deep Cuts for DC2

To begin with, let us make the following interesting observation. Suppose
that for convenience, we assume without loss of generality as before, that
b? =1, ieQ,, heH in Equation (3.3). Thus, for each heH, we have the constraint
set

n
Sp = ix: Joalx, » 1, ieqy, x > 0 (3.36)
j=1 1573 ~— -

Now for each heH, let us multiply the comstraints of Sy by corresponding scalars
62 > 0, ieQ; and add them up to obtain the surrogate constraint
n
h
y Il x> 1 6", henm (3.37)
j=1 | ieQy J
: h . .
Or, assuming that not all 51 are zero for iEQh, i,e., letting each set Sy, heH

govern the cut, (3.37) may be re-written as

n Sh
1 h
) ) ——| 21; \x; > 1, hell (3.38)
j=1 )}ieQy ( ¥ 6‘1;) I
PEQL

Finally, denoting 5? ) 52 by A? for ieQ,, hel, we may write (3.38) as
PEQY

Il e~

( ) A?agj)xj > 1 for each heH (3.39)
1 1EQh

J

¥ AE = 1 for each heH, A?_i 0 for ieQy, heH (3.40)
1eQ, '
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Observe that by surrogating the constraints of (3.36) using parameters X?, ieqQy,,
heH satisfying (3.40), we have essentially represented DC2 as DCl through (3.39).
In other words, since x€S; implies x satisfies (3.39) for each heH, then given
X?, ieQ,, heH, DCZ implies that at least one of (3.39) must be satisfied. Now,
whereas Theorem 2,1 would directly employ (3.37) to derive a cut, since we have
normalized (3.37) to obtain (3.39), we know from the previous section that the
optimal strategy is to derive a cut (3.19) using inequalities (3.39).

Now let us consider in turn the two criteria of Section 3.2.

3.4,1 Euclidean Distance-Based Criterion

Consider any selection of values for the parameters X?, ieQ;, heH
satisfying (3.40) and let the corresponding disjunction DCl derived from DC2 be
that at least one of (3.39) must hold., Then, Theorem 3,1 tells us through
Equations (3.16), (3.21) that the euclidean distance criterion value for the

resulting cut (3.19) is

8,(0) = 1 RS (3.41)
3=1
where,
v = max{o,zj}, j=1l,...,n (3.42)
and
zj = max ) A?a?j], §=1, 400 0 (3.43)
hell  ieQy
Thus, the criterion of Section 3.2 seeks to
maximize{8,(A): A = (A1) satisfies (3.40)} (3.44)
or equivalently, to
T2
minimize { ) v (3.40), (3.42), (3.43) are satisfied}. (3.45)

j=1




33

It may be easily verified that the problem of (3.45) may be written as

PDy: minimize z y% (3.46)

j=1
subject to yi > ) Xgazj for each heH
I g6y (3.47)
for each j=1l,...,n

I Al =1 for each nen (3.48)
i€Qy

A"> 0 ieq, hen (3.49)

il h’ ‘

The equivalence follows by noting that any optimal sclution to PDj must satisfy
(3.42) as an equality. In particular, we hzve deleted the constraints Yj >0,
j=1,...,n since for any feasible X?, ieQy, heH, there exists a dominant solution
with nonnegative Yi» j=l,...sn. This relaxation is simply a matter of convenience
in our solution strategy.

Before proposing a solution procedure for Problem PDZ’ let us make some
pertinent remarks. Note that Problem PDy has the purpose of generating parameters
XE, i€Qn, h €H which are to be used to obtain the surrogate constraints (3.39).
Thereafter, the cut that we derive for the disjunction DC, is the cut (3.19) ob~
tained from the statement that at least one of (3.39) must hold. Hence, Problem
PD, attempts to find values for X?, ieQy, heH, such that tnis resulting cut
achieves the euclidean distance criterion,

Problem PDy is a convex quadratic program for which the Karush-Kuhn-Tucker
conditions are both necessary and sufficient. Several efficient simplex-based
quadratic programming proceduces are available to solve such a problem. However,

these procedures require explicit handling of the potentially large number of

constraint in Problem PD;. On the other hand, the subgradient optimization proce-
dure discussed below takes full advantage of the problem structure. We are first
able to write out an almost complete solution to the Karush-Kuhn-Tucker system,

We will refer to this as a partial solution. In case we are unable to either

actually comstruct a complete solution or to assert that a feasible completion
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exists, then through the construction procedure itself, we will show that a sub-
gradient direction is available. !Moreover, this latter direction is very likely
to be a direction of ascent. We therefore propose to move in the negative of
this direction and if necessary, project back onto the feasible region. These
iterative steps are now repeated at this new point.

3.4.1 ¥Karush-Kuhn-Tucker Systems for PDy and Its Implications

Letting u?, heH, j=1,...,n denote the lagrangian multipliers for con-
straints (3.47), th, h el those for constraints (3.48), and w?, ieQy, hel
those for constraints (3.49), we may write the Karush-Kuhn~Tucker optimality

conditions as

z uy = 2yj j=1,...,n (3.50)
hell
T hh h
z usad ot - Wy = 0 for each ieQ;, and for each heH (3.51)
jop 47 i
W37 AM" ~ 3 8- 0 for each 3=1,...,n, and each heH (3.52)
J ). i1ij J
1EQh
h h _ .
Xiwi = 0 for ieQy, heH (3.53)
wl' > 0 1ieq,, heH (3.54)
iz h» .
h .
uy >0 j=l,...,n, heH (3.55)

Finally, Equations (3.47), (3.48), (3.49) must also hold.

We will now consider the implications of the above conditions. This will
enable us to construct at least a partial solution to these conditioms, given
particular values of A?, ieQy, hel. First of all, note that Equations (3.42),

(3.45) and (3.55) imply that

Yy > 0 for each j=1,...,n (3.56)




35

yj = max o, Z k?agj, hel } for j=l,...,n
ieQy

Now, having determined values for y4y = j=1,...,n, let us define the sets

{6} if yy =0
H: = for j=1l,...,n

{heH: vy = ) k?agj > o}
iEQh

Now, consider the determination of u?, heH, j=1,...,n. Clearly, Equations

(3.57)

(3.58)

(3.50), (3.52) and (3.55) along with the definition (3.58) imply that for each

J=lyeee,yn

h h h
= . = >
uj 0 for hEH/Hj and that z uy Zyj, uj 0 for each hEHj

h&:Hj

(3.59)

Thus, for any je{l,...,n}, if Hj is either empty or a singleton, the corresponding

values for u?, heH are uniquely determined. Hence, we have a choice in selecting

values for uh heHy only when |l;| > 2 for any je{l,...,n}. Next, multiplying
i’ ] jl =

(3.51) by X: and using (3.53), we obtain

n
z [F? z {Agagj}] + ot Z A? = 0 for each heH
3=1 ieQy, ieQy

Using Equations (3.48), (3.52), this gives us

¥ .h
t, == 7 u,y. for each heH
LR 1

Finally, Equations (3.51), (3.61) yield

h_ ¥ h h
wi=jL.% m“-%] for each ieQy, heH

(3.60)

(3.61)

(3.62)
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Notice that once the variables u?, heH, j=1,...,n are fixed to satisfy (3.59),
all the variables are uniquely determined. We now show that if the variables
w?, ieQp, h€H so determined are nonnegative, we then have a Karush-Kuhn-Tucker
solution. Since the objective function of PDy is convex and the constraints are
linear, this solution is also optimal.
Lemma 3.3

Let a primal feasible set of values for X?, ieQp, heH be given. Determine
values for all variables Vi u?, th, w? using Equations (3.57) through (3.62),
selecting an arbitrary solution in the case described in Equation (3.59) if
[Hy] > 2. 1f w‘i‘ > 0, ieQy, heH, then A?, ieQ;, heH solves Problem PDj.

Proof. By construction Equations (3.47) through (3.52), and (3.55) clearly
hold. Thus, noting that in our problem the Kuhn-Tucker conditions are sufficient
for optimality, all we need to show is that if w = (wg) > 0 then (3.53) holds.

But from (3.52) and (3.62) for any heH, we have,

It >~

¥ h .h
I oael= ] A?[Z uy [aij‘Yj]]=j
j

h h_h
u. [ Z A.a,, —-y.1}4 =0
1€Qy, 1eQp y=1 1| ] 14y 7 ]

iSQh

for each heH.
Thus, A? >0, w? > 0 ieQy, heH imply that (3.53) holds and the proof is
complete.

The reader may note that in Section 3.,4.1(d) we will propose another
stronger sufficient condition for a set of variables A?, ieQy, h€H to be optimal,
The development of this condition is based on a subgradient optimization procedure
discussed below.

3.4,1(b) Subgradient Optimization Scheme for Problem PD,

For the purpose of this development, let us use (3.57) to rewrite Problem

PD, as follows. First of all define

A=0= OM: constraints (3.48) and (3.49) are satisfied) (3.63)
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and let F: A > R be defined by

o h h 2
F(A) = § [maximum {0, 2 Xiaij’ hell}] (3.64)
j=1 ith

Then, Problem PDy may h~ written as

minimize {F(A): A & A}

Note that for each j=1,...,n, gj(k) = max {0, ) X?agj, hell} is convex and
ieQy,
2 v 2
nonnegative, Thus, [gj(k)] is convex and so F(A) = Z [gj(x)] is also convex.
51
The main thrust of the proposed algorithm is as follows. Having a

solution A at any stage, we will attempt to construct a solution to the Karush-

Kuhn-Tucker system using Equations (3.50) through (3.55). If we obtain non-

negative values 52 for the corresponding variables w?, ieQ,, heH, then by Lemma

3.3 above, we terminate, Later in Section 3.4.1(g), we will also use another

sufficient condition to check for termination, If we obtain no indication of

optimality, we continue, Theorem 3,2 below established that in any case, the

vector w = w constitutes a subgradient of f(+) at the current point A. We

hence take a suitable step in the negative subgradient direction and project

back onto the feasible region A of Equation (3.63). This completes one iteration.
Before presenting Theorem 3.2, consider the following definition.

Definition 3.1

Let F: A > R be a convex function and let A € A= E™®, Then § € F™ is a

subgradient of F(+) at X if
F(\) > F(A) + £5(A=X) for each A € A.

Theorem 3.2
Let X be a given point in A defined by (3.63) and let W be obtained from
Equations (3.57) through (3.62), with an arbitrary selection of a solution to

(3.59).
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Then, w is a subgradient of F(-) at X, where F: A > R is defined in
Equation (3.64).
Proof. Let y and y be obtained through Equation (3.57) from A € A and

e A respectively. Hence,

n 2 _ n 2
F(A) = ) yj and FQ) = ) ¥j
i=1 i=1

Thus, from Definition 3.1, we need to show that

-h,,h  <+h o L
I I Wog-ip< T vi-l (3.65)
heH 1eQy =Y gn

Z -h=~h

Noting from Equations (3.52), (3.62) that [ wi i = 0, we have,

hel ieQ,

-h,,h <h -] oo -
D RACE R I I R A L G 7Y
heH :lx-:Q‘n heH ieQy heH ieQy, i=1

L h
= i@ Z z fu,y Z As)
heHj 1 (ieQ iJ) nel §=1 3 3 ieqy i

Using (3.48) and (3.50), this yields

b ,.h <h LI, h h T2
z z vy (A1 = 23) = z Uy ) Xiaij -2} Yy
hel ieQy hel j=1 1€Q j=1
Combining this with (3,65), we need to show that
2 n LI
) ﬁj ( ) Xiaij> < z yj + 7 Yy (3.66)
hed j=1 ieQy j=1

But Equations (3.50), (3.55), (3.57) imply that

n n n
R R I ahy, = 2 24
hed §=1 J \ieqy 3713 “'héu jmp 373 jzl 373

<2yl I3l < Hyll? + 151
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so that Equation (3.66) holds. This completes the proof.

Although, given Ae A, any solution to Equatiomns (3.57) through (3.62)
will yield a subgradient of F(*) at the current point X, we would like to generate,
without expending much effort, a subgradient which is hopefully a direction of
ascent, This would hence accelerate the cut generation process. Later in Section
3.4.1(b) we describe one such scheme to determine a suitable subgradient direction.
For the present moment, let us assume that we have generated a subgradient w and
have taken a suitable step size 8 in the direction —w as prescribed by the sub-

gradient optimization scheme., Let

>4
L}
>
]
i
€1

(3.67)

be the new point thus obtained. To complete the iteration, we must now project

i onto A, that is, we must determine a new X according to

X ey = P = minimm {[[A=X[]: 1 e A (3.68)

The method of accomplishing this efficiently is presented in the next subsection.

3.4,1(c) Projection Scheme

For convenience, let us define the following linear manifold

My = ‘A}i’, ieQy:  } A}i‘ = 1], heH (3.69)
iEQh

and let ﬁh be the intersection of My with the nonnegative orthant, that is,

By, o= (8, teq: I A} =1, A% > 0, ieqy) (3.70)
iEQh

Note from Equation (3.63) that

A= ﬁlx"‘xﬁlﬁ'
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Now, given A, we want to project it onto A, that is, determine Anew from Equation
(3.68)., Towards this end, for any vector o = (a;,1€I), where I is a suitable

index set for the |I| components of o, let P(x,I) denote the following problem

2

P(a,1): minimize {7 ] Oy - a9’ § A =1, A >0, icl} (3.72)
iel iel
Then to determine inew’ we need to find the solutioms (X;ew)i’ i€qQ, as projections

onto ﬁh of ih = ( ih, ith) through each of the |H| separable problems P(ih,Qh).
Thus, henceforth in this section, we will consider only one such h€H. Theorem
3.3 below is the basis of a finitely convergent iterative scheme to solve
Problem P(ih,Qh).
Theorem 3.3
k k k
Consider the solution of Problem P(B ,I,), where B = (B »i€I}), with

|1 | > 1. Define

o = 1=} Bli‘) |Ik| (3.73)
ieIk
and let
=k k
B =8 + (pL (3.74)

where 1y denotes a vector of |Ik| elements, each equal to unity. Further, define
1, = {ien: BY > 0) (3.75)
k+1 k* Pi .

k+ =k
Finally, let B 1 defined below be a subvector of B ,

k: +1
B = (g™, ter,)) (3.76)

+
where, B? 1

k+1
, I

B;» 1€T, ;s Now suppose that Bk 1 solves P(B ).

ktl

=k -k k
(a) If 8 > 0, then B solves P(B ,Ik)

(b) 1f Ek i»O, then B solves P(Bk,Ik), where B has components given by
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~k+1
By » if el 4 for each i€l

By = (3.77)

0 otherwise

Proof. For the sake of convenience, let RP(2,I) denote the problem obtained

by relaxing the nonnegativity restrictions in P(a,I). That is, let

RP(a,I): minimize {% .z (Al - ai)zz “z Ai =1}
iel iel

-k k
First of all, note from Equation (3.73), (3.74) that B solves RP(B ,Ik)

=k
since B is the projection of Bk onto the linear manifold

= Qy,deq): Ay =1} (3.78)
iEIk

-k =k
which is the feasible region of RP(Bk,I Thus, B > O implies that B also

k)'
solves P(Bk,Ik). This proves part (a).

=k
Next, suppose that B 1_0. Observe that B is feasible to P(Bk,IkZ_since

) A+
from (3.77), we get B >0 and z Bi = z Bk+l =1 as Bk 1 solves

(Bk+1 ieIk ieIk+l

P s I )

k+1
Now, consider any A = (Ai, ieI}) feasible to P(Bk,Ik). Then, by the

Pythagorem Theorem, since Ek is the projection of Bk onto (3.78), we get
-k = k
2 - 812 =[x = BI% + I B* - 812

Hence, the optimal solution to P(Ek,Ik) is also optimal to P(Bk,Ik). Now,
suppose that we can show that the optimal solution to Problem P(Ek,Ik) must

satisfy
Ay = 0 for 14T, (3.79)

Then, noting (3.76), (3.77), and using the hypothesis that §k+l solves

k+1
P(B »Ix41)» we will have established part (b). Hence, let us prove that

(3.79) must hold. Towards this end, consider the Karush-Kuhn-Tucker equations
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for Problem P(Ek,lk) with t and wy, iel), as the appropriate langrangian

multipliers.

] A =1, X; > 0 for each iely (3.80)
ieTy
(A - EE) + t-w; =0 and w; > 0 for each iel, (3.81)
A.w, = 0 for each iel (3.82)
i'i k

Now, since ) Eli‘ =1, we get from (3.80), (3.81) that

iely
t= ] w /Il >0 (3.83)
iely,

But from (3.81), (3.82) we get for each ieTy,
>k

0= wdy =Xy +t - B

which implies that for each i€Ij, we must have,

either Xi 0, whence from (3.81), wy = t= Bi must be nonnegative

-k
By - t, whence from (3.81), wy = 0.

o .
r Xl

In either case above, noting (3.80), if é? < 0, that is, if i¢1k+1’ we must have
A{ = 0. This completes the proof.
Using Theorem 3.3, one may easily validate the following procedure for

=h =t
finding AL, of Equation (3.68), given Ah. This procedure has to be repeated

separately for each heH,

Initialization

=h
Set k=0, BO = A, Iy = Qu+ Go to Step 1.

Step 1

-k
Given Bk, Iy, determine p, and B from (3.73), (3.74). If Bk > 0, then

terminate with xnew having components given by
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B if deTy
(Anew)i =

0 otherwise

Otherwise, proceed to Step 2,
Step 2
k+1
Define I;.;, B as in Equations (3.75), (3.76), increment k by ome and
return to Step 1,
Note that this procedure is finitely convergent as it results in a
strictly decreasing, finite sequence |Ik| satisfying IIkI > 1 for each k, since

z Ek = 1 for each k,
iEIk

Example

Suppose we want to project ih = (-2,3,1,2) on to AC R4. Then the above
procedure yields the following results,
Initialization

=0, 80 = (=2,3,1,2), Iy = {1,2,3,4}.

Step 1
=0 11 9 1 5.
Po = =3/4, B" = (=7 3>%7)
Step 2
1_ .9
k=1, I; = {2,3,4}, B" = (Z’%’%)
Step 1
- gl 421
Pp=-13 B =(3733)
Step 2

k=2, I, = {2,4}, 8% = ¢




3.4.1(d) A Second Sufficient Condition for Termination

As indicated earlier in Section 3.4.,1(b), we will now derive a second suf-
ficient condition on w for A to solve PD,. For this purpose, consider the
following lemma.

Lemma 3.4

Let X € A be given and suppose we obtain W using Equations (3.57) through

(3.62). Let @ solve the problem.

PRy: minimize %— ) (52 - w?)zz 1 w? =0, w? <0 for iEJh‘
iEQh iEQh

for each heH

where,

=h

Iy, = liegy: Ay

i = 0}, heH (3.84)

Then, if w = 0, A solves Problems PD,.

Proof. Since W = 0 solves PRy, heH, we have for each heH,

- - 2
G R R AR (3.85)
ieQy iEQh
h . . . h _ h . .
for all wy, 1EQh satisfying Z wy =0, wy <0 for ieJ,. Given any A el
iEQh
and given any p > 0 define
h ~h h .
wi = () - Ai)///,u, ieQ;, heH (3.86)
Then, X w? = 0 for each heH and since X? =0 for iEJh, heH, we get w? < 0 for

iEQh
ieJ;, heH. Thus, for any A € A, but substituting (3.86) into (3.85), we have,

h2 h o otho, -
WD @< I o] -3 + @ for each hen (3.87)
ith ieQy,
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sh

But equation (3.87) implies that for each heH, Xh = A" solves the problem

minimize Z {[X? - (X? - Gi)]z: Z X? =1, A? > 0, 1eQ, (for each heH

ieQy, ieQy,

In other words, the projection PA(X - %) of (X - wy) onto A is equal to A for
any U > 0. From the theory of subgradient optimization, since w is a
subgradient of F(«) at X, then X solves PD2. This completes the proof.

Note that Lemma 3.4 above states that if the "closest' feasible direction
-w to -w is a zero vector, then X solves PDy. Based on this result, we derive
through Lemma 3.5 below a second sufficient condition for X to solve PD,.
Lemma 3.5

Suppose w=0 solves Problems PRy, heH as in Lemma 3.4. Then for each

heH, we must have

(a) G? = ty, a constant, for each i¢Jh
(3.88)

(b) ﬁ? < ty, for each ieJy

where J is given by Equation (3.84).
Proof. Let us write out the Karush-Kuhn-Tucker conditions for Problem PRy,
for any he H, We obtain
h _ =h Sl
(wj - wy) + t, =0 for 1tJh
(wg - ﬁg) + ty - u? = 0 for ieJy
us

h ) h - s
8 >0, ie3y, vl =0 ey,

) w? = 0, w? > 0 for ieJy, tp unrestricted
iEQh

1f w=0, solves PRy, h €H, then since PR, has a convex objective function and linear

constraints, then there must exist a solution to
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Gg = t;, for each i¢Jh

and

“2 = (th - G?) > 0 for each ieJ;.

This completes the proof.

Thus Equation (3.88) gives us another sufficient conditon for X to solve
PDZ' We illustrate the use of this condition through an example in Section
3.4.1(g) .

3.4.1(e) Schema of an Algorithm to Solve Problem PD,

The procedure developed above is depicted schematically in Figure 3.3,

In block 1 an arbitrary, or preferably a good heuristic solution, Xedis
=h
sought. For example, one may use A; = l‘/|Qh| for each ieQ,, for heH. For

blocks 4 and 6, we recommend the standard procedural steps adopted for the sub-

gradient optimization scheme.

3,4,1(f) Derivation of a Good Subgradient Direction

In our discussion in Section 3.4.1(a), we saw that given a X € A of

Equation (3.63), we were able to uniquely determine ;j’ 3=1,.e.,n through

h
]

satisfying Equation (3.59), we were able to uniquely determine values for the

Equation (3,37). Thereafter, once we fixed values u, for u?, j=1,...,n, heH
other variables in the Karush-Kuhn-Tucker System using Equations (3.61), (3.62).
Moreover, the only choice in determining E?, j=1,...,n, heH arose in case

|Hj| > 2 for some je{l,...,n} in Equation (3,60). We also established that no
matter what feasible values we selected for u?, je{l,...,n}, heH, the correspond=
ing vector w obtained was a subgradient direction. In order to select the best
such subgradient direction, we are interested in finding a vector w which has the
smallest euclidean norm among all possible vectors corresponding to the given
solution X e A. However, this problem is not easy to solve. Moreover, since

this step will merely be a subroutine at each iteration of the proposed scheme

to solve PDZ' we will present a heuristic approach to this problem,
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2

For j=1,...,n

determine §j’ 3

1 ﬁ?, heH, using erminate with X
Equations (3.57),
—" (3.59). Hence,

determine w from

s w>0 or

does w satisfy
Equation (3,88)7

as an optimal solu-
Select]

Xeh tion to PD2

Equation (3.62).

» Select 8

Replace

X by POV
of Equation
(3.68)

No

6
Is a suitable sub-

gradient optimization

termination criterion

satisfied?

Yes

Terminate with A as an
estimate of an optimal
solution to PDy

Figure 3.3, Schema of an Algorithm for Problem PD,y

Towards this end, let us define for convenience, mutually exclusive but

not uniquely determined sets N, heH as follows
N, < {3el1,...,n}: hEHj of Equation (3.58)} (3.89)

Ny 0oy s {¢} for any i, jeH and U N = {je{l,...,n}: §j > 0} (3.90)
hel



48

In other words, we take each je{l,...,n} which has §j > 0, and assign it to some
heH;, that is, assign it to a set Nh, where heﬂj. Having done this, we let
2y if JjeNy,
G'j‘ = for each jel{l,...,n}, heH. (3.91)

0 otherwise

Note that Equation (3.91) yields values G? for u?, je{l,...,n}, heH which are
feasible to (3.59). Hence, having defined sets Ny, heH as in Equations (3.89),
(3.90), we determine G?, je{1,...,n}, heH through (3.91) and hence w through
(3.62).

Thus, the proposed heuristic scheme commences with a vector w obtained
through an arbitrary selection of sets N;, h€H satisfying Equations (3.89),
(3.90). Thereafter, we attempt to improve (decrease) the value of whw in the
following manner. We consider in turn each je{l,...,n} which satisfies IHjI >2
and move it from its current set Nhj’ say, to another set N, with heH,, h#hj, if
this results in a decrease wtw. If no such single movements result in a decrease
in wtw, we terminate with the Incumbent solution w as the sought subgradient
direction. This procedure 1s illustrated in the example given below.

3.,4.1(g) TIllustrative Example

The purpose of this subsection is to illustrate the technique of the

foregoing section for determining a good subgradient direction as well as the

termination criterion of Section 3.4.1(d).

Thus, let H = {1,2}, n=3, |Q;| = |Qy| = 3 and consider the constraint
sets
: 2%y - 3xy + X3 > 1 X2 3k = %y - X321
=X + 2y + 3x3 > 1 2x] + %y - Zx3_z 1
Sl = and Sz =
3x1 -~ %X - x%x3>1 - % + 3%y + 3x3.2 1
X1»X9,%x3 > 0 X15X9,Xq > 0




Further, suppose we

are currently located
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at a point A with

=2 _ =2 =2 _
Ay = 7/12, X, = 0, A3 = 5/12,

=0, Xé = 5/12, X; = 7/12;
Then the associated surrogate constraints are
% xp + % Xy + %—x3 > 1 for h=1
and
% %y + %—x %—x343 1 for h=2
Using Equations (3.57), (3.60), we find
3, = %-with Hy = (1,2}, ¥, = 5 with 1, = {2} and 7, = %
Note that the possible combinations of N1 and N2
(1) Ny = {1}, 8, = {2,3],
(ii) Ny = {¢}, Ny = {1,2,3},
(iii) N; = {1,3}, N, = {2}, and
(iv) Ny = {3}, Ny = {1,2}.

A total enumeration of the values of u obtained for these sets through

(3.91) and the corresponding values for w are shown below.

with H

3

= {1, 2}.

are as follows:

(3.92)




h h
Llj, J€{1,-.o,ﬂ} Wis ith: heH

3 Lll Ll2 U3 Wl WZ W3 Wl WZ Wa WtW

=
o =
-
1]
N
N
=
=
-
N
N
N

Nl NZ u

{1} {2,3} |[8/3]o |0 | 0 |4/3|4/3|16/9|-56/9 | 40/9|-40/9 |-28/9| 56/9 ﬁ29.78
{p} {1,2,3}] 0o |0 | O |8/34/3|4/3] © 0 0 0o |-4/3] 0 1.78
{1,3} {2} 8/3| 0 |4/3| O |4/3] 0 |20/9(-28/9 | 20/9|-20/9| 4/9| 28/9 | 34.37

{3} {1,2} 0 |0 [4/3]|8/3|4/3] O |-4/9( 28/9 (-20/9) 20/9|20/9 |-28/9 | 34.37

Thus, according to the proposed scheme, if we commence with Nl = {1}, N, = {2,3},
then picking j=1 which has |Hj| = 2, we can move j=1 into N, since 2€ Hy. This
leads to an improvement. As one can see from above, no further improvement is
possible. In fact, the best solution shown above is accessible by the proposed
scheme by all except the third case which is a "local optimal".

We now illustrate the sufficlent termination condition of Section

- h=1 =4 -
3.4,1(d). The vector w obtained above is (0,0,0)0,75,0). Further the vector A

h=1

2. 1L
12 * 12|12 °°
conditions (3.88) of Lemma 3.5 are satisfied for each heH = {1,2} and thus the

h=2
o, %% Y. Thus, even though ;'i 0, we see that the

is (0,
given X solves PD,.
The disjunctive cut (3.19) derived with this optimal solution X is

obtained through (3.92) as

4 2 2
RS TR (3.93)

3.4.,2 Maximizing the Rectilinear Distance Between the Origin and the Disjunctive
Cut

In this section, we will briefly consider the case where one desires to
use rectilinear instead of euclidean distances. Extending the developments of

Sections 3,2, 3.3 and 3.4.1, one may easily see that the relevant problem is
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minimize{ maximum y.: constraints (3.47), (3.48), (3.49) are satisfied}.
jell,...,yn}
The reason why we consider this formulation is its intuitive appeal. To see this,

note that the above problem is separable in h€H and may be rewritten as

h
PDy: minimize{gh: £ > Z A?agj for each j=1,...,n, Z A o=1, A
i€Q, ith

h
for each ieQ,, £ > 0} for each heH.

Thus, for each heH, PDy seeks A?, ieQ, such that the largest of the surrogate
constraint coefficients is minimized. Once such surrogate constraints are ob-
tained, the disjunctive cut (3.19) may be derived using the principles of Section
3.3,

As far as the solution of Problem PD, is concerned, we merely remark that

one may either solve it as a linear program or rewrite it as the minimization of
a piecewise linear convex function subject to linear constraints and use a sub-

gradient optimization technique. We further note that the structure of Problem

PD; may render it more amenable to the latter solution technique.

3.5 Other Criteria for Obtaining Deep Cuts

In this section, we will briefly deal with some other plausible criteria

which one may adopt. Since DCl is a specia case of DC2, we will treat only

the latter case. Further, we will consider the original disjunction DC2, that

is, we will not require b? > 0 for each i.th, h H. Note that the basic dis~

junctive cut for DC2 is given by Equation (2,10) rewritten below for convenience

n
] (max { ] afaj M xg>min { § by} (3.94)

J=1 heH 1eQ, heH ieQy © °

Now, a criterion which may be suggested would be to maximize the surplus with

This would mean that the right-hand-side of (3.94) should

respect to the origin.

be made as large as possible, with, of course, some restriction on the overall
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magnitude of the minimand such as

) A?b? = h, say (3.95)
1eQ, heH

where,

h=|n

One may easily verify that this implies it is optimal to select

h
I A%} =1 for each hen. (3.96)
iEQh
Other than the restriction (3.96), we are still free to select nonnegative values
for A?, ieQ,, heH. Since the resultant cut (3.94) should at least support S
(Equation 3.11)), we may simply select a set of positive coefficients Aj’ jeEN and

solve the linear program,

LP: minimize 1 6jyj
JeEN
h.h _
subject to Z Aibi =1 for each heH
iEQh

Z Abah f.yj for each heH, for j=l,...,n
iEQh

A? > 0, 1eQ,, heH

yj, JEN are unrestricted in sign,

Essentially, the constraints of Problem LP conform with those of Problem PD,
(Equations (3.47), (3.48), (3.49)). Choosing different values for Gj > 0, jEN in
the objective function of LP would yield different cuts (through the parameters k?,

ieQy, heH), all of which would be nondominated supports of S, including facets

of S.
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3.6 Some Standard Choices of Surrogate Constraint Multipliers

We now present two standard procedures for selecting values for the
parameters X?, iEQh, heH for the disjunction DC2, Although not strongly motivated,
these solution procedures have intuitive appeal.

The first of these methods prescribes that the constraint sets Sy, heH
be first represented in the form given in Equation (3.36), and then one may select
M= /[th for each 1eQ,, for heH.

As a second method, one may identify for each heHl, a constraint which has

the largest number of minimal column elements. That is, for each he€H, we compute
minimum {a?j: iEQh} for each jeN and identify the constraint fEQh which contains

the maximum number of these |N| minimal coefficients. On the other hand, we may

let T be the constraint with the most number of negative coefficients for each
heH. We then set Xg = 1 and X? = 0 for iEQh, i#;, for each heH,

Before illustrating the above two methods, we draw the readers' attention
to an obvious, though pertinent, fact. Suppose we are given constraint sets Sho»

heH of Equation (3.12) as in DC1l and the disjunction states that at least k of

these constraints must be satisfied, where k < |H . Then, by grouping the |H|

sets k at a time, we may equivalently represent this disjunction as DC2, stating
that at least one of the resulting (|§|> sets must be satisfied., A disjunctive

cut may now be derived based on the statement DC2. There is, however, an

alternative approach. Note that we may choose to delete any (k-1) of the |H|

constraint sets and then assert that at least one of the remaining sets must be

satisfied. This would then represent the given disjunction as DCl. Of course,

for k=1, both the alternatives are identical. For smaller values of k, the latter

technique is likely to be superior to the former technique since by deleting the

rows which contain the largest number of column-maxima, one can usually do

better than say, by averaging coefficients. On the other hand, for k close to
|H|, the former is likely to be better since by taking the average, say, of
several k numbers of arbitrary sign would tend to produce smaller cut coefficients.

These are simply general rules of thumb and clearly one may produce examples which
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indicate the contrary. We now illustrate the two methods proposed above for
selecting values for K?, ieQ,, heH,
Example

Consider the example of Section 3.4.1(g). The first method discussed above

yields X? = 1/3 for each ieQ,, heH., This gives surrogate constraints

%-xl - %—xz + x3 >1forh=1 and %-xl + Xy > 1 for h = 2.
Hence, the disjunctive cut is
4 Xq +Xg +x, > 1 (3.97)
371 2 3= ‘

This cut is uniformly dominated by the cut (3.93) derived through Problem PD2,
2
The second method discussed above suggests that we should use X% =i =1

h
and Xi = 0 otherwise for h=1,2, and i=1,2,3, This yields the cut
o (3.98)

Neither (3.98) nor (3.93) uniformly dominate the other. However, the values of
the euclidean and the rectilinear distance criterion for each of these cuts (3.93)
and (3.98) are respectively 0.6123, 0.75 and 0,111, 0.333.

3,7 Note and References

The question of how to specify the cut parameters X? has been addressed
before in the general context of cutting plane theory. However, Balas [7] and
Glover [19] have addressed the question of finding these parameters in the context
of disjunctive programs. The parameters defined in equation (3.15) was used by
Balas [6]. The cut defined by (3.19) and (3.20) was motivated by a similar result
due to Glover [18] in the context of convexity cuts. This chapter contains

several results in the context of disjunctive programming due to appear in [ ].




Chapter IV

EFFECT OF DISJUNCTIVE STATEMENT FORMULATION ON DEPTH OF
CUT AND POLYHEDRAL ANNEXATION TECHNIQUES

4.1 Introduction

In this chapter, we wish to emphasize two important salient features of
disjunctive programming methods. Both these features basically relate to the
issue of depth of cut, More specifically, we will first illustrate that one
can derive cuts differing in depth through different formulations of a given
disjunctive statement. Secondly, we will exhibit some connections between dis-
junctive programming techngiues and known polyhedral annexation methods. Based
on the latter exposition, as well as on some further development, we will exhibit
how one may strike a reasonable tradeoff between the effort involved to generate
a cut and its depth,

The organization of this chapter is as follows, First, we illustrate

the above tradeoff involved through a numerical example. Thereafter, we make
some general remarks and in particular we relate these ideas to two specific
cases, namely, the generalized lattice point problem and the linear complemen-—

tarity problem. Next, as in Chapter III, we consider two situations — one in

which each set Sy, heH (Equation (1.1)) contains exactly one constraint and a
second case in which each set 5, h € H may contain more than one constraint.

Using the first case, we establish connections between disjunctive programming

methods and polyhedral annexation techniques.

Following this, we demonstrate

two schemes by which improved disjunctive cuts may be derived through suitable

disjunction formulations. Finally, we present extensions of these developments
to the second case.

4,2 Tllustration of the Tradeoff Between Effort for Cut Generation and the Depth
of Cut

Consider the problem

maximize 2x1 + 3x2



subject to x; + %) <10 or Xy txy+ 8 = 10
X1 < 8 or xg +s9= 8
X < 5 or xy + Sq = 5

X1sXg >0, 81552553 >0

Further, suppose that the following disjunctive statement must hold:
{Either X, or x; must equal zero, i.e., X Xy = 0}

Relaxing the disjunctive statement and solving the corresponding linear

program, we obtain the solution depicted in Figure 4.1.

X2
N

)\1

L.P. optimal solution of

value 25
-
(0,5) (5,5)
FV/// |
L.P. Feasible
Region
(8,2)

7/

. Xl
(0,0 (8,0) o >

Figure 4,1, LP Solution with the Disjunction Relaxed
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The simplex tableau corresponding to this optimal linear programming

solution, which incidentally is feasible to the disjunction, is given below.

Non-basic variables
RHS
sy S,
objective function 2 1 25
Xy 1 -1 5
Basic
Variabled °©2 -1 1 3
x9 0] 1 5

From this tableau, we can represent Xy and x, in terms of the non-basic

variables as

X, =5 = 81 + &g
(4.1)

X2=5-‘S3

Hence, the disjunctive statement x;x, = 0 may be restated as follows. At
least one of the constraints x; < 0 or x; < 0 must be satisfied along with
nonnegativity restrictions, In terms of the current nonbasic variables, this may
be restated as implying that at least one of the following constraint sets must
be satisfied

{(sy,849): S, = 83 > 5, 57,8 0}

| v

(4.2)

{(sq,84): s3> 5, 51,83 > 0},

|v
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Now, from our analysis in Chapter III, we know that the best cut which one may

derive from this disjunction is

[max{% , O}]s1 + [max{- %—, %3]53 >1

i.e. s

L +s325 (4.3)

This cut may now be appended to the above tableau and the optimization procedure
continued. The reader may note that, we can use Equation (4.1) to re~write the

cut (4.3) as
x, + 2x2 <10 (4.4)

Now, let us get a geometric interpretation as to why (4.3) is indeed the
deepest cut. Note that in specifying the disjunction (4.2), we have neglected
nonnegativity on s; in the tableau representing the current point, Effectively,
we neglected the constraint x; < 8 and used only "local" information. As a
result, we implied that the feasible region of the problem is *

{x=0,0<x, < s} U {x; = 0, 0 < x; <10}. The convex hull of this region

is S' and is depicted in Figure 4.2 below. One may observe from S' that the

best corresponding cut is precisely cut (4.4)

£2
“N 0,10)

—,

cut (4,4), viz
Xl + 2)(2 i 10

» & (5,5)

2%

(0,0 5\ *1

Figure 4,2, Deepest Cut for the Formulation (4.2) of the Given Disjunction




Now, let us specify the disjunction using additional information.
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We know

for the above example problem that we must have either x; =0 whence, 0 < x5 < 5

or we mus

problem is shown darkened in Figure 4.3,

points in

closed convex set, the cut must not delete any point in the convex hull
feasible region shown thatched in Figure 4.3,

support S, and the best cut in the present context is clearly 5x; + 8:(2

t have x, = 0 vwhence, 0 < Xy < 8.

this feasible region.

This feasible region to the

Now, any valid cut should not

example

delete any

Since the half-space feasible to a cut is a
S of this

Hence, a deep cut can at best

< 40.

This cut as well as the cut (4.4) is shown in Figure 4.3.

X2
f

(0,10)

Deepest cut
5x1 + 8x2 < 40

(5,5)

v

cut (4.4), viz.,

|~ x ot 2p <10

(8,2)

Figure 4.3.

Deepest Cut
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We will now see how the deepest cut le + 8x, < 40 can be derived
algebraically. Obviously, to obtain this cut we must consider all the constraints
of the original problem. In other words, the nonnegativity restrictions on s,

must be included as well., Since

8y =3 + 5 - S3 (4.5)

in the tableau representing the current point, the given disjunctive statement

implies that at least one of the following constraint sets must be satisfied,

8q: {(31,53): s -8s32>5
§) = S3 > -3

§q584 > O}
173 = (4.6)

Syt {(51,53): 5525

81283 3.0}

Using multipliers 5 and O for the constraints of S1 and multipliers 8 and

5 for the constraints of S, we obtain the surrogate constraints

Ssl - 553'i 25 and 551 + 353 2_25

This yields the disjunctive cut

551 + 353 2_25 (4.7)
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or, using Equations (4.1), this may be rewritten as

5%, + 8x, < 40 (4.8)

1
As depicted in Figure 4.3, the cut (4.8) is the deepest possible for the given
disjunction., Later in Sections 4.4 and 4.5, we will show how (4.7) or (4.8)
may be derived conveniently through (4.6).

So far we have illustrated the cuts in the (xl,xz) space. In the space

defined by the nonbasic variables (51,33), the cuts are as given by (4.3) and

(4.7)., These cuts are illustrated in Figures 4.4(a) and 4.4(b) respectively,

s
3 Sg

\\\\\\\\ ) cut551+3s3325

cut s, + s 25

X, = 0

\
%<0 /\
N \
N ;3 \ 40
N Y ( v
S \
N \

p—
N S1

(b) w

N

7/
’

o

(a)

Figure 4,4, Illustration in the Nonbasic Variable Space

Through this example, we have demonstrated that one needs to consider all
the constraints of the problem if a deepest cut is to be recovered through the
disjunctive principles. However, this would lead to greater effort in the cut
generation process. We now indicate the implication of this on the Generalized

Lattice Point Problem, and the Linear Complementarity Problem.
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4.3 Some General Comments with Applications to the Generalized Lattice Point
and the Linear Complementarity Problems

Very briefly, we will illustrate through the Generalized Lattice Point and
the Linear Complementarity problems the tradeoff which may be involved in the
formulation of disjunctions. Recall our formulation of the Generalized Lattice
Point Problem (GLPP) in Section 1.2.1 and let us rewrite it in a slightly
different manner.

Note that if one selects q of the p components of u corresponding to
linearly independent rows of A and restricts these q components to be zero, then

one 1s confining the point u to some p-gq dimensional facet of the set

U= {ut uy >0, i=l,...,p} (4.9)

Letting Fl,...,Fﬁ be the set of such (p~q) dimensional facets of U and denoting

H={1,...,h}, the set Sy, of Equation (1.6) may be alternatively written as

Sp = {us ue Fh}’ heH (4.10)

Hence, Problem GLPP may be written as

minimize ctx
subject to v=d-Dx>0
u=>b-Ax >0
ue U s,
held

where S;, heH is given by Equation (4.10). If the rank of A is less than the
number of rows A, that is, if A is not of full rank, then Problem GLPP poses an
extra difficulty. One may relax the disjunctive statement in such a case to

read

{at least q of the p components of u are zero} (4.11)
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Now, one may unambiguously let H={l,...,(z)} and correspondingly define sets
Sp» h€H, each corresponding to a unique combination of q out of p components of
u restricted to zero. This modification makes the cut generation process much
simpler and hence faster. However, this is at the expense of the depth of cut
that can be derived therefrom,

Similarly, in the linear complementarity problem LCP considered in
Section 1.2.5, one may be considering the violation of a particular disjunction
xpxq = 0, say, in a solution to a relaxation of this problem. Hence, as exhibited

in the foregoing section, one may simply use the constraints corresponding to

X, < 0 and x;, < 0 in order to derive a cut. Alternatively, one may choose to

P q
incorporate in the disjunction formulation the nonnegativity restrictions on the
other basic variables as well.

Let us now generalize this concept to the situation of interest to us,

namely the case where the objective function f is quasiconcave, and the set X of

Problem DP (Section 1.1) is polyhedral. In order to establish conmnections
between disjunctive programming techniques and polyhedral annexation methods, and
to simplify the presentation, we will initially assume that each of the sets Shs

heH is comprised of only a single constraint. Again, we will assume that a

relaxation strategy is being adopted to solve Problem DP, so that currently, we

have an extreme point optimal solution to the problem minimize {f(x): xeX, x > 0},

which violates the disjunction x € U S Here, we are assuming that the set X
heH
is comprised of the original linear constraints along with any valid inequalities

which may have been generated over previous iterations. Accordingly, in terms

of the current nonbasic variables, let the sets X and Sy, heH be given by

X = {x: 6x < g} = {x: )) Bij%y < 8y for i=1,,..,m}
jed

5, = {x: ng alx; > 1, x > 0}, heH (4.13)
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where J is the index set of the nonbasic variables, For each set S;, h€H, we
have normalized the single constraint by its respective right-hand-side which

must be positive since the origin violates each such constraint. Now, in order
to derive a valid inequality which deletes the origin, one may invoke the dis-

Junction

xe U s, (4.14)
heH

However, we propose to derive stronger cuts by invoking the alternate disjunction

xe U xs, (4.15)
heH
where,
XS, XM S ={x: Gx<g, ) ax; >1, x>0} (4.16)
h h Se boayry2 >

Note that omne may invoke other valid disjunctions between the extremes (4.14)

and (4.15) by adding on a subset of the comstraints of X to each of the sets §,
heH, As we have see, in the formulation of the disjunction, there is a tradeoff
involved between the strength of the inequalities derived and the effort expended
in generating these inequalities. Now, one viable approach is to commence with the
disjunction (4.14) to obtain an initial cut, and then to sequentially add on
constraints of X, attempting at each step to improve the current cut. This is
basically the central point of the discussion of the following sectiom.

4,4 Sequential Polyhedral Annexation

In this section, we will first briefly discuss the polyhedral annexation
technique as is relevant to the present exposition, We will then demonstréte
how an algorithmic scheme called sequential polyhedral anmnexation may be
implemented to use the set X defined by (4.12) in order to improve the fundamental

cut (3.19) available from the disjunction (4.14). We will also indicate some
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drawbacks of this method which lead us to proposing a variation of the scheme.
This variation, however, involves additional effort in generating a cut.

Let us begin our discussion by making the observation that a disjunction
which stipulates that at least one of the sets Sy of Equation (4.13) must be

satisfled is equivalent to the statement that the Iinterior of the polyhedron

Sy = lx: ) a?xj.i 1, for each heH} (4.17)
jeJ

contains no feasible points in the nonnegative orthant. Henceforth, for the sake
of convenience, we will call a polyhedron NFIP if its interior contains no feasible
points in the nonnegative orthant, Thus, the polyhedral annexation procedure
essentlally does the following. Given several NFIP polyhedra, the technique
suitably annexes them to each other in order to derive a mew NFIP polyhedrom of
the type (4.17). Then, based on the constraints of this polyhedron, a cut of the
type (3.19) is generated. The annexation scheme is based on the following main
resulte.
Theorem 4.1

Let the polyhedra

sp = {x: Z a]?xj :.bp for each peP} (4.18)
k|
and
SQ = {x: X adx, < b? for each qeqQl (4.19)
j 71 —

be NFIP, Then, for any keP, and for any nonnegative parameters ukq, uq, qeQ, the

following polyhedron is NFIP:




r r
= . <
Sp = Lz J ajx; < b" for each reR}

x; < b’ for each peP - {k} (4.20)

1l
Lon)
»
Lt~
[

k q k q
. < £
§ (ukan + uqaj)xj < (ukqb + uqb ) for each qeqQ}
Proof. By contradiction, suppose Sp is not NFIP, Then, there exists a

feasible, nonnegative x satisfying

X a?x. < bp for each peP - {k}
i 3]

k q k q
§ (ukqaj + uqaj)xj < ukqb + uqb for each qeQ

k
The first of these inequalities implies that z agxy > bk or else, SP would not
be NFIP., This along with the second inequality implies that

1yt ) a?xj - b} < ukq{bk -3 alj‘xj} < 0, or that S, is not NFIP, a contradiction,
h|

]
|
This completes the proof.

Q

In terms of the traditional disjunctive programming methods, Thoerem 4.1
has the following interpretation, The condition that at least one of the

constraint sets
sp = {x: ) a‘;xj > vP, x > 0}, peP (4.21)
and at least one of the constraint sets

5 = § ang > b, x > 0}, qeQ (4.22)

must be satisfied, implies the weaker condition that at least one of the following

constraint sets must be satisfied for some keP
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s, for peP - {x},
(4.23)

q

Sk,q = {x: ] a?xk.i bk, ) a;‘xj >b', x > 0} for qeQ
’ i

Given any set of nonnegative surrogate multipliers ukq’ uq for the two constraints
in each of the sets Sy q’ qeQ, this in turn implies that at least one of the
?

constralint sets

s, for pep - {k},
(4.24)

k q k q
= H . > >
Skq {x § (ukan + uqaj)xj > (ukqb + uqb ), x > 0} for qeQ

must be satisfied, or that S of Equation (4.20) must be NFIP.

Clearly, the choice of keP for the purpose of annexation is crucial with
regard to the strength of the inequality which may be derived from the disjunction
(4.24). We will now discuss this choice in the context of a method known as
sequential polyhedral annexation, as applied to the concepts introduced in
Section 4,2.

Thus, suppose one has derived the following cut (3.19) from the disjunction

that at least one of the sets Sy, h€H of Equation (4.13) must be satisfied

ng Txg > 1 (4.25)
The question addressed at this point is whether or not a given cut coefficient
Ek’ ke€J can be improved (decreased) without worsening (increasing) the other
coefficients, (In the discussion below, the reader may note that the sets X,

Sys Sp and SQ are defined by (4.12), (4.17), (4.18) and (4.19) respectively).

The manner in which the sequential method proposes to accomplish this is to
commence with the NFIP polyhedron Sy and annex constraints of X one at a time.

During this annexation process, that constraint which is a "blocking hyperplane",
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i.e., forms a "block", for the kth edge extension, is chosen to be surrogated with
the newly added constraints. That is the cut coefficient Ek is determined by

that particular constraint through (3.19). In other words, the surrogation serves
the purpose of attempting to rotate this blocking hyperplane so as to permit an
improved edge intercept. Of course, if more than one constraint form a block

for the ktP edge extension, then this process will have to be repeated for each

of the blocking hyperplanes. Thus, starting with Sp equal to Sy, a set SQ with
|Q] = 1 is chosen to contain a single constraint of X, Let us assume that a
constraint keP of SP forms a block for the kth edge extenmsion. Then, Sp and SQ
are annexed through nonnegative parameters ukq and Hq as follows.

Note that since the origin is infeasible to each Sp, peP of Equation (4.21),
we may assume as before without loss of generality that bP = 1, peP, To maintain
consistency, we may also stipulate without loss of generality that the surrogation
makes the right hand side of the constraint in Skq of Equation (4.24) equal to
unity, i.e., “kq + ukqbq = 1, Thus, under the restriction that the cut derived

from the disjunction (4.24) improves the kth edge intercept without worsening

the other edge intercepts, we are searching for parameters Uk s H satisfying
= q 4,26
! >0 ! 1 ! b >0 .2
q — 7 "kq q - ( )
T >, a:. + U a1 for each jeJ (4.27)

One may easily deduce from this that the appropriate choice reduces to finding

the largest “q > 0 satasfying

- k

. a.
i~ 1

Hg < minimum { ————F—— 1 (ag - akbq) >0
jed (a? - akbq) 3
J J
and (4.28)

pbpl <1
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Then ukq is given through (4.26) and thus, the resulting NFIP polyhedron Sp of
Equation (4.20) becomes the new polyhedron of the type (4.18). The cut (3.19) is
updated, if necessary, with this new NFIP polyhedron (or disjunction) and the
process 1s similarly repeated until the improvement of all edge intercepts have
been attempted using all the constraints of X one at a time. Note that at each
annexation, if the corresponding parameter uq obtained through (4.28) turns out

to be zero, then this implies that Sp = Sp so that no improvement is possible with
the current annexation,

Now, there is one principal drawback of -this technique and that is, the
final cut derived is dependent on the order im which one considers the constraints
of X of Equation (4.12) to be used as sets SQ of Equation (4.19). We illustrate
this fact below through an example and then proceed to propose an alternative
method.

Illustrative Example

Let us modify the example of Section 4,2 by adding an additional constraint

to the set X of Equation (4.12), Hence, let the sets of Equation (4.13) or

(4.21) be

= {(sl,s3): -

s
3
Sy = {(s),89): 5 > 1, 8,89 > 0}

and suppose X is given by

X = {(51,53): -5+ S4 <3, =51 + 384 5.12} (4.30)

The sets XSl and XS, of Equation (4.16) as well as the best cut available from

the disjunction (4.15) are depicted in Figure 4.5.



70

.

deepest cut

Figure 4.5, Deepest Cut From the Improved Formulation

Now, the cut (3.19) available from the disjunction (51,53) € S1 u S2 is
%%'+ ig.i 1. This cut passes through the points T and W of Figure 4.5. One
can see that the extension corresponding to edge §) cannot be improved, Hence,
let us attempt to improve the edge intercept corresponding to s3 using the
sequential polyhedral annexation scheme, Towards this end, note that the
constraint of S, represents the blocking hyperplane., Using the first constraint
of X in the initial set SQ of Equation (4.19), (with the inequality reversed)

the relationships (4.28) yield




"

1

. ) s . -
uq f-minlmum(I_:_fﬁffzif ) s 3uq <1, uq >0

The largest y_ satisfying this is u_ = i , whence (4.26) gives y, =1 - (1)(-3) =
q q 5 kq 5

8
5 . Thus, the disjunction (4.24) is (51553) € S1 u qu where,

1 3 -
qu - {(sl,s3): T8 + 33-53 >1, S1sS3 2_0} = New 52’ say (4.31)

The cut (3.19) from this disjunction is

Tty 21 (4.32)
which passes through points U and W in Figure 4.5, and is also shown in Figure
4.4(b). Now let us repeat this by taking S; as in (4.29), S, as given by (4.31),
the second constraint of X forming the set SQ, and the constraint of 52 represent-
ing the blocking hyperplane for the edge sy in the cut (4.32). The relation-
ships (4.28) yield

1_1
< > 2 12y <1 >0
. -
uq minimum 1 - (;)(_12) , ’ uq ’ uq

which implies, that uq = 0 or that no further improvement is possible.

In this example, if one had considered the constraints of X in the reverse
order then one would have obtained the deepest cut as shown in Figure 4.5,
However, the appropriate ordering of the comnstraints of X is a combinatorial
problem, Furthermore, conceivably it may be possible in some instances that the
best cut is not recoverable no matter in which order the constraints of X are
considered,

The method we propose to employ in the next section considers all the
constraints of X simultaneously, that is, examines the disjunction (4.15) itself

in an attempt to improve edge intercepts one at a time, holding other edge inter-~
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cepts fixed at each stage. This technique is easy to implement and directly
yields the best cut coefficients, the corresponding appropriate surrogate multi-
pliers being available, if required, as a set of optimal dual variables,

4,5 A Supporting Hyperplane Scheme for Improving Edge Extensions

Suppose as before that we are given sets S;, heH defined by Equation
(4.13) with the stipulation that at least one of these sets must be satisfied,
We re-emphasize here that we continue to assume that each set Sy has only one
constraint merely for convenience. In addition, we are given a constraint set X
(Equation (4.12)) which must also be satisfied by an feasible point. The dis-
junction under consideration is that x £ U XSh (Equation (4,15)) where, as in
Equation (4.16), Xs, =X n Sp»> heH, ek

Thus, assume that currently, we have a cut of the form
I mx, >1 (4.33)
€

which is valid for the disjunction (4.15). Note that initially, (4.33) may be

taken as the cut (3.19) derived from the disjunction x ¢ U She
heH
Now, consider a keJ and suppose that we are presently trying to improve the

kth edge intercept, that is, decrease Ek, Towards this end, let us assume that

we are able to solve for each heH

Prne minimize Tkh

subject to TepXe + ) ijxj > 1 for each x € XSy
jeJ -
j#k
(4.34)

and

[}

Ten¥x + Z ijj 1 supports XSy
jeJ
¥k
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Let

T = maximm {mg,} (4.35)
heH

where Ekh is the solution to problem th. Now consider the cut

Tx o+ J Tx, > 1 (4.36)
K oy 3=

Jfk

Clearly, (4.36) is satisfied by each x € U XSy, that is, (4.36) is a valid cut
heH -
for the disjunction (4.15). Moreover, any inequality z ﬂjxj > 1 with “j = “j
jeJ

for jeJ - {k} and e < 7* is not valid because it deletes a point X of Xsq at

k

x, = 1 supports XS}';, where heH

which the corresponding hyperplane Ekﬁxk + z “j j
jeJ

Jik
is an index for which equality holds in (4.35). To see this, it is sufficient

to show that if ﬁkh > — in (4.34), then a point of support referred to in (4.34)
occurs at an X satisfying ik > 0. This is clearly so, for if not, then ;kh can
be reduced still further. Thus, (4.36) gives the best intercept possible for

kth edge when all other iIntercepts are held fixed, Hence, replacing ;k of

the
(4.33) by E;, we would obtain a (possibly) new valid cut (4.33). This process
may now be repeated for each edge in turn till no further improvement is possible.

0f course, different cuts may be obtained by considering the edges in different

orders, but each of these cuts cannot be uniformly dominated by any other cut.

We will now proceed to discuss the determination of ;kh’ the coefficient
ofvxk in the cutting plane under consideration, given through (4.34). The
problem we formulate below to accomplish this, has the following motivation.

Observe that the cut hyperplane is constrained to pass through (n-1) linearly

independent points of the form (0,..., l-,...,0) for jeJ - {k}. 1In order to

-

uniquely define the cutting plane, we need to identify a suitable point X which
has §k > 0. Now, according to Equation (4,34), this cutting plane will need to
support the set XS, with each point of XSy being feasible to it. Hence, in order

to determine Ekh' we may hold the intercepts on the axes jeJ - {k} fixed and
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decrease the intercept on the kth axis (increase ﬂkh) until the hyperplane merely

supports XSh at some point X with ’_(k > 0., This problem is mathematically stated
below., Theorem 4.2 later establishes that an optimal solution to this problem

yields T = Tkh

l;kh : maximize ‘lTk
subject to T %, + T.ox, =1 (4.37)
k7k jeJ 373
J#k
x € XSy (4.38)
x. >0 ({‘v39)

Note that ﬂk is unrestricted in sign. Now using Equations (4.12), (4.13), (4.16)

and solving for m, through Equation (4.37), we may rewrite the above problem as

k

maximize _— - Z ‘TTJ.(

x g
subject to Z gij(;;]j(ﬁ)f_— for i=1,...,m

Finally, letting

X
1
£ = K and yj = i for each jeJ (4.40)
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we obtain the following linear programming problem in |J| variables

LPpy,t maximize z(E,y) = £ - z T.y
jEJjj
j#k
subject to ng gijyj - giE f-—gik for i=1l,.,.,m
j#k
- ] ay, <
jed i
3k

£>0, ¥ > 0 for jeJ - {k}

Consider the following result,
Theorem 4,2
» Je3 = {k}

If Problem LP is feasible, then it has an optimal solution E, ;

kh j
with E < w, Moreover, the optimal solution values of Problems Lth and Problem
Puh (defined by 4.34)) are equal.

Proof. Note that the constraints of Problem Lth may be rewritten as
z gijyj - gig < 0 for i=1,...,m; - z a?yj + £ <0 and e = 1, with £, y > 0.
jed jeJ
Letting Uys i=1,...,m, Y and Bk be the respective dual variables assoclated with

these constraints, the dual to Problem LP,;, may be written as

DLPy}, ¢ ninimize Bk

m -
subject to a?Y - 151 gijui f-“j for jeJ - {k} (4.41)
h m
ay - 1 8iMy < By (4.42)
i=1
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Letting Ek denote the minimum value of Bk, we will show that Bk = ;kh' Ve have

from (4.34)

v

TenXe t .z %5 1 for each xeXs, (4.44)
jed
jfk

m.% + ] F.x, =1 for some XexS, (4.45)

Hence (4.44) is implied by XS, and Lemma 2.2 asserts the existence of ? >0,
ﬁi > 0 satisfying (4.41) through (4.43) with Bk = ;kh‘ That is ?, ﬁi and ﬁkh is

feasible to DLP Thus Lth is bounded. Hence, Ek.i ;kh < o, Now let ;, Gi

kh*
and Ek solve DLP,, . Then, xeXS, implies

h— -
z [a.Y - z By als]x,
jeg 3 g M3 i=1

Then noting (4.41) through (4.43), we get

kak + z ijjzll for each xeXSy (4.46)
jedJ
j#k

We have shown that Ek < Ekh' Now if Bk < ;kh’ then from (4.45)

contradicting (4.46). Hence Ek = ;kh'
Finally, since LPy;, is bounded, there exists an optimal extreme point

solution (E,;) with E finite, This completes the proof.

Corollary
Let Z, ;j’ jeJ - {k} solve LP,, with E < w, and with Ek as the corresponding

objective function value, Then, = Ek’ X, = %‘and xj = z; for jeJ ~ {k} solves
3
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kh*

It is easy to show that the following expedient for determining E: of
Equation (4.35) through the solutions of Problems LPy;» heHl for a given keJ,
is a valid scheme.

Step 1

Consider the cut (3,19) derived for the disjunction x ¢ U S, Let heH
hel

kth edge as defined in Section 4.4.

be a "blocking hyperplane" for the
Step 2
Solve LPyy. If LPyy is infeasible, then select any heH not considered

thus far and repeat Step 2. (If LPy; is infeasible for each h€H, then X = 0 for
each x ¢ U XSy and the variable x; may be disregarded from the problem), Other-
wise, obtziﬁ an optimal solution value ﬁkh’ Lf %kh = ;k’ terminate with ;i = ;k'
If each h €H has been considered, terminate with ;: given through Equation (4.35).
Otherwise, select an h € H not considered thus far and repeat Step 2 by solving
Problem LP} with the added restriction that its objective value be at least
equal to the largest of the objective values of problems LPy,, that have been
solved before this for other heH.
We remark at this point that the development of the present section may be

easily extended to a broader class of problems in which each of the sets Sy, hel

may contain more than one constraint, This is accomplished by simply writing

the second constraint of LPy; for each of the constraints in Sy. Further, Step 1
of the scheme discussed above may be started from an arbitrary h or from one
determined heuristically.

We also draw the readers' attention to the linear programming approach

(Problem LP) of Section 3,5 for deriving deep’cuts. This formulation is similar

in thrust to Problem DLPy;, of the present section and may be used to obtain

supports of the closure of the convex hull of {x: x e U Sh} which are valid
held
cuts for the corresponding disjunction x € U §;.
' heH



4.6 TIllustrative Examples

Suppose that we are given

Sl-{x: -x +x2__>_1,x_>_0} andSz={x:x >1, x > 0}

1 1

Consider the following three examples of the set X:
(1) X = {x: 2x; = 2x, < 1}
(11) X = {x: 2x; - x5 < 1}, and
(1i1) X = {x: 6x1 - 2%y < 3}.
These three cases are depicted in Figure 4.6, Also shown in this figure are the

respective best cuts available.

Now, the cut (3.19) from the disjunction x € U S, 1s xp + x5 > L.
heH

< -

—— dut (1)
-/// -
x

%—,o) [y (1,0 1

Figure 4.6, Cuts for the Three Illustrative Examples
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Using ‘the development of the previous section to improve the extension
corresponding to the variable X holding the other extensions fixed yields the

following problem. Note that h=2 is selected at Step 1 in each case.

Example (1) Example (11i) Example (1ii)
[Problems maximize £ - y, maximize § - yo maximize £ = y,
Lth with
=1 5 subject to 2y, + £ > 2 | subject to 10 + £ > 2 | subject to 2y2 + 3 >6
=1, h= — —_ —
£<1 £<1 £<1
£, ¥, 20 €, ¥ 20 €, ¥y,2>0
Solution
Value: 1/2 0 -1/2
£ 1 1 1
Yy 1/2 1 3/2

One may easily verify that the Problem Lth with h=1 yields smaller objective
values in each case. Further, the edge extension corresponding to Xy cannot be

improved. Hence, the best cuts obtained in each case are

Exanple (1) 1/2 Xy + xz_z 1
Example (ii) X9 >1
Example (1ii) -1/2 X, + Xy > 1

These cuts are illustrated in Figure 4,6,

We will now proceed to discuss another important concept closely related
to the depth of disjunctive cuts, Specifically, as briefly mentioned on several
occasions thus far, facets of the closure of the convex hull of the set U Sh
constitute highly desirable disjunctive cuts. In fact, if one replaces ZEE
nonconvex set U Sy by the closure of its convex hull, which is polyhedral

hel

whenever §, are defined by a set of linear constraints with |H| < w, then the

nonconvex disjunctive program may be effectively replaced by its convex equivalent,
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A method of identifying and generating such facets is the topic of our discussion
in the following chapter.

4,7 Notes and References

Recall that a valid cut is nondominated if it supports the closure of the
convex hull of the feasible region. This chapter first shows how the strength
of a disjunctive cut depends on the formulation of the disjunctive statement.
Thus, one can conceivably derive a number of different nondominated cuts, each
corresponding to a different formulation. A related thought that is pursued in
this chapter is as follows. Given a valid cut, possibly a nondominated cut
corresponding to one formulation, can we improve upon this cut. In particular,
the improved cut is a nondominated cut corresponding to a new formulation obtained
from the previous one by adding one constraint. The answer is affirmative, and
it is precisely the polyhedral annexation scheme of Glover [19]. A further
thought that arises is whether the strength of the final cut thus derived is
dependent upon the order in which the constraints are added., The answer again
is affirmative. In Section 4.5 therefore a scheme is developed whereby a given

valid cut is improved by considering all the constraints simultaneously.




Chapter V

GENERATION OF FACETS OF THE CLOSURE OF THE
CONVEX HULL OF FEASIBLE POINTS

5.1 Introduction

In this Chapter, we examine a procedure for replacing the disjunctive
statement in a problem by linear inequalities which represent the facets of the
closure of the convex hull of points feasible to the disjunction. In particular,
we present necessary and sufficient conditions for an inequality to define a
facet of the closure of the convex hull of feasible points. The actual generation
of such facets is a hard problem. However, for a special class of problems
(called "facial problems" in this chapter) it is possible to obtain the closure
of the convex hull of points satisfying disjunctions, in a sequence of q steps,
where each step generates the closure of the convex hull of points satisfying
one disjunction only.

To simplify the presentation, we will avoid proving results and will simply

state them and 1llustrate them through a numerical example, To begin with, let
us state the form of the disjunctive program DP of Chapter I which we will be

working with in the present context

DP: minimize f(x) = ctx

subject to xeX = {x: Dx > d, x > 0}

v {aPx > M, x> 0}
heH -

The linear program obtained by relaxing the disjunctive statement of Problem DP is

LP:

minimize

subject to
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We will assume henceforth that both DP and LP are stated above in terms of the
nonbasic variables at the current optimal solution to LP. Thus, the current
solution is x = 0 with feasibility implying that d < 0 and optimality implying
that ¢ > 0.

To illustrate, let us work with the numerical problem of Section 4.2
throughout this chapter, From the optimal tableau for Problem LP given in

Section 4.2, we deduce

DP: minimize Zsl + s3

subject to =51 + 53 > =5
8 =~ 83 > =3
- 8323
$1,83 > 0
8y = 83 > 5 S3 >5

81, 83> 0 VSl,s?’iS

5.2 A Linear Programming Equivalent of the Disjunctive Program

In this section, we will write a linear program ELP which is in a defined
sense equivalent to the nonconvex problem DP given above. For this purpose let
us define the following sets.

For each heH, let

Fy = {xeR": D" > d", x > 0} = {xeR™ Dx > d, A"x > b", x > 0}  (5.1)

represent the points feasible to LP which are also feasible to the hth, heH,

disjunctive constraint. Also let

F= U Fy, = {xERn: Vv {th > dh, X > 0} } (5.2)
heH heH
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Finally, let us denote the feasible region of LP as
F, = {xeR": Dx > d, x > 0} (5.3)

0

Let us assume that |H| < © and let us define

n* = {hen: Fy # {9}} (5.4)

Now, let us characterize the closure of the convex hull of F, denoted by

c{ conv F, Note that any xcF may be written as

X = z Eguh, where uh € Fy, hEH*, and where,
heH*

] e8=1,¢0>0
heH*

Hence, substituting Eh =.£guh and noting that l)huh z.dh, uh > 0, we get

i

xeR%: x = ] Eb
heH*

DUEh > abER ) pew*

cf conv F = (5.5)

h
hezl{* fo =1

), £p) > 0, hew*

It may be shown that if the feasible region of LP is bounded, then (5.5) is true
with H* replaced by H, Now, if LP has a finite optimal solution, then direcfly
using the characterization of Equation (5.5), we may write a linear program ELP

equivalent to Problem DP in the sense of Theorem 5.1 stated below,




ELP: minimize I ct Eh
heH

subject to Dh Eh > dh 53, heH

I gg=1
hell

", € > 0, nhex

Let us denote the feasible region of Problem ELP as P. Then consider the
following result stated without proof,
Theorem 5.1

Problems DP and ELP are equivalent in the following sense

(i) For every extreme point x of cf conv F, there corresponds an extreme

point of P with components

(Ek, Eg) = (x, 1) for some kell

0 otherwise
(ii) All extreme points of P have components of the following form

(Ek, 1) for some keH

0 otherwise
where, x = Ek is an extreme point of Fy
(ii1) x is optimal to DP if and only if the corresponding extreme point of
P defined in (i) above is optimal to ELP,

For the moment, we will not involve ourselves with the description of
specialized solution procedures for Problem ELP. We merely remark that there do
exist simplex-based decomposition solution schemes which exploit the structure
of ELP, Ve will now proceed to give an alternate characterization of the set

c? conv F which permits the explicit generation of the facets of the convex hull
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of feasible points. Before that, let us illustrate some of the concepts intro-
duced in this section through our numerical example. Figure 5.1 is provided
below for this purpose, and may be referred to along with the statement of
Problem DP.

S3 Fy =Region feasible to LP

A

Figure 5.1, Illustration of the sets Fy, Fy, Fp, F, cf conv F

5.3 Alternative Characterization of the Closure of the Convex Hull of Feasible
Points

In this section, we will lay the foundations for the procedure which will

generate facets of the set cf conv F.

In particular, we will present an

alternative characterization for the latter set. To begin with, let us informally
r conceptually introduce certain definitions which we will find necessary to
se in the following exposition.

By the polar set of F, we mean the set

P = {r e &% mx < 1 for each xeF} (5.6)
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By the scaled polar of F with scale parameter Ty> We mean the set

FO(TTO) = {m e R?; mx <7, for each xeF} (5.7)

The scaled reverse polar of F with scale parameter T is the set

F#(no) = {rer™: ™ > M, for each xeF} = - FO(—WO) (5.8)

0

Given two sets S and T, their Minkowski Sum is the set
S+ T={x:x=s+t, scS, teT} (5.9)
The conical hull of S is the set

cone § = {x: x = | A\ x", x' €S for each 1, A; > 0} (5.10)
i

The linear hull of S is the smallest subspace of R containing S, that is,

n

h s ={xeR" x = Z kixi, xi € S for each i} (5.11)
i

The affine hull of S is the set
n, = i i _
aff S = {xeRM: x = Z Ayx*, x €S for each i, Z Ay = 1} (5.12)
i i

The orthogonal complement of S is the set

s = {meR": mx = 0 for each xeS} (5.13)

The recession cone of S is the closed cone which is a closure of the set of

directions of S, that is,
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C(S) = c2{veR": xeS implies that x + Av € S for all A > o} (5.14)

The linearity of S is the dimensionality of the largest subspace contained in C(S),

that is,

2in S = dim {R: R is a subspace of C(S) and

Q © R for each subspace Q of C(S)} (5.15)

Note that for a set T, the dimension of T, denoted dim T, is the dimension of the
linear hull of T.

Let us turn our attention to the scaled reverse polar of F, F#(ﬂo),
(Equation (5.8)) which we will find very important in the present context. Note
that F#(ﬂo) is the set of all normals to the hyperplanes which define valid cuts

for the stated disjunction. Hence, two alternative ways of writing F#(no) are

given below

i

(a) F#(no) {me R": nxi‘i T for each x* € vert cf conv F
(5.16)

mal > o for each di € dir cf conv F}

() Fh(my) = (mer®: 7 > 6" + o'a", hew* for some 67, N >0,

h, h

h (5.17)
heli* such that 67d + o'b" > )}

Above, for a polyhedral set S, vert S denotes the set of extreme points of

the set S and dir S denotes the set of directions of S.

Note that the sign of L) is important in this context since we can always

scale mx > Ty 80 that ﬂo is either +1 or -1 or 0. These latter three cases will

henceforth be of primary interest to us. Further, whenever the sign of m, is

0
inconsequential, we will simply write i instead of F#(NO). Finally, note that

the characterization (5.16) of F#(no) is conceptual whereas that of Equation

(5.17) is accessible. To aid our understanding of F#, let us actually construct
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it using (5.16) for our problem, using values of 1, -1, and O for Tos
As depicted in Figure 5.1, c% conv F is a polytope with extreme points

(2,5, (5,0), (10,5). The set dir cf conv F is vacuous. Using Equation (5.16),

we have,

m= (ﬂl,ﬂz): 2ﬂ1 + Snz

5m, > T
# 1270
F (no) =
10171 + 5my > T
Tys Ty unrestricted

Figure 5.2 illustrates the sets F'(1), F#(-1) and F#(0).

Some useful properties of the reverse polar are stated below without proof.

Lemma 5.1
Let S and T be arbitrary sets. Then,
A

()\S) ='5‘-(S),-"°<)\<°°

Sc T implies s 5 1#

¢sunt=stn 1
Based on these properties, one may establish the following important relationships
between F! and cf conv F.

Theorem 5.2

(1) 1f To > 0, then
0 € ct conv F <=> F¥ = {¢} <=> F¥ is bounded

(11) If my < 0, then F! # {¢} and

0 € int conv F <=> F¥ 4g bounded.




1° 3
(5,23)
1071'1—5172=1»—"‘
(0,0)

222222222

i)

\.
g7
////
1 @Z«///
. 5

o
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However, the set more closely related with cf conv F is the set (F#)# denoted by
F##. Suppose that F# # {¢}. That is, from Theorem 5.2 above, assume

that 0 ¢ cl conv F, In other words, the point we are currently located at
(assumed to be the origin) is infeasible to the disjunction. Then, note from

Equation (5.8) and the definition of valid inequalities that

F##(ﬂo) = {xeR™ = x is feasible to all valid inequalities

of the form mx > ﬂo} (5.18)

Thus, clearly, we have,

cl conv F = n F##(ﬂo) (5.19)
my=1,-1,0

Since the set of all valid inequalities are jointly determined by F#(l), F#(-l),
F#(O), then from (5.18), the intersection (5.19) defines the closure of the comnvex

hull of feasible points., Two alternative ways of rewriting F are given below

() FH(my) =(xeR™ nlx > m for a1l 7l & vert ¥ (my)

(5.20)
alx > 0 for a1l at e air F(my)

(b) From definitions (5.9), (5.10) and (5.19) one may alternatively show,

that

cl (conv F + cone F) if m_ > 0

0
F##(no) = { cl cone F if My =0 (5.21)
cl conv (F U {0o}) if Ty < 0

As before, we may use the characterization (5.16) to construct F##(ﬂo) from the
sets F#(ﬂo) of Figure 5.2, These sets are depicted in Figure 5.3 below. The

reader may find it interesting to verify diagramatically the definition of
Equation (5.21).




1

i
i

(5,0

(2,5)

(10,5)

\\

\\\\f##(_l)
(0,0) N\ 81

T

Figure 5.3, Construction of F##(ﬂo) for Ty = 1,-1,0

s

S

Next, we state some useful properties of the set 124 and some important
results concerning F# and F##. These are based on the definitions (5.8) through
(5,15) introduced earlier,

Lemma 5,2

(a) If = {¢} (which necessarily means that Tg > 0), then F## = R"

)y P - ,
(c) aff P = gn ¢ = o F

(d) *h F = ¥ where

L = largest subspace contained in the recession cone C(F#)
(5.22)
of Ff = linearity space of r#

(e) dim FH + fin P = o




(£) dim FH = {dim F if O € aff F
dim F+ 1if 0 ¢ aff F
(g) = (F# N 22 F) + L. (This follows from (d) above and fact that L
defined in (5.22) is a subset of Ff),
(h) Lowest dimensional faces of 34 are of dimension (n - dim F##).
For our example problem,
aff P = ap ¥ = gy 7 = 1t = 2
gin ¥ = L = {¢} for each m,
dim P = 2 (=n)
Also, 0 € aff F and dim F = 2
Since L = {¢}, a1 F =R%, M < R?, ¥ = ¢¥ n 2w 7) + L = ¥ 0 &2,
Lowest dimensional faces of F# are of dimension (n - dim F) = (2-2) = 0
i.e., lowest dimensional faces of Ft are extreme points.

5.4 Generation of Facets of the Closure of the Convex Hull of Feasible Points

In this section, we will characterize the facets of the set cf conv F in
terms of the sets 24 and F## discussed in the foregoing section, For the sake of
completeness, let us define a facet.

Definition

X > T, is a facet of a d~dimensional set S if

X > My for each x € S and

X = T, for exactly d affinely independent points of S.

Theorem 5.3 stated next characterizes the facets of the set F## which play
an instrumental role in determining the facets of c® conv F as will be seen shortly.
Theorem 5.3

##

X > Ty is a facet of F and T € $h F

if and only if

Ty #0, mT# 0, Te vert (F# n EL)

or my = 0, m# 0, mTe dir (F# n EL)

Note: Recall from Lemma 5.2(d) that EL = 2h F., In this theorem, the statement

m € Lh F becomes necessary for the following technicality. Suppose pH is less




93

than full dimensional, Then a facet of pi# defined by a hyperplane H can also be

defined by a family of hyperplanes H' such that
@rrNH =@ FNH
Thus, we specify a particular hyperplane from this family which has its normal T

lying in LA F.

Since for our problem, the largest subspace contained in the recession cone

of Ft is of zero dimension, i.e., 2in F* = 0. Thus, (5.22) yields L = {¢} or
that ¢4 F = HL = R2. Hence, F# Nt =r#in this case. Thus, in the present case,

Theorem 5.3 above follows from the fact that F/¥ may be defined as in Equation

(5.20),

Let us now consider an important result for computing facets of F##.

Theorem 5.4
Let g € R?, mx > T, be a facet of 7 and let m € 2 F. Then,
4 -~ 0

ge {xe F##: ™= = "0} <=>Tg =Ty supports F# and contains T, where,

vert FIn LY if Ty # 0

atr o 1r s Ty = 0

For example, in our illustrative problem, consider Ty = 0. Let us examine

F##(O). The facet 5s; = 2s3 > 0 has T = (5,~2) lying in Lh F R2, Further,

g = (2,5)t say, belongs to F##(O) with mg = 0, (Note that Ty = 0 here). Then
the theorem implies that 2x1 + 5x, = 0 supports F#(O) and contains the point

m = (5,-2) where, as seen in Figure 5.2, m = (5,-2) € dir F#(O) (since 1t = g2

here). The converse result is also true.

Now, let us consider the main result of this section, This result

characterizes the facets of cf conv F in terms of the sets F¥ and . Two cases

are considered, e.g., To # 0 and Ty = 0. A discussion of this theorem and its

implications follow after its statement,



Theorem 5.5

(1) Suppose T, ¥ 0. Further, assume that 0 € aff F, Then,
0

{mx > 7y 1s a facet of cf conv F} <=> {mx > 7 is a facet of F##}

Corollary

Asgume 0 € aff F, m € 2h F. Then,

{mx > Ty 1s a facet of ef conv F} <=> {m # 0, m € vert Ff n ot

(11) Suppose Ty = 0. TIf mx > 0 is a facet of ck conv F, m € Lh F, then

this implies that

7 # 0, and that T is an extreme direction of F# n i+

Conversely, if m # 0, T € dir (F#ﬂ L"'), and d=dim F##, then either
(a) mx > 0 1s a facet of c¢% conv F, or
(b) mx > 0 18 a (d-2) dimensional face of cf conv F such that this (d-2)

dimensional face is an intersection of two adjacent facets of the type

'nlxz'né, ﬂé >0

and

with
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Note: Let us consider case (1) first, e.g., T, # 0. Note that if 0 ¢ aff F,

then this implies that dim F = d-1 and that each facet Tx = T, of FH# contains all

of ¢ conv F, instead of being a facet of c conv F as when 0 € aff F, Thus, in

case 0 ¢ aff F, a facet of cf conv F is given by the intersection of mx = Ty and
a (d-2) dimensional face of i corresponding to an edge or a 1 dimensional face
of F# N,

Secondly, note from Lemma 5.2(c), (d) that if F!¥ is full dimensional, then

L = {¢}, or, EL = R®, This implies that one may examine the non-zero vertices of
F! itself to obtain facets of c? conv F.

Thirdly, if d = dim F'* < o, then 2in F¥ = (n-d) > 0 (see Lemma 5.2 (e)).
Hence, F# has no extreme points, However, there is a one-to-—one correspondence

between vertices T of F# N =+ and (n-d) dimensional faces of F# which are of the

form o + L, where L is given by (5.22). These are the lowest dimensional faces of

F (Lemma 5.2(h)).

Again, the corollary in case (i) ©of the theorem designates a + L to be an

- b ’ s
(n d) dimensional face of F In particular i1f F is of full dimension, i.e.

=n, then this Corollary states that

{mx > Ty is a facet of cf conv F} <=> {1 # 0 is an extreme point of F'}  (5.23)

Case (i1) of the theorem states that if T # O belongs to the set dir Ft n 1+
or, 1f F" is of full dimension, and ™ # 0 belongs to dir (F') itself, then mx > 0

used in a system of linear inequalities which characterize c% conv F in
case (a) or (b) of the converse.

Let us 1llustrate some aspects of this theorem through our numerical example

first,

and then discuss the utility of this theorem,

Let us begin with Case (1). Note that (0 € aff F and that Ftn - in

our problem. The facets of cf conv F of the type mx > T T # 0, are



s1 333 #
+ 3s, > 25, i.e., = + 3¢ > 1, which is a facet of F (1) with

(1) 3sy 3 5 T35

(_5]; ,%) being the only extreme point of F (1)

=

%3

(2) =sq + 85 > =5, i.e., == + = > -1, which is a facet of F/(-1) with

= W

5
» %) being an extreme point of F#(—l)

-

o

and

-
(3) =5, > =5, f.e., —= > =1, which is also a facet of F#¥(-1) with
32 5 2

(0, :Sl)being the only other extreme point of F#(-l).

To verify Case (ii), observe that extreme directions T of F#(O) n L“' = F#(O)
here, are (0,1) and (5,-2). Hence Tx > 0 has the form x, > 0 and le - 2x, i 0.
Since d=2 in our problem, both these define d-2=0 dimensional faces of cf conv F,
i.e., they define extreme points (5,0) and (2,5) respectively of cf conv F. Hence
case (1i) (b) of the converse applies. Further, (5,0) is the intersection of
adjacent facets 551 + 353 > 25 and -5, + S3 > =5 with ZLS (5,3) +-]5= (-1,+1) =
8) which defines 3 Xy > 0 or x, > 0. Similarly, (2,5) is the intersection

25 5
. 1 1
of adjacent facets 5si + 3s4 > 25 and -85 > -5 with 75 (5,3) + 3 (0,-1) =

(0

1,-2) uhich defines + x, - == x, > 0 or 5%, - 2x, > 0.
51775 5 X} " 35 X2 2 1 22

Implementation

Now, we know that if we obtain an extreme point T(#0) of F# n L‘L, for

Tr0 # 0, then mx > Ty defines a facet of cf conv F if 0 € aff F (or contains
cf conv F if 0 ¢ aff F). Further, 1f m($#0) is an extreme direction of F# n L‘l'
with Tg = 0, then mx > 0 either defines a facet of c conv F or again, contains
c{ conv F. In any case, Tx > Ty is a valid inequality in the system defining
c? conv F, By virtue of Theorem 5.5, it is also sufficient to represent cf conv F
by the system of inequalities of the type mx > Ty where m is either an extreme
point of N b ogs T # 0 and is an extreme direction of F¥ N L"’ if my = 0,

The basic problem at hand then, is to identify extreme points or extreme

directions of F# n L"‘, as appropriate. The concept utilized in accomplishing this

1s that 1f one minimizes a linear function g, say, over F#, and if the minimum value
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is finite, then ome will have detected a lowest dimensional face of .
Hence, assume as before that 0 ¢ cf conv F, that is, the current point

(origin) is infeasible -to the disjunction. Then the problem we wish to examine is
P1(g,my): minimize {gm: T e F#(no)}

Alternatively, using the characterization of F#(WO) given through Equation (5.17),

we have

Pl(g,ﬂo): minimize gm
subject to uDP <

hgh >

0, T unrestricted

h

where ul' = (Bh,Oh) and D = (Kh)-

The dual of this problem may be written as

h
P2(g,M,): maximize z = Z Tok
0 heH* 0
subject to  DPEP > dMgl, hen*
.h
Z 5 =8

hen*

h
£gs & > 0, het*

For our example problem, Pl(g,wo), P2(g,wo) may be written as follows
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P1(g,my): minimize g1™ + 857,
. 1 1 1
subject to -uy + u, + u, =< ™
1 1 1 1
up T Uz T U3 T U =T
2 2
uptuim
2 2 2 2
ul—uz—u3+ul._<_'n2
1 1
-5u1 - 3u2 - 5u3 + 5“[. > o

2 2 2 2
- - + > T
5u1 3U2 5U3 Su

4 0

u? » 0, h=1,2, j=1,2,3,4

T, unrestricted
and
1 2
P2(g,'ﬂ0): maximize EO + EO o

1 1
subject to —El + &y > —SEO

2
822 3%

1 2
£+ &

"

1

1 2 _
52 * EZ g9

£, €] > 0, he1,2; 3=1,2
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The task at hand then, is to find a characterization of g such that Pl(g,ﬂo) has a
finite minimum, that is, PZ(g,ﬂo) is feasible with a finite maximum. Since

2 # {4}, P1 is finite if and only if P2 is feasible. Such a characterization of
g is given through the following theorem,

Theorem 5.6 (Characterization of g)

(i) If g € cf conv F, g # 0, then for every A > 0 such that Ag € cf conv F

(and such a A exists), we get

= -h=<h <h
PZ(g,no) has a feasible solution & = (§ ,EO), with Z* EO = 1/X
heH

conversely, 1f  is feasible to P2(g,mgy) with 1/) = Z zg, then
heH*
g €cl convF, g#0, Ag € c conv F,
(ii) If To # 0, then a solution E feasible to P2(g,ﬂ0) is also optimal

if and only if the objective function value z = ﬂo(l/i), where

- { minimum {X: Ag € cf conv F} if Ty > 0
A=

maximum {A: Ag € c® conv F} if Ty <0

(iii) If v = 0, any feasible solution E to P2(g,0) is optimal with value

0
z = 0. However, P1(g,0) has an optimal solution (?,;) with Tg = 0 and
T #0 if and only if g € boundary of cf conv F.
Illustration

For the sake of illustration, let us consider part (ii) of the above

theorem. Consider m, = 1 and g = (1,1), say. Then,

o

A = minimum {\: A(1,1) € cf conv F} = 25/8

3
Further, minimum {ﬂl + ﬂz} occurs at 0%,7§) with objective value
m e FH )



8/25 = my/X = 1/(25/8).

For part (ii1) above, note that g € boundary cf conv F and Ty = 0 implies
that P1(g,0): min {}g: T € F#(O) has an infinite number of alternative optimal
solutions along some extreme direction of F#(O) n LL. Note that F#(O) is a poly-
hedral cone with the vertex at the origin. Hence (0,0) is also optimal and the
optimal value 1s therefore always E = 0.

Next, we give a characterization of solutions of P1l(g,T;) for a given g,m,
such that these solutions contribute towards determining facets of Fit# (and hence

of cf conv F) by detecting extreme points and extreme directions of F#. Such

solutions are called regular solutions. Again, we consider cases Ty # 0 and
Ty separately.

Theorem 5.7 (Regular Optimal Solutions)

(1) Suppose T, # 0. Then,

{me F# is an extreme point of F# n EL} <=> {(a) T e UL and (b) there
exists a p € U‘ such that
e is the unique
point which minimizes
Tp on r#}

Accordingly, if (7,u) is optimal to P1(g,m,) for some g € cf cone F,

then

{7 e vert F¥ N i} <= {(1) 7¢ EL and (2) there exists a y € * such
that if (m,u) solves Pl(g + Y,ﬂo) and if

4

7 € L™ then this implies that T = 7}

If (T,u) satisfies these latter conditions (1) and (2), we call it a

regular solution.

(i1) Suppose Tg = 0. (Note: In this case, F# is a cone and F¥n *is a

pointed cone, that is, has an extreme point at the origin). Then,
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(7 & F¥ is an extreme direction of F¥ 1 1} <=> {(a) T # 0, Te ¥ and

(b) there exists a

) 8

p € L™ such that up to

a positive multiplier,

TE EL is the unique
point which minimizes
#}

mp on F

Accordingly, if some (7,u) is optimal to P1(g,0) for some g € boundary
c? cone F (recall that this gives rise to extreme directions of

) n tt, then,

{F e dir F# n <= (1) T#0, T e EL and (2) there exists a Yy € i

such that if (m,u) solves Pl(g + Y,0), and m # O,

1

T € -, then this implies that m = AW, A > O,

If (T,u) satisfies these latter conditions (1) and (2), we call it a

regular solutiom.

Interpretation

Consider Case (i). This simply says that for every extreme point T of
F# n Ll, there exists a vector p which one may use in min {mp: T ¢ F#}such that

this extreme point is a unique minimizing point. Moreover, given an extreme point

optimal solution (T,u) to Pl(g,ﬂo), we can always perturb the objective function so

that this extreme point is the unique optimal solutiom,

1 3
For example, in our illustrative problem, consider Ty = 1. Then (3,33) is

4

an extreme point of F# N L™, Further, clearly,

L 2

13 -
(a) Cg,ig) € I'™ = R, and

(b) taking p = (5,3), say, the problem min 57, + 3W2: TE F#(l) has

1

Q%;%%) as its unique optimal solution.

Similar remarks hold for Case (ii). Here, the uniqueness of the optimal

solution is upto a positive multiplier since we always encounter alternative

optimal minimizing points along extreme directions in this case.
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An important and relevant result which ties in the above statements is
given next.
Lemma 5,3

If Pl(g,ﬂo) has an optimal solution, then it has a regular optimal solution,

We will now characterize facets of F## (and hence of cf conv F) in terms of
regular optimal solutions to Pl(g,ﬂo).

Theorem 5,8 (Characterization of facets of F##, and hence facets of cf conv F,

in terms of regular optimal solutions)

(i) Suppose My # O, Let g € cf cone F, g # 0 and let
0

0
maximum {A: Ag € c% conv F} if Ty < 0

_ { minimum {A: Ag € cf conv F} if m_> 0
A=

Then, Tx > Mg, (Mg # 0), T € Lh F is a facet of i containing the
point Xg, if and only if ™ = T for some regular optimal solution (T,u)
to Pl(g,mq).

(ii) Seppose Ty = 0. Let g € boundary cf conv F, g # O, Then, 7 x > O,
Te %hF is a facet of Fif containing the point g if and only if
T = AT for some A > 0 and some regular optimal solution (ﬁ,;) to
Pl(g,0).

Illustration
Consider Case (i) above, and let Tg = 1. Consider the facet

Efl Efl it 2
25 + 75 >1 of F'" and recall that for our problem &£z F = R®., Now, since this
is also a facet of cf conv F, hence for any g € cf conv F, we can find the
appropriate X such that X g lies on this facet, Moreover, T = (%3%%) here is a
regular optimal solution to Pl(g,l) for any g € c% conv F.

Next, consider Case (ii). Here, the vector g = (2,5), say, belongs to the
boundary of cf conv F, g # O, Then, 554 - 293 > 0 is a facet of it (0) containing

(2,5). Moreover, taking A = 1, we see that m = (5,-2) = T solves the problem to

minimize 2ﬂ1 + 5ﬂ2 subject to T € P#(O). In fact, any point along the ray
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satisfying 2m + Sﬂz = () solves this latter problem., Hence, T = Aﬁ, A =1 for

some regular optimal solution (T,u) to P1(g,0).

Summary and Notes: Using Theorem 5.7 and 5.8 above, all the facets of F## may be

obtained by solving Pl(g,ﬂo) (or its dual) for various vectors g € cf conv F.

Further, from Theorem 5,5, each such facet is, or yields in conjunction with some

other facets of F##, a facet of cf conv F, The following points are worth

(1) 1f To + 0, X is as defined in Theorem 5.8(1), and if A g is the convex

combination of k extreme points and extreme directions of cf conv F
(1 < k < n) then this implies that each of these vertices and extreme
direction vectors are contained in each facet of cf conv F that

contains A g. Moreover, each such facet can be obtained by solving

Pl(g,ﬂo) (or its dual),

For example, refer to Figure 5.4 below. X g 1s the convex combination
of extreme points (2,5) and (5,0) of cf conv F, Only one such facet

contains these extreme points and also X g, and this facet is generated
by solving Pl(g,ﬂo) as demonstrated in the illustrative example solved

below in Section 5,5.

53

(2,5) (10,5)

(5,0)

Figure 5.4. Representation of Xg
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(ii) Analogous remarks hold for the case Ty = 0 as in (i) above.

(iii) If g corresponds to an extreme point of cf conv F, then solving
Pl(g,ﬂo) with Ty = 1, -1 and O gives all the facets of cf conv F con-
taining the vertex g. This is a special case of remark (i) above.
Furthermore, for a given Tgs the associated facets all correspond to
alternative regular optimal solutions of Pl(g,ﬂo). Thus, if one facet
containing g is found, the others are easily obtained therefrom.

Specialized schemes for solving Pl(g,ﬂo) and PZ(g,ﬂO) may be devised and
are in fact available. However, since this leads away from the motivation of our
present disucssion, we avoid these schemes here. We next illustrate in detail
the method of determining facets of cf conv F for our example problem.

5.5 TIllustrative Example

Consider the example problem we introduced in Section 5.1. We will first
obtain facets of the "> 1 type", then of the "< -1 type" and finally of the
"> 0 type for cf conv F,

1. "> 1 type" facets (my=1). Here, we are interested in solving P1(g,1) for

various vectors g € cf cone F. If (7,u) is obtained as a regular optimal
solution, then we put 7 = T and derive T x > 1 as a facet of FH and hence

as a facet of cf conv F.

= 2 3
We note here, that for any g € c2 cone F, we get T = (g,ig) in the regular
optimal solution. Also, note that as illustrated in Figure 5.4, defining

X as in Theorem 5.8(i), for g € cf cone F, ig lies on the facet 551 + 353 > 25

of ¢f conv F. Indeed, this is the facet we obtain here using 7 = T
s 3s

that is =5~ + 5z > 1 or 5s; + 3s3 > 25, Moreover, this is the only ">1 type"

facet c% conv F.

2. "> -1 type

facets (ﬂ0=—1). Now again, we need to solve Pl(g,-1) for various
vectors g € cf cone F, In our problem, depending on the values of g selected,
we obtain either (- %~,%b or (0, - %) as T in regular optimal solutions.

Thus,
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Bt s #
= + 7;_2 -1 and —§~_Z -1 are facets of F (-1) and hence of cf conv F.

Thus, the only "> -1 type" facets of c conv F are 81 = 84 <5 and s < 5,

"> 0 type" facets (T, = 0). HNow, we need to solve Pl(g,0) for vectors
= 0

g € boundary cf cone F, g # 0. Thus, we may either select

A(2,5), A >0

o
it

or

A(5,00, A >0

o
"

The first choice of g yields
# = B(5,-2), B > 0 in the regular optimal solution to P1l(g,0)
and the second choice ylelds
™ =8(0,1), 8>0

This gives us 5s; - 2s3 > 0 and sq > 0 as facets of F##(O). (Hote that
(5,-2) and (0,1) are extreme directions of F#(O) n UL = F#(O) here, since

UL = R2). Now, according to case (1i) of Theorem 5.5, consider the facet

551 - 253 z_O. (Similar remarks hold for the facet S, 2_0). Either this is
a facet of cf conv F or it defines a O-dimensional (d-2 dimensional in
general) intersection of facets of cf conv F. As observed earlier, in either
case, we can use these inequalities as defining half-spaces for cf conv F
without any inhibitions. At most, as seen in Figure 5.5 below, we will have

introduced degeneracy in the problem. Thus, the set c¢f conv F obtained above

may be defined by the inequalities.




58 + 384 > 25 B
s) - s3 2 5

s3 <5
589 - 283 > 0

sS4 >0

These inequalities may now replace the disjunctive statement in Problem DP.

The set cf conv F is depicted in Figure 5.5 below.

551 + 353 > 25

53_5 5 s =83 < 5
581 - 253i 0

— /////‘k%

cf conv F

s1

Figure 5.5, Inequalities Defining cf conv F
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5.6 Facial Disjunctive Programs

As may be apparent from our foregoing discussion, if |H| is large, then
the solution of Problem DP through the generation of facets of cf conv F is pro-
hibitive, For example most mixed integer linear programs would be intractable

by this technique due to the size and complexity of Problems Pl(g,ﬂo) and

P2(g,Ty). However, this technique is attractive for small |H .
Hence, for a large |H| there is a need to relax some disjunction and in

some manner, use facets obtained for some enforced disjunctions to generate facets

for other disjunctions when they are also simultaneously enforced. It turns out

that such a procedure is possible for special disjunctive programs called facial

disjunctive problems.

Before we discuss this, let us consider Problem DP. This problem has been

stated in the so called disjunctive normal form. There is another way of writing

Problem DP, which we will find more convenient in the present context. Suppose
that for each heH, ah x > bh has lQh = Q| inequalities, where Q is the index set
of these inequalities. Then, we may construct |Q| sets 'Hj, j €Q such that for
each heH, exactly one of the inequalities in ab x > bP 1s placed distinctly in
each of the sets Hj, jeqQ. Thus, H is the cartesian product of the Hj, jeq, that

is,
H= 1 Hj (5.24)

Problem DP may now be stated in the so-called conjunctive normal form

minimize f(x) = ¢'x

I
_—
»®
(=
»®
v
[=7

-
b

A4
(=]
o~

subject to x€Fy =
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where,

{x: a'x > bl ieQ, x>0}, heH (5.25)
1 —_ 1’ > —

{x: AMx > bh, x>0}
and Fy is as defined in Equation (5.3). Now consider the set F defined in Equation
(5.2) and let us denote it by FQ. Accordingly, for a set T = Q, let us denote the

corresponding set of feasible points to the (relaxed) disjunction as FT, Thus,
Tc Q=>Fl2 (5.26)

The set cf conv F! will be called a partial convex hull of F for TS Q. Now,
suppose we use the disjunctions in some set T < Q alone and as before generate all
facets of FT. Further, suppose that we now replace the disjunctions in T with
these facets in the original problem. Does the solution of the resulting problem
satisfy the disjunctions in T? The answer is yes for special prohlems called

facial disjunctive programs described below.

Consider the following definitions.
Definition 5.1

Let Fy be a convex set. A subset F of FO (possibly empty) is called a
face of Fy if there exists a supporting hyperplane of Fy whose intersection with
Fg defines F.

Definition 5.2

A disjunction \/ {a?x z'bg} is called facial with respect to Fj, if
i€H,
]
h _ n, _h h
F; = Fy N {xeR%: ajx > by} (5.27)

is a face of FO for each iEHj. (Note that a face may be an extreme point, an
edge, ..., a facet or the entire set). A disjunctive program is said to be a

facial disjunctive program if Fy is a face of FO for each iEHj and for each jeqQ.




EXAMPLE. In our problem, we have,

Fi =Fy N {(51’53): s3> 5}.

2

Fp

=Fy N {(51,53): sp - s3> 5}.

These are depicted as F; and Fy respectively in Figure 5.1, As one may see in that

figure, Fi and F% are faces (facets in this case) of Fy. Hence, our problem is

facial.

Necessary and Sufficient Condition for a?x z_b?
Let F? be as defined in Equation (5.27). If there exist (u,v) e R® x R"

to be a Face of Fj: Theorem 5.9.

satisfying

u(-p) + v(-1)

u(=d)

(M) >

then F? is a face of F(, namely,

F? = {xeFj: a?x = b?} = {x€Fy: Dyx = d; for each ieMt,

x, = 0 for each jEN*}

]

where D; is the 1t row of D and

Mt = {1eM: py > 0}, N* = {jeN: vy > 0} (5.30)

Conversely, if F? is a face of Fy, and Fy # F? # {4}, then there exist (u,v)eR™xR"
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satisfying the property (5.28).

Henceforth, we will assume that F; is bounded (we may regularize it if .
necessary) and that DP is facial. This implies that F}, of Equation (5.1) is a
polytope for each heH, that is conv FS (Zconv F) is a polytope.

Consequence of the Facial Property:

Theorem 5.10

If DP is facial and Fo is bounded, then
{Extreme points of conv FQ} = U {extreme points of Fh}
heH
<. {extreme points of FO}

For example, in our problem, referring to Figure 5.1, we have,

{extreme points of conv F} = {(2,5),(10,5),(5,0)}

{extreme points of Fl} {(2,5),(10,5)}

{extreme points of F2} {(10,5),(5,0)}

{extreme points of Fp} {¢0,0),(0,3),(2,5),(10,5),(5,0)}
Practically speaking, the most important consequence of the facial property
is that conv FQ may be obtained in as many steps (|Q|), as there are disjunctions
in the conjunctive normal form, by applying the disjunctions one at a time alone.
Now, when DP is facial and F is bounded, it turms out that if T €Q, ieHj and

4€Q-T, then,

h
F? N conv FT = conv[F; N F1] (5.31)
In other words, having conv FT, for some T < Q, we select an F? not yet considered
and compute conv[F? n FT] simply as F? N conv FY. This leads to another important

result.




m

Theorem 5.11

Assume that DP is facial and that F is bounded. Then, for any Tc Q,

conv[FQ—T N conv FT] = conv [FQ)

This main result is used to compute conv[FQ] in the following manner. Let

Q={jl,j2,...,jq} where q = |Q . Then as a corollary to the above theorem, we have,

{1}
FoOL0N (5.32)

] ]
conv FQ = conv[F 4 N conv{... N conv(F 2 N conv

We may now apply (5.31) to the decomposition (5.32) in order to compute conv FQ in

q = |Q| steps.

We terminate a brief discussion of facial disjunctive programs at this

point.

Later, in Chapter VII, we will return to facial disjunctive programs as a

special case of Problem DP and will present two finitely covergent algorithms to
4

solve such problems, One of these procedures is based on Theorem 5.10 whereas

the other is based on Theorem 5.11. Both of these procedures solve Problem DP

by generating facets of cf conv FQ as and when needed till either an optimal
solution is obtained or all the facets of cf conv FQ have been generated, whence
the problem is necessarily solved,
Thus far, we have addressed the question of generating deep disjunctive
cuts. In the next chapter, we will examine some of the cutting planes available
in the literature and identify them as basically disjunctive cutting planes by

putting them in the general format of the latter type of cuts,
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5.7 Notes and References

This chapter is heavily based on the results of Balas in [5]. If the
facets of the closure of the convex hull of feasible points are kmown, clearly
the problem of solving disjunctive programs is trivial. Balas' study takes an
important step in characterizing them., Furthermore, for a special important
case of disjunctive programs, the study opens up the possibility of generating

the facets sequentially.




Chapter VI

DERIVATION AND IMPROVEMENT OF SOME EXISTING CUTS THROUGH
DISJUNCTIVE PRINCIPLES

6.1 Introduction

In discussing the basic disjunctive cut principle, we indicated that it
subsumes all other cut generation principles., In this chapter, we will demonstrate
this to a certain extent by actually deriving some existing cutting planes as
disjunctive cuts. In the process, it will be seen that the disjunctive principles
may be used to actually improve upon three cuts. In fact, for the first type of
cut we discuss below, we will utilize the concepts of Chapter IV to obtain an

improved version of the existing cut.

6.2 Gomory's Mixed Integer Cuts

Consider a mixed integer program where only certain variables are constrained

to be integral. Suppose we have a simplex tableau representation of a basic

feasible solution to the corresponding problem with integrality relaxed. Further,

assume that this solution does not satisfy the integrality constraints. In

particular, let us identify a basic, integer-constrained variable x; whose current

Let us write the representation of xj in terms of

value, a0 is non-integral.

the non-basic variables tj, jeJ in the tableau representing the solution at hand

as follows

X; = asn + Z a;s(-ts)
i io je5 ij i |

Row, partition J as
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J, = {jed: tj is integer—constrained} (6.3)
and
Jp=J3 -3 (6.4)
Further, denoting the largest integer less than or equal to a given real number

u as [u] and denoting the smallest integer greater than or equal to a given real

number y as <yu>, we may write

ajo = [ajol + £59, £50> 0 (6.5)

ai4 [aij] + fij’ for jeJ (6.6)

Substituting (6.5), (6.6) into (6.1), we obtain

Xy = [aio] + fio + Z ([aij] + fl_])(-t_]) + Z aij(-tj)
JEJ]_ jEJZ

or
xi - lagol = I laggl(-tp) = f.0+ [ f£35(-t5) + ] aj5(-t5) (6.7)
jey; 3 07 jen, T g, W

Now, let us introduce a new set of parameters ¢ij’ jeJ U {0} defined as follows

®i0 = fi0

¢ij = aij for jEJZ

¢ij = for jeJ; (6.8)
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These parameters are merely notational expedients. Substituting (6.8) into (6.7),

we obtain
xg - laggl = I lagyle-ty) = 1 (=ty) = dg0+ I o15(-t5) (6.9)
1 10 sea, 131878 jeiy 3 i0 jeg 383
fij>fi0
Finally, denote
i =%t ) by5(-t3) (6.10)
jeJ

Observe in Equation (6.9) that the left hand side is necessarily integral
and hence, so is the right hand side. That is, yy of Equation (6.10) should

necessarily be integral. 1In particular, the following disjunction must hold

1 <0V iy >1}
that is,

) ¢iJj>¢i0}V{z “b34ty > 1 = b0}
jeJ

Noting from (6.5), (6.8) that 0 < ¢;45 = f45 < 1 whenever x; is fractional, we may
use the basic disjunctive cut principle along with the deep cut notion of Section

3.2 to first write the above disjunction as

¢
L ey >uyyy -4

ty > 1}
%50 1€J “’10 i=

and then derive the cut

S hy
jEJ max{¢io 1_¢[0} j > (6.12)
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Note in Equation (6.12), for each j€J, the cut coefficient is determined by the

nonnegative element of the pair. Thus, if we define
+ -
ANESEA AP ¢ij > o}, 3 = {je5,: b5 < 0} for k=1,2 (6.13)

we may write (6,12) as

%5 - ¢ -0,
Z+¢—11tj+ 2_1_¢ij tj+'z+¢—1jtj+ Z_l_li_tjzl
jeJ] "0 i€ "0 jesy 710 jer; =045

Finally, substituting (6.8) into this cut, we obtain Gomory's mixed integer
cut as
f 1-f a -a_,
Jopte v Dooe v ToMes Loy 6w
jeat fio 3 gei] o 3 gery fio I jesy TEip T -

Now, let us consider improving this cut. The concept of the strategy we
employ 1s basically that of Chapter IV. More specifically, we reformulate the

disjunction (6.11) to incorporate additional constraints as follows

y; 20 Vi

v l

0, hel x, > 0, ha) (6.15)

|v
-

| v
| v

*h
where I denotes the set of basic variables. Hence, letting
X, = an * L ayy(-ty) for hel (6.16)
jeJ

we may rewrite (6.15) by using (6.10), (6.16) as
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z ¢iJ i = > ¢10 z (_¢ij)tj _’_ 1- ¢i0

jeJ jeJ
z (-a, s)t: > -a,n, hel z (~a; s)t > —apg, hel (6.17)
€3 hi’*j = "°h0 jeg hj’*j =~ "°h0

1 .
Letting Aé, Ah’ hel be the nonnegative multipliers for the first set of constraints

in (6,17) and Ag, Aﬁ, hel those for the second set, we may write the appropriate

surrogate constraints as

{v

5 oode,. - § ata ot
ot3 = L Phany)ts

1 1
(Apdi0 - Z a o)
jed hel Ah ho

I (% Z aa e, > 26,0 - I A
jEJ “AoPiy Z %0 00 7L h®ho

Using the concepts of Chapter III, the disjunctive cut we derive is

2 2
§ max{An TAEE) Aa o, A% - T Afa .t > 1 (6.18)
463 0% 7 Lo h®hj 0%j 7 & "h%hi’Hy =

learly, (6.18) can be made to uniformly dominate Gomory's mixed integer cut

6.12) (or(6.14)) since the latter is obtained from the former by selecting

2 K
L= 17605 A2 = 1/(1~049) and Af = 0, k=1,2, hel. Again, for the appropriate
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selection of parameters in (6,18), (6.19), one may resort to the concepts of
Chapter III. Alternatively, one may handle the constraints x;, > 0, hel of Equation

(6.15) in a manner similar to that recommend in Chapter IV.

6,3 Convexity or Intersection Cuts with Positive Edge Extensions

In this section, we will discuss the general setting through which convexity
or. intersection cuts are derived with the purpose of demonstrating how the dis-
junctive cut principle is capable of generating such cuts. Hence, consider a

convex set

¢ = {x: a" < b", heH} (6.20)
defined by certain hyperplanes ahx‘i bh, heH, where ah=(a?,...,ag). Further,
let bh > 0, heH and suppose that we are currently located at the origin. In this
setting, let us assume that there exists a subset S of the nonnegative orthant of
R" which contains points of interest to us. Suppose we have identified a set C
which contains the origin, but no point of §, i.e., SN C = {¢}. The point we
are currently located at, viz.,, the origin, is not of (further) interest to us,
Our intention now is to use the set C to generate a cut which deletes the origin
but no point of S,

Accordingly, let us identify the n half lines
Ej = {x: x = Aej, A> 0} 3J=l,...4n (6.21)

where ey is the jth unit vector, These half lines are defined by the coordinate

axes incident at the origin., Let us now proceed along each of the half lines

-

(6.21) in turn and compute the maximum distance Aj

direction and still remain within the set C., In other words,

we can traverse along this

Xj = sup{} > 0: (ah)(kej) f_bh, heH} for j=l,e..,n (6.22)
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Then, it can be shown that a valid convexity cut is given by

n
) (1/Xj)xj >1 (6.23)
3=1

Typically, one works with the simplex tableau representation of the current point,

whence, xj, j=l,...,n are the nonbasic variables. Accordingly, C is defined in

terms of nonbasic variables and at the current point, xj=0, J=l,ee0,n.

Now, let us apply the disjunctive principle to this situation. Observe
that since § N ¢ = {¢}, we are only interested in those points x > O which violate

Thus, we may stipulate that at

at least one of the inequalities defining C.

least one of the systems

holds. Using Theorem 3.1, a suitable cut which one may derive through Equation

(3.16) is given by

n
) {sup(a?/bh)}xj'z 1
j=1 heH

Note that one may have preferably chosen the cut given by Equation (3.19) instead.
However, we will work with the above cut to preserve simplicity as well as to
derive certain known cuts in the literature, Returning to Equation (6.22), we

observe that

heH

o if ah

y <0 for each heH
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Hence, the cut (6.23) has coefficients

sup{a?/bh: a? > 0} if at least one a? >0
_ heH
1/>\j = j=1,e..,n
h
0 if all aj_f 0

(6.25)

Comparing (6.24) and (6.25), we note that if Ej ¢ C for any iell,...,nl, then

at least one a? > 0, hed for each jefl,...,n}. In this case, (6.24) and (6.

are identical. However, if EJ cC for at least one je{l,...,n}, then the

25)

corresponding coefficient 1/Xj is zero for the cut (6.23) but may be negative for

the cut (6,24). Hence, (6.24) uniformly dominates (6.23), and may strictly

dominate it. This latter case is depicted in Figure 6.1 below.

X2

!

Disjunctive cut (6.24)

N .

Intersection Cut (6.23)

Id

i

Id
,
d

’
4 Set C
4
s ”

S NN

( (0,0) -

Figure 6.1. Illustration of Disjunctive and Intersection Cuts
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Several existing cuts are subsumed under the category just described.
Notice that we have mnot required the set H to be of finite cardinality. Thus,
C need not be polyhedral. Therefore, hypercylindrical or spherical intersection
cuts are also recovered under the discussed framework. In this situation, a

hypercylinder or sphere containing the origin but no integer valued points

(integral in terms of original variables) may be defined. Accordingly, the con~-
straints in C represent tangential hyperplanes to the hypercylinder or sphere.
If one uses a stronger condition and requires each constraint of C to simply

correspond to a tangent to the sphere at some integer point, then ome recovers

octahedral cuts. Similarly, to obtain diamond cuts, one may use the condition

that at least ,Il of the 2‘I| constraints x3 < 0, x5 > 1, iel must hold. This

latter cut may be further strengthened by replscing x; by y;, i€l as defimed in

Equation (6.10).
Again, various polar cutting planes may be recovered from the above dis-

cussion by letting C be an appropriate reverse polar set. In this connection,

the reader may note that the negative edge extension cut and the reverse polar cut
would be identical to the disjunctive cut derived above.
We will now proceed to discuss omne such special case in the next section.
We will show how the convexity cuts generated in this case are subsumed under the

isjunctive cut principle and how these cuts may be further strengthened.

.4 Reverse Outer Polar Cuts for Zero-Ome Programming

Consider a program in (X,y) of the form

minimize

subject to

ere, S5 is some set of points of interest to us. Also, currently, suppose we

ave a basic solution (X,y) to the linear program with the constraint xeS relaxed.
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Further, assume that X ¢ S. How, let us define the set C, For this purpose, let

us say that we can identify some bilinear function

f(x,2): ROxR™ + R (6.26)

and a scalar k which are such that if we let C be the level set

C=1L(k) = {x: £(x,x) <k} (6.27)

then C contains X, but int C contains no point in S 1 X, where,

X = {x > 0: A(x,y) = b for some y > 0} (6.28)

One may now polarize the function f(.,.) by replacing its argument (x,x)

by (x,z) in (6.27) and thereby define a reverse polar set, alternatively called

the scaled generalized reverse polar of X, with scalar k, as

X0(k) = {zer™: f(x,2z) < k, for each x ¢ X}

= {zERn: f(x,2z) < k, for each x ¢ vert X} (6.29)

where we have assume that X is bounded and that vert X represents the set of
extreme points X. Note that although f£(.,.) or L(k) may be nonconvex, X°(k) is
a convex polyhedral set. Further, by suitably defining f(.,.) and k, we can
have X lying in the interior of X°(k) with X°(k) containing no point in XM S.
That is, any z € X 1 S must satisfy f(x,z) > k for at least one vector x of X.
Since f(x,z) is linear in z for a fixed X, we may use the basic disjunctive cut
principle on this statement. Let us now illustrate the application of this to
0-1 integer programming. In this context, S is the set of integer valued points
and currently, X ¢ S. Also, among other constraints, X contains the constraints

x5 < 1 for each variable Xy Given the simplex tableau representing the current
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point x, we may identify the half lines

Ej = {x:t x=% ~ aJXj, s

i 0}, jeJg (6.30)

where J is the index set associate with n nonbasic variables. The function f(.,.)

which we select is given by
£( . 1 4t 1 , n_ o0
Xy2): (x ~ > e) G(z - 5 e), (%,z) € R"xR (6.31)

where e=(1,...,1) and where

G )

I

gi = T, gi z (), i=1,,...,n (6032)

&
(3]
[ e ¥=]

i

and g; > O for at least ome ie{1,...,n} for which 0 < §i < 1. Further, we take

the value of k to be %u Then, the set C is the level set
n 1 t. 1 n
C = L(ZO = {x: (x - §-e) C(x - E-e) j.z} (6.33)
This may be simplified to
n n
C=1L(x = {x: izl gixj(xi—l) < 0} (6.34)

ence, all 0~1 points are contained in the boundary of the set L(%) while from
(6.32), we observe that x € int L(%). Thus, int L(%) contains X but no point in

X N S. Continuing, we have from Equation (6.29),

X°(§b = {z: (x - %»e)tG(z - %»e) 5»% for each xeX}
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or
t
X (Z> = {z: (x - % e) Gz f_% xtGe for each xeX} (6.35)

One may show that int XO(%) contains X but no point in X I S. Hence, any point

z € X NS must satisfy at least one of the inequalities

(x - % e)tG z > % xCe , for xeX. (6.36)

Now, since z€ X, from (6,30), we may write it as

z=%- J at, (6.37)
jeJ

where tj’ j€J are the current nonbasic variables. Substituting (6.37) into

(6.36), we must have at least one of the following inequalities holding

Z (% e - x)tG ath z%(x + Q)tGe— xtG}-< , for xeX (6.38)
3eJ

But note that

- 1
%(x + }?)tGe- x5Gx= 7 E(xi

-1

>

kel
[us}

+xg)gy - Ixgxigy

1 2, =2 - 1 - .2
> 3 E(x1 + xl)gi - Exixigi =3 E(xl. - xi) giz() (6.39)

since x% < Xg ﬁi < ;‘i’ g 2 0 for each i=l,...,n and gy > 0 for some i for which
0 < )'(i < 1 (see (6.32)).

Thus, the right hand side of (6.33) is positive and we may normalize
(6.33) by its right hand side for each xtX. Thus, applying Theorem 3.1, Equation

(3.16), we may derive the disjunctive cut
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(l/X.)t. > 1
ng LR R

where, A:, jEJ is given by
R

_ (% e — x)tG ad
%) = , ied (6.40)
a/Ap [22;‘ 1 (x+®) toe - xtGi]

2

Now, let us determine the intersection cut based on XOCE) of (6.35). This cut is

given as

) (1/Kj)tj > 1 (6.41)
j€T

where

>
1l

. = (T J o.n, .
max{Aj. z = (x~a >‘j) € X (4),

x%Ge for each xex}

N

- . R RN I | <
= max{Aj. (x 7 e) G(x a Aj) <«

i 1 - -
max{Aj: )\j (% e - x)tGaJ ~<_—2'(x + x)tCe - x%¢% for each xeX}
But noting (6.39), we obtain

€ s
(% e — x) Gad

Ao o= max{A,: A, < 1 for each xe¥}

J J J 12'-(X + ;)tCe - xtcx
or
1 i
~ ('2‘ e - x)tGaJ
A, = max{}.: ?\j max — —| = 1} (6.42)
J J xexl L (x + %) tce - xth_

2
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Thus, if (1/Xj) >0 in (6.40), then from (6.42), we observe that 1/)\j = 1/Xj.

On the other hand, if 1/Xj < 0 in (6.40), then Xj »> w or 1/)A\j = 0. Hence, the

7

cut z £L~ tj > 1 uniformly dominates z Q£;>t > 1 and in fact, the former
jeJ Aj - jeJ Aj -

(disjunctive) cut implies the latter (intersection) cut.

Before concluding, we note that polar cut results analogous to those given
for 0-1 prograrming above, may be obtained for (nonconvex) quadratic programming
problems as well,

In the final two chapters of these notes, we will consider some special
cases of disjunctive programs. To begin with, in the next chapter, we will
treat facial disjunctive programs as introduced in Chapter V. Specifically, we
will discuss two finitely convergent schemes for solving such problems. There-
after, in Chapter VIII, we will dwell briefly on specific applications ol some

of the classes of disjunctive programs introduced in Chapter I.

6.5 Notes and References

In view of Theorem 2.1, any valid cut for a disjunctive program should be
recoverable or can be dominated by a disjunctive cut of the theorem. Balas [4,6]
has discussed this relationship in some detail for integer and nonlinear programs.
As noted by Balas [4,6] and Glover [18,19], the new cuts clearly have the
capability of improving some of the well-known cuts, and this is demonstrated by

the discussion in the chapter.




Chapter VIL

FINITELY CONVERGENT ALGORITHMS FOR FACIAL DISJUNCTIVE PROGRAMS WITH
APPLICATIONS TO THE LINEAR COMPLEMENTARITY PROBLEM

7.1 Introduction

In our discussion of Chapter V, we had introduced a special class of dis-
junctive programs called facial disjunctive programs, examples of which included
the zero-one linear integer programming problem and the linear complementarity
problem. We had seen that for this special class of problems, it was relatively
easy to generate the convex hull of feasible points. In this chapter, we will

discuss two finitely convergent schemes which solve facial disjunctive programs

by generating facets of the convex hull of feasible points as and when needed,

until such time as either a suitable termination criterion 1s met or the problem

is solved through the generation of the entire convex hull.

The organization of this chapter is as follows. We first briefly discuss

how Theorem 5.11 may be exploited to develop a finite scheme for facial dis-

junctive programs. Thereafter, we present in greater detail, a second alternative

method based on Theorem 5.10. This technique is the principal thrust of this

chapter. Finally, we demonstrate how this latter method may be specialized for

the linear complementarity problem.

7.2 Principal Aspects of Facial Disjunctive Programs

For the sake of completeness and convenience, let us re-introduce

certain notations and concepts to be used in this chapter. The facial dis-

junctive program under comsideration is
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FDP: minimize  c'x
subject to x€X={x: Dx = d, x > 0} (7.1)
xY= n [y {=x: a?x 3‘b?}] (7.2)

heH  ieQp

Here, ¢ is a lxn real vector, x=(X7,...,%;) is a (nx1) vector of variables, X is
assumed to be a non-empty and bounded polyhedral set (regularized as assumed in
Chapter V, if necessary). Further, D is an mxn real matrix and d is an nxl real
vector, The set Y is a conjunction of |H| < o disjunctions, with H={1,...,h}, say.
Observe that we have deviated in consistency as regards to notation in this chapter
so as to make the presentation more readable, Since this chapter is written to
be basically self contained, we hope that this will not lead to any confusion.
Continuing, the set Y defines for each h€H, a disjunction which states that at
least one of the constraints a?x z_bg must be satisfied for some i€ Q. Here,
a? is a 1xn real vector and b? is a real scalar for each i€eQ,, heH. The con-
straint index sets Qp, heH may contain common elements correpsonding to common
constraints, and are otherwise disjoint.

Recall from Chapter V that the disjunction x € U {agx i_bg} is called

ieqQy

facial with respect to X if X N {x: a?x_i b?} is a face of X for each i€Qy. In
addition, the disjunctive program FDP is said to be facial if each of the dis-
junctions heH is facial with respect to X. As before, by a face of X we imply a
subset of X defined by the intersection of X with a hyperplane which supports it.

Now, with our assumption of X being a bounded polyhedral set and with Y

as specified in (7.2), we have,
F=clconv XNY=convXNyY (7.3)
Further, let us inductively define

KO = X
Ky, = conv[.U (K N {x: agx z_b?})] for h=1l,...,h (7.4)
1EQh
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Then, Theorem 5.11 and 5.10 are respectively re-stated below as properties Pl and

P2.

P1: Kﬁ of Equation (7.4) is equal to F of Equation (7.3)

P2: {Extreme points of F of Equation (7.3)} < {Extreme points of X of
Equation (7.1)}

We will now proceed to discuss the skeleton of a procedure for solving

Problem FDP based on property Pl above, This discussion will also serve to lay the

foundations for the second procedure which is treated at length in this chapter.

7.3 Stepwise Approximation of the Convex Hull of Feasible Points

Essentially, this scheme for solving Problem FDP is a relaxation strategy.

To begin with, the constraints (7.2) are relaxed and the resulting linear program

is solved. If the optimal solution X, say, satisfies X €Y, then this solution

is also optimal to FDP. Otherwise, a disjunction for some heH is violated.

Based on a violated disjunction, a cutting plane which deletes X but no point of

X satisfying this disjunction and hence, no point of F, is now generated. This
cutting plane is imposed as an additional constraint and the optional solution X

is hence updated. This process is repeated till can optimal solution to some

elaxed problem is feasible to (7.2).
Finiteness of the scheme is based on a result which is basically a

trengthened version of the reverse part of Theorem 2.1, namely, the fundamental

isjunctive cut principle,

The result is stated below (without proof).
heorem 7.1
Let S, = {x: ATx z_br, x > 0} for each r €R be non-empty sets and consider

he disjunctive x € U S., Further, let |R| = 7, say, and define the set
reRk

E = {(Al,...,AT,a,ao): ATAT —a =0 for r=1,.,.,T
FV-%io for r=l,...,T
IIAf=1
ri 1t

AT >0 for r=l,...,t}
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r r
where for each r=l1,...,T, the vector A has as many columns as A has rows, and

where 0 is of the same dimension as x, with ag being a scalar. Then,

ck conv U S, ¢ fx: ofx 2 a;, for each i such that
teR .

(lli,...,lTi,ai,aio) is an extreme point of E} (7.6)

In other words, if we had an enumeration of the extreme points of E of the
form (lli,...,lTi,di;aio) indexed by i, then we could construct the closure of the
convex hull of points feasible to the disjunction x € | S, as the intersection
of the half-spaces aix 2 Gjqe This fact along with ;igperty Pl may be used
roughly as follows,

Initially, let us solve the problem of minimizing cx over the set
Ko Z X. Assume for the sake of simplicity that the optional solution x found
violates the disjunction corresponding to h=1. Then, X ¢ K1 and one may derive
a cut corresponding to an extreme point of E of Equation (7.5) which deletes X.
Here, the constraint sets Alx z_br, for reR correspond to Ky N {x: a?x_i b?]
for ieQ;. The cut may be simply derived by maximizing Gy = ax over this set
E. Now, during the course of the procedure, whenever the disjunction for h=l is
violated, this step may be repeated., Clearly, from Theorem 7.1, this can
happen only finitely often, the entire set K; being constructed in the worst case.
In a similar manner, one may inductively argue that subsequent disjunction vio-
lations considered can be repeated only a finite number of times. Again,
assuming for the sake of simplicity that these disjunction violations occur and
are considered in the order h=1,2,... one may note that when deriving cuts for
the jth disjunction, the constraints Arx_i bY for reR used in the set E of
Equation (7.5) correspond to the intersection of the set Ko, the cuts generated for
the disjunction violations 1,2,...,3j-1 and the disjunctive constraints indexed by
Qj. For algorithmic purposes, whenever an updated solution violates more than one

disjunction which has been previously considered, the cut derived is based on the

most recent one of these disjunctions. In this manner, at worse, one would con-
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struct the sets Ko,...,Kﬁ in their entirety. Typically, the actual sequence of
sets constructed may be only an approximation of these sets in the vicinity of an
optional solution,

7.4 Approximation of the Convex Hull of Feasible Points through an Extreme Point
Characterization

The second procedure (which we shall call the Extreme Point Method) for
solving Problem FDP is basically the same type of relaxation scheme as discussed
in the foregoing section. Hence, a series of cutting planes and updated solutions
to the relaxed problems are generated till such time as an updated solution is
found which satisfies the disjunction (7.2), Whereas we had to specify restrictions
on the type of and manner in which the cutting planes were generated in the
previous section in order to ensure finiteness, we have some flexibility in this
respect 1in the present approach., Instead, in order to invoke Property P2, we
place specific restrictions on the type of points at which the cuts are generated.
Specifically, these polnts are required to be so called extreme faces of the set
X with respect to cuts generated at any stage of the procedure. This concept of
extreme faces is discussed in the following subsection,

7.4.1 Extreme Faces and Their Detection

Let us assume that at a particular stage s cuts, Gx < g, have been generated
in the space of the x-variables, Let

A= {x e R™ Gx + Ixg = g, x Z.O} (7.7)

s
be the subset of RM feasible to these cuts. Here, x5 = (xn+1""’xn+s) denotes
the vector of slack variables (with the superscript t being used to designate

the matrix transpose operation), and I is an identity matrix of size s. Further,
et N = {1,...,n} denote the index set of the original x-variables, which we will
all key variables. Also, let S = {n+1,...,n+s} denote the index set of the slack

ariables for the s cuts, which we will call as nonkey variables. For a set

. = N, let
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Fp = {xeX: x: = 0 for jezZ} (7.8)

J
Note that all faces of X can be represented as F; for some suitable set Z, Finally,

for any point xeFy, let the zero components of x be denoted by

Z(x) = {jeN: x5 = 0} (7.9)
Definition 4.1

Let F; be a face of X defined by some Z& N such that Fz R A # ¢. Then
Fy is an extreme face of X relative to A if for any two points xl,x2 € Fz N A, we
have Z(xl) = Z(xz).

In other words, an extreme face Fy satisfies the property that Fq N A does
not contain any point in a lower dimensional face of X. Examples of extreme faces
of X relative to A are extreme points of X feasible to A, or an edge of X not
disjoint with A but with neither of the two extreme points of X defining this edge
being feasible to A.

Now, observe that Property P2 essentially directs that the search for an
optimal solution to Problem FDP may be restricted to a search among the extreme
points of X. However, we will find it simpler to restrict our search to a larger
set, namely, the extreme faces of X. Since extreme faces of X relative to some A
are also faces of X, the number of such extreme faces of X (relative to all A's)
is finite. Hence, a procedure which detects and deletes in a finite number of
steps at least one extreme face per iteration is finitely covergent. This is
indeed the principal thrust of the present scheme,

Given a simplex tableau representation of an extreme point of X I A at any
stage, a simple procedure to find an extreme face of X relative to A utilizes the

following restricted basis entry rule:

"Only a nonkey variable X3, J€S, is eligible to enter the basis" (7.10)




133

Based on this, the method outlined below either finds an extreme face or indicates
that no such face exists,
Step 1

Let x, denote the largest valued basic key variable in the current solution
which has not yet been considered at a previous iteration. If no such variable
exists, go to Step 3., Otherwise, proceed to Step 2.
Step 2

Solve the Problem P,: minimize {x,: x € X N A} as a linear program subject
to the restricted basis entry rule (7.10). If the solution yields x, = O and
X, 1s basic, pivot it out of the basis, 1f possible, by exchanging it with a
nonkey, nonbasic variable. Return to Step 1.
Step 3

If all key variables are basic, there is no extreme face of X relative to
A, Otherwise, the current set Z of indices of nonbasic key variables defines,
through Equation (7.8), an extreme face F, of X relative to A. In particular, if
all nonbasic variables are key variables, then F, represents an extreme point of
X.

7.4.2 Schema of the Proposed Approach

The procedure we adopt operates as follows. At any stage, given the set A

of Equation (7.7), we solve the relaxes problem

P(A): minimize {cx: x € XN A} (7.11)

If an optimal solution X to this problem satisfies X € Y of Equation (7.2), we
stop wtih X as an optimal solution to Problem FDP. Otherwise, we generate a cut
based on a violated disjunction, and then after updating the tableau, we use the
routine of Section 7.4.1 to find an extreme face Fy of X relative to A. If no
extreme faces exist, then we terminate with the current best known solution as
optimal to FDP, Otherwise, depending on the dimension of Fy, two possible routes

are open to us., If F, 1s of dimension greater than zero, then a disjunctive face

cut 1s developed which deletes F; but no extreme point of X feasible to A. Details
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of such a cut are presented in Section 7.5. On the other hand, if F; represents
an extreme point of X then we check if this extreme point is feasible to Y. If it
is, then we update the current best known solution, if necessary, and again
generate a disjunctive face cut which deletes only this particular extreme point
of X. If the extreme point is infeasible to Y, however, a stronger disjunctive
cut may be developed as discussed in Chapter IV and re—-iterated in Section 7.5.

In any case, after the appropriate cut has been generated and A has been updated,
we say that an iteration has been completed. A new iteration is now commenced by
solving Problem P(A) of Equation (7.11).

As an additional expedient, we will also impose the cost cut

where v is the current best known objective value of Problem FDP. Hence, the
right hand side of this cut is simply updated each time an improved solution is
detected., Although this cut will not affect the solution of Problems P(A), it
will assist in confining the search to improving solutions during the extreme face
finding routine. This is essential because otherwise, the extreme face finding
routine would simply concentrate on feasibility, regardless of objective function
values.

Figure 7.1 gives a flow chart of the proposed scheme. The collection of
extreme faces of X relative to all possible sets A being finite, this method is
clearly finitely convergent. Instead of reviewing in detail the general concepts
involved in generating disjunctive face cuts, we discuss its generation for the
linear complementarity problem in particular and merely allude subsequently to

the extension of this to the general case.
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Initialize with the current best solution
x as the null solution of value U=, Let

A={x: cx§0}=Rn

Find an optimal solution X to Problem P(A)

of Equation (7.11). Let this solution have
a value V,

{Yes

@ STOP; X solves FDP )

o

Generate a disjunctive cut based on the most

violated disjunction in Y and update the
tableau, letting X be the new solution of
Replace A by value V. Replace A by
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Use a disjunc~ |No
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BxiBo to delete
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lFind an extreme face Fy of X relative to
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L Yes
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Use a disjunc-
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If necessary, use this extreme point to update the
current best known solution x and its value J.
update the cost cut (7.12).

Also,

Figure 7.1.

Flow-Chart for the Proposed Schem
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7.5 Specializations of the Extreme Point Method for the Linear Complementarity
Problem

In this section, we will demonstrate how the cutting planes to be used in
the procedure depicted in Figure 7.1 may be generated for the linear complemen-~
tarity problem. Alongside this discussion, we will also make remarks for the
handling of the general case.

7.5.1 Disjunctive Face Cut at an Extreme Face F; Which is not an Extreme Point
of X

Suppose that the currenttableau represents an extreme point x0=(xg,...,xg)

of X N A with xo € FZ’ where
Z = {jeN: xj 1s currently nonbasic} (7.13)

x,=0 is violated by xo.

Let us assume that the disjunction XpXq

Now, consider the solution of Problem Pp defined in Step 2 of the extreme
face finding routine. Recall that this problem is solved subject to the

restricted basis entry rule (7.10). At optimality, let

-1
It

{jeN: xg is nonbasic} (7.14)

v
(]

{jes: X is nonbasic} (7.15)

and let the canonical representation of Xp in terms of the nonbasic variables

i, €N, U S, be

X: =b

X, + z a vxj + z apj 3 P

P el jesp

Since Np & Z, by adding suitable zero coefficients, the above equation may be

written as

=b (7.16)

X, + z ap.x. + z apjxj P

jez jes
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In a similar manner, after solving Pq, we would have an equation

x, + J a.:x.+ )} a,:x; =D (7.17)
q jez q37] jESq 373 q
It is easy to show that
ap <0 i€Sp, ag <0 jESq, bp > 0, bq >0 (7.18)

Now, the requirement that at least one of xp < 0, Xq < 0 must hold may be written

as requiring that at least one of the following constraint sets must be satisfied

ar-
) —L) %, > 1; x; > 0 for jezUS for r=p,q (7.19)
jezls by J - J - Pq
Pq

where Spq = SpUSq and again, we have suitably defined zero coefficients wherever

necessary. From Theorem 2,1, a valid cut is

a v a .
z (’maxi%‘ . —bq—J E)xj >1 (7.20)
JE2US g p q

Observe from (7.18) that (7.20) implies

and hence, (7.20) deletes F, since any x€Fy satisfies xj=0 for jeZ. Finally,
note that either in the general case of facial disjunctive programs or in the

present application when xo €Y, one may obtain an equation of the type (7.16)

0

for each reEN such that Xy

> 0 and then derive a cut based on the disjunction that

at least one of these variables X, must be zero at any extreme point of x feasible

to A, if such a point exists.
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7.5.2 Disjunctive Cut at an Extreme Face Fy which is an Extreme Point of X
0

Let x” be the extreme point of X represented by the current tableau as the
extreme face F,. Again, if xo €Y, then we develop a disjunctive face cut as in
the general case of the foregoing discussion. On the other hand, if some dis-
junction XpXq = 0 is violated, then a deeper cut may be generated in the following
manner.,

Let the canoical representation of the (positive) basic variables x, and Xq

P

in the current tableau be given by

Xp + jgz apyxy = bp >0
(7.21)

+ ] agixy =bg >0
xqjeijjq

where Z is currently also the index set for nonbasic variables. Now, the
disjunction that at least one of the variables Xps Xq equals zero may be written

as the requirement that at least one of the constraint sets

() w220 s ) 1 ()2,

)
ijez P j€Z -

xj.i 0 for szi (7.22)
must be satisfied. Through Theorem 2,1, a valid cut based on this statement is

I mxy>1 (7.23)
jez

where,

1Y

a
o= max{——l, “Jﬂl} for each jeZ (7.24)
J bp bq

which clearly deletes FZ = xo. Now, in Chapter IV, we discussed how this cut may
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further strengthened by considering nonnegativity conditions on the other basic
variables also. Hence, if we let Bpq be the index set of basic variables x.,

#p, T#q then we may.replace the disjunction (7.22) by the following disjunction,

where we have used a canonical representation for the basic variables x., requ

similar to that in (7.21). This disjunction states that at least one of the

following constraint sets must be satisfied

{ Z a ix; < b, for reB,,, Z x5 > by, x¢ > 0 for jez}
jog TFI=0E Pq jez“pjj_P iz

{Z a_;x: < b, for TeB_,, Z a_:x: >b_, x, > 0 for jez}
182 rj*y = Pr Pq jez P17 = Tq* T3 =

The improvement technique proposed in Chapter IV essentially attempts to derive

a cut in terms of the nonbasic variables xj, jEZ such that this cut is a support

for the closure of the convex hull of the union of the two sets in (7.25). The
method accomplishes this by commencing with the cut (7.23), say, and attempting
to improve (decrease) as much as possible each cut coefficient one at a time,

Hence, if at any stage, if (7.23)

holding the other cut coefficients fixed.
represents the current cut and if one is trying to reduce the coefficient of x,
then as in Chapter IV this coefficient is given by the larger of the optimal values

of the two linear programs LPyj, and LPyq, where

LP, . ¢ maximize £ - Z Ty
kh jez 373
¥k

subject to ) aryyj = by& < -ap for reBog
jez
Itk

brE - I apiys < a
iéz hj¥3 = 2hk
Ik

EiO,yj}_OforJEZ—{k}
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Again, as indicated in Chapter IV, both LPkp and Lqu need not necessarilyabe
solved independently. Thus, for instance, if Equation (7.24) ylelds %k = 1%? ,
say, then one may solve LPkp first. If the optimal value ;kp of LPkp equals %k’
then Lqu need not be solved, Otherwise, Lqu may be solved with the added con-
straint that its objective value exceeds ;kp'

0f course, to reduce the effort in the generation of such cuts, one need
not include all the constraints for requ in the sets of Equation (7.25). In-
stead, some heuristic rule made be used to select a subset of these contraints,
For example, one may select those constraints from qu which delete at least one
of the finite intercepts which the cut (7.23) makes on some axis. Hence, one
may select

ark

{reBg: ﬁ—k > by for some k € T # 0}

7.6 Notes and References

The term "facial disjunctive programs'" was first used by Balas [5] where the
principal result, namely Properties Pl and P2, discussed in this chapter, are
proved. Those results have led to two finitely convergent algorithms for facial
programs presented in this chapter. The first is due to Jeroslow [26] and makes
use of one of the properties, The second algorithm is based on the other

property and uses the concept of "extreme faces" first presented by Majthay and

Whinston [28].




CHAPTER VIII

SOME SPECIFIC APPLICATIONS OF DISJUNCTIVE PROGRAMMING PROBLEMS

8.1 Introduction

In Chapter I we discussed in general the major applications of disjunctive
programming problems. These included the generalized lattice point and related
problems, the cardinality constrained problem, the extreme point programming
problem and the binary mixed integer linear programming problem. In this chapter,
we will present some specific applications which are subsumed under these general

classes of problems.

8.2 Examples of Bi-Quasiconcave Problems

The Bi-Quasiconcave problem may be written as

minimize {£(x,y): xeS,, yeSy}

where S, and Sy are polyhedral sets in variables x and y respectively and (.,.)
is a real valued function such that f(.,y) and f(x,.) are quasiconcave for any
fixed x and y. It is easy to see that this latter property guarantees that an
optimal solution is obtained at an extreme point of Sy X Sy. Thus these problems
are essentially extreme point optimization problems. We will now discuss some
practical Bi-Quasiconcave problems.

8.2.1 Orthogonal Production Scheduling - A Multiperiod Activity Analysis Model

Let us first of all consider the class of problems known as the Multi-
period Activity Analysis problems or the multistage production problems. These

problems have the mathematical form

K
minimize Z (ck txk
=1

subject to Axk 3_bk for k=1,...,K

xk >0
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Here, we have, say n activities producing m commodities over K periods. Thus, xk
is a vector representing the activity levels at period k, k=l,...,K, for activities
1,...,n, say. Further, Anyn 18 the matrix of input-output or technological coef-
ficients, bk is a vector which denotes the requirements for various commodities

l1,...,m in period k and ck

is a vector which represents the unit cost associated
with each activity 1,...,n in period k.

However, certain physical considerations may require that certain orthogonal
constraints of the form x?'l . xg = 0, k=2,...,K hold for some activities j.
For example, this may arise in the context of machine scheduling wherein due to
maintenance considerations, certain activities cannot be scheduled in two consecu-
tive periods. As another example, they may arise in an agricultural production
situation wherein certain crops cannot be raised in two consecutive periods to
preserve specific nutrients in the soil.

This problem may be transformed into a Bi-Quasiconcave Programming
problem as follows., Let us assume, merely for convenience, that each activity
is restricted by the orthogonal scheduling constraint mentioned above. Then we
may use the penalty function method to ascribe a high cost to any schedule which

is infeasible to these orthogonal constraints. That is, letting M be a large con—

stant, we may formulate the orthogonal production problem as

K K
minimize ) (ck)txk +M ] (xk_l)txk
k=1 k=2

subject to Ax

For the case K=2, this problem is clearly a Bi-Quasiconcave Program; in fact, for
K=2, it is a Bilinear Programming Problem with an optimal solution being an extreme

point of X XX where X; = {x}>0: ax!>b'}, X, = {x2>0: ax?>1b2}.
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8.2.2 Application to Game Theory

Consider a two player game where player P, selects his strategy first as a
vector x from the set X = {x: Alx < b, x 2'0}. Depending on the strategy x
selected by Py, let us say that player ) selects a strategy y from the set
Y(x) = {y: Ay <d+Cx, y 3_0}. Here, Y(x) is assumed bounded and nonempty for
each x€X. Further, let us say that when Py selects strategy x and P, selects
strategy y, there is an assoclated payoff f(x,y) = ptx + qty from Py to Py, where

p and q are given cost vectors, Thus, given x, P, will solve the problem

maximize qty

subject to yEY (X)

Let y(x) denote an optimal solution to the above problem, Hence, knowing the
technique to be adopted by Py, Py will try to select a strategy xeX which minimizes

f(x,y(x)), that is, he will solve the problem

minimize {ptx + minimum{(d + Cx)%z: Agz > q, z > 0}}

subject to Alx <b, x>0

where qty(x) = max{qty: Agy <d + Cx, y > 0} has been rewritten as qty(x) =
min{(d + cxtz: AyZ > q, 2 > 0}. Hence, the above problem may equivalently be
written as
minimize dtz + pt
subject to Azz >4q, 2> 0

Ayz <b, x>0

This problem is again a Bi-Quasiconcave Programming Problem; in fact, it is a

bilinear problem.



8.2.3 Multi-Stage Assignment Problem

For the sake of simplicity, consider a two-stage assignment problem. The
development given below may easily be generalized to the multi-stage problem.
Hence, suppose we have N jobs and N machines with the stipulation that at each
of the two stages, one and only one machine should be assigned to each job. The
profit of assigning machine i to job k at the first stage is simply pj;. However,
the profit of assigning job i to machine j at the second stage depends on the job
k to which machine i was assigned at the first stage. This profit is accordingly

given by ﬁij + Q5§ Thus, the total two-stage profit is given by

rZ] E 1 IE IE 2 E DZI rz] 2 1
PysXy. t PisXis t Qi s X5 <X
i=1 j=1 ij™i] i=1 j=1 ij*1] 1=1 =1 k=1 ijk*ijtik

where

N N
4 . r
xTex = {xf: igl xij =1, j=l,...,N, j_z_l x’i’j =1, i=l,..,H, x5 = 0,1

for i, je{l,...,N} and for r=1,2

That is X; and Xp represent the assignment constraints at stages one and two
respectively. Hence defining N2 vectors p = (Pij)’ p= (ﬁij) and letting Q be an
appropriate matrix made up of zeroes and coefficients Qjjks We may formulate this
problem as

1

minimize ptx + ﬁtxz + (xl)th2

subject to x1 €Xy

2
X EXZ

This is again a bilinear programming problem.
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8.2.4 Rectilinear Distance Location-Allocation Problems

As a final example of Bi-Quasiconcave Programming Problém, we consider this
problem which is again a Bilinear Programming Problem. Specifically, consider a
multifacility location-allocation problem which involves the distribution of
several products among some new facilities to be located and between these new and
other already existing facilities. Thus, suppose n new facilities are to be
located. Let the variables denoting their location in a two-dimensional layout
be (xi,yi), i=l,...,n. Further, let there be m existing facilities currently
located at (xi,yi), i=ntl,...,ntm. Let aj; denote the availability of product k,
k=1,...,p, say, at a new facility i, for i=1l,...,n and let bj) denote the require-
ment of product k at a new or existing facility i, k=l,...,p, i=1l,...,n+m, Let
us also assume that each unit of product k supplied from new facility i to new or
existing facility j costs cijk with a corresponding transportation cost per unit
distance of tijk' Here, the distances are taken to be measured using the recti-
linear norm. This distance measure is appropriate in the context of movement
along city streets or in a grid of aisles in a factory or a warehouse.

The problem is to determine the locations (xi,yi) for the new facilities
i=l,...,n and to find feasible allocations uijk of product k from new facility
i to new or existing facility j so as to minimize the total purchase (or manu-

facture) and transportation costs. Mathematically, this problem may be written as

n  ntm
minimize §

z {eggn + tss (Ix - X I + Iy. - y.I)}u .
k=1 i=1 j=1 ijk ijk i j i 3 ijk

subject to uelU = {u = (ulll""’un,n+m,p):

n+m
z Uik < ayy for i=l,...,n, k=1,...,p
j=1
)
u,., = b, for j=1,...,mm; k=1,...,p
k ’ ’ ’ ’ ’
121 ijk ]

for i=l,...4n; j=1,...,mtm, k=1,...,p}.




146

One may now use the usual transformation on the absolute value terms in the
+ - + -
objective function above to write |xi - le + |yi - yjl as (xij + xij + yij + yij)’

where the restrictions on these new variables may be denoted as z€ Z, say, where,

ot + - - + + - -
z (xll""’xn,n+m’x11’°"’xn,n+m’y11""’yn,n+m’y11""’yn,n+m’

t
xl"")xn;Yl;"':Yn)

and where,

+ - .
z = {z: xi-xj-xij+xij=0 for i=l,ee.,n, j=l,...,ném
+ -
i - Yy~ yij + yij =0 for i=l,...,0, j=l,...,nim
+ - + - .
xij’ xij’ Yij’ yi] Z 0 for i=l,...,n, J=1,...,n'+1n}

Then, the rectilinear distance location-allocation problem may be written as the

bilinear programming problem

minimize ctu + thu
subject to uel
z€Z

where ¢ and T are appropriate cost vectors and matrices respectively. Note that
the orthogonality constraints of the type x;x;j = yij;j = 0 are not explicitly
needed since the columns of ij and ij (as also of yIj and y;j) are linearly

dependent in Z.

8.3 Load Balancing Problem

The load balancing problem is one which involves the allocation of m jobs
of given "weights" w; to n departments such that the total resulting work loads,
Lj’ j=1,...,n are as equally balanced as possible. Hence, if we define 0-1

variables Xy4 as
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1 if job 1 is assigned to department j
X1 = 1=1,40eom, j=l,...,n

0 otherwise

then the work load at station j is given by

|
—
"
n e~
£
®

i*13

The concept of an equitable balance of load between stations i1s subjective. One

may choose to minimize the difference between the minimum and the maximum work
m
load at any station, Or, one may examine the average work load L ='% Z wy and

i=1
choose to

n
minimize { z |Lj - Ll}
j=1

Using this latter alternative one may adopt two types of formulatioms.
Firstly, one may introduce an (m+l)th dummy job and stipulate the following con-

straints

n
x€X = {x=(xij): jzl x4y = 1, i=1,...,m

n
Z = m(n~-1)
421 *mr+1,

m+l
xij =m, j=l,.eesn

i=1

o} (8.1)

iv

xij

These above constraints constitute a transportation constraint set in which there

are (mt+l) supply points, m of which have a unit supply and the (m+1)3% has a
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supply of m(n-1). Further, there are n demand points, each of them having a demand
of m units, Moreover, every basic feasible solution to this problem is integer,
and specifically, zero-ome. In fact, there is a one-to-—ome correspondence between
the assignment of jobs to departments and basic feasible solutions of this con-
straint set. Hence, this is now an extreme point problem wherein one searches

for the best extreme point of X,

In another equivalent form, we may let

+ -+ + -
-L=vy. i .y, = C
Ly =L =y5-55 Y55 75 05 ¥3¥y
m
and recalling that Lj = z wixij’ we may formulate the load balancing problem as
i=1
n + _
minimize z (y: +¥2:)
.o J J
j=1
m
subject to Z w,X - yf + yT =1L j=l,e..,n
=1 i7ij h| J ? ?

+ -
Yj’}’j i 0 j=ls"'sn

and x is an extreme point of X of Equation (8.1), Note that the orthogonal con-
straints y;jy; =0, j=1,.s.,n may be omitted in solution procedures which set the
above problem up as linear programs since then the columns of y; and yg are linearly

dependent for each j=1l,...,n.

8,4 The Segregated Storage Problem

This problem considers a certain resource which is available in quantities
§1se+455, at m sources and is to be allocated to meet the demands Dj,e¢..sD  0of n

users with the added restriction that the requirement of each of (n-1) users,

say, 1,2,...o,0-1 is to be met from one and only one source. The last, or the nth,

user can be supplied from any of the sources. In a storage context, the first

(n-1) users correspond to private (special) storage facilities and the nth user
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corresponds to public (common or general) storage facility. Mathematically, we

may let X4 denote the quantity shipped from supply point i to demand point j at
a cost of say, cj4 per unit and formulate the problem under the assumption that
m n

y 5, = Z D: as
izl Ty

m n
minimize 'Z .E ©4§%45
i=1l j=1
m
subject to xeX={x=(x,.): ] x < D., j=l,...,n

n
) Xiy = S;s i=l,...,m

0}

| v

X
1]

e
2 Sij i l, j=1,....,n—1
i=1

1 if Xy4 >0
This problem is also an extreme point optimization problem since it can be shown
that there exists an optimal solution to it which is an extreme point of the set

X of Equation (8.2).

8.5 Production Scheduling on N-Identical Machines

Consider a firm which manufactures K products, each of which must be pro-

cessed on the same machine. The machine has N rings of dies and is capable of

processing N products simultaneously. Also, it is assumed that N<K. However,

the entire machine must be shut down to change from one set of N products to another

set. Thus, this problem may be viewed as one involving N identical machines, each

with a single ring of dies, which are coupled by demand constraints. This demand
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is available as a forecast of each of the K products over the next T periods, with
the current (initial) inventory level being known. Changeovers are permitted
only at the end of each period with the cost being proportional to the number of
rings whose dies must be changed., The problem is to determine an optimal pro-
duction schedule for the K products over T weeks so as to minimize the total
changeover and inventory costs while complying with the demand requirements.

Thus, let

Xi¢ = the number of rings producing product k in time period t,
k=1l,...,K, t=1,,..,T.
dy, = integral demand for product k at the end of time period t,
k=1l,...,K, t=1,...,T.
Yt = inventory of product k at the end of period t, k=1,...,K,
t=0,...,T, with t=0 yielding initial inventory.
c = cost of changing a single ring of dies.
ci = inventory carrying cost for a single period for product k,

k=1,...,K.

Now, it is clear that

K
21 |xk,t+1 T Xkt

represents twice the number of rings changed from manufacturing ome product to
another at the end of period t, so that the total changeover cost over T periods

is

5 Til E | I
X - X (8.3)
2 =1 kel k,t+l kt

Further, the inventory of product k during the tth period is obtaine through the

cumulative occurance over t-l periods as
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t=1 t-1

Yi,e-1 = Yko * 1§1 ki T 1§1 diy (8.4)

The production constraints require all the N rings to be busy in each time period,
or,

K
1 x, ., =N, for t=1,...,T (8.5)
oy Kt

Further, to stipulate that the demands are all met with, we need the comstraints

+ x,, - =d,, for t=1,...,T, k=1,...,K 8.6)
yk,t—l kt Yt kt ’ sl ’ ’ (
Then, the problem at hand is to
;7 ;g
ninimize > X -x .+ S
2 o1 kel k,t+1 kt el kel Kk k, t-1
K
subject to 1 X = N t=1,...,T
k=1

yk,t—l + % - Vi = dkt t=1l,...,T, k=1,...,K

Kpps ykt_>. 0, and integer, k=1,...,K, t=1,,.,..,T

To convert this problem into one with network constraints, a redundant constraint

of the following form may be added

K
Z YT = total inventory at end of planning horizon
k=1

) Pd
- Yoo + NT - d
k=1 KO o1 kel <F
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Utilizing the usual transformation of representing the absolute value of a variable
as the difference between two nonnegative variables, the above problem may be con-—
verted into an integer linear program. The integrality restrictions may then be
replaced with the equivalent requirements that the solution should be an extreme
point of the network constraints given above, Hence, this problem may be repre-

sented as an extreme point optimization problem.

8.6 Fixed Charge Problem

This type of problem is a mathematical programming problem which involves
a fixed cost to be added if a variable is non-zero. MHore specifically, the

problem may be stated mathematically as

n
mininize etx + ¥ S.f.: xeX
j=1

where X is a polyhedral set and

0 if x, =0
§. = for j=l,...,n

1 if Xy >0

and where c denotes the vector of variable cost coefficients. Here fj is the
fixed charge incurred if Xy > 0, It can be shown that the agbove objective function
is concave and hence there exists an optimal solution which is an extreme point
of X. Thus, this too is of the class of extreme point optimization problems.

As an example of a fixed charge problem, one may think of a transportation-
locatio- situation wherein the fixed cost is associated with the construction of
a supply facility or a warehouse at a potential site. As another example, the
fixed charge may arise as a fixed set-up cost in a scheduling problem if the
decision to manufacture a certain product is adopted. Fixed charges also arise
in passenger transportation models wherein the introduction of each additional

transport facility involves an extra fixed cost,
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8,7 Project Selection/Portfolio Allocation/Goal Programming

Consider the problem

minimize ctx
subject to xe 8= {x: Ax < bo}

x € extreme point of X = {x: Bx < b, x > 0}

where B is block-angular with blocks Bl”"’Bp’ say.

These types of problems arise, for example, in the context of project
selection problems wherein the extreme points of X correspond to projects being
proposed by the p "subordinate" units. These units must be coordinated by the
"superordinate" whose stipulations/restrictions are expressed by the set S. If
convex combinations of projects proposed by the subordinates is not meaningful,
one is restricted to selecting an extreme point of X, that is, one needs to
investigate the extreme point optimization problem given above. Similar structures
arise in Portfolio selection and in Goal Programming. In the latter case, the

objective is to obtain a solution as "close" as possible to the preset goals.

8.8 Other Applications

In several production planning problems, one is confronted with a profit
function which is convex due to economies of scale. That is, as the level of
production is increased, the profits increase more rapidly than in direct propor-
tion at first and then level off due to diminishing marginal returns. Hence the
problem of maximizing a convex (often quadratic) function over linear constraints
is essentially an extreme point optimization problem.

In decision theory problems, a decision tree is constructed wherein each
path through the tree represents a strategy with a utility value associated with
it. The objective is to maximize the expected utility over a finite set of
vectors, each vector denoting the values associated with a strategy. The problem

may be reduced to that of maximizing a linear function over a polytope, where
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the polytope is defined as the convex hull of a finite set of points. Thus this
13 a specilal case of an extreme point optimization problem where the extreme points
are a subset of a known finite set of discrete points.

Finally, we note that 0-1 linear integer programming problems can be con-
verted into problems of minimizing a concave function over a polyhedral set.
This may be accomplished by simply incorporating a penalty term of the form
-El M xj(l-xj) into the objective function where M 1s' a suitably large constant,
ind Xy» j=1,...,n are variables restricted to be zero or one in value. The
problem 1s hence an extreme point optimization problem. However, due to the
ill-conditioning effects of M, usually implicit enumeration schemes have been
known to permit more efficient solution procedures than the implementation of the
above transformation.

8.9 MNotes and References

This section elaborates on some of the problems that can be represented
as disjunctive programs. The reader may note that theoretically integer-
programming problems in general can be cast in a disjunctive programming format.
Only some of the special practical cases, particularly with 0-1 variables, that
seem more amenable to solution procedures using disjunctive programming principles
are discussed in this chapter. The thought proposed and discussed by Balas [4]
and Glover [19] of incorporating disjunctive programming/polyhedral annexation
principles within a branch-and-bound approach is particularly significant in

the context of developing viable solution procedures.
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A finite algorithm is presented in this study for solving Bilinear programs. This is ac-
complished by developing a suitable cutting plane which deletes at least a face of a polyhedral
set. At an extreme point, a polar cut using negative edge extensions is used. At other points,
disjunctive cuts are adopted. Computational experience on test problems in the literature is
provided.

Key words: Bilinear Programming, Polar Cuts, Disjunctive Cuts, Cutting Plane.

1. Introduction

Mathematically, the Bilinear Programming Problem may be stated as

BLP: minimize &(x, y)=c'x +d'y + x'Cy,
subjectto xEXy={xER": Ex=¢,x=0}, (1.1)
YEYo={yER™: Fy=f,y=0} (1.2)

where X, and Y, are bounded polyhedral sets.

Cutting plane procedures have been previously proposed to solve such prob-
lems [13,22). The one proposed by Konno [13] leads to an € optimal solution,
that is, a solution differing in value from the global minimum value by no more
than a prespecified positive quantity e. On the other hand, the one proposed by
Vaish and Shetty [22] yields a global optimal solution. Both these methods are
convergent, though not necessarily finitely convergent. In this paper, we pro-
pose a cutting plane algorithm which deletes at least one face of X, at each
iteration and hence converges finitely. In order to accomplish this, we employ
two types of cuts.

(1) Polar cut. This is introduced at an extreme point of X, feasible to the cuts
generated thus far, and is based on the theory of generalized polars [2, 5]. Here
we employ the concept of negative-edge extensions in the spirit of the work of
Glover [7,8]. The cuts thus derived are subsumed under the general theory of

t This paper is based upon work supported by the National Science Foundation under Grant No.
ENG-77-23683.
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cutting planes proposed by Burdet [6] and Jeroslow [10]. Incidentally, in this
study we also improve the technique proposed in [21] to solve the parametric
problems involved in the generation of polar cuts.

(2) Disjunctive cut. This is introduced at a suitable point which is not an
extreme point of X,. Under certain specific conditions, a disjunctive cut will be
used at a degenerate extreme point of X,. The cut is based upon the principles of
valid inequalities as discussed by Owen [16], Balas [3], Glover [7,8], and
Jeroslow [11]. The cuts permit coefficients of either sign, and hence, as noted by
Balas [3], they tend to circumvent problems associated with dual degeneracy.

A host of practical problems may be modeled as Problem BLP [12,20,21].
These include the two-stage or multi-stage assignment problems [21], the maxi-
mization of a convex function over a polytope [2, 14,20], some game theory,
production scheduling and decision theory problems [12,21] and the multi-
facility, multi-product, rectilinear distance location-allocation problem [19].

Problem BLP is essentially a nonconvex problem and hence a local minimum
need not be a global minimum. Several previous studies [1, 13, 21, 22, 23] have
investigated the structural properties of Problem BLP and we refer the interested
reader to these for such a discussion. We will, however, indicate that for either a
fixed x € X, or y € Y, Problem BLP is linear in the other variable set. Hence,
there exists an optimal solution to Problem BLP which is an extreme point of
XoxX Y

In developing a cutting plane algorothm for Problem BLP, it is clear that in
order to preserve the separability of the variables associated with X, and Y, the
cut should be introduced in either the set X, or the set Y, Further, as we will
see later, introducing the cuts in one set will involve solving several linear
programs over the other set. Consequently, if one of the sets, say Y, has a
special structure, we can preserve this set and introduce the cuts in the set X|.
As an example, in the rectilinear distance location-allocation problem [19], it is
worth preserving the transportation problem constraints, as efficient solution
procedures for the transportation problem are available.

2. Extreme faces of X, relative to the cuts

At a particular stage, suppose that s cuts, Dx < d, have been generated in the
space of the x-variables. Let the set of points feasible to these cuts be

Q={xER": Dx+Ixs=d, xs =0} 2.1

where xg denotes the vector of slack variables (Xqup ..., Xass)', and I is an
identity matrix of size s. Following Majthay and Whinston [15], we will now
define an extreme face of X, relative to Q. If a point on this face is not an
extreme point of X,, we will develop a suitable cut in Section 3. On the other
hand, if the extreme face is an extreme point of X, we will attempt to develop a
deeper cut in Section 4, failing which, we will revert to the cut of Section 3.
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Definition 2.1 [9]. Let X, be a convex subset in R". A nonempty subset F of X is
called a (proper) face of X, if there exists a supporting hyperplane H of X, such
that F=X,NH.

Now let N ={1, ..., n} denote the index set of the original set of variables,
which we will call key variables. Also, let S={n+1,..., n + s} denote the index
set of the slack variables of the s cuts, which we will call nonkey variables. For a
set ZC N, let

F,={x€Xpx;=0for jEZ}. 2.2)

Note that all the faces of X; can be represented as above for a suitable
specification of the set Z.

Definition 2.2. Let F; be a face of X; such that F,NQ# ¢. Then Fz is an
extreme face of X, relative to Q if for each k € N, x € Fzyy # F; implies xZ Q.

In other words, an extreme face F; satisfies the property that F; N Q does not
contain any point in a lower dimensional face of X,. Note that an extreme point
of X, feasible to Q qualifies for an extreme face. Likewise, an edge of X, whose
defining extreme points are not in Q is also an extreme face of X relative to Q,
whereas an edge with one defining extreme point in Q will not qualify.

Given a set Z,C N, an extreme face of X, can be identified by sequentially
adding indices to the set Z,. The simple procedure by Majthay and Whinston
[15] which accomplishes this adopts the following restricted basis entry rule:

“Only a nonkey variable x;, j € S, is eligible to enter the
basis.” 2.3)

In [15] it is proved that the procedure described below either finds an extreme
face or indicates that no such face exists.

Initialization

Consider a standard simplex tableau representation of a basic feasible solution
to Xo N Q.

Step 1: Let x, denote the most positive basic key variable in the current
solution not yet considered at a previous iteration. If no such variable exists, go
to Step 3. Otherwise, proceed to Step 2.

Step 2: Solve the Problem P,: minimize {x,:x € X,N Q} subject to the
restricted basis entry rule in (2.3). If the solution vyields x, = 0 and x, is basic,
pivot it out of the basis, if possible, by exchanging it with a nonkey, nonbasic
variable. Return to Step 1.

Step 3. If all key variables are basic, there is no extreme face of Xj relative to
Q. Otherwise, the current set Z of indices of nonbasic key variables defines,
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through Eq. (2.2), an extreme face F; of X, relative to Q. In particular, if all
nonbasic variables are key variables, then F; is an extreme point of X.

The above procedure yields a simplex tableau corresponding to an extreme
point x° of X, N Q which lies on an extreme face F; of X, relation to Q, if such a
face exists. If F; is of dimension greater than zero, then we will develop a
disjunctive cut to delete the entire extreme face. On the other hand, if the
extreme face is an extreme point of X, a cut better than the disjunctive can be
developed. In order to do this, starting from the current point, we locate another
extreme point with suitable properties and generate a polar cut with negative
edge extensions as discussed in Section 4. If such a suitable point is not
available, a disjunctive cut is developed. In either case, the cut generated is
appended to the system of cuts to update the set Q. The procedure thus
continues until the extreme faces (and hence the extreme points) of X, relative
to some Q are all deleted.

3. Development of the disjunctive face cut

Suppose that the procedure of the foregoing section terminates with an
extreme face F; of X, relative to Q and a point x°=(xJ, ..., x%) on this face
which is not an extreme point of X, Since we are primarily interested in
extreme points of X, (recall the extreme point optimality property of Problem
BLP), we may introduce the disjunction that at least one of the basic key
variables which is currently positive must be zero in order to yield an extreme
point of X, feasible to Q, if such a point exists. Accordingly, define

By ={reN:x)>0} 3.D
Further, let
Z ={j € N: x; is currently nonbasic}. 3.2)

Now consider an index r € By and suppose Problem P, is solved. At opti-
mality, let

N, ={j € N: x; is nonbasic}
and i . ) (3.3)
S, =1{j € S: x; is nonbasic}

and let the canonical representation of x, in terms of the nonbasic variables

x, JEN,US, be

X+ 2 ax+ > agx =b,.
j JES,

JEN,

Since N, C Z, by adding suitable zero coeflicients, the above equation can be
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written as

X, + X ax+ D ax = b, (3.4)
ez jES,

Note that Problem P, minimizes x,, and hence a,; is the coefficient of x; in the

objective function at optimality. Hence, even with the restricted basis entry rule,

we may stipulate that

a; =0 forjeSs, 3.5)

Also, note that if b, =0 and a,;# 0 for some j& S, implies that x, could be
made nonbasic. Hence b, = 0 implies a,; = 0 for j € S,. Thus, under the restricted
basis entry rule, no pivot will ever occur in the row of x, and moreover, at
termination, we will have x! = 0, contradicting r € Bx. Hence,

b, >0 for r € By. (3.6)

Rewriting Eq. (3.4) for each r € By, and suitably defining zero coefficients, we
may state the disjunction x, =0 for at least one r € By as:
The following set of inequalities must hold for at least one r € By

{2 (%’i)x,-a}‘, (%'i)x,zl,x,-zOforjEZUSN} (3.7)
ez r JESN r ,
where Sy = U ep, S-

Now, for any r € By, if a,; =0 for all j € Z, then the corresponding system in
Eq. (3.7) is inconsistent and we may delte it. Let B¥ denote the set of consistent
systems. If B¥ = {0}, then clearly no extreme point of X, feasible to Q exists and
we may terminate. Otherwise, according to the development of Owen [16] or
more generally (and more rigorously), that of Balas [3] or Glover [7] or Jeroslow
[11], the following is a valid cut

> {max (&i)}x,- + > {max (ﬂ)}.x,- =1 (3.8)
jEZ rEB,‘V, br jes;‘, rEB;/ br

where S% = Uree;, S,.. We note that the cut (3.8) may be strengthened in the
following manner through the use of a result due to Glover (see [7, Theorem 2]).
Rewriting with obvious notation the consistent inequalities in (3.7) as
Ziezus;, a,x; = 1 for each r € B¥ and inequality (3.8) as = a*x; =1, let us define

Y, = minimlDJm {a*la,;} for each re BY.
J:u,lr»

Then, using Glover’s [7] results, one may easily validate the following inequality
or cut

> [maxig}um {y,a,,»}] x =1 3.9

JEZUSY ]
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Sherali and Shetty [17] have shown that (3.9) dominates any valid inequality
based on the disjunctive statement (3.7) since (3.9) defines a facet of the closure
of the convex hull of

U {x: > a,,-x,-zO,sz}.

reBY, ieZosy,

Now, consider the following assertion.

Lemma 3.1. The disjunctive cut of Eq. (3.9) deletes the extreme face F; of X,
relative to the set Q.

Proof. Since the cut (3.9) uniformly dominates the cut (3.8) (see [7]), it is sufficient
to show that (3.8) deletes the extreme face F; of Xjrelative to Q. From Eq. (3.5), the
cut of Eq. (3.8) implies

2 {max (%’i)}x,- =1.
jez Lrepy \Dy

Further, by the definition of BY, for each r€ B¥, a,; >0 for some j€& Z, and
hence, the coefficients of the above cut are not all nonpositive. The proof
follows from the fact that for any x € Fz, x; = 0 for each j € Z. It is worthwhile
noting again that since the cut (3.9) has coefficients of both signs, problems
associated with dual degeneracy tend to be reduced [3]. Also, the reader may
note that Majthay and Whinston [15] have also proposed some facet cuts of the
type X jez piX; = p where the coefficients p; >0, j € Z are prechosen and the cut
generation routines attempt to make p as large as possible. However, since we
are only interested in deleting F, without regard to the depth of the cut, we have
elected to use above an efficient scheme which will simply accomplish this for us
at a low computational cost. Finally, the reader may observe that a similar valid
disjunctive cut may be generated in an even more straightforward manner when
one obtains an extreme face of X, which is also an extreme point of X,. Despite
this fact, we prefer to expend more effort and generate significantly deeper cuts,
if possible, by finding intersection points of suitable positive and negative edge
extensions with the boundaries of the polar set, rather than with the boundaries
of the smaller set which is the closure of the complement of the union of the
disjunctive sets. This is the subject of the next section.

4. Development of the negative-edge extension polar cut

In this section, we assume that we have found an extreme point x° of X,
feasible to the set Q. In order to present the cutting plane techniques, we will
first introduce two concepts. The first is merely an artifice in the implementation
of the procedure. It exhibits the relationship of the procedure with convexity
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cuts [7] and is based on the generalized reverse polar of a set [S, 6]. The second
concept is more crucial to our development, and concerns what we call a weak
pseudo-global minimum as opposed to the pseudo-global minimum discussed in
[22].

Definition 4.1. Given a set Y, and a scalar «, the generalized reverse polar of Y,
relative to « is the set

Yo(a)={x € R": min,cy, ¢(x, y) = a} 4.1)
where as before,

d(x,y)=c'x+d'y +x'Cy.

Note that Yy(a) is a polyhedral set; in fact, we may rewrite Yy(a) as

Yola)= NV Hi(x)=( {xER": ¢'x+d'y +x'Cy’ = a} 4.2)
i=1 i=1
where y',..,y* are the u extreme points of the polytope Y, and H[(x),
i=1,...,u are the corresponding u closed halfspaces.

The basic idea behind the cutting plane method is to let « be the current best
objective function value (CBOFV) and to define a cutting plane which will delete
as large a subset of Yya)N X, as possible. In order to be able to develop a
cutting plane which deletes the extreme point from which it is generated but no
point in X, which does not belong to Yy(a), we will find it expeditious to
generate it from an extreme point of X, which is a weak pseudo-global mini-
mum. Theorem 4.1 below establishes the validity of the cut. First consider the
following definition where A(X) represents the set of extreme points of X,
adjacent to the extreme point of X of X.

Definition 4.2. Let Q be the region feasible to the s cuts generated thus far.
Further, let (% ¥) be an extreme point of X,x Y, such that X€ Q and
min,ey, ¢(X, y) = ¢(%, ¥). Consider a basis B of (1.1) representing . Then (X, y)
is said to be a weak pseudo-global minimum (WPGM) relative to the basis B if
for each £ € A(x) such that £ € Q and £ is obtainable from x through a single
pivot on B, we have min,cy, ¢(X, y) = ¢(X, ). Note that whenever a particular
basis B is not of relevance to us, we will simply call (%, y) as a WPGM.

Now, let (%, ¥) be a WPGM. Consider the extended simplex tableau (in Tucker
form) corresponding to the extreme point solution . Identify the p (i.e., n minus
the number of rows in E of Eq. (1.1)) edges incident at X corresponding to the p
nonbasic variables x;, j€J, where JC N denotes the set of indices of the
nonbasic variables, all of which are currently key variables. Note that X, is
contained in the cone defined by these edges with vertex at X. Let e/ be the
extended column of the nonbasic variable j € J with components representing
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the negative rate of change of the n key x-variables with x;. Denote the half-lines
emanating from X along the above p edges by

U={x:x=%x—-eA, A,;=0} forjel. (4.3)
Let a be the CBOFV and let

Ji={i€J: min,cy, #(x,y)<a} for some x €€ (4.4)
and let

hL=J-1. 4.5)
Finally, let

X; = supremum{A;: ¢(X—e'A,y)=a forall ye Yy} forjeJ, (4.6)

)2\,- = supremum{A;: ¢(X + e'A;, y) = a for some y € Y} forj€J,

(4.7)
and set
_ A ifjed,
A= 2 (4.8)
_Ai if ] (S .]2.

Before proceeding, based on the above notation, let us explain the conceptual
idea behind the cutting plane generation. Given a WPGM (X, y) and the CBOFV
a, we consider the polyhedral cone with vertex at ¥ and edges {/, j € J. We then
move a distance X,- along each of these edges until we intersect a facet of Yy(a).
This is so because from Eq. (4.6) and the definition of Yy(«a),

X,- = supremum{A;: (X — e'A;) & Yo(a)} forje ). 4.9)

If A, is finite and non-zero, then we continue with the cut generation procedure.
However, if Xj=0 for some j, then we abort the polar cut and develop a
disjunctive cut at X by using the rows of the basic, positive-valued key variables
in the current tableau as Eqgs. (3.7), with Sy = {#}. Observe that, by virtue of
(X, ¥) being a WPGM, this situation can arise only if the edge under con-
sideration leads to a degenerate pivot, the objective value of (X, ¥) is equal to «
and ' N Yo(a) = %. Empirical results indicate that this situation rarely arises.

Now, if Xj = for any jE€J, ie., if {/C Yy(a), then we have jE€J, and we
consider the negative extension of ¢/ from ¥. We move as far as we can (A;)
along this negative extension, so long as we still lie in at least one half space
H}(x) defining Yi(a) (Eq. (4.2)). Theorem 4.1 below establishes that if any A; =0
for j € J,, then we may terminate with the current best solution as optimal. In
this manner, provided A; >0, j € J, we identify p distinct points of intersection.
Since in terms of the current nonbasic variables, the polytope Xj is imbedded in
R?, these p intersection points define a unique hyperplane in R? as

Z (x,//f,) =1.
i€J
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Theorem 4.1 below either verifies optimality or specifies a valid cut which
deletes the point X but no point £ such that min,ey, ¢(X, y) < a.

Theorem 4.1. Let Q be the region feasible to the s cuts generated thus far, let « be
the CBOFV, and let (X, V) be a WPGM. Further, assume that in Eq. (4.6), X; >0
foreach je J.

(a) If J, ={0}, then a feasible solution yielding the objective function value « is
optimal.

(b) If J, # (@}, then A;# 0 for each j € J.

(c) If J, #10}, then a valid cut is given by:

> (xia)=1 (4.10)
jel
where x;, j € J are the nonbasic variables.

Proof. Under the hypothesis Xj >0 for each j€ J, J,={8} clearly implies that
X C Yy(a). This proves part (a).

Hence, suppose that J, # {@} and consider any j € J,, which implies that X; =,
Since J, # {@}, there exists a g € J, and a point (x%, y4), x? € {% and y? € Y, such
that

d(x4yH=a and (X yY)<a forsome X€ 4.11)

Observe that ¢(X, y4) = min,ey, ¢(X, y) = a. Then for points of the form yx?+
(1 —y)x, we get from Eq. (4.11),

d(yx+ (1 —y)x, y4) = yo(x, y) +(1 — y)p(X, y) = a.

In other words, &(x,y?)=a for all x€&9 contradicting (4.11). Hence
$(%, y*)> a and by continuity of ¢ for a fixed y = y% we conclude that )f,- >0
for j € J,. From (4.8) then, we have /\_,;é 0.

Finally, part (c) follows from Glover [7, Theorem 2] by noting that the only
use Glover makes of his assumption, in our terminology, that X € interior Yo(a),
is to ensure /\7-# 0 for any j € J. This completes the proof.

In order to complete our presentation, we need to show:

(i) How to find a WPGM from an extreme point x° of X, feasible to Q.

(i) How to solve for the parameters /fj,jEJ of Eq. (4.8). These aspects are
considered in the next two subsections.

4.1. Determination of a WPGM

Suppose Q C R" is the region feasible to the s cuts generated thus far and
further, suppose that x° is the extreme point of X, detected extreme face of X,
relate to Q. Recall that our need for finding a WPGM was to ensure that )f}- >0
for at least those j € J which correspond to non-degenerate pivots in the current




Hanif D. Sherali and C.M. Shetty| A finitely convergent algorithm 23

simplex tableau. Besides, this forms an improvement routine for detecting better
quality solutions. Accordingly, given a simplex tableau representing an extreme
point x* of X, let A(x‘) denote the set of extreme points of X, which are
accessible from x° through single, non-degenerate pivots on this tableau.
Observe that if x* € Q, the set A(x*) N Q is easily obtained from the current
tableau as points resulting from single non-degenerate pivots which involve the
exchange of a key-variable for another key-variable. Hence, consider the fol-
lowing procedure.

Initialization
Let k=0, and go to Step 1.
Step 1: Let £ € A(x*) N Q be such that
min ¢ (%, y) < min ¢(x*, y) = d(x*, y*).
YEY) YEYp
If no such point exists, (x*, y*) is a WPGM. Otherwise, go to Step 2.
Step 2: Let £ =x**', increment k by 1 and return to Step 1.

The algorithm clearly yields a WPGM. Moreover, since the cardinality of
A(x®) is finite for any basic representation of an extreme point x° of X, and
since every pass through Step 2 results in a strict decrease in the objective
function value, the procedure is finitely convergent. Note that for the first
iteratjion when s =0, it is obviously advantageous, but not necessary, to let x° be
a local star minimum. A local star minimum can be located by solving the
problems min,cy, ¢(x, y) and min,ey, ¢(x, y) iteratively as, for example, in [22].

4.2. Determination of the parameters A;, j € J of Eq. (4.8)

To specify a valid cut through (4.6), (4.7) and (4.8) we need to compute A; or j\,-
for each j&J. These quantities may be determined by solving the following
parametric problems.

Problem PAR 1.

A; = supremum{A: ¢;(A) = a} (4.12)
where
¥;(A) = min ¢(X — €A, y). (4.13)
YEYy

Problem PAR 2.

f\i = supremum{A: ;(A) = a}

() = max ¢(X + €A, y).

yEY)
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It is easy to show that y;(-) and —(1;,-(-) of Egs. (4.13), (4.15) are piecewise
linear and concave with breakpoints occurring whenever the extreme point
solution optimizing (*) (or (/;,-(~)) changes. We will now describe an efficient
modification of Newton’s procedure to solve for A; and A;. The effectiveness of
this scheme over the Bolzano search procedure was demonstrated for a special
case of the bilinear program in [19], and is again evident from the computational
experience of Section 7.

Consider the system of Eqs. (4.12), (4.13) for obtaining Xi. Given an extreme
point ¥’ of Yy, the slope of the corresponding linear portion of ;(:) is easily
obtained through Eq. (4.13) as

m; = —(c'el + (&) Cy"). (4.16)

Hence, we may proceed according to the following algorithm. Fig. 4.1 below
illustrates a typical sequence of steps taken by this procedure.

Initialization

Set k=1 and A'=L, a large number. Determine (L) and let y' be a
corresponding minimizing extreme point solution. If ;(L)= a, then j € J, and

1bj(?\)

(0,a)

Fig. 4.1
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we need to solve the Eqs. (4.14), (4.15) for X, Else, go to Step 1.
Step 1: Determine the slope m, through Eq. (4.16) corresponding to y*, and
compute

A = (@ — G5 + md k) my (4.17)

If A%¥*!' =0, abort the present cut generation scheme and develop a disjunctive
cut at X as in Section 3. Otherwise, proceed to Step 2.

Step 2. Determine ¢;(A**") and a corresponding minimizing extreme point
solution y**'. If ;(A*"") = a, terminate with X; = A¥*". Else, ¢;(A*"")< a and
incrementing k to k + 1, return to Step 1.

Finite convergence of the above procedure is guaranteed by the fact that each
pass through Steps 1 and 2 leads to a different linear part of ;(-) with a strictly
smaller slope and the number of such linear portions are finite since Y, is a
polytope. .

The method for solving Eqgs. (4.14), (4.15) for X,-, j € J, is identical to the above
procedure except that if d—l,-(L)Za in the Initialization step, then we set ;\, =
and also, Eq. (4.17) in Step 1 is replaced by

AR = (a = gH(A*) — ma ¥ (= my). (4.18)

Finally in Step 2, ¢;(A**") << & should be replaced by ;(A**") > a.

Before proceeding, we address briefly the special case X, = Y, which arises,
for example, when minimizing a concave quadratic function subject to linear
constraints [14]. In this situation, at Step 2 of the above scheme, one may check
the objective value of the solution (y**!, y**"). If this solution is better than the
current best, then one may update «, and the cut generation may be re-initialized
at the new solution. As shown by Balas and Burdet [4], when a cut is finally
obtained in this manner, the corresponding intersection points are defined with
respect to, what they call, a reverse outer polar, and leads to a deepening of the
cuts. Konno [13, 14] has also demonstrated how his cuts may be strengthened in
a similar context.

We will now state a schema for solving Problem BLP.

5. A finitely convergent algorithm for Problem BLP

Initialization

Set Q=R", o = .

Step 1: Determine an extreme face of X, relative to Q. If none exists (i.e., all
key variables are basic), then terminate with the current best solution as optimal.
On the other hand, if this extreme face is not an extreme point of Xj, go to Step
2. Otherwise, go to Step 3.

Step 2: Generate a face cut of the form in Eq. (3.7). If B¥ = {@}, terminate with
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the current best solution as optimal. Otherwise, augment the set Q with this cut
and return to Step 1.

Step 3: Starting from this extreme point of X, determine a WPGM and update
the current best solution and its value, if necessary, using this WPGM. Solve the
parametric Problems PARI and PAR2 at the WPGM. If X,- =0 for any j € J, then
go to Step 2. If either J, ={B} or if J, # {#} and 5«,- =0 for some j € J,, terminate
with the current best solution as optimal. Otherwise, generate a negative edge
extension polar cut (4.10). Augment the set Q with this cut and return to Step 1.

Observe that Steps 2 and 3 are finite procedures and they delete an extreme
face of X, determined in Step 1. Since an extreme face of X relative to any Q is
also a face of X, and since the faces of X are finite, the proposed scheme is
finitely convergent.

Before concluding this section, we point out that in some cases (for example,
see [19]) it is possible to directly locate an extreme point of X, feasible to Q due
to some special structure in the problem. Such a possibility must be first sought
out in any application as it obviously leads to significant simplifications.

6. Illustrative example

Below, we illustrate our procedure by solving an example both, graphically by
explicitly using the polar sets, and also by the scheme prescribed by the
proposed algorithm. The example also illustrates how the cutting planes are
deeper than those of Vaish and Shetty [22].

Hence, consider the problem

minimize  @(x, y) = (2x, — x2)y, + (2x2 — 3x))y, + 8y, — 6y,),

subject to

x: —2x,+ 5x,<=18

—3x,— 2x;=—11 y: — i+ yp=-—1
_ - xp=-1 _ =3y, +4y,=-1
X € Xo= 3x,+ 2x,<62 |’ yE Y= 4y, =5y, =3
2X|+]2X25584 y|,y2..>.'0
X, X320

Note that here, although the key-variables are x,, x, and the slack variables in
the constraints of Xy, for brevity we will simply write x as (x,, x;)'. Accordingly,
c=1(0,0),d=(8,-6) and

c-[1 73}
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Let us start with the point x' = (1, 4)" Solving

min ¢(x', y)=min [6y, - y,]
YEY) yEYy
we obtain a value of 11 at y'=(2, 1)". Testing the adjacent extreme points, it is
easily verified that this represents a WPGM. Hence, currently, a = 11.
We will now generate a cutting plane from the point (1, 4). Eq. (4.2) defines
Yo(11) through the constraints

x; =1, x,=z—-1 and —x;+3x.=-15.

Fig. 6.1 shows the polar set superimposed on X, and exhibits the intersection
points P =(¥,-1)' and W =(—129, -48)" for the polar cut. (Note that W is
obtained through a negative edge extension.) The cut defined by these inter-
section points is

141x, — 400x, = 1011. 6.1

Observe that Vaish and Shetty [22] would have obtained intersection points at
P =(4,-1) and at infinity along the ray through (6, 6)'. Hence, their cut would
have been

6x,— 15x, = 41, (6.2)
X2
A
¥, (11)
4 -
n’/
:]. Vaish and Shetty cut
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Note that (6.1), unlike (6.2), deletes the extreme point (18,4)' of X,.

We will now demonstrate how to generate the cutting plane without the
explicit use of the polar set, i.e., without having to enumerate the extreme points
of Y.

At the extreme point (1,4)" the current tableau has the basis and its inverse as
given below, where xs, ..., X; are the slack variables in the constraints of Xj.

(xl X2 X5 X¢ X7
2 s & -
3 2 ° E
B = , B '= —
0 -1 s~
3 2 ] 0 1 | 1
L 2 12 J -5 0B

The nonbasic variables for which we have to compute A, are X; and x,. For the
sake of illustration, we will determine A, for x4 since this involves a negative
edge extension and let the reader verify that A; for xs is ¥ (i.e., {3} € J)).
A4 for x: From B™',

d(xX—e*A, y)=(6+HA)y — (1 +5A)y..
For A'=1L,

Yo(L) = n;ip[(f) +8L)y —(1+ 8Lyl =(37+ L) > a

y 0

and hence, {4} € /.
Now,
d(x+eA, y)=(6-FH)y —(1-HKA)y,

along the negative-edge extension. For A'= L,
(L) = max((6 ~{L)y1 = (1 =KLyl = 37 - L) < a
y 0

at y'=(7,5)"
Step 1: m;=—€e\Cy =15 and A2=(11-37+ %L —&L)/(—%) = 494,
Step 2; $4(494) = max,cy,[~202y, + 285y,] = 11 = & at y> = (7, 5).
Thus Ay =494 or Ay = —494.
The cut is hence x3/(%) — x,/(494) > 1 or in terms of x,, x5,

141x, —400x, = 1011 as in Eq. (6.1).

Note that the polar cut of Vaish and Shetty [22] would have found A; =%, A, =
and hence would have been

x3/(95/3)=1 or 6x,—15x,=41
as in Eq. (6.2).
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It is interesting to note that the face cut available at the extreme point (1, 4) of
X, is X3+ 5xs= 1 or 5x;— 3x, = 12 which is uniformly dominated by the cuts of
both Egs. (6.1) and (6.2).

Now, X, N Q is as shown in Fig. 6.1. The extreme face finding routine easily
leads to the extreme point x°= (20, 1)' of X, which also represents a WPGM of
value 9 along with ¥ = (7, 5). One may verify that the polar cut generated from
this point with « =9 exhausts the feasible region. The current best solution
x,=20,x,=1, yy=7, y.=35 is hence optimal.

7. Computational experience

The proposed algorithmic scheme was coded in FORTRAN 1v. Table 7.1 gives
our computational experience on the CDC CYBER 70 Model 74-28/CDC 6400
computer using test problems in the literature. The first four problems are the
illustrative examples taken from the references indicated in the first column.
Problems 5 through 8 are the special structured test problems of Konno [14].
These problems have as many local minima equal to global minima as the
number of constraints. Also, the sets X, and Y, are identical. Konno’s method
[13, 14] takes advantage of this structure and as discussed earlier, yields deeper
cuts and leads to computational savings. Since our procedure was not speci-
alized to handle such situations, we did not attempt to solve larger sized
problems of this class. Finally, problems 9, 10 and 11 are the test problems of
Zwart [25]. As observed in [26], these problems are of medium level of difficulty.
These problems also have X, = Y,, and again, no advantage was taken of this
structure. The reader may note that, in addition to the proposed scheme of
generating both polar and disjunctive cuts, we have attempted to use only polar
cuts whenever possible, irrespective of whether the extreme face obtained at
any iteration is an extreme point of Xj are not. Computational results presented
support the contention that polar cuts are generally deeper than our disjunctive
cuts if the former can be used. Thus the disjunctive cuts serve the purpose of
ensuring that a cut can always be generated and that the procedure is finite.

Finally, we have also recorded the average number of iterations required for
the solution of the parametric Problems PARI and PAR2. Our experience
clearly indicates the advantage of using the proposed search technique over, say,

the Balzano bisection search procedure.
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ON THE GENERATION OF DEEP DISJUNCTIVE CUTTING PLANES*

Hanif D. Sherali and C. M. Shetty

School of Industrial & Systems Engineering
Georgia Institute of Technology
Atlanta, Georgia

ABSTRACT

In this paper we address the question of deriving deep culs for nonconvex
disjunctive programs. These problems include logical constraints which restrict
the variables to at least one of a finite number of constraint sets. Based on the
works of Balas, Glover, and Jeroslow, we cxamine the sel of valid inequalities
or cuts which one may derive in this context, and defining reasonable criteria
1o measure depth of a cut we demonstraic how onc may oblain the "deepest”
cul. The analysis covers the case where each constraint set in the logical stale-
ment has only onc consiraint and is alse extended lor the case where each of
these constraint sels may have more than one constraint.

1. INTRODUCTION

A Disjunctive Program is an optimization problem where the constraints represent logical
conditions. In this study we are concerned with such conditions expressed as linear constraints.
Several well-known problems can be posed as disjunctive programs, including the zero-one
integer programs. The logical conditions may include conjunctive statements, disjunctive state-
ments, negation and implication as discussed in detail by Balas [1,2]. However, an implication
can be restated as a disjunction, and conjunctions and negations lead to a polyhedral constraint
set. Thus, this study deals with the harder problem involving disjunctive restrictions which are
essentially nonconvex problems.

It is interesting to note that disjunctive programming provides a powerful unifying theory
for cutting plane methodologies. The approach taken by Balas [2] and Jeroslow [14] is to
characterize all valid cutting planes for disjunctive programs. As such, it naturally leads to a
statement which subsumes prior efforts at presenting an unified theory using convex sets, polar
sets and level sets of gauge functions [1,2,5,6,8,13,14]. On the other hand, the approach taken
by Glover [10] is to characterize all valid cutting planes through relaxations of the original dis-
junctive program. Constraints are added sequentially, and when all the constraints are con-
sidered Glover’s, result is equivalent to that of Balas and Jeroslow. Glover’s approach is a con-
structive procedure for generating valid cuts, and may prove useful algorithmically.

The principal thrust of the methodologies of disjunctive programming is the generation of
cutting planes based on the linear logical disjunctive conditions in order to solve the
corresponding nonconvex problem. Such methods have been discussed severally by Balas
[1,2,31, Glover [8], Glover, Klingman and Stutz [11], Jeroslow [14] and briefly by Owen [17].
But the most fundamental and important result of disjunctive programming has been stated by

*This paper is based upon work supported by the National Science Foundation under Grant No. ENG-77-23683.
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Balas [1,2] and Jeroslow [14], and in a different context by Glover [10]. It unifies and sub-
sumes several earlier statements made by other authors and is restated below. This result not
only provides a basis for unifying cutting plane theory, but also provides a different perspective
for examining this theory. In order to state this result, we will need to use the following nota-
tion and terminology.

Consider the linear inequality systems S,, # € H given by
(1.D S,=1{x:4'x 2 b", x 20}, heH

where H is an appropriate index set. We may state a disjunction in terms of the sets S,,, h€ H

as a condition which asserts that a feasible point must satisfy at least one of the constraint S,

# € H Notationally, we imply by such a disjunction, the restriction XE/UHS”' Based on this
h &

disjunction, an inequality 7'x = , will be considered a valid inequality or a valid disjunctive cut
if it is satisfied for each xElgHS,,. (The superscript ¢ will throughout be taken to denote the
1

transpose operation). Finally, for a set of vectors {v: h€H}, where v'= (v{, ..., v}) for

each h € H, we will denote by lsu}pi (v"), the pointwise supremum v= (v, ..., v,) of the vec-
h&

' _ I _
tors v”, h € H, such that v, = EEB{VJI} forj=1,..., n

Before proceeding, we note that a condition which asserts that a feasible point must satisfy
at least p of some ¢ sets, p < g, may be easily transformed into the above disjunctive statement
by letting each S, denote the conjunction of the ¢ original sets taken p at a time. Thus, H =

I ..., l[qJ] in this case. Now consider that following result.

THEOREM 1: (Basic Disjunctive Cut Principle) — Balas [1,2], Glover [10], Jeroslow
[14]

Suppose that we are given the linear inequality systems S, # € H of Equation (1.1), where
|H| may or may not be finite. Further, suppose that a feasible point must satisfy at least one
of these systems. Then, for any choice of nonnegative vectors A" h€ H, the inequality

(1.2) [sug (AN'4" x = inf A"b*
he WEH

is a valid disjunctive cut. Furthermore, if every system S, # € H is consistent, and if |H| <
n

oo, then for any valid inequality 3. 7,x; > o, there exist nonnegative vectors A", 4 € H such
=
that 7y < !igﬁl (M's" and for j= 1, ..., n, the jth component of sup (\")'4" does not
T

exceed ;.

The forward part of the above theorem was originally proved by Balas [2] and the con-
verse part by Jeroslow [14]. This theorem has also been independently proved by Glover [10]
in a somewhat different setting. The theorem merely states that given a disjunction x € /Le)H Si,

i

one may generate a valid cut (1.2) by specifying any nonnegative values for the vectors A"
h€H. The versatility of the latter choice is apparent from the converse which asserts that so
long as we can identify and delete any inconsistznt systems, S;, # € H, then given any valid cut
m'x = m,, we may generate a cut of the type (1.2) by suitably selecting values for the parame-
ters A", h € H such that for any x belonging to the nonnegative orthant of R”", if (1.2) holds
then we must have w'x = . In other words, we can make a cut of the type (1.2) uniformly
dominate any given valid inequality or cut. Thus, any valid inequality is either a special case of
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(1.2) or may be strictly dominated by a cut of type (1.2). In this connection, we draw the
reader’s attention to the work of Balas [1] in which several convexity/intersection cuts dis-
cussed in the literature are recovered from the fundamental disjunctive cut. Note that since the
inequality (1.2) defines a closed convex set, then for it to be valid, it must necessarily contain
the polyhedral set

(1.3) S = convex hull of U S,.
heH

Hence, one may deduce that a desirable deep cut would be a facet of S, or at least would sup-
port it. Indeed, Balas [3] has shown how one may generate with some difficulty cuts which
contain as a subset, the facets of S when |H| < oo. Our approach to developing deep disjunc-
tive cuts will bear directly on Theorem 1. Specifically, we will be indicating how one may
specify values for parameters A" to provide supports of S, and will discuss some specific criteria
for choosing among supports. We will be devoting our attention to the following two disjunc-
tions titled DC1 and DC2. We remark that most disjunctive statements can be cast in the for-
mat of DC2. Disjunction DC1 is a special case of disjunction DC2, and is discussed first
because it facilitates our presentation.

DCI:

Suppose that each systems S, is comprised of a single linear inequality, that is, let

n n
(1.4) Sp=1x: 2, af;x; = bf, x = Oy for heH = {1, ..., hl
=

where we assume that # = |H| < o and that each inequality in S),, h€ His stated with the ori-
gin as the current point at which the disjunctive cut is being generated. Then, the disjunctive
statement DCI is that at least one of the sets S, #€ H must be satisfied. Since the current
point (origin) does not satisfy this disjunction, we must have b7 > 0 for each #€ H. Further,
we will assume, without loss of generality, that for each #h€H, ai’j > 0 for some
Jj € {1, ..., n} orelse, S, is inconsistent and we may disregard it.

DC2:
Suppose each system S, is comprised of a set of linear inequalities, that is, let

i n
(1.5) Sy =1x:Y al'x; = b/ for each i€Q,, x 2 0O} for heH = {1, ..., h}
j=1

where Q,, h€ H are appropriate constraint index sets. Again, we assume that # = |H| < oo
and that the representation in (1.5) is with respect to the current point as the origin. Then, the
disjunctive statement DC2 is that at least one of the sets S,, #€H must be satisfied. Although
it is not necessary here for b/ > 0 for all i€ Q, one may still state a valid disjunction by delet-
ing all constraints with b/ < 0, i€Q, from each set S,, #€H. Clearly a valid cut for the
relaxed constraint set is valid for the original constraint set. We will thus obtain a cut which
possibly is not as strong as may be derived from the original constraints. To aid in our develop-
ment, we will therefore assume henceforth that ! > 0, i€Q,, h€H.

Before proceeding with our analysis, let us briefly comment on the need for deep cuts.
Although intuitively desirable, it is not always necessary to seek a deepest cut. For example, if
one is using cutting planes to implicitly search a feasible region of discrete points, then all cuts
which delete the same subset of this discrete region may be equally attractive irrespective of
their depth relative to the convex hull of this discrete region. Such a situation arises, for exam-
ple, in the work of Majthay and Whinston [16]. On the other hand, if one is confronted with
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the problem of iteratively exhausting a feasible region which is not finite, as in [20] for exam-
ple, then indeed deep cuts are meaningful and desirable.

2. DEFINING SUITABLE CRITERIA FOR EVALUATING THE DEPTH OF A CUT

In this section, we will lay the foundation for the concepts we propose to use in deriving
deep cuts. Specifically, we will explore the following two criteria for deriving a deep cut:

(i) Maximize the euclidean distance between the origin and the nonnegative region
feasible to the cutting plane '

(i) Maximize the rectilinear distance between the origin and the nonnegative region
feasible to the cutting plane.

Let us briefly discuss the choice of these criteria. Referring to Figure 1(a) and (b), one
may observe that simply attempting to maximize the euclidean distance from the origin to the
cut can favor weaker over strictly stronger cuts. However, since one is only interested in the
subset of the nonnegative orthant feasible to the cuts, the choice of criterion (i) above avoids
such anamolies. Of course, as Figure 1(b) indicates, it is possible for this criterion to be unable
to recognize dominance, and treat two cuts as alternative optimal cuts even through one cut
dominates the other,

Let us now proceed to characterize the euclidean distance from the origin to the nonnega-
tive region feasible to a cut

(2.1 Y zx; > zo, where z > 0, z; > 0 for some j€{l, ..., n}.
j=1

The required distance is clearly given by

(2.2) 8, = minimum {||x||: ¥ z;x; 2 z,, x > 0O}
j=1

Consider the following result.

LEMMA 1: Let #, be defined by Equations (2.1) and (2.2). Then

(2.3) 9, = —2
Iyl
where,
(2.4) y==0n ..., ¥), ¥y,=maximum (0,2}, j=1, ..., n

z
PROOF: Note that the solution x* = I (‘)P y is feasible to the problem in (2.2) with
Y

z n [ii
Hx*[] - HyOH . Moreover, for any x feasible to (2.2), we have, z; < 21 zix; € 21 Y X <

J= J=

z
Iyl Tix!l, or that, x|l = ||y0|l . This completes the proof.

Now, let us consider the second criterion. The motivation for this criterion is similar to
that for the first criterion and moreover, as we shall see below, the use of this criterion has
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intuitive appeal. First of all, given a cut (2.1), let us characterize the rectilinear distance from
the origin to the nonnegative region feasible to this cut. This distance is given by

n n
(2.5) 9, = minimum {|x|: ¥ z,x; > zp, x > 0}, when |x| ¥ x;.
J=1 i=1

Consider the following result.

X3

Criterion values

i M

Criterion value

|
|

AN - X r/for either cut
|

v \( \/ ’- -

FiGURE 1. Recognition of dominance

LEMMA 2: Let 0, be defined by Equations (2.1) and (2.5). Then,

Z9 .
(2.6) 8, = — where z, = maximum z;.
Zy J=1,..,n
z
PROOF: Note that the solution x*= (0, ..., Z—O, ... 0), with the mth component
m

z
being non-zero, is feasible to the problem in (2.5) with |x*| = =~. Moreover, for any x feasi-
Zm

ble to (2.5), we have,

; n

N
3
-
i
(3]
3
-
I

This completes the proof.

Note from Equation (2.6) that the objective of maximizing @, is equivalent to finding a
cut which maximizes the smallest positive intercept made on any axis. Hence, the intuitive
appeal of this criterion.

3. DERIVING DEEP CUTS FOR DC1

It is very encouraging to note that for the disjunction DC1 we are able to derive a cut
which not only simultaneously satisfies both the criterion of Section 2, but which is also a facet
of the set S of Equation (1.3). This is a powerful statement since all valid inequalities are given
through (1.2) and none of these can strictly dominate a facet of S.
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We will find it more convenient to state our results if we normalize the linear inequalities
(1.4) by dividing through by their respective, positive, right-hand-sides. Hence, let us assume
without loss of generality that

il ~
3.D S, = [x: al,x, 21, x = 0’ for heH=1{1, ..., hl.
J=1

Then the application of Theorem 1 to the disjunction DCI yields valid cuts of the form:

n
3.2 ax Aatlx, > min (A]
(3.2 Z’llr/rxle;(l lal” X Z /;elfr}{ f
where A [', h € H are nonnegative scalars. Again, there is no loss of generality in assuming that
(3.3) Y Af=1Al20 hed={1, ..., h)

heH

since we will not allow all A{, h€ H to be zero. This is equivalent to normalizing (3.2) by
dividing through by Y, A{.
heH

Theorem 2 below derives two cuts of the type (3.2), both of which simultaneously
achieve the two criteria of the foregoing section. However, the second cut uniformly dominates
the first cut. In fact, no cut can strictly dominate the second cut since it is shown to be a facet
of S defined by (1.3).

THEOREM 2: Consider the disjunctive statement DC1 where S, is defined by (3.1) and is
assumed to be consistent for each # € H. Then the following results hold:

(a) Both the criteria of Section 2 are satisfied by letting A{' = A {" where
(3.4) AMT=1/h forhe€H
in inequality (3.2) to obtain the cut

n
* - _ / s
(3.5) Y ay;x; > 1, where ay; = max af;, forj=1, ..., n
=

(b) Further, defining

(3.6) y{ = minimum {a;/a{;} > 0, heH
j:a‘l’/>0 ’

and letting A{'= A{"", where

(3.7) MU =yl/ Y yr forh€H
pEH

in inequality (3.2), we obtain a cut of the form

(3.8)

-

e TS .
ai; x; > 1, where ay; = max al, yfforj=1, .., n
| i

which again satisfies both the criteria of Section 2.

(¢) The cut (3.8) uniformly dominates the cut (3.5); in fact,

(39) all'b < al‘/ ifal‘/ S 0 ’

j=1 ..., n
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(d) The cut (3.8) is a facet of the set S of Equation (1.3).
PROOF:

(a) Clearly, A\{'= 1/h, h€H leads to the cut (3.5) from (3.2). Now consider the
euclidean distance criterion of maximizing 6,(or 82) of Equation (2.3). For cut (3.5), the
value of 6?2 is given by

4
(3.10) ®5)= /21 ()2 > 0 where yj = max{0,a;;}, j=1, ..., n
iz
Now, for any choice A{", # € H,
N N
(3.11) 92 = [min()\{')lyz = f)/z ¥}, say,
heH J=1 j=1

where y, = max{O,rg’nEa!;( Miaf). If A= 0, then §, = 0 and noting (3.10), such a choice of

1
parameters A{, #€H is suboptimal. Hence, A7 > 0, whence (3.11) becomes 8. = 1/2
2 ' /=t

£/ . But since A\ {/A?) > 1 for each h € H, we get

A

b

! h h hd
y/A? = max]0, max|—|a?;} > maxl0, maxaf;l =y, .
s heH| NP 1 new v /

Thus 82 < (9,)? so that the first criterion is satisfied.

Now consider the maximization of 8, of Equation (2.5), or equivalently Equation (2.6).
For the choice (3.4), the value of 8, is given by

(3.12) 0= —L _ >0,

maxay;
J

Now, for any choice A{, # € H, from Equations (2.6), (3.2) we get

8, = [minA{| /[ max max A{a};| = A7 /max max \{a{;, say.
heH j  heH j  heEH

As before, Af = 0 implies a value of @, inferior to #,". Thus, assume Af > 0. Then, 6, =
h
h

1/ max max }\—;}- al;. But (A {/x ) 2 1 for each # € H and in evaluating §,, we are interested

J heH

only in those j€{1, ..., n} for which a{; > 0 for some #€H. Thus, §, < 1/max max al; =
J )

#,, so that the second criterion is also satisfied. This proves part (a).

(b) and (c). First of all, let us consider the values taken by y{, h€ H Note from the
assumption of consistency that y/!, #€ H are well defined. From (3.5), (3.6), we must have
yi > 1 for each #€ H. Moreover, if we define from (3.5)

(3.13) H*={(heH: al, = aj, > 0 for some k€{1, ..., n})
then clearly H*# (¢} and for # € H*, Equation (3.6) implies y{ < 1. Thus,
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L= 1 for hEH*
(3.14) YU |> 1 for hg H*
Hence,
(3.15) minyf{=1

heH
or that, using (3.7) in (3.2) yields a cut of the type (3.8), where,
(3.16) a;;=max af;y/, j=1, ..., n
heH

J

Now, let us establish relationship (3.9). Note from (3.5) that if a;; < 0, then af, < 0
for each /€ H and hence, using (3.14), (3.16), we get that (3.9) holds. Next, consider a;; > 0

for some j€{1, ..., n}. From (3.13), (3.14), (3.16), we get
(3.17) af_,-'=max{x:1€a;!(a{’,, max af; vy
a{'/ >0

where we have not considered # ¢ H* with a; < 0 since a;; > 0. But for K¢ H* with a{; > 0,
we get from (3.5), (3.6)

max ai, max ay;
. réEH reH ’
(3.18) af;yl'=af; | min — |l < af, —— | = maxaj;
kial,>0 Ak ay; reH

Using (3.18) in (3.17) yields a;; = a,;, which establishes (3.9).

Finally, we show that (3.8) satisfies both the criteria of Section 2. This part follows
immediately from (3.9) by noting that the cut (3.5) yields 8, = 8, of (3.10) and 8, = 8] of
(3.12). This completes the proofs of parts (b) and (¢).

(d) Note that since (3.8) is valid, any x €S satisfies (3.8). Hence, in order to show that
(3.8) defines a facet of S, it is sufficient to identify n affinely independent points of S which
satisfy (3.8) as an equality, since clearly, dim S = n. Define

(319) J|= {je{l, Ve n}: al./.> O} and let J2= {1, ey n}— Jl'
Consider any p€Jy, and let

(3.20) e =0 ... —2— . 0 peJ

P ar;
have the non-zero term in the p" position. Now, since p€J,, (3.9) yields
- e ho_ b
Ay, = 4a;,, = Tea;,( ay, = ap, say,
Hence, e,,ES,,,_ and so, ¢,€5 and moreover, e, satisfies (3.8) as an equality. Thus, e,, p€J,
qualify as |/,| of the » affinely independent points we are seeking.

Now consider a g €./,. Let us show that there exists an S,,q satisfying

h h L L]
yi1?a\; = a;, for some p€J,
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and
h h P
(321) ‘qualz= alq.
. . h, h . )
From Equation (3.16), we get a, = Tea,zf a{’q yi= agv’, say. Then for this h,€ H, Equation
., h
1

. h . ., h , bk . v
(3.6) yields y,? = minimum {a,/a\%} = a,,/a\%, say. Or, using (3.9), y,* ay} = a;, = a,, >
h

/:a“f)()

0. Thus (3.21) holds. For convenience, let us rewrite the set S,,q below as

h h h
(3.22) S, = {xrafx, +aix,+ Y aix, 21, x 2 0.
iZnq

Now, consider the direction

© ..., ——, ——=, ..., 0 ifa <0

(3.23) Q=10 ....0,.... A,...,0 if ajy=0

where A > 0. Let us show that d, is a direction for S . Clearly, if ay, = 0, then from (3.21)

afg = 0 and thus (3.22) establishes (3.23). Further, if a;; < 0 then one may easily verify
from (3.21), (3.22), (3.23) that

R B, we R /
e, =1, ..., yll"/al,, , ..., 0) € S,,q and é, + S[yll"dq] € S,,q foreachd 2 0
where €, has the non-zero term at position p. Thus, 4, is a direction for S,,q. It can be easily
shown that this implies d, is a direction for S. Since e, = o, ..., —1_—_, ..., 0) of Equation
a],,

(3.20) belongs to S, then so does (e, + d,). But (e, + d,) clearly satisfies (3.8) as an equality.
Hence, we have identified » points of .S, which satisfy the cut (3.8) as an equality, of the type

e,= (0, ..., —1.; ..., 0) forpeJ,

4
al,,

(3.24) e, = d, + e, for some p€J,, for each g€ J,

where d, is given by (3.23). Since these n points are clearly affinely independent, this com-
pletes the proof.

It is interesting to note that the cut (3.5) has been derived by Balas [2] and by Glover [9,
Theorem 1]. Further, the cut (3.8) is precisely the strengthened negative edge extension cut of
Glover [9, Theorem 2]. The effect of replacing A{” defined in (3.4) by A{'"" defined in (3.7) is
equivalent to the translation of certain hyperplanes in Glover’s theorem. We have hence
shown through Theorem 2 how the latter cut may be derived in the context of disjunctive pro-
gramming, and be shown to be a facet of the convex hull of feasible points. Further, both
(3.5) and (3.8) have been shown to be alternative optima to the two criteria of Section 2.

In generalizing this to disjunction DC2, we find that such an ideal situation no longer
exists. Nevertheless, we are able to obtain some useful results. But before proceeding to DC2,
let us illustrate the above concepts through an example.
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EXAMPLE: Let H = {1,2}, n = 3 and let DC1 be formulated through the sets

X X
S]={x:x|+2x2—4x3>1,x>0},S2={x:-2—]+—32-—2x3>1,x>0}.

The cut (3.5), i.e., Zay,;x; 2 1, is x, + 2x, — 2x; > 1. From (3.6),
= mindL 21 _ ) min i L 20
Y1 mm[l, 2] 1 and y{ = min 2’ 13 = 2.

Thus, through (3.7), or more directly, from (3.16), the cut (3.8), ie., Zaj x; = 1 is
X1+ 2x; —4x; 2 1. This cut strictly dominates the cut (3.5) in this example, though both
have the same values 1/+/S and 1/2 respectively for 6. and @, of Equations (2.2) and (2.5).

4. DERIVING DEEP CUTS FOR DC2

To begin with, let us make the following interesting observation. Suppose that for con-
venience, we assume without loss of generality as before, that 5" = 1, i€ Q,, h€ H in Equation
(1.4). Thus, for each # € H, we have the constraint set

4.1 S,,=[ Y alix; 21, i€Q,, x = 0f.
=1

Now for each /4 € H, let us multiply the constraints of S, by corresponding scalars 8§/ > 0, i€ Q,
and add them up to obtain the surrogate constraint

4.2) 2‘ ) a,.ha,#;] x> ¥ 8/ heH

i=1]i€g, i€Q,

Further, assuming that not all 8/ are zero for i€ Q,, (4.2) may be re-written as

n 8’.h
(4.3) I Y |[———lallx; = 1. nen

=iieg, [ X 8}
PEQ/,

Finally, denoting 8/ /'y 3 by A/ for i€ Q,, h € H, we may write (4.3) as

Pth
(4.4) 1Y Aal|x; = 1for each he H
i=1|i€Q,
where,
(4.5) Y A=1foreach h€H, A/ 2 Ofori€Q,, heH.
i€Q,

Observe that by surrogating the constraints of (4.1) using parameters A/, i€ Q,, h € H satisfying
(4.5), we have essentially represented DC2 as DC1 through (4.4). In other words, since x€ S,
implies x satisfies (4.4) for each A€ H, then given A/, i€ Q,, h€ H, DC2 implies that at least
one of (4.4) must be satisfied. Now, whereas Theorem 1 would directly employ (4.2) to derive
a cut, since we have normalized (4.2) to obtain (4.4), we know from the previous section that
the optimal strategy is to derive a cut (3.8) using inequalities (4.4).

Now let us consider in turn the two criteria of Section 2.
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4.1. Euclidean Distance-Based Criterion

Consider any selection of values for the parameters A/, i€ Q,, h€ H satisfying (4.5) and
let the corresponding disjunction DC1 derived from DC2 be that at least one of (4.4) must
hold. Then, Theorem 2 tells us through Equations (3.5), (3.10) that the euclidean distance cri-
terion value for the resulting cut (3.8) is

(4.6) 0,(\) = 1/.‘ / y yi
J=1

where,

4.7) y=max{0,z}, j=1,..., n

and

(4.8) z = max[ b A,-”a,-ﬁ], i=1L ..., n
) heH ith

Thus, the criterion of Section 2 seeks to
(4.9) maximize {9, (A\): A = (\ /") satisfies (4.5))

or equivalently, to

(4.10) minimize { ¥ y?: (4.5), (4.7), (4.8) are satisfied).

j=1

It may be easily verified that the problem of (4.10) may be written as

N

(4.11) PD,: minimize ), y/

J=1
(4.12) subject toy, = 3, A/'all for each h€ H foreach j=1, ..., n

i€Q,
(4.13) Y A= 1foreach heH

iEQ/r

(4.14) A2 0i€Q,, h€H
Note that we have deleted the constraints y; 2> 0, j= 1, ..., n since for any feasible A/,
i€Q,, h€ H, there exists a dominant solution with nonnegative y, = j = 1, ..., n. This relax-

ation is simply a matter of convenience in our solution strategy.

Before proposing a solution procedure for Problem PD,, let us make some pertinent
remarks. Note that Problem PD, has the purpose of generating parameters N/, i€Q,, h€H
which are to be used to obtain the surrogate constraints (4.4). Thereafter, the cut that we
derive for the disjunction DC2 is the cut (3.8) obtained from the statement that at least one of
(4.4) must hold. Hence, Problem PD, attempts to find values for A/, i€Q,, h€ H, such that
this resulting cut achieves the euclidean distance criterion.

Problem PD, is a convex quadratic program for which the Kuhn-Tucker conditions are
both necessary and sufficient. Several efficient simplex-based quadratic programming pro-
cedures are available to solve such a problem. However, these procedures require explicit han-
dling of the potentially large number of constraints in Problem PD,. On the other hand, the
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subgradient optimization procedure discussed below takes full advantage of the problem struc-
ture. We are first able to write out an almost complete solution to the Kuhn-Tucker system.
We will refer to this as a partial solution. In case we are unable to either actually construct a
complete solution or to assert that a feasible completion exists, then through the construction
procedure itself, we have a subgradient direction available. Moreover, this latter direction is
very likely to be a direction of ascent. We therefore propose to move in the negative of this
direction and if necessary, project back onto the feasible region. These iterative steps are now
repeated at this new point.

4.1.1 Kuhn-Tucker Systems for PD, and Its Implications
Letting uj’, h€H, j= 1, ..., ndenote the lagrangian multipliers for constraints (4.12),

t,, h€ H those for constraints (4.13), and w/", i€ Q,, h€ H those for constraints (4.14), we may
write the Kuhn-Tucker optimality conditions as

(4.15) > u'=2, j=1...,n
heH
N
(4.16) 2 ul'al + 1, — w/' = 0 for each i€ Q,, and for each h€H
=
(4.17) uj’l Y A'al - yj-] =0foreachj=1, ..., nand each h€H
i€Q,
(4.18) A'wlh=0fori€Q,, heH
(4.19) w! 20 i€Q,, h€H
(4.20) ut20j=1,..., n heH

Finally, Equations (4.12), (4.13), (4.14) must also hold. We will now consider the implications
of the above conditions. This will enable us to construct at least a partial solution to these con-
ditions, given particular values of A/, i€Q,, h€H. First of all, note that Equations 4.7,
(4.10) and (4.20) imply that

(4.21) y, 20 foreach j=1,..., n
(4.22) y;=max|0, ¥ \l'al, heH|forj=1,..., n
i€Q,

Now, having determined values for y;, j = 1, ..., n, let us define the sets

(@) ify, = 0
(4.23) H, = forj=1, ..., n

(heH:y,= 3 Alal > 0

i€Q,
Now, consider the determination of u/, h€H, j=1, ..., n. Clearly, Equations (4.15), (4.17)
and (4.20) along with the definition (4.23) imply that foreach j =1, ..., n
(4.24) ul'= 0 for h€ H/H; and that Y, uf= 2y, u/' 2 0 for each h€ H,.
hEH_,

Thus, for any j€{1, ..., n}, if H, is either empty or a singleton, the corresponding values for

uj’, h€ H are uniquely determined. Hence, we have a choice in selecting values for uj”, heH,
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only when |H;| > 2 for any j€{1, ..., n}. Next, muitiplying (4.16) by A/ and using (4.18),
we obtain

(4.25) ﬁ

J=1

2 h /1}

ieQ,

+ 14, 3 A'=0foreach h€H.
i€Q,

Using Equations (4.13), (4.17), this gives us

n
(4.26) t, =— 2, ul'y; for each h€ H.

j=1
Finally, Equations (4.16), (4.26) yield

n
(4.27) wi=3 ulla))— y;] for each i€ Q,, h€H.
J=1
Notice that once the variables u heH, j=1, ..., nare fixed to satisfy (4.24), all the vari-

ables are uniquely determined. We now show that if the variables w/, i€ Q,, h€ H so deter-
mined are nonnegative, we then have a Kuhn-Tucker solution. Since the objective function of
PD, is convex and the constraints are linear, this solution is also optimal.

LEMMA 2: Let a prlmal feasible set of A/, i€ Q,, h€ H be given. Determine values for
all variables y;, u/, t,, w/ using Equations (4.22) through (4.27), selecting an arbitrary solution
in the case descnbed in Equation (4.24) if |H,| > 2. If w! > 0, i€Q,, h€H, then A/, i€ Oy,
h € H solves Problem PD,.

PROOF: By construction Equations (4.12), through (4.17), and (4.20) clearly hold.
Thus, noting that in our problem the Kuhn-Tucker conditions are sufficient for optimality, all
we need to show is that if w= (w/) 2 0 then (4.18) holds. But from (4.17) and (4.27) for
any h € H, we have,

] 0

2 2 )\: l U?_yj]] 2 h 2 )\”a”—
i€Q, i€Q, /'=1 j=1 i€Q,

for each h€ H Thus, A/ > 0, w! > 0 i€Q,, h€ H imply that (4.18) holds and the proof is

complete.

The reader may note that in Section 4.1.4 we will propose another stronger sufficient con-
dition for a set of variables A/, i€ Q,, h€ H to be optimal. The development of this condition
is based on a subgradient optimization procedure discussed below.

4.1.2 Subgradient Optimization Scheme for Problem PD

For the purpose of this development, let us use (4.22) to rewrite Problem PD, as follows.
First of all define
(4.28) A ={A = (\/): constraints (4.13) and (4.14) are satisfied }
and let f: A — R be defined by

(4.29) f0) =3 lmaximum {o, T Aal, hGHH
J=1 i€Q,
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Then, Problem PD, may be written as
minimize {f(A\): X € A}.

Note that for each j =1, ..., n, &(\) = max {0, X, \/a/l, h€ H) is convex and nonnegative.
i€Q,

Thus, [g;(A)]? is convex and so f(\) = ) lg. (A\)]? is also convex.
"/ = /
=

The main thrust of the proposed algorithm is as follows. Having a solution A at any stage,
we will attempt to construct a solution to the Kuhn Tucker system using Equatlons (4.15)
through (4.20). If we obtain nonnegative values " for the corresponding variables w/, i€ Q,,
h€ H, then by Lemma 2 above, we terminate. Later in Section 4.1.7, we will also use another
sufficient condition to check for termination. If we obtain no indication of optimality, we con-
tinue. Theorem 3 below established that in any case, the vector w = w constitutes a subgra-
dient of f(-) at the current point . Following Poljak [18,19], we hence take a suitable step in
the negative subgradient direction and project back onto the feasible region A of Equation
(4.28). This completes one iteration. Before presenting Theorem 3, consider the following
definition.

DEFINITION 1: Let f: A — R be a convex function and let A € AC R™ Then¢ € R™
is a subgradient of f(-) at \ if

SO = fO) + € (=) foreach A € A.

THEOREM 3: Let A be a given point in A defined by (4.28) and let w be obtained from
Equations (4.22) through (4.27), with an arbitrary selection of a solution to (4.24).

Then, w is a subgradient of f(-) at X, where f:A — R is defined in Equation (4.29).

PROOF. Let y and ¥ be obtained through Equation (4.22) from A € A and X € A respec-
tively. Hence,

S

f()\)—zyj and f(\) =2

j= J=

Thus, from Definition 1, we need to show that

_ n n
(4.30) Y X owal-ah <Y -3 v
heH i€Q, j=1 s=1
Noting from Equations (4.17), (4.27) that 3, Y, w/x/ =0, we have,
heH i=Q,
S EWOAM-M=F T #N=F ¥ T urlal-y)
hEHi€Qh IIEHfEQh hEHiEQh J=1
n "
= | Mal- % Y @y XA
wew =1 |ico, heH =1 i€0,
Using (4.13) and (4.15), this yields
— i n
2 X w =\ = ) ﬂ;’h )Y Aaj| =2 ) _/2
HEH i€Q, WEH i=1 i€0, =1
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Combining this with (4.30), we need to show that

(4.31) )3 z Y el < X+ Y
j=1 7=1

JjE€H j= i€Q,

But Equations (4.15), (4.20), (4.22) imply that

DI iz aall < 3 zuhy,—zzy,y, A TN < Iyl + 17112

heH j=1 i€Q, heH j=

so that Equation (4.31) holds. This completes the proof.

Although, given X € A, any solution to Equations (4.22) through (4.27) will yield a
subgradient of /() at the current point A, we would like to generate, without expending much
effort, a subgradient which is hopefully a direction of ascent. Hence, this would accelerate the
cut generation process. Later in Section 4.1.6 we describe one such scheme to determine a
suitable subgradient direction. For the present moment, let us assume that we have generated
a subgradient w and have taken a suitable step size # in the direction —w as prescribed by the
subgradient optimization scheme of Held, Wolfe, and Crowder [12]. Let

(4.32) A=N—0w

be the new point thus obtained. To complete the iteration, we must now project X into A, that
is, we must determine a new A according to

(4.33) *rew = Py () = minimum {||]x — X|[: x € A},

The method of accomplishing this efficiently is presented in the next subsection.
4.1.3 Projection Scheme

For convenience, let us define the following linear manifold

(4.34) M, =\l i€Q,: Y A'=1|, heH
iEQ/:

and let M, be the intersection of M, with the nonnegative orthant, that is,

(4.35) M,={\i€Q;: 3 Ni=1,)/>0, i€Q,}).
i€Qy,
Note from Equation (4.28) that

(4.36) A=A—41 X ... X A—4|H|.

Now, given ;, we want to project it onto A, that is, determine A ,., from Equation (4.33).
Towards this end, for any vector & = (a;, i€ 1), where I is a suitable index set for the |/| com-
ponents of «, let P(a,]) denote the following problem:

(4.37) Pla,D): minimize 2 A —a)? YN, ; =2 0, iEli.

el ief

Then to determine X ,,,,, we need to find the solutions (A %,);, i€ Q, as projections onto M), of

= =h

()\,h, i€ Q,) through each of the |H| separable Problems P(\", Q,). Thus, henceforth in
th1s section, we will consider only one such hEH Theorem 4 below is the basis of a finitely
convergent iterative scheme to solve Problem P (X , 0,).
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THEOREM 4: Consider the solution of Problem P (8%, I,), where g*= (Bf, i€l,), with
|I.| = 1. Define

(4.38) pr=11-X B/‘/Ilkl
iEIk
and let
(4.39) BX=8%+ (o) Lk
where I, denotes a vector of |/;| elements, each equal to unity. Further, define
(4.40) L= i€l Bf > 0).
Finally, let 84*! defined below be a subvector of B,
(4.41) BHHT = (B, i€l )

where, BX*! = Bf i€l,.,. Now suppose that 8**! solves P(B¥*', I, ).
(a) If B* = 0, then B* solves P (8%, I,).

(b) If B> 0, then B solves P(8%, I,), where 8 has components given by

IB,«"“, if i€1,, for each i€ 1.
Bi=

(4.42) 0 otherwise

PROOF: For the sake of convenience, let RP(«,/) denote the problem obtained by
relaxing the nonnegativity restrictions in P (a,/). That is, let

RP(a,l): minimize % Y O —ae)h YN =1L
i€l : iel

First of all, note from Equations (4.38), (4.39) that 8* solves RP (8%, 1,) since B¥ is the projec-
tion of B* onto the linear manifold

(4.43) A=, i€l): X \=1

iEIA
which is the feasible region of RP(8%, 1,). Thus, 8% > 0 implies that 8 also solves P (8%, I,).
This proves part (a).

Next, suppose that 8¢ » 0. Observe that 8 is feasible to P(B*, I,) since from (4.42), we
getB = Oand ¥, B;= Y, B = 1asg*" solves P(B**', [;4)).

i€l i€l ¢

Now, consider any A\ = (x,, i€[,) feasible to P(8% I). Then, by the Pythagorem
Theorem, since B is the projection of 8% onto (4.43), we get
[ = B412 = [Ix — B¥[12 + [I8* — B*II%.
Hence, the optimal solution to P(B*, I,) is also “optimal to P(B8% I,). Now, suppose that we
can show that the optimal solution to Problem P (8%, I,) must satisfy
(4.44) A, =0 for €ly.,.

Then, noting (4.41), (4.42), and using the hypothesis that 8! solves P(8**!, I, }), we will
have established part (b). Hence, let us prove that (4.44) must hold. Towards this end, con-
sider the following Kuhn-Tucker equations for Problem P (8%, I,) with ¢ and w;, i€, as the
appropriate lagrangian multipliers:
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(4.46) Y A, =1,\; > 0foreach i€,

i€l
(4.47) (A, —BH +1r—w,=0and w, > 0 for each i€ ],
(4.48) A,w; = 0 for each i€],.

Now, since Y, B5 =1, we get from (4.45), (4.46) that

(€1,
t=Y w/lLl =0
i€l

But from (4.46), (4.47), and (4.48) we get for each i€/,
0 = w,'k,‘ = A,‘(A[‘ + ¢t — Elk)

which implies that for each i€ [,, we must have,
either A; = 0, whence from (4.46), w, = t — E," must be nonnegative
or )\} = E,—" — t, whence from (4.46), w, = 0.

In either case above, noting (4.45), if 8 < 0, that is, if i¢1,,,, we must have A, = 0. This
completes the proof.

=/
Using Theorem 4, one may easily validate the following procedure for finding )\,,’ew of
Equation (4.33), given A", This procedure has to be repeated separately for each K€ H.

Initialization
=
Set k =0,8%=x ’, Iy= 0. GotoStep L.
Step 1

_ Given 8%, I, determine p, and 8* from (4.38), (4.39). If B¥ > 0, then terminate with
A, having components given by
_ Brifi€l,
()‘:ew)i = 1
0 otherwise.
Otherwise, proceed to Step 2.
Step 2
Define /.., 84! as in Equations (4.40), (4.41), increment k by one and return to Step 1.

Note that this procedure is finitely convergent as it results in a strictly decreasing, finite

sequence |1, | satisfying || > 1 for each k, since 3, %= 1 for each k.
i€l

EXAMPLE: Suppose we want to project X = (—2,3,1,2) onto A C R*. Then the above
procedure yields the following results.

Initialization

k=0,8"=(=231,2, I,=1{1,2,3,4}.
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Step 1

__ M m_14 2 1
P1 TR l3’ 3’3]
Step 2

- - 1_ |4 1
k=2 L=1{2,4,8 [3,3l

Step 1

p2=—%, BrI=(1,0020

Thus, A, = (0,1,0,0).

4.1.4 A Second Sufficient Condition for Termination

_ As indicated earlier in Section 4.1.2, we will now derive a second sufficient condition on w
for A to solve PD,. For this purpose, consider the following lemma:

LEMMA 3: Let A € A be given and suppose we obtain w using Equations (4.22) through
(4.27). Let W solve the problem.

PR,: minimize % Y W= whr Y wi=0, wi < 0fori€J,| foreach h€H
I'EQ,I I'EQ,I

where,
(4.49) J,={i€Q,:\'=0}, heH.
Then, if w = 0, A solves Problem PD;.

PROOF. Since w = 0 solves PR,, h € H, we have for each h€ H,

(4.50) Y < Y - wh?
i€ Qh i€ Qh
for all w/, i€Q, satisfying ¥, w/'= 0, w' < 0 for i€J,. Given any A € A and given any
i€Q,
w > 0 define,

(4.51) wh= "= APD/u, i€Q,, heH
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Then, Y. w/= 0 for each h€ H and since A/ = 0 for i€J,, h€H, we get w!' < 0 for i€ J,,
i€Q,
h€ H. Thus, for any A € A, by substituting (4.51) into (4.50), we have,

(4.52) w2 Y @2 Y W= X'+ u®H? for each heH.
iEQh I'EQ,,

But Equation (4.52) implies that for each 7€ H, A" = A" solves the problem

minimize | ¥, /= A/ — w®)1: Y N=1, A > 0i€Q,| for each hE H.
i€Q, i€Q,

In other words, the projection P, (A — wu) of (\ — W) onto A is equal to X for any u = 0.

In view of Poljak’s result [18,19], since w is a subgradient of f(*) at X, then X solves PD,.
This completes the proof.

Note that Lemma 3 above states that if the "closest" feasible direction —w to —w is a zero
vector, then A solves PD,. Based on this result, we derive through Lemma 4 below a second
sufficient condition for A to solve PD,.

LEMMA 4: Suppose w = 0 solves Problems PR,,, h€ H as in Lemma 3. Then for each
h € H, we must have

(4.53) (a) w'=1,, a constant, for each i€ J,
(b) w' < 1, for each i€J,
where J, is given by Equation (4.49).

PROOF: Let us write the Kuhn-Tucker conditions for Problem PR, for any h€ H. We
obtain

(wi—wh +1,=0foridJ,
(w/' — W) + t, — u' = 0 for i€ J,
u' =0, i€J,, ul w'=0 i€J, t, unrestricted

Y w'=0 w' > 0fori€J,.
ith

If w= 0 solves PR,, h€ H, then since PR, has a convex objective function and linear con-
straints, then there must exist a solution to

w/' = 1, for each i€ J,
and
ul'= (1, — W) > 0 for each i€ J,.

This completes the proof.

Thus Equation (4.53) gives us another sufficient condition for X to solve PD,. We illus-
trate the use of this condition through an example in Section 4.1.7.

4.1.5 Schema of an Algorithm to Solve Problem PD,

The procedure is depicted schematically below. In block 1, an arbitrary or preferably, a
good heuristic solution A € A is sought. For example, one may use A/ = 1/|Q,| for each
i€Q,, for h€H. For blocks 4 and 6, we recommend the procedural steps proposed by Held,
Wolfe and Crowder [12] for the subgradient optimization scheme.
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2 |

6
Forj=1, n 4
delermlney 3 5 Is a suitab
de T S a Suilable
1 u;. h € H, using Isw > 0or No [Select @ Replace subgradient
Equations (4.22), does W satisfy and let A by PV optimization | No
Select | | (4.24). Hence, Equation (4.53)? N=Xx—8w | of Equations termination
XEA determine w from (4.33) criterion
Equation (4.27) satisfied?
Yes
|
— Yes
Terminate with A
as an optimal solution Terminate with A
o PD; as an estimate of an
optimal solution to
PD;

4.1.6 Derivation of a Good Subgradient Direction

In our discussion in Section 4.1.1, we saw that given a A € A of Equation (4.28), we were
able to uniquely determine v, j=1, ..., n through Equation (4.22). Thereafter, once we
fixed values u; " for uf, j=1,..., n, h€ H satisfying Equation (4.24), we were able to uniquely
determine values for the other variables in the Kuhn Tucker System using Equations (4.26),
(4.27). Moreover, the only choice in determining &, j =1, ..., n, h€ H arose in case |H;| >
2 for some j € {1, ..., n} in Equation (4.25). We also established that no matter what feasible
values we selected for u,-”, j€ {1, ..., n}, h€ H, the corresponding vector w obtained was a
subgradient direction. In order to select the best such subgradient direction, we are interested
in finding a vector w which has the smallest euclidean norm among all possible vectors
corresponding to the given solution A € A. However, this problem is not easy to solve. More-
over, since this step will merely be a subroutine at each iteration of the proposed scheme to
solve PD,, we will present a heuristic approach to this problem.

Towards this end, let us define for convenience, mutually exclusive but not uniquely
determined sets N,,h € H as follows:

(4.54) N, C {jef{l, ..., n}: he H, of Equation (4.23)}
(4.55) N, N N,= (¢} forany i j€H and |J N, = ell, ..., nky, > 0}
heH
In other words, we take each j€{1, ..., n} which has y; > 0, and assign it to some h€H;,
that is, assign it to a set N,, where #€ H;. Having done this, we let
o [yitien,
—n _
(4.56) 4" =10 otherwise O each j€{1, ..., n}, h€H.
Note that Equation (4.56) yields values @' for u/', j€{1, ..., n}, h€ H which are feasible to
(4.24). Hence, having defined sets N, hEH as in Equations (4.54), (4.55), we determine i,
j€(1, ..., n}, h€ H through (4.56) and hence w through (4.27).

Thus, the proposed heuristic scheme commences with a vector w obtained through an
arbitrary selection of sets N,, h€ H satisfying Equations (4.54), (4.55). Thereafter, we attempt
to improve (decrease) the value of w'w in the following manner. We consider in turn each
J€{1, ..., n} which satisfies | 4| > 2 and move it from its current set N, say, to another set
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N, with h€ H;, h# h;, if this results in a decrease w'w. If no such single movements result in
a decrease in w'w, we terminate with the incumbent solution w as the sought subgradient direc-
tion. This procedure is illustrated in the example given below.

4.1.7 Hlustrative Example

The intention of this subsection is to illustrate the scheme of the foregoing section for
determining a good subgradient direction as well as the termination criterion of Section 4.1.4.

Thus, let H ={1,2}, n =3, 10y| = |Q,| = 3 and consider the constraint sets

x: 2= 3 tx; 21 x Ix—x;—mx3 =21
—x1+2x2+3x321 2X1+X2—2X3>1
Si= Ixi—x;—x; 21 and S, —x;+3+ 321
X1, X3, X3 =20 X1, X2, X3 > 0
Further, suppose we are currently located at a point A with
M =0 a =512 A =712,X¢ =712, X} =0, X} =5/12.
Then the associated surrogate constraints are
4 1 2
§x| +Zx2+§x3>1forh=1
(4.57)
4 2 2
?xl + ?Xz + ?X:; =1 forh =2
Using Equations (4.22), (4.25), we find
ﬂ=%mmm=un@=%mmm=QMM%=%mmm=un

Note that the possible combinations of N; and N; are as follows:
(i) Ny = {1}, Ny=1{2,3},
(i) Ny = {a}, Ny=1{1,2,3},
(iii) Ny = {1,3}, N, = {2}, and
(iv) Ny = {3}, Ny=1{1,2}.

A total enumeration of the values of u obtained for these sets through (4.56) and the
corresponding values for w are shown below.

ul, j€{l,..., n} wh i€Q,, heH

N Ny |ullullwl|ut|ufuf| wl | w wi we | wi | wi | ww
{1y (2,3} 18/3 0| 0 (4/3|4/3|16/9|—-56/9| 40/9 |—40/9|—28/9| 56/9 |129.78
(¢} (1,23} 0 0 |8/3|4/3|4/3| 0 0 0 0 |—4/3 0 1.78
(1,3} {2 8/3 4/3| 0 |4/3| 0 |20/9|—28/9) 20/9 |—-20/9| 4/9 | 28/9 | 34.37
(3} {1,2) 0 4/318/314/3| 0 |—4/9| 28/9 [—-20/9| 20/9 | 20/9 |—28/9| 34.37

N

SO OO

Thus, according to the proposed scheme, if we commence with N, = {1}, N;= {2,3}, then
picking j = 1 which has |HJ| = 2, we can move j = 1 into N, since 2€ H|. This leads to an
improvement. As one can see from above, no further improvement is possible. In fact, the
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best solution shown above is accessible by the proposed scheme by all except the third case
which is a "local optimal".

We now illustrate the sufficient termination condition of Section 4.1.4. The vector w
h=1 _ h=1 h=2
obtained above is (0,0,0/0, —4/3, 0). Further the vector A is ( 0, 5/12, 7/12|7/12, 0, 5/12).
Thus, even though w > 0, we see that the conditions (4.53) of Lemma 6 are satisfied for each
he€H = {1,2} and thus the given A solves PD,.

The disjunctive cut (3.8) derived with this optimal solution A is obtained through (4.57)
as

4 2 2
(458) —3—)(1 + —3—x2 + EX;, = L.
It is interesting to compare this cut with that obtained through the parameter values A/' =

1/]1Q,| for each i€ Q, as recommended by Balas [1,2]. This latter cut is

(459) %X1+XQ+X3> 1.

Observe that (4.58) uniformly dominates (4.59).
4.2 Maximizing the Rectilinear Distance Between the Origin and the Disjunctive Cut

In this section, we will briefly consider the case where one desires to use rectilinear
instead of euclidean distances. Extending the developments of Sections 2, 3 and 4.1, one may
easily see that the relevant problem is

minimize {map{(limu}m ;. constraints (4.12), (4.13), (4.14) are satisfied).
Jetl,.... n
The reason why we consider this formulation is its intuitive appeal. To see this, note that the
above problem is separable in # € A and may be rewritten as

PD;: minimize [¢" ¢" > 3 Nlafiforeachj=1, ..., n Y A'=1, 120
i€Q, 1€Q,

for i€ Q,, &" 2 0| for each h€ H.

Thus, for each #€H, PD, seeks A/, i€Q, such that the largest of the surrogate constraint
coefficients is minimized. Once such surrogate constraints are obtained, the disjunctive cut
(3.8) is derived using the principles of Section 3.

As far as the solution of Problem PD; is concerned, we merely remark that one may
either solve it as a linear program or rewrite it as the minimization of a piecewise linear convex
function subject to linear constraints and use a subgradient optimization technique.
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A Finitely Convergent Procedure for Facial

Disjunctive Programs

1. Introduction

A linear disjunctive programming problem is concerned with the
minimization of a linear objective function subject to a set of linear
constraints with the added restriction that a given number of logical
disjunctive statements must be satisfied. Each of these logical conditions
is usually stated in terms of linear constraints. Mathematically, one

may formulate such a problem as

DP: minimize cX

subject to

x e X = {x: Ax = b, x > 0} (1.1)
xeD=0n | U Si] - (1.2)
heH ith
where
Si = {x: Dix z_di, x >0}, 1¢ Qh, heH (1.3)

Here, ¢ 1s a (1xn) real vector, x = (xl,...,xn) is an (nxl) vector of
variables, X is assumed to be a non-empty and bounded polyhedral set and
both H and.Qh, h € H are assumed to be index sets of finite cardinality.
The disjunction (1.2), written above in the so-called conjunctive normal
form [1,2], requires that for each h € H, a feasible point x must belong
to at least one of the sets Si for i ¢ Qh.

The basic thrust of solution procedures which have been proposed for

Problem DP has been one of relaxation, wherein one relaxes the constraiuts




(1.2) initially, and then generates inequalities implied by (1.2) whenever
the optimal solution to the relaxed problem (which is a linear program over
that subset of X which is feasible to previously generated inequalities)

is infeasible to (1.2). The inequalities implied by (1.2) are generated
through the result stated below.

Theorem 1: Let the sets Si’ ie Qh be as defined in Equation (1.3), and

consider the disjunction

xe U S, (1.4)
ith *

. i .
Then, for any choice of non-negative (row) vectors A", i € Qh’ the

inequality

L]

max AT D)x > min b (1.5)

ith ith

is implied by (1.4), where max 2D’ denotes the point-wise (or component-wise)
1 11€Qh
maximum of the vectors A"D” for i ¢ Qh. Conversely, if each Si’ ice Qh
n
is consistent, then given any inequality z njxj > 7 implied by (1.4),
. j=1 i3
there exist non-negative vectors Al, i€ Qh such that L < min A dl, and
.. ieQy

for each j = 1,...,n, the jth component of max 21Dt does not exceed ﬂj.

ieQ} '
Proof: See [8]. !

The forward part of Theorem 1 is due to Balas [1,2] and the converse
is due to Jeroslow [8]. However, this result has also been independently

established by Glover [5,6] in a somewhat different problem seﬁting. In-

cidentally, Blair and Jeroslow [4] also discuss the conditions under which




(1.5) yields all valid inequalities. Essentially, Theorem 1 asserts that
based on the disjunction (1.4), an implied inequality, also called a valid
inequality or a (valid) disjunctive cut, may be obtained by simply surro-
gating the rows of each Si using non-negative multipliers and then per-
forming the operation of (1.5) on the resulting |Qh| surrogate constraints.
The converse points out that therealways exist non-negative surrogate
multiplier vectors At such that the inequality (1.5) uniformly dominates
on the non-negative orthant any given valid inequality.

We will now proceed to introduce a special class of disjunctive
programs which is of interest to us, namely, facial disjunctive programs
[3]. Thereafter, we will propose a finitely covergent algorithm

for such problems, and finally, we will present an illustrative example.

2. Facial Disjunctive Programs (FDP)

A facial disjunctive program [3] (denoted FDP) is a épécial class
of disjunctive programs (DP) in which each set Si is comprised of a single
constraint, viz,
Si={x:dlx_>_di} ieQ, hetH (2.1)

0 h’

where dl is a 1lxn real vector and di is a scalar, such that X[ Si

0
is a face of X for each i ¢ Qh, h e H. (Recall that for any convex set

X, a non-empty subset F of X is called a (proper) face of X provided there
exists a supporting hyperplane H of X such that F = X1 H [7]). Important

cases of facial disjunctive programs include the zero—-one linear integer

programming problem and the linear complementarity problem. For the sake

of illustration, consider a linear complementarity problem which involves




orthogonality or complementarity constraints of the type xp xq = 0,
p, 9 £ {1,...,n}. Each such constraint constitutes a disjunction heH
with the corresponding set Qh = {p,q}, and the constraints dpxﬂz_dpo,
a9 Z'dqo being respectively ~xp > 0 and ~xq > 0. Note that we do not
necessarily require that Qiﬂ Qj = $ for i,jeH, i#j.

Several procedures can readily be developed for solving Problem FDP.
Some of these may in fact be viable approaches: in special instances.
The first alternative would be to rank the extreme points of the set X
with respect to the objective function cx till such time as a ranked
extreme point satisfies the disjunction (1.2). Theorem 2 below validates
this approach. A second alternative would be to write P;oblem FDP in a
disjunctive normal form [1,2] and then solve the linear programs of mini-
mizing cx subject to xeX and each of the resulting disjunctions. Trivially,
the best solution to these linear programs would be optimal to FDP. Note
that for the linear complementarity problem for example, iﬂis implies that
each of the linear programs would enforce one of every pair of complementary
variables equal to zero. Hence, this approach is viable, in general, only
if there are very few disjunctive constraints in the disjunctive normal
form.

Several other approaches are also available by noting that Problem DP

in general, and Problem FDP in particular, is equivalent to the linear

program [3]

minimize {cx: x € Y = conv[x N D]} (2.2)
where conv [S] denotes the closure of the convex hull of a set §,

Now consider a relaxation strategy wherein constraints (1.2) are




relaxed. Let x solve the resulting linear program. If X ¢ D, then
clearly X solves Problem DP. Otherwise, a cutting plane which is a.
facet of the set Y could theoretically be developed and the procedure
repeated. Balas [3] discusses how one may perform this rather difficult
task. Noting the equivalence of Problem DP and (2.2), the procedure is
clearly finite,

Now in the case of Problem FDP some specializations are possible
based on two important results established by Balas [3] concerning
the set Y. The first provides a means for inductively constructing
the set Y. Jeroslow's precedure [10] uses this result and at a point
X ¢ D, specific conditions are laid on the type of cuttihg planes used
and the manner of generating them. Essentially, finiteness is._ ensured
since any given disjunction can be violated only finitely often.

The procedure we propose is also a relaxation strategy and ﬁses
the second result of Balas [3] stated as Theorem 2 below;. It deals with
the extreme points of the set Y,
Theorem 2: Let the set X be defined by Equation (1.1), and let Y be the
convex hull of X 1 D, where the set D is given by Equations (1.2) and

(2.1) such that the disjunctive program DP is facial. Then,
vert Y _C_ vert X (2.3)
where vert Y denotes the set of extreme points of the polyhedral set Y.

Proof: (Balas [3]).

The advantage of using property (2.3) along with the fact that Problem

DP (and hence Problem FDP) is equivalent to Problem (2.2) is that, unlike




Jeroslow's procedure, our scheme places no restrictions on the type of cuts
which are permissible. The reason being that we secure finiteness by relying
instead on the type of points at which cuts are generated. Specifically,
these points are required to be extreme faces [11l] of the set X with respect
to the set of cuts generated at any stage of the procedure. For the sake

of completeness, we summarize below Majthay and Whinston's [11] discussion

on extreme faces and their detection.

3. Extreme Faces and Their Detection

Let us #ssume that at a particular stage s cuts, Gx < g, have been

generated in the space of the x-variables. Let

A= {xeRn: Gx + Ixs =g, x, > 0} (3.1)

n .
be the subset of R" feasible to these cuts. Here, XS =
denotes the vector of slack variables, and I is an identiEy matrix of

size s. Further, let N = {1,...,n} denote the index set of the original

x-variables, which we will call key variables. Also, let K = {nt+l,...n+s}

denote the index set of the slack variables for the s cuts, which we will

call nonkey variables. For a set Z € N, let

F_ = {xeX %, = (0 for jeZ} 3.2)

Note that all faces of X can be represented as FZ for some suitable .set Z.

Finally, for any point XEFZ, let the zero components of x be denoted by



Definition [11]

Let FZ be a face of X defined by some Z © N such that FZ N A# 6.

Then FZ is an extreme face of X relative to A if for any two points

xl, x2 £ FZ N A, we have Z(xl) = Z(Xz)-

In other words, an extreme face F_ satisfies the property that FZ naAa

Z
does not contain any point in a lower dimensional face of X. Exampies
of extreme faces of X relative to A are extreme points of X feasible to
A, or an edge of X not disjoint with A but with neither of the two extreme
points of X defining this edge being feasible to A.

Given a simplex tabular representation of an extreme point of X1 A
at any stage, Majthay and Whinston [11l] propose a simple procedure to find

an extreme face of X relative to A. This procedure utilizes the following

restricted basis entry rule:
"Only a nonkey variable Xj’ jeK, is eligible to enter -the basis" (3.4)

Based on this, the method outlined below either finds an extreme face or
indicates that no such face exists.

Step 1: Let xY denote the largest valued basic key variable in the current
solution which has not yet been considered at a previous iteration. If

no such variable exists, go to Step 3. Otherwise, proceed to Step 2.

Step 2: Solve the Problem Pyz minimize {Xy: xeXN A} as a linear program
subject to the restricted basis entry rule (3.4). If the solution yields

xY = (0 and xY is basic, pivot it out of the basis, if possible, by exchanging
it with a nonkey, non-basic variable. Return to Step 1.

Step 3: If all key variables are basic, there is no extreme face of X

relative to A. (That is, X 1 A is contained in the interior of X). Other-




wise, the current set Z of indices of nonbasic key variables defines,
through Equation (3.2), an extreme face FZ of X relative to A. In par-

ticular, if all nonbasic variables are key variables, then F represents

Z
an extreme point of X.

Now, observe that from Theorem 2 the relaxation procedure for Problem
FDP can be made finite if each cutting plane introduced deletes an extreme
point of X. However, we will find it simpler to restrict our search to
a larger set, namely, the extreme faces of X. Since extreme faces of X
relative to some A are also faces of X, the number of such extreme faces
of X (relative to all A's) is finite. Hence, a procedure which d=2tects
and deletes in a finite number of steps at least one extreme face per
iteration is finitely convergent [11]. This is indeed the principal

thrust of our scheme.

4. Proposed Algorithm for Facial Disjunctive Programs

The procedure we advocate is summarized in the flowcﬁa;t of Figure 1
and is clearly finitely convergent. The flowchart uses two types of
cuts to delete an extreme face depending upon whether F 1is an extreme
point X £ D or not. The specific means of obtaining these cuts are
developed in Sections 4.2 and 4,1 respectively. The flow chart also

A

incorporates an objective function cut cx < v based on the current best
value v of the objective function. The purpose of this cut is discussed
later in this section.

The proposed procedure proceeds as follows. At any stage, given the

set A of Equation (3.1), we solve the relaxed problem

P(A): minimize {cx: xe XNA} (4.1)




et e e

~

O
Initialize with v = =». Let A = {x: cx < v} = R

3 Let X solve P(A) [

4 -

X ED—-—-’(STOP; X or x solves FDD

yes
no
v -
Generate a disjunctive cut ax < ag(see Section 4.2) Replace A by
-' i % A : <
Update A and let x solve the resulting. P(A). N {x: oax < %
Replace A by

AN {x: Bx iBO}

'
o WS X € D? ( STO?; x or x solves FDD

yeS R vy

no
L 4

Find an. extreme face FZ of X relative to A

Y
<D0es an F exist?> no JSTOP; x solves FDD
Z ' .

J

l yes
Generate a : 2
disjunctive face <;'13‘-———<Is FZ an extreme point of X>
cut Bx < BO | Generate a disjunctive
(see Section 4.1) yes cut ox < o
<Is FZ feasible to D&— no (see Section 4.2)
yes

Update the current best known solution x and

v = cx, and also update the objective cut (4.2)

Figure 1. Flowchart for the Proposed Scheme
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If an optimal solution x to this problem satisfies xeD of Egs. (1.2)
and (2.1), then x clearly solves the problem of minimizing cx over the
set X M A N D. However, since the set of cuts A we generate may also have
been used to validly delete extreme points of X which have been accounted
for, we terminate the solution procedure by picking the better of the two
solutions, namely, x and the known incumbent solution ;, say. Otherwise,
X violates at least one disjunction heH, and we generate an inequality or
disjunctive cut implied by the most violated disjunctioﬁ. The set A of
Equation (3.1) is updated using this cut and P(A) is resolved. Let X
represent the new optimal solution. Again, if xeD, then either X or ;
solves Problem FDP. ﬁow, if x¢D, then instead of generating, another disjunc~
tive cut, in order to ensure finiteness. we use the routine of Section 3 to
find an extreme face FZ of X relative to A. If no extreme face exists,
then we terminate with the current best known solution as optimal to FDP
since then, X 1 A is contained in the intexrior of X. Othéréise, depending
on the dimension of FZ, we adopt one of the following two alternative routes.
If FZ is of dimension greater than zero, then a disjunctive face cut is

developed (see 4.1) which deletes F, but no extreme point of X feasible

Z

to A. On the other hand, if F, represents an extreme point of X then we

Z
check if this extreme point is feasible to D. Tf it is, then we update

the current best known solution, if necessary, and generate a disjunctive
face cut which deletes only this particular extreme point of X. If

the extreme point is infeasible to D, however, the usual disjunctive cut

may be generated, which is typically stronger than the disjunctive face

cut. In any case, after the appropriate cut has been generated and A has

been updated, we say that an iteration has been completed. A new iteration
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is now commenced by solving Problem P(A) of Equation (4.1).

Now,‘if the procedure does not termlnate with the solution
X to a relaxation P(A) satlisfying the disjunction (1.2), (2.1), then it
is possible that a significant effort may be expended in detecting and
cutting away extreme points of X feasible to D. To avold this, we adopt

an additional expedient of iImposing the cut

>

cX < v (4.2)
based on the objective function, where ; is the current best known
objective value of Problem FDP. Hence, the right hand side of this cut
is simply updated each fime an improved solution 1s detected. Although
this cut will not (locally) affect the solution of Problems P(A), it will
assist in confining the search to improving solutions duriqg the extreme
face finding routine. Again, this is essential because otherwise, the
extreme face finding routine would simply concentrate on feasibility,
regardless of objective function values. Hence, two main advantages accrue
from the use of (4.2). One, we are able to use (4.2) to delete non-improving
extreme points of X feasible to D, which hence need not be-exblicitly
enumerated. Second, it is likely that we will detect an optimal solution
to FDP early on in the process since the extreme face finding routine
attempts to trace extreme points of X in the neighborhood of the relaxed
problem solution, This is important if the procedure is prematurely

terminated for large problems.

To complete the detalls on the implementation of the proposed algorithm,

in the following subsection we will discuss the manner in which one may
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generate a disjunctive face cut Bx < BO in case FZ is either of dimension
greater than zero, or FZ is of dimension zero and is contained in D. Sec~
tion 4.2 will deal with the generation of disjunctive cuts ax 2 ey in the

other cases.

4.1. Disjunctive face cuts Bx < B, [13].

0

Suppose we are at a stage where we have solved Problem P(A) for some A
and have obtained an optimal solution x # D. Now, to find an extreme face
of X relative to A we will be attempting to minimize each basic key variable
subject to the current constraints and the restricted basis entry rule (3.4).
Thus, suppose we have currently minimized a key variable xr through Problem
Pr of Step 2 of this routine and it has turned out that X, is positive

at optimality. Define

=4
]

{jeN: %y is nonbasic at optimality of Pi} (4.3)

~
It

{jeK: %y is non-basicat optimality of Pr} (4.4)

where N and K are the index sets of key and ndnkey variables respectively.
Let the canonical representation of X in terms of the non-basic variables

xj, je Nr U Kr be

xr + X a . x, + .z a.x,=b (4.5)
jeNr

Hence, by assumption, br > (0. But observe that since the coefficients
a ., jeNr U Kr are reduced cost coefficients at the optimality of Pr’

rj

we must have
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arj < 0 for JEKr : (4.6)

since otherwise, Xj is a candidate to enter the basis. Of course, the
restricted basis entry rule could result in the coefficients arj’ jENr
being of either sign.

In this manner, when the routine of Section 3 finally terminates
with an extreme face FZ of X (assuming one exists) relative to A, let

. 0 0] 0] n .
the tableau represent an extreme point x = (x;,...,x_ ) of X It A, with
1 n

XO € FZ where
Z = {jeN: X, is non~basic in the tableau representing xO} (4.7)

Now, define

R = {r: xg > 0} (4.8)
and -
K= U K (4.9)
reR r

Note that Nrfi Z for each reR, and that the canonical equation
(4.5) is availéble for each reR. Hence, adding zero coefficients as re-
quired, we get
x + X a. x.=b for each reR (4.10)
jezyk ™Y ] *

We want to develop a cut which deletes the extreme face FZ’ but does
not cut away any other extreme point of X feasible to A. This is accomplished
by insuring that for any such point at least one of the X_» reR must be

zero. That is, at least one of the inequalities X, < 0, r € R maust hold

(in the presence of non-negativity restrictions). Using (4.10), this
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condition may be restated as requiring that at least one of the following

constraint sets must be satisfied

Z Ar xj > 1, xj >0 for jeZ| K\ for rerR (4.11)

From Theorem 1, a valid cut is

Z _ |max arj x, >1 (4.12)
jeZ UK |reR br J

Observe from (4.6) that the inequality (4.12) implies over the non-negative

orthant that

or that (4.12) deletes Fz since any xer satisfies Xj = 0 for each jeZ.
The cut (4.12) is hence called a disjunctive face cut. Observe that when
Fz is an extreme point of X then each equation of the type (4.10) is ob-

. . . 0
tained from the same tableau representing the solutionm x , and furthermore

N, =Z, and K= # for each reR.

4.2 Disjunctive Cuts ox b

We will now discuss the generation of a disjunctive cut at a point
infeasible to D. This point may either be x, an optimal solution to some
P(A), or it may be an extreme face F,_ = xO of dimension zero. In either

#

. - - 0
case, letting X represent x or x; as the case may be, we have
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Joaix, <a,

jen JJ io for each ieQ,» for some heH.

A

Let heH be the most violated disjunction, that is,

min dio— X d%x. = max min di - Z d.x, >0
ieQr jen 3 J hell | 1eQ, jen 3 J

According to the current tableau representing x, let us partition (xl,...,xn)

as (xl,...,xn) = (XB,XZ) where Xg and X, are respectively the key variables

which are currently basic and non-basic. Accordingly, partition at as

represent the vector of slack variables

. . R
(a subvector of xS) which are currently non-basic. Of course, if x = x,

i i i .
d” = (dB’dZ)' Finally, let X

then Xy = ¢. Then the current tableau representing X expresses Xp in

terms of x_ and x_. a
7 d 3 s

Xy = f + Exz + FxJ (4.13)

where f, E and F are appropriate vector and matrices. Using (4.13), we
. i PPN
may write d'x z-diO’ 1th as
d;(f+Ex

i . a
Z+FXJ) + dzxZ z-diO’ 1th

i i i i RPN
or (dBE+dZ)xZ + dBFxJ i-diO - dBf, 1EQh

Since the disjunction xe (J Si is violated (with Si defined by (2.1)), and
ieQq

. _ T . 4 RPN
since XZ = 0, X; = 0, it follows that dio dBf > 0 for each 1th. Thus

one may invoke the- disjunction that at least one of the following constraint

sets must be satisfied
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B

i, .1 i . a
[{dBE+dZ}xZ +4d Fx%] >1, x>0 lEQh (4.14)
From this, Theorem 1 yields the disjunctive cut

> 1 (4.15)

which clearly deletes x.
Now, reference [14] suggests a means for strengthening the disjunctive
cut (4.15). To see how this is achieved, let us denote the non-basic variables

X, U X by X and accordingly re-write (4.14) as

S, ={x: ) a

i Xx. >1, x > 0} 1€Qﬂ (4.16)
JeT J

ij

Note that in addition to the disjunction x € U Si’ a feasible x must

ieQq oo
also satisfy the constraint set WXT < w corresponding to the current tableau.
Hence, one may invoke instead a disjunction x € |J S, where

ieQﬁ

S, = s; N {x: Wx, < w) ieQ) (4.17)
The improvement technique proposed in [14] essentially attempts to derive
a cut, in terms of the non-basic variables Xj’ jeT, which is a support for
the closure of the convex hull of .U X §i' This is accomplished by
commencing with the cut (4.15), sa;annd attempting to improve (decrease)
as much as possible each cut coefficient one at a time, holding the other

cut coefficients fixed. Theorem 1 essentially lays the foundation for

improving a given cut in this manner. One need only formulate an appropriate
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linear program to determine non-negative surrogate multipliers for the
constraints of each set §i, ieQﬂ so that a given cut coefficient is
minimized in the resulting disjunctive cut, without worsening the other
coefficients. Instead of formally restating this strategy, we illustrate

it in the following section.

5. 1Illustrative Example

Consider the facial disjunctive program

FDP: maximize 2xl + 3x2 ]
subject to X, + Xq = 5
x) +x, = 8 ( (5.1)
X + X, + Xg = 10
x>0 /
and Xl <0or x, <0 (5.2)

2

where (5.1) represents xeX and (5.2) represents xeD. With A = Rn, the

solution to P(A) is summarized in the following simplex tableau

x3 x5 RHS

objective row 1 2 25
X, 1 0 5

X, 1 -1 3

X -1 1 5




This solution violates (5.2). The cut (4.15) may be generated from

the disjunctive statement

whence, (4.15) is

—""—gil or |x, +x_ ~-X%X, =5 %X >0 (5.4)

Later, we will generate a stronger cut using the strategy outlined at
the end of Section 4.2. Appending (5.4) to the above tableau and updating

it, one obtains the following tableau.

x.4 x6 ‘ RHS .
objective row 1/2 3/2 19
X, ~1/2 1/2 | 1
x5 -1/2 -1/2 1
8
X) 1 0
% 1/2 | -1/2 4

This solution is still infeasible to (5.2) and we hence need to find an

extreme face FZ. Using the routine of Section 3 and commencing by minimizing

X, above, subject to (3.4), we obtain the following tableau
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X, X, RHS

| objective row 2 ‘ =3 16
Xg -1 2 2

Xg -1 1 2

Xy 1 0 8

Xy 0 1 5

This tableau represents an extreme face FZ of X of dimension zero, and
moreover FZ is contained in D. Thus, we need to generate a disjunctive

face cut as in Section (4.1). Here, R = {1,3,5}, Z = {2,4}, K = ¢. The

1 1 1 1
max {} 5 > §} X, + max {E-,-g} X, >1

cut (4.12) is

or
5 X251 = (x,-4x.) <0 (5.7)
Sy £ 17 =
8 2
Furthermore, we update our incumbent solution x as (XL’XZ) = (8,0) with
v = 16. . The objective cut (4.2) is
2x, + 3x, > 16 | (5.8)

Now, (5.7) and (5.8) are appended to either tableau (5.5) and (5.6) and

one iteration is completed. Figure 2 below illustrates the current situation.
The shaded area represents the remaining feasible region. The point

H is an optimal solution to the current problem P(A). The next disjunctive

cut is easily seen to be x. < 0 which renders Problem P(A) infeasible.

1
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(0,5)

(5,5)
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cut(5.4)

;I j (8,2) _ ,}‘ '
cut (5. 8) \w(
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-
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(s, - L 4
| %O)\\ﬂ \} 1

Figure 2., TIllustrative Exampie
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Thus (x;,x%,) = (8,0) solves FDP. Note also that the region shaded in Figure
2 is contained in the interior of X and hence no extreme face of X exists.
Furthermore, note thati:the cost cut (5.8) deletes the extreme points (0,5)
and (0,0) of X which are feasible to (5.2), and hence saves the effort of
having to explicitly enumerate these points.

Finally, let us illustrate how the disjunctive cut (5.4) may be
strenthened using the ideas outlined in Section 4.2. Toward this end, note
that WxT < w may be taken to be the inequality x, ~ x. < 3 from the row X,

3 5

of the first tableau, so that §l and §2 of Equation (4.17) are

[ x
I NS SN _
Sl ~'1?. B + 5 > 1, X =X

and

Now, it is easily verified that the coefficient of Xg in (5.4)
cannot be improved. Hence, let us attempt to decrease the coefficient of

x., without worsening that of x Letting (Al,Az) and (Yl’YZ) be respectively

3 57

the surrogate multipliers for the sets §land §2 yields the general disjunctive

cut
A ¥ , [ A
1 . 1 o1
max §~- — * X, 57 Yo%y + max 1j 5 + XysYop X
> min {Al~3A2,Yl—3Y2} (5.9)
X Xg
Since this cut must dominate —§-+ 5 > 1 while minimizing the coefficient

of x3, it is easily seen that the following linear program appropriately
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determines Al, AZ’ Y10 and Y2

minimize B

subject to

A -3%, > 1
Y3y, 2 1
A1’ Az’ Yl’ Y2 .E:.

. . . , 40 5
An optimal solution to this problem is Al =1, Az = 0, Yy T35 Yo T 35

B = —2% so that the cut (5.9) is

S X, +t—F% >1 (5.10)
In terms of (xl,xz), the cut (5.10) is
5xl + 8x2 < 40
It is easily verified that when the cut (5.10) is appended to the first

tableau, the resulting optimal solution yields Xy = 8, x, = 0 and hence

yields an optimal solution to Problem FDP.
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Disjunctive Programming, Polyhedral Annexation Techniques
and Nondominated Disjunctive Cutting Planes

1. Introduction

The term disjunctive program is used to characterize problems

which contain logical conditions stated as linear constraints. These
logical conditions may in general be conjunctions, disjunctions, nega-
tions and implications. However, as discussed by Balas [1,2], an impli-~
cation can be restated as a disjunction, and conjunctions and negations
lead to (convex) polyhedral constraint sets. Problems with logical con-
ditions which contain disjunctive statements are inherently much more
difficult to solve. It is specifically this class of nonconvex problems
which is referred to as disjunctive programs. Mathematically, the problem

addressed may be stated as

DP: minimize f(x)

subject to xeX (1.1)
xe | S, (1.2)
heH

n . . s n
where f: R =+ R is lower semicontinuous, X is a closed subset of R, and

where

S, = {x: Ahx z_bh, x > 0} for each heH, |[H| < = (1.3)

Several well known problems including the generalized lattice point
problem, the cardinality constrained problem, the extreme point optimiza-

tion problem, the complimentarity problem and the mixed integer programming




problem may be cast in the framework of Problem DP. One possible solution

strategy for Problem DP evolves from the following straightforward result.

Theorem 1.1 Consider Problem DP stated above and define problems

DP, : minimize {f(x): xeX[]Sh} for each heH (1.4)
h h¥*
Let x solve DPh. Then x solves DP, where
. ‘
f(xh ) = minimum {f(xh)} (1.5)
heH

%
Proof: By contradiction, suppose x* solves DP with f(x¥*) < f(xh ), and
-~

assume that x*eSﬂ for some heH. Since x%* 1s feasible to DP; and xh solves

A *
DPh’ we must have f(x%*) 3_f(xh) z_f(xh ), a contradiction. This completes

S

the proof.

Essentially, Theorem 1.1 involves the solution of |H| problems in
order to recover an optimal sclution to Problem DP. This may be a viable
approach for sone speciai prdblems for which the cardinality of H is not
too large. For example, one may be considering a production planning pro-
blem in which each set Sh may be representing the restrictions on the
process accruing from the implementation of production method heH. On the
other hand, for zero~one linear integer programs for example, the applica-
tion of Theorem 1.1 is tantamount to total enumeration and for a complemen-
tarity problem which requires, say, ujvj =0 for j =1,...,m, one would
need £o solve Zm problems to obtain an optimal solution. For such problems,
one may adopt a relaxation strategy in which the constraints (1.2) are |

relaxed (except perhaps for the nonnegativity restrictions) and inequalities

implied by (1.2) are iteratively generated as and when needed until Problem

DP is solved through an equivalent representation of it"in the neighborhood




of an optimal soluti;n. This paper specifically addressed itself to the
technique of deriving suitable implied inequalities based on the constraint
(1.2) for use in such a solution strategy for Problem DP.

The organization of this paper is as follows. First, we briefly dis-
cuss some well known and useful results on the derivafion of inequalities
implied by (1.2). Next, we demonstrate how the formulation of the disjunc-
tive constraints (1.2) can effect the quality of such implied inequalities.
Thereafter, we consider a special case in which X is polyhedral and each

set S heH is comprised of only a single constraint. For this situation,

~
we establish connections between disjunctive programming methods and poly-
hedral annexation techniques [5] by discussing how the latter approach
derives implied inequalities for the system (1.2). Finélly, we present

a scheme which may be easily implemented to obtain stronger implied
inequalities than those available through a specific sequential polyhedral
annexation technique of Glover [5]. This scheme may be easily extended to

a broader class of problems in which each set § heH contains more than

h’

one constraint.

2. Set of Implied Inequalities

Let us begin our discussion by presenting a fundamental result of dis-
junctive programming. The forward part of this result is due to Balas
[1,21 and the converse due to Jeroslow [6]. This result has also been
independently established by Glover in a somewhat different problem setting,
the forward part appearing in the context of negative edge extension cutting
planes [4, Theorem 1] and the converse appearing in the context of polyhedral
annexation methods [5, Theorem 4.2]. Based on the disjunctiom (1.2), this

result characterizes all implied inequalities which must be satisfied by

any point feasible to (1.2). Such implied inequalities are also referred to




as valid inequalities or valid disjunctive cuts or simply valid cuts.

Notationally, for a set of vectors {vh: heH}, where vh = {vh

1

up; h , . . - =
EH{V }, the pointwise supremum v (vl,...,vn)

,...,vh} for
n

each heH, we will denote by s

of the vectors vh, heH, such that vj = ﬁzﬁ{v?} for j =1,...,n. Similarly,
J
we define inf{vh}. Further, throughout this paper, a superscript t will
heH

denote the matrix transpose operation. Now, consider the following well

known result.

Theorem 2.1 (Basic Disjunctive Cut Principle) - Balas [1,2], Glover [4,51,
Jeroslow [6]

Suppose that we are given linear inequality systems S heH of

h’
Equation (1.3), where [HI may or may not be finite. Consider the disjunc-
tive statement (1.2). Then, for any choice of nonnegative vectors Kh, heH,

the inequality

sup O EAM |k > tnf | OM) ED (2.1)

heH , heH

is a valid disjunctive cut. Furthermore, 1f every system Sh’ heB 1is con-

n

sistent, and if [H| < =, then for any valid inequality z “jxj Z'NO, there
j=1

exist nonnegative vectors Ah, heH such that T < inf (J\h)tbh and for

htn , Def
j=1,...,0, the jth component of sup (A ) A does not exceed=wj.

This theorem essentially asserts that for each heH, one may surrogate
the constraints of Sh through the use of nonnegative multipliers which form

the components of a vector Ah in order to reduce (1.2) into the weaker

statement

xe |J 8, where 5, = {x: OB P > 0B 5D, x> 0) (2.2)

heH




It is easy to see theﬁ thaf (2.2) impliés (2.1). The strength of'this
Theorem lies in its (partial) converse which states that any valid inequal-
ity mtx z_ﬁo can be uniformly dominated over the nonnegative orthant by

an inequality.of the type (2.,1) obtained through some suitable surrogate
multipliers. Of particular interest, therefore, is the choice of the
nonnegative parameters Ah, heH. Balas [1] and Glover [5] have shown how diff-
erent choices of Ah, heH,recover different cuts available in the litera-

ture. Further, note that the inequality‘(z.l) defines a closed

convex set which contains |] Sh. Thus, this set must algo contain the set

heH

Sc = closure of the convex hull of |} s
heH

h (2.3)
Moreover, if !HI < «, then SC is polyhedral and hence, a desirable or deep
valid inequality would be one which supports Sc and preferably, is a facet

of S.- Indeed, Balas [3] has shown how one may generate with some difficulty
cuts whicﬁ contain as a subset the facets of Sc' On the other hand, through
polyhedral annexation methods, Glover [5] has described a linear programming
technique which generates supports of Sc' Recently, Sherali and Shetty [8]
have shown how one may derive surrogate multipliers Ah, heH to recover cuts
which are the deepest according to some suitably defined criteria. These

cuts always support Sc, and are facets of SC in case each S heH is com~

n’
prised of only a single constraint. Since this latter special case is

relevant to the present paper, we state below the prescribed choice of the
parameters Ah, heH; It is interesting to note that this choice precisely

generates the strengthened version of Glover's negative edge extension cut
& 8

[see 5, Theorem 2].

Theorem 2.2 Consider a disjunction xe U Sh’ where each‘Sh, heH, is given by
heH




X, >b, x> 0}, heH (2.4)

h h
h j

Further, assume that these sets § heH are all consistent and are stated

h*
with respect to a point infeasible to the disjunction as the origin. That
is, assume that bh > 0, hed and that for each heH, a? > 0 for some

je{l,...,n}. Define

*
Ah = minimum {bhaj/a?} for each heH (2.5)
h :
j: a, > 0
J J
where
ah
%
a ., = maximum —% s J=1,...,n (2.6)
J heH b

Then the valid inequality

h h
n Xa,

L |max —Lfx. > 1 (2.7)
i=1 \heH b 3

is a facet of the closure of the convex hull of | S

heH h

Proof: See Sherali and Shetty [8]

We will now proceed to discuss how the formulation of a disjunction

affects the depth of a cut which one may derive from it.

3. Formulating a Disjunction to Derive Deeper Cuts

In order to illustrate the concept involved in this issue, we will
find it more expeditious to use a numerical example first, and then gen-
eralize the situation to the case which is of interest to us.. For this

purpose, we use the following example from a paper by Owen [7]

-




<8, x > 0

maximize {z = 2x, + 3%, x +x, <10, x, <5, x 1%y 2

1 1

X X, = 0}

Following the.relaxation strategy, if one disregards the
constraint xlxz = (J and solves the resulting linear program, then one

will obtain the following optimal simplex tableau. Here, 81» 89, Sg are

3

respectively the slack variables for the three constraints given above.

81 Sy RHS
2 25
é3 -1 1 3
X 1 -1 5
X, 0 1 5

Now the condition X, = 0 is violated and therefore, one may impose
the disjunction that at least one of the following constraint sets must

be satisfied

$; = {x: <0, x >0} 8, = {x: < 0, x > 0}.

Xl Xz

To invoke Theorem 2.2, we may rewrite these sets in terms of the nonbasic

variables as
Sl = {(sl,sz): 5178, > 35, 518, > 0} and Syt {(sl,sz): s, > 5, 5118, > 0} .(3'1)

The cut (2.7) is easily seen to be

5 S
1 2
3 +3~_>_l - (3.2)




, . -8~

Let us now investigate whether the cut (3.2) can be improved. Figure 3.1(a)
shows the region s1 U S, as the cross hatched area and depicts the cut

(3-2). As Theorem 2.2 indicates, this cut is a facet of Sc (Equation (2.3)).
However, the region feasible to the original problem is shown as darkened
lines in Figure 3.1 (b). Clearly the cut 551 + 352_3 25 is valid and domi~
nates the cut (3.2). In order to use the basic disjunctive cut principle

to derive this inequiality, one has to reformulate the disjunction by imposing
the nonnegativity resﬁriction Sg = s1 - Sy + 3 > 0 on each of the sets S

1

and S2 given in (3.1). 1In other words one has to stipulate that s, > 0 as

3
well as at least one of the sets Sy» 5, must be satisfied. This leads to

the following two sets, at least one of which must be satisfied.

\Sl = {(sl,sz): 8] ~ 8 >5 and S2 = {(sl,sz): By > 5
| 8 - 8, > =3 81~ S, > -3 (3.3)
! S1» S, 2 0} 815 8, 2 0}

i
Using surrogate multipliers A = (5,0) and 12 = (8,5) one may obtain the
cut (2.1) as Ssl + 353 > 25. 1In Section 5, we will demonstrate how this
cut can be derived through (3.3) without explicitly resorting to the

determination of the parameters A“, heH.

Insert Figure 3.1 here

‘Let us now generalize this concept to the situation of interest to us,
namely the case where the objective function f is quasiconcave, and the set

X of Equation (1.1} is polyhedral. 1In ordec tc ¢stablish connections

between disjunctive programming techniques and “lover's polyhedral annexa-

tion scheme [5], and to simplify the presentation, we will initially assume




that each of the sets Sh’ heH 1s comprised of only a single constraint.
Again, we will assume that a relaxation strategy is being adopted to
solve Problem DP, sc that currently, we have an extreme point optimal
solution to the problem minimize {£(x): xeX, x > 0}, which violates the
disjunction xe {J S

heH
of the original linear constraints along with any valid inequalities

h Here, we are assuming that the set X is comprised

which may have been generated over previous iterations. Accordingly, in

terms of the current nonbasic variables, let the sets X and Sh’ heH be
given by

X = {x: Gx < g} = {x: ) gijxj < 8 for i = 1,...,m} (3.4)

jeJ
- h
8, = {x: ¥ ajx >1, x >0} | heH (3.5}
jeg 13 |

where J is the index set of the nonbasic variables, so that [Jf = n. For

each set Sh’ heH, we havé normalized the single constraint by its respective
right-hand-side which must be positive since the origin violates each such
constraint. Now, in order to derive a valid inequality which deletes the
origin, one may invoke the disjunction

xe |J 8
heH

h (3.6)

However, we propose to derive stronger cuts by invoking the alternate dis-

junction
xe |J XS, (3.7)
heH
where,
XS, = {x: Ox < g, Za*}sz_l,xio}zxnsh (3.8)
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Note that omé may invoke other valid disjunctions between the extremes
(3.6) and (3.7) by adding on a subset of the constraints of X to each of
the sets Sh’ heH. As ome may guess, in the formulation of the disjunction,
there is a tradeoff involved between the strength of the inequalities
derived and the effort expended in genmerating these inequalities. Now,

one viable approach is to commence with the disjunction (3.6) to obtain an
initial cut, and then to sequentially add on comstraints of X, attempting
at each step to improve the current cut. This is basically the central

point of the discussion of the following section.

4. Application of Glover's [5] Sequential Polvhedral Annexation Technique

In this sectlon, we will first briefiy discuss Glover's polyhedral
annexation technique {5] as is relevant to the present exposition. We
will then demomstrate how an algorithmic scheme called sequential poly-
hedral annexation by Glo;er [5], may be implemented to use the set X
defined by (3.4) in order to improve the fundamental cut (2.7) available
from the disjunction (3.6). We will also indicate some drawbacks of this
method which lead us to proposing a variation of the scheme.

Let us begin our discussion by making the observation that a disjunc-
tion which stipulatés that at least one of the sets Sh of Equation (3.5)
must be satisfied is equivalent to the statement that the interior of the
polyhedron

Sy = {x: 'z a?xj < 1, for each heH, x > 0} (4.1)
jed
contains no feasible points. Henceforth, for the sake of convenience, we will
call a polyhedron NFIP if its imterior contains no feasible points. Thus,

Glover's polyhedral annexation procedure essentially does the following.




Given several NFIP polyhedra, the technique suitably annexes them to each
ather . in ordetr to derive a new NFIP polvhedron of the type (4.1). Then,
based on the constraints of this polyhedron, a cut of the type (2.7) is

generated. The annexation scheme is based on the following main result

Theorem 4.1 Let the polyhedra

Sp = {x: ) ang §_bp for each peP, x > 0} (4.2)
i

and

S = {x: z a% < b? for each qeQ, x > 0} 4.3
Q i Jj - _ - v

be NFIP. Then, for any keP, and for any nonnegative parameters ukq’ uq,

qeQ, the following polyhedron is NFIP:

s, = {x: ) a < b’ for each reR, x > 0}

rX
173

i

{x: a?x, < b’ for each peP-{k}

J
(4.4)

q k q
+ al)x, < b + b for each qe
Mg ) 5% (ukq My ) qeQ

i LT e

x > 0}

Proof: See Glover [5]

In terms of the traditiomal disjunctive programming methods, Theorem

4.1 has the following interpretation. The condition that at least one of

the constraint sets

s = {x: Z aPx. bp, x > 0}, peP (4.5}
P 3 N -
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and at least one of the constraint sets

> b3, x > 0}, qeqQ (4.6)

s = {x: J} alx,
q i 3]

must be satisfied, implies the weaker condition that at least one of the

following constraint sets must be satisfied for some keP
Sp for peP-{k},

(4.7)

= [y k k q q
Sk,q {x: § X, > b, § a %, > b*, x > 0} for qeQ

Given any set of nonnegative surrogate multipliers ukq,»uq for the two con-
straints in each of the sets Sk q’ qeQ, this in turn implies that at ieast
3

one of the constraint sets

S for peP-{k},
P : (4.8)

Skq = {x: Z(quaj + q aj) ; _>__(ukqbk + uqbq), x > 0} for qu
mist be satisfied, or that SR of Equation (4.4) must be NFIP.

Clearly, the choice of keP for the purpose of annexation is crucial
with regard to the strength of the inequality which may be derived from the
disjunction (4.8). We will now discuss this chofice in the context of the
sequential polyhedral annexation scheme of Glover as applied to the concepts
introduced in Section 3.

Thus, suppose one has derived the following cut (2.7) from the disjunc-
tion that at least one of the sets Sh, heH of Equation (3.5) must be

satisfied

Y mx, > 1 (4.9)
jeJ 3




~13-

The question addressed at this point is whether or not a given cut coeffi-
cient ;k’ keJ can be improved (decreased) without worsening (increasing)

the other coefficients. (In the discussion below, the reader may note

that the sets X, § SP and S are defined by (3.4), (4.1), (4.2) and

H’ Q
(4.3) respectively) . The manner in which the sequential method proposes

to accomplish this is to commence with the NFIP polyhedron SH and annex
constraints of X one at a time. During this annexatiom process, that con-
straint is chosen to be surrogated with the newly added constraints which

is a "blocking hyperplame', i.e., forms a ""block", for the kth edge extension.
That is the cut coefficlent ;k is determined by that particular constraint
through (2.7). In other words, the surrogation serves the purpose of attempt-
ing to rotate this blocking hyperplane so as to permit an improved edge
intercept. Of course, if more than one constraint form a block for the

kth edge extension, then this process will have to be repeated for each

of the blocking hyperplanes. Thus, starting with S

equal to S, a set

P H

SQ with EQI = 1 is chosen to contain a single constraint of X. Let us
assume that a constraint keP of SP forms a block for the kth edge exten-
sion. Then, SP and SQ are annexed through nonnegative parameters ukq
and uq as follows.

Note that sincé the origin is infeasible to each Sp’ peP of Equation
(4.5), we may assume as before without loss of generality that pP = 1,
peP. To maintain comsistency, we may also stipulate without loss of gen-
erality that the surrogation makes the right hand side of the constraint
in Skq of Equation (4.8) equal to unity, i.e,, ukq + uqbq = 1. Thus, under

the restriction that the cut derived from the disjunction (4.8) improves

t
the k h edge intercept without worsening the other edge intercepts, we are

searching for parameters “kq’ uq satisfying
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=
Vv

20, e =1- uqbq >0 (4.10)

T, > ak + U al

5 2 Meq?y e for each jed (4.11)

One may easily deduce from this that the appropriate choice reduces to

finding the largest uq > 0 satisfying

= k
T, - a,

a k, q
¢ < minimum 4 i (ad - a5pY) > 0
q jed (a§ _ aﬁbq) 3 hj

(4.12)

and u b < 1
q =

Then ukq is given through (4.10) and thus, the resultiné NFIP pélyhedron
SR of Equation (4.4) becomes the new pothedron of the type (4.2). The
cut (2.7) is updated, if necessary, with this new NFIP polyhedron (or dis-
junction) and the process is similarly repeated until the improvement of
all edge intercepts havé been attempted using all the constraints of X one
at a time. Note that at each annexation, if the corresponding parameter
uq obtained through (4.12) turns out to be zero, then this implies that
SR = SP so that no improvement is possible with the current annexation.
Now, there is one principal drawback of this technique and that is,
the final cut derived is dependent on the order im which one considers

the constraints of X of Equation (3.4) to be used as sets S of Equation

Q
(4.3). We illustrate this fact below through an example and then proceed

to propose an alternative method.

Illustrative Example:

Let us modify the example of Section 3 by adding an additional con-
straint to the set X of Equation {(3.4). Hence, let the sets of Equation

(3.5) or (4.5) be
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ve 1% 2
Sl = {(Sl,Sz)o T - g—'i.l’ 8185, > 0}, 82 = {(sl,sz): g—-z_l, 125 > 0} (4.13)
and suppose X is given by
X = {(él,sz): -5, ts, <3, - sy + 332 < 12} (4.14)

The sets XSl and XS2 of Equation (3.8) as well as the best cut available

from the disjunction (3.7) are depicted in Figure 4.1.

Insert Figure 4.1 here

Now, the cut (2.7} available from the disjunction (Sl,Sz)sSl U 82 is

s s
El 4*-32_1 1. This cut passes through the points T and W of Figure 4.1.

One can see that the extension corresponding to edge sl

Hence, let us attempt to improve the edge intercept corresponding to s

cannot be improved.

2

using Glover's sequential polyhedral annexation scheme. Towards this end,

note that the constraint of 82 represents the blocking hyperplane. Using

the first constraint of X in the initial set 5§  of Equation (4.3), (with

Q
the inequality reversed) the relationships (4.12) yield

-0
1- O a=" g =

-

“q < minimum {

1 =1 - (D=3 =
S, whence (4.10) gives‘ukq 1 (5)( 3)

Thus, the disjunction (4.8) is (sl,sz)asl U qu where,

The largest uq satisfying this is uq =

wilco

- LA 3 - =
qu = {(sl,sz). 5 8) T 3% 8, 21, 5,8, > 0} = New S, say (4.15)
The cut (2.7) from this disjunction is
1 3
T S + 55 Sy > 1 {4.16)
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which passes through points U and W in Figure 4.1, and is also shown in

Figure 3.1(b). Now let us repeat this by taking S, as in (4.13), 52 as

1

given by (4.15), the second comnstraint of X forming the set S , and the

Q

constraint of 52 representing the blocking hyperplane for the edge S, in

the cut (4.16). The relationships (4.12) yield

i

Mg i_minimum-{ 1 s
1= (12

il

which implies, that “q = 0 or that no further improvement is possible.

In this example, if one had considered the constraints of X in the
reverse order then one would have obtained the deepest cut as shown in
Figure 4.1. However, the appropriate ordering of the constraints of X
is a combinatorial problem. TFurthermore, conceivably it may be possible
in someninstances that the best cut is not recoverable no matter in which
order the constraints of X are considered.

The method we propose to employ in the next section considers all the
constraints of X simultaneously, that is, examines the disjunction (3.7)
itself in an attempt to improve aedge intercepts one at a time, holding
other edge intercepts fixed at each stage. This technique is easy to
implement and dircctly yields the best cut cecefficients, the corresponding
appropriate surrogate multipliers being available, if required, as a set

of optimal dual variables.

5. A Supporting Hyperplane Scheme for Improving Edge Extensions

Suppose as before that we are given sets Sh’ hed defined by Equation
(3.5) with the stipulation that at least one of these sets must be satis-
fied. We reemphasize here that we continue to assume that each set Sk has

I3

only one constraint merely for comnvenience. In addition, we are given a

constraint set X (Equation (3.4)) which must also be satisfied by any feasible
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point. The disjunction under consideration is that xe U XSh {Equation (3.7))
heH

where, as in Equation (3.8), XSh =X []s heH.

'h’

Thus, assume that currently, we have a cut of the form

}om.x, > 1 (5.1)
jer 39

which is valid for the disjunction (3.7). Note that initially, (5.1) may

be taken as the cut (2.7) derived from the disjunction xe || S
heH
Now, consider a keJ and suppose that we are presently trying to im-

h

h

prove the kt edge intercept, that is, decrease T Towards this end, let

K"

us assume that we are able to solve for each heH

_gkh: minimize ﬂkh

subject to

ﬂkhxk + E ;_x, > 1 for each xeXS§

jed 33T b
jfk (5
and thxk + .Z ijj = 1 supports XSh
ieJ
j#k
Let

my ()

7, = maximum {« (5.3)

k heH kh

where ™ ig the solution to problem P Now consider the cut

kh kh*
-% S
m X+ YTk, > 1 (5.4)
T jed J
jEk
Clearly, (5.4) is satisfied by each xe {] XSh, that is, (5.4) is a valid cut
heR
for the disjunction (3.7). Moreover, any inequality 5 ﬁ,xj > 1 with n_ = F,
. - ] J
) —% jed -
for jeJ - {k} and T, < T, is not valid because it deletes a point x of Xs2
at which the corresponding hyperplane %kﬁxk + sz%jx, = 1 supports XSﬁ, where
itk

hell is an index for which equality holds in (5.3). To see this, it is suffi-
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cient to show that if %kh > - in (5.2), then a point of support referred

.

to in (5.2) occurs at an x satisfying He? 0. This is clearly so, for if

not, them ™ can be reduced still further. Thus, (5.4) gives the best

kh

intercept possible for the kth edge when all other intercepts are beld

of (5.1) by 7,, we would obtain a (possibly)

- *
fixed. Hence, replacing 7 K’

k

new valid cut (5.1). This process may now be repeated for each edge imn
turn till no further improvement is possible. Of course, different cuts
may be obtained by considering the edges in different orders, but each of

these cuts cannot be uniformly dominated by any other cut.

We will now proceed to discuss the determination of m the coeffi-

kh?

cient of X in the cutting plane under consideration, given through (5.2).
The problem we formulate below to accomplish this, has the following moti-

vation. Observe that the cut hyperplane is constrained to pass through
1
(n-1) linearly independent points of the form (0,..., ﬁj,...,O) for jed-{k}.

In order to uniquely define the cutting plane, we need to identify a suit-

able point X which has ik > 0. Now, according to Equation (5.2), this

cutting plane will need to support the set XS with each point of XS, being

h h

feasible to it. Hence, in order to determine - B’ we may hold the inter-~

k

, th .
cepts on the axes jeJ-{k} fixed and decrease the intercept on the k  axis

(increase “kh) until the hyperplane merely supports XS, at some point X with

h

ik > 0. This problem is mathematically stated below. Theorem 5.1 later

establishes that an optimal solution to this problem yields T = Ekh
Ekh maximize T
subject to m X, + _Z_ijj =1 (5.5)
jed
j#k
xeXS (5.6)
h

x, > 0 (5.7)
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Note that e is unrestricted, in sign. Now using FEquations (3.4), (3.5),

(3.8) and solving for LI through Equation (5.5), we may rewrite the above

problem as

X,
maximize i Z )
o e 3 %
j#k
X, gy
subject to z g (=) < = for i =1,...,m

X,
Jaleh » 2

jeJ I ¥y '
X,

(;i) > 0, X, >0

Finally, letting

X,
£ = Cié) and y, = —L for each jeJ {(5.8)
*k b
we obtain the following linear programming problem in [Ji = n variables
;gk}; maximize z(f,y) =& ~ z ;iy,
h jeg 3 i
ik
subject to 42 gijyj - giE < - Bk for i =1,...,m
jeJ
j#k
h
£~ ] ag’yj < ay
jeld
itk

£ > 0, Y > 0 for jeJ - {k}

Consider the following result

Theorem 5.1 1If Problem Lth is feasible, then it has an optimal solution

E’§j’ jeJ-{k} with £ < », Moreover, the optimal solution values of

Problems Lth and Problem th {defined by (5.2)) are equal.
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Proof: Note that the constraints of Problem Lth may be rewritten as
Z 8i:Y: giE <0 for i=1,...,m; - X aﬁy, + & < 0 and

jeg 1 jed
£, v > 0. Letting By i 1,...,m, v and B

Y = 1, with

1

k be the respective dual

variables associated with these constraints, the dual to Problem Lth

may be written as

DLth: minimize Bk .
subject to a?v - Z 8. .U, j_E for jeJ - {k} (5.9)
J j=1 % 3
h m
ay = 1By < By (5.10)
i=1
m
i=1
Y, u>0
Letting Bk denote the minimum value of Bk’ we will show that Bk = th'

We have from (5.2)

- N - .

L 'Z ﬂJxJ > 1 for each XEXSh (5.12)
jed
j#k

™k + ngvjxj =1 for some xsth (5.13)
j#k

Hence (5.12) is a valid cut for H = {h} in (1.2), and Theorem 2.1 asserts

~ ~

the existence of v > 0, My > 0 satisfying (5.9) through (5.11) for Bk = T

. - : . P y .. \ .
That is v, Hy and ﬂkh is feasible to DL‘kh' Thus Lth is bounded Hence,

Bk i_ﬂkh < o, Now let Y, My and Bk solve DLP Then, xsXSh implies

h- o - - -

Y la.y ~ L og.uidx, > [y - ] ogou.d
L . .

jeJ i=1 H7173 =ik
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Then noting (3.9} through (5.11), we get

B x + Jomx > 1 for each xgxsh {5.14)

; = - £am =
. Now if Bk < My from (5.13)

t
o

con;radlctlng (5.14). Hence Bk = T
Finally, since Lth is bounded, there exists an optimal extreme peoint

solution (E,;) with E finite. This completes the proof.

Corollary Let €’§j’ jeJ - {k} solve LP,. with £ < =, and with Ek as the

kh -
corresponding objective function value. Then, M = Ek’ Xy =-% and xj =-Ei
for jeJ-{k} solves th.
~%
It is easy to show that the following expedient for determining T of

Equation (5.3) through the solutions of Problems LP heH for a given ked,

kh’

is a valid scheme.

Step 1 Consider the cut (2.7) derived for the disjunction X€ U Sh.
, heH
heH be a "blocking hyperplanz" for the kth edge as defined in

Let

Section 4.

o]

Step 2 Solve Lth. If Lth is infeasible, then select any heH net con-

sidered thus far and repeat Step 2. If LP is infeasible for

kh
each heH, then x, = 0 for each xe |} XS, and the variable x, may
k heH h k
be disregarded from the problem. Otherwise, obtain an optimal
- - - —% -
S i 3 f = 1 =
solution value Tk I LY Ty terminate with Wk T

Otherwise, select another heH and rereat witlh the additional:

restriction that the objective value be greater than or equal to
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that of the largest Ekh value found thus far. 7Tf all heH

have been considered, then %: is given through Equation (5.3).

We remark at this point that the development of the present section
may be easily extended to a broader class of problems in which each of the
sets Sh’ hel may contain more than one constraint. This is accomplished
by simply writing the second constraint of Lth for each of the constraints
in Sh. Further, step 1 of the scheme discussed above may be started from an
arbitrary h or from one determined heuristically.

We also draw the reader's attention to a "linear programming approach" of
Glover [5] which may be used to determine a valid cut for the disjunction
xthHXSh. This formulation is similar in thrust to Problem DLth. However, its
motivation is to determine surrogate multipliers for simultaneously for each of

the constraint sets XSh, heH so that the resulting disjunctive cut derived

according to Theorem 2.1 supports the closure of the convex hull of the

set {x: xe |} XS}}. Further, the objective function used tc accemplish
1
heH

this minimizes .E ajw_ where Wj’ jeJ are the disjunctive cut coefficients
and aj, jeJd arejgiy suitable choice of positive weights.

Finally, we would like to mention that a forthcoming paper will
deal with the specialization and the computational aspects of applying

the techniques developed in this paper to a general class of linear com-

plementarity. problems.

6. Illustrative Examples

Suppose that we are given

S. = {x: -x, +x,>1, x>0} and S

1 1 2 = {x: =x

121 x> 0}

2

Consider the following three examples of the set X. (i) X = {x: le--2x2

< 1}
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(ii) X = {x: 2x1—x2 <1} and (iii) X = {x: 6x1—2x2 < 31,

These three cases are depicted in Figure 6.1. Also shown in this figure

are the respective best cuts available.

Insert Figure 6.1 here

Now, the cut (2.7) from the disjunction xe {J 8,  is 3 +x, > 1
heH -

Using the development of the previous section to improve the extension

corresponding to the variable X holding the other extensions fixed yields

the following problems. Note that h = 2 is selected at Step 1 in each case.

Example (i) Example (ii) Example (iii)
Problens maximize § - y2 maximize & - y2 maximize § - y2
Lth with )
k=1. h=2 subject to subject to subject to
2y2+§.12 y2+£,’ > 2 2y2+3€_>_6
£ <1 £ <1 £ <1
£,¥, 20 £,y, 20 £,y 20
Solution;
value 1/2 0 ~1/2
g 1 L 1
Y, 1/2 1 3/2

it may be easily seen that 7 1 < T in each instance. Further
WZ cannot be Improved in eacg case.  The corresponding best cuts arve

Example (i) le + x, >
>

1
!

Example (i1i)

Eaample (ii) 7 PN Y

v
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Progress Report on NSF Grant No. ENG 77-23683 on

""SOLUTION TO GENERALIZED LATTICE POINT
AND RELATED PROBLEMS BY DISJUNCTIVE PROGRAMMING"

July 1979
The following is the annual progress report covering the period May 15,
1978 to May 14, 1979 for Grant No. ENG~77~23683. The research deals with
Disjunctive programs, and the objective of the research is,

1. Study of deep cuts in Disjunctive Programming

2. Development of suitable cuts and solution procedures for GLP and
related problems, and their computational testing.

3. Development of finitely convergent algorithms.

1. PARTICIPANTS

In addition to the principal investigator, twO Ph.D. students namely
Mr. Hanif D. Sherali and Mr. Chung~Chi Liu have worked on the project for
the past year. While Mr. Sherali was a major participant, Mr. Liu was being
initiated to the subject area. The major results thus far as listed below.

2. SUMMARY OF PROGRESS

Bilinear Programming

The principal investigator had worked on this area during the past 3~4
years, and had developed a convergent solution procedure which had earlier
been published. However, this procedure was not finite. Using the results
of Disjuncture Programming, a finite procedure has been developed, and is
contained in a paper titled, "A Finitely Convergent Algorithm for Bilinear
Programming Problems using the Polar Cut and Disjunctive Face Cuts." The
paper has been accepted for publication with revisions in Mathematical Pro-
gramming (see Appendix A).

Generation of Deep Cuts

The question of a definition of deep cuts was addressed first. It was
proved that when each set in the disjunctive program consists of a single
constraint, one can specify the deepest-cut (under any criterion). Using
this powerful result, a subgradient optimization procedure was developed for
the general problem. A paper summarizing these results, and titled, "On the
Generation of Deep Disjunctive Cutting Planes'" has been submitted to Naval
Research Logistics Quarterly and is being reviewed. A paper on the same

subject was also presented at the Joint ORSA-TIMS conference at New Orleans
in May-June 1979.




Lecture Notes

To initiate new Ph.D. students a set of comprehensive notes were pre-
pared. The notes synthesized several different approaches, and as such has
appeal to researchers in this area. Among the publishers contacted,
Springer-Verlag has expressed interest in its publication. The permission of
NSF has been sought under our letter of June 28, 1979. (See Appendix B)

3. SUMMARY OF PROPOSED WORK

In our work thus far we attempted to develop deep cuts under suitable
criteria. During the coming year, we would like to address the question of
how to specify nondominated cuts. This is likely to yield simpler subpro-
blems and, therefore, more efficient algorithms. ‘The procedure will be tested
on a subclass of Generalized Lattice Point Problems, namely the Complementarity
Problem. At least two more papers are expected to be submitted to the refereed
Journals. In addition, during the coming year, the two papers and the mono-
graph already submitted for publication will also be revised and updated. We
hope these will be in print in 1980. We also expect to present two papers
at national technical conferences.

4. OTHER COMMENTS

Even though at the end of the second year, we expect at least 4 papers
and a monograph to be published, much need to be achieved in this area. Two
of the papers are strongly theory oriented and addresses the general problem.
These can be specialized to various problems. A proposal for the renewal of
the grant on this basis will be submitted soon. The monograph that is under
revision should help significantly in bringing:Ph.D. students to speed in
this area as there are no other formal texts or courses being offered at the
moment.
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APPENDIX A

05 March 1979

Professor C.M. Shetty ' -
School 6f Industrial & Systems Engineering

Georgia Instltute of Technology

Atlanta, Georgla 30332

Dear Professor Shetty:

This letter concerns your joint paper with H.D. Sherali
entitled "A finitely convergent algorithm for bilinear
programming problems using polar cuts and disjunctive
face cuts," submitted for publication in this Journal.

Please find enclosed a copy of the Associate Editor's
recommendation together with three copies of Referees'
Reports. In addltlon, you will also find enclosed two
annotated copies of the manuscript itself.

In brief, we are interested in publishing a substantial
revision of the manuscript. The advice of Referee #2
is particularly important.

Also, please find enclosed copies of Instructions to
Authors. Would you be kind enough to closely follow
the’ instructions contained therein.

I look forward to hearing from you.
Very sincerely yours,
- - n « N O -
Michel L. Balinski
MLB: jd
Enclosures: Associatée Editor's Recommendation
Referees' Reports (3)

Annotated Manuscripts (2)
Instructions to Authors (2)
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Asscceiste Zditor's RBacornendation

on the pzper ' .

C.M. Shetty and H.D. Sherali: A Finitely Convergent
Algorithm for Bilinear Programming Problems Using
Polar Cuts and Disjunctive Face Cuts

The paper seems to make a considerable contribution of high
technicality to the theory of bilinear programming, as the referees
write in their reports, so that it deserves publication in Mathematical
Programming. ' : ‘

However, before publication, the menuscript should be substantially
revisad and improved, with the comments from the referees, especially
those from Referee #2, seriocusly considered.
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APPENDIX B
SCHOGCL OF INDUSTRIAL AND SYSTEMS ENGINEERING

Atlanta, Grorgia 30332 (404) 8932300

June 28, 1979

Ms. Charlotte Raymond

Head, Section II

MPE/STIA Branch

Pivision of Grants and Contracts
National Science Foundation
Vashington, D.C. 20550

Subject: WNSTF Grant No. ENG77-23483
Dear Ms. Raymond:

The area of research of the subject grant, Disjunctive Prograc=ming, is

2 rather broad subject area, and related publicaitions have appeared in
literature dealing with discrete programming and monconvex prozramming.
To motivate Ph.D. students in this area, and also to consolidate results
published thus far and to record soxzs new fundamental results, a set of
attached notes coauthored with Mr. H. Sherali were prepared. '

It seems to us that the monograph will be of interest to the operatiomns
researchers, 'and we note from GPM 752 that the NSF Act “authorizes the
foundation to publish or to arrange for the publication of scientific
2nd technical information so as to further the full dissemination of
information of scientific value consistent with the national interest™.
The principal investigator has identified the following three publishers

who have 2 record of low cost and quick publication of research monographs.

1. Springer Verlag, New York, under the Lecture Notes in Economics and
Mathematical Systems series. Publication under this series is on the
basis of no royalty. Appendix & gives their publication Poliey.

2. Addiscn Wesley author Advanced Book Program. Appendix B gives soma
" background on publications in this series.

3. Wiley Interscience monographs.

Springer-Verlag have verbally indiczted intersst after a2 prelizinmary
review. All three publishers have sent the manuscript for a2 Jormal review.

~

The purpose of this latter is to seek NSF approval of publication of the

notes (in revised updated form) since it overlaps with research results
tnder the NST grant. Yo doubt an ackuowledgement as in GPM 732.4 will be
given. : '

S ZAD TIINIT Y INMSTITIITIAN:



.
' Ms. Charlotte Raymond

Page Tuwo
!, please contact Dr. Shetty at

I1f any further information is neadad
404/8%94-2315 or Ms. McHan at 404/854-4819.

Sincerely,

C. M. §getty
Principal Investigator
Professor, School of Industrial

and Systems Enginesring

Addressee: In duplicate
xc: William Brogan, NSF/ENG

Nancy S. McHan
Contract Administrator
Office of Contract Administration
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Mr. Edwin Zedlewski
N.I.L.E.C.J.

633 Indiana Avenue, N. W.
Washington, D. C. 20531
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%Lfﬁi Dear Ed:

—

‘_;:i The purpose of this letter is to formally summarize the progress

F—f; to date on Grant No. 78-NI-AX-0040 titled "Stochastic Modeling
A and Analysis of Crime," through March 1979.

<

During the first 11 months of the grant, a major activity has

been the development of the theory for multivariate time series
modeling for space-time systems. The enclosed 560-page manuscript,
titled "Spatial-Dynamic Modeling,'" fully documents this model-
building procedure along with detailed numerical examples of its
application. These models allow description of ome random vari-
able measured at n points in time over time. Some of the examples
include: modeling the total number of arrests for assault in
zones within Boston and the modeling of reported homicides in
seven major cities.

o r

Several software development activities for interactive graphical
anaiysis and modeling of univariate modeling, shift detection and
evaluative shift dynamics have been completed. These software
packages are now to be adapted to interactive computer graphics
capability. Expected delivery of the graphics equipment is now
May 1979. These tasks will be rekindled at that time. Software
for dynamic multiple interventions models has also been developed.
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Until the graphics equipment arrives development activities on
multivariate shift detection models will be initiated.
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1. TIntroduction
Thé research covered by this final report deals with Disjunctive
Programming. This is a broad subject area and related publications
have appeared in literature dealing with discrete programming and non-
convex programming, The specific objectives of the research are
1. Specification and development of deep cuts for disjunctive
programs,
2. Development of suitable cuts and solution procedures for
certain disjunctive programs, and their computational testing.,
3. Development of finitely convergent algorithms.
The research has resulted in the publications listed below.

a, Optimization with Disjunctive Constraints, Lecture Notes in

Economics and Mathematical Systems, No. 181, Springer-Verlag,

New York, September 1980.
Thesé notes were originally intended to summarize
published results strongly related to the research
topic to aid Ph.D, students interested in working -on
the research topic. In its final published form,
it is a self contained document going far beyond
the original objective., It brings together several
apparently dissimilar’approaches for handling programs
with logical constraints. It also covers the research
results obtained under the NSF Grant No. Eng-77-23683.

b. On the Generation of Deep Disjunctive Cutting Planes, Naval

Research Logistics Quarterly, 27, 453-475, September 1530C.

This paper addrecses the question of deriving deep cuts

for general disjunctive programs. Based on the works

of Balas, Glover, and Jeroslow it examines the set of




valid inequalities or cuts which one may derive in this
context, and defining reasonable criteria to measure
depth of a cut we demonstrate how one may obtain the
"deepest" cut., The analysis covers the case where each
constraint set in the logical statement has only one
constraint and is also extended for the case where
each of these constraint setsmay have more than one
constraint.

c, "A Finitely Convergent Algorithm for Bilinear Programming

Problems Using Polar Cuts and Disjunctive Face Cuts,"

Mathematical Programming, 19, 14-31, 1980,

This paper considers the bilinear program the application
of which are well known and discussed elsewhere. Using
the results of‘publication citied immediately above,

an improved cutting plane procedure is developed. Com-
putational results are presented which supports the use
of disjunctive cuts. An interesting thought pursued

in this study is that of developing finite schemes using

the notion of "

extreme faces" introduced by Majthay and
Whinston [9].
d. Nondominated Cuts for Disjunctive Programs and Polyhedral
Annexation Methods, Research Report J-79-28, School of
Industrial and Systems Engineering, Georgia Institute of -
Technology, Atlanta, Georgia, 1979 (submitted to Discrete
Applied Mathematics).

In this paper, we consider the generation of nondominated

cutting planes for linear disjunctive programs. We demon-

strate how the formulation of a disjunction affects the




strength of a cut derived from it, and show how one may
generate a nondominated cut and the point at which it
supports the convex hull of points feasible to the dis-~
junction. A simpler computational variation is also
suggested for a special case. 1In discussing this,
we provide some insights into Glover's polyhedral annexa-~
tion technique by demonstrating its relationships to
disjunctive programming methods.
e. A Finitely Convergent Procedure for Facial Disjunctive
Programs, Report J-80-~19, School of Industrial and Systems
Engineering, Georgia Institute of Technélogy,.Atlanta, Georgia,

1980 (submitted to Discrete Applied Mathematics)

This paper addresses an important special clsss of
disjunctive programs called facial disjunctive programs,
examples of which include the zero-one linear integer
p;ogramming problem and the linear complementarity
problem. Balas has characterized some fundamental
properties of such problems, one of which has been used
" by Jeroslow to obtain a finitely convergent procedure,
This paper exploits another basic property of facial
disjunctiﬁe programs in order to develop an alternative
finitely convergent algorithm.
Reprints/copies of the first three publications and copies of the
last two papers cited above have been sent with the final project report
(Form 98A).

Papers based on the research under this contract have been presented

at




1. Joint ORSA/TIMS Conference, New Orleans, May 1979

2. Joint ORSA/TIMS Conference, Washington, D. C., November 1979
3. Joint ORSA/TIMS Conference, Denver, May 1980

The research results have been discussed in détail in the research

monograph Optimization with Disjunctive Constraints published by Springer-

Verlag under Lecture Notes in Economics and Mathematical Systems, No. 181,

1980, Hence, in this report we will focus only on some important results

and their relevancy.

2. Deep Cuts and Their Generation

Consider a disjuctive program of the form

DP: minimize’ f(x) - (1)
subject to x £ X (2)
xe U S 3 -
heH

when X is a closed subset of the nonnegative orthant of En’ and each

Sh’ heH is of the form

8, = {x: APx z_bh, x > 0}, heH (4)

for some finite index set H = {1,...,h}?

The basic disfunctive principle due to Balas [1,2], Glover '[5]

and Jeroslow [6] states that for any Ah > 0, the inequality

h.t h h.t. h
sup (A ) A x> inf (A) b (5)
heH — heH




is a valid cut, Furthermore, if each S, is nonempty then for any valid

h

h
cut X > 7 there exists A > 0 such that (5) uniformly dominates

O!
TX > T
— 0
The questions that arises are
h .

a, Can we select A so that the resultant cut is in some sense
strongest?

b. How can we characterize the strength of the cut so that the
deepest cut coincides with the intuitive notions of a desirable
cut?

The above questions are explored in referemnces [10, 11]. From

among the alternatives, the distance from the current point to the non-

negative region feasible to the cut is shown to be preferable. Further-

more, if each S, consists of a single inequality, then the deepest cut

h

is provided by the following Theorem.

Theorem 1. Let

, x > 0} for heH

a. Then the euclidean as well as the rectilinear distance is

maximized by letting A? = 1/h for each heH to yield the cut

% : * max _h .
alj Xj > 1 where alj = hel alj for j =1,...,0 (6)

I~18

j=1

b. Define

minimum
h

= h.
i alj

¥  hoq
Y, > 0 {alj/alj} © heH




Then both the distance measures are maximized by letting

h _ _h P
Al = / Z Y1 for heH
peH
to yield the cut
E aly > 1 wher *x _max hohe =1 n (7)
j=1 1j xj - where a1j " heH “1j Yy tor Syt

c. Cut (7) uniformly dominates cut (6).

d. Cut (7) is a facet of |J S
heH

h so that it cannot be dominated.

Proof. See [11]
In the case where Sh consists of more than one constraint for
- some heH, a clear procedure for fimding the multipliers is not available.
In [11] a subgradient optimization procedure is suggested. But further

research is needed to answer the question satisfactorily,

3. Deep Cuts and Model Formulation

Now consider a disjunctive program where the constraints (2) and (3)

are explicitely stated in the form

: n
X = ix: 'Z gijxj i_gi for i = 1,...,m} (8)
i=1
“ 0 o -
Sh = {x: jzl aijxj‘i bi for i = 1,...,rh}, heH (2)

In section 2 we discussed how one may attempt to get a support to

the set |J S, in order to obtain a deep valid cut. However, since a feasible

h




point in X must also be contained in at least one of the set § heH,

h,

we must have

xe |J XS, where XS, = XM'S

(10)
heH h h

h.
It can easily be shown [10,13] that cuts generated by using the disjunction
(10) can be potentially much deeper than that available through the dis-

juction xe |J S

heH
sequent discussion.

he Such a cut is available by Theorem 2 below and the sub-

Theorem 2

Consider the disjunction xe |J XS, = |J {Xl]Sh} where

xeH xeH
: n

X and Sh are as defined in (8) and (9). The -Z T.X, > 1 is a nondominated
. =

cut deleting the current point X and supporting the set xe [J XS, if and

h

only if there exists (E""’;n) such that m, solves LP, below for k = 1

k k ;l . ’n'

LP. : minimize

k.
subject to
T
b hon T h
L Z Yy 34k ’z HiBip for each heH
i=1 i=1
T
h m .
T, > ) Y: a?_ -3 u?g,, for each j#k and each heH
T = Hoogm
LI g -
Z Y4 bi - X' W8 > 1 for each heH
i=1 i=1
h . : h .
Y5 >0 i-= 1,...,rh, heH, and uy > 0 i= l,:..,m heH

Proof, See [13]

LPk can be decomposed into several problem LP heH, defined below.

kh’




. . = . . - _ max -
It is shown in [13] that T will then be given by e = hen "kh where
Ekh is obtained by solving the following:
Lth: minimize Teh r
: P hon T .h
subject to L i‘-zl Yiagy T L HiBix
- ;h h h h
m,o> Y, a,, - ) wu,g,. for each j#k
ST R = T
r
h m
h h
L oviby = L ujey 21
i=1 i=1
h h
Y, u >0

Computationally, in order to generate a nondominated cut through
n
the use of Theorem 2, one may begin with a valid cut Z > 1 ob-

T X,
j=1 i3 N
tained through some judicious choice of surrogate multipliers, Then,

- holding (n-1) of the coefficients fixed in turn, one may attempt to

improve (decrease) the remaining coefficient, m  say, through Problem

k

LPk' Thus, essentially, one would solve Lth for heH and thereby compute

the new 7, . Of course, if for some Problem Lth, one obtains m, , equal

k kh

to the current ;k’ then clearly no further decrease in Ek is possible,

and so no additional pfoblems Lth need be solved.

It turns out that in the process of generating a cut in this fashion,

one also obtains thé point at which the cut supports the set |J XS In~

h
tuitively, if one considers the final cut obtained and holds (n-1) inter-

cepts fixed while varying the last intercept, then the linear program

LP seeks to increase the intercept on this axis such that at least

kh

one point in XS, remains feasible to the cut. This concept is formalized -

h




as Theorem 2,2 in [13]. The utility of such a point is that it is
likely to be a good quality feasible solution to DP and hence may yield
a strong upper bound on the problem., The likelihood of feasibility
comes from the fact that it is a point in the closure of the convex hull
. of points feasible to the disjunction xe | XSh, whereas the likelihood
of it being a good quality solution stemZE?rom the fact that it is in
the vicinity of the current super-optimal relaxation solution X.

It turns out that a computational variation of the above approach
for the special case where Sh consists of only a single constraint is

precisely the sequential polyhedral anmexation approch of Glover [5].

This is discussed in detail in [10] and [13].

4. Finitely Convergent Algorithms

In earlier sections we have discussed how one may generate valid
cutting planes for disjunctive programs, However, in common with other.
cutting plane algorithms, the implementation of this scheme is likely
to exhibit slow convergence. However, under certain special cases we
can generate finitely convergent algorithmsﬂ

Consider the disjunctive program

Minimize cX
subject to xeX = {x: Ax = b, x > 0}
xXeD =

n [u s.] ‘
heH ith . : - -

where ) .

8y = {x: dix Z_dio}, ith, heH

Thus, we require that for each heH a feasible point must belong to one

of the half-spaces S; for ith. If Xf]Si is a face of X for each ith,




10

heH, then the disjunctive program is called a facial disjunctive program.

A linear complementary problem, for example, can be posed as a facial
disjunctive program., Note that the problem under consideration can be

rewritten as

minimize cx subject to xeY = conv [X[ID].

Let us inductively define

k, =X

=
Il
L]
o>

n conv[U k1 Nix: dixidio}:| for h = 1,2,...,
1th

where h = |H|. Then, Balas [3] has shown that

Property 1: kﬂ =Y

Property 2: Extreme points of Y is a subset of the extreme points of X.

Jeroslow [7] uses the first property to develop a finitely convergent
algorithm for facial disjunctive programs. The method specifies conditions
on the cutting planes used. On the other hand, a finitely convergent
scheme can be specified using propery 2 [12],  In this case instead of
conditions on the cutting planes, we generate cuttiﬁg planes only at 1 -
extreme faces of X relative to the cuts generated thus far. This concept
is due to Majthay and Whinston [9]. We have implemented this scheme on bi-
linear programs where the requirement that the optimum is at ‘an extreme point

leads to a disjunctive statement. Computational results [12] indicate

that convergence is improved by the use of such disjunctive face cuts,
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