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PREFACE 

The disjunctive cut principle of Balas and Jeroslow, and the related 

polyhedral annexation principle of Glover, provide new insights into cutting 

plane theory. This has resulted in its ability to not only subsume many known 

valid cuts but also improve upon them. Originally a set of notes were written 

for the purpose of putting together in a common terminology and framework 

significant results of Glover and others using a geometric approach, referred to 

in the literature as convexity cuts, and the algebraic approach of Balas and 

Jeroslow known as Disjunctive cuts. As it turned out subsequently the polyhedral 

annexation approach of Glover is also closely connected with the basic disjunctive 

principle of Balas and Jeroslow. In this monograph we have included these results 

and have also added several published results which seem to be of strong interest 

to researchers in the area of developing strong cuts for disjunctive programs. 

In particular, several results due to Balas 14,5,6,7], Glover [18,19] and 

Jeroslow [23,25,26] have been used in this monograph. The appropriate theorems 

are given without proof. The notes also include several results yet to be 

published [32,34,35] obtained under a research contract with the National Science 

Foundation to investigate solution methods for disjunctive programs. 

The monograph is self-contained and complete in the sense that it attempts 

to pool together existing results which the authors viewed as important to 

future research on optimization using the disjunctive cut approach. However, 

we have not attempted to record and discuss all important known valid inequalities, 

and methods to develop them. We have also listed only a minimum of references. 

An interested researcher will find readily a larger and more meaningful list of 

references in [4,5,6,7,18,19,20,23,25,26]. 

In writing this monograph and in reporting the research results, the 

authors found the works of Egon Balas, Fred Glover and Bob Jeroslow fundamental 

and extremely thought provoking. These publications initiated this study, and 
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we are deeply indebted to them. We are also indebted to the National Science 

Foundation for supporting the research endeavor on Disjunctive Programming under 

their grant No. ENG 77-23683 and to Mike Thomas, Director of the School of 

Industrial Engineering at the Georgia Institute of Technology, for the support 

we have received in successfully completing this project. Finally, we are 

thankful to Mrs. Joene Owen for her cooperation and an excellent typing of this 

manuscript. 

Hanif D. Sherali 
School of Industrial Engineering 
and Operations Research 

Virginia Polytechnic Institute and 
State University 

Blacksburg, VA 24061 

C. M. Shetty 
School of Industrial and Systems 

Engineering 
Georgia Institute of Technology 
Atlanta, GA 30332 
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Chapter I 

INTRODUCTION 

1.1 	Basic Concepts  

A disjunctive program is an optimization problem where the constraints 

represent logical conditions. In this monograph we are concerned with such condi-

tions expressed as linear constraints. The methods associated with disjunctive 

programming are by no means novel. Some of the methods proposed over two decades 

ago to solve integer programming problems used cutting planes derived from logical 

statements implying integrality. It can be shown that these problems can be viewed 

as disjunctive programs and the cutting planes used in integer programming are 

special applications of the principal theorem in disjunctive programming. As amply 

demonstrated by the recent works of Balas, Clover and Jeroslow, the disjunctive 

programming approach has provided a powerful unifying theory of all cutting plane 

solution strategies. Furthermore, it has provided a completely different per-

spective to examine this theory and has enabled one to derive deeper insights into 

existing knowledge. In the exposition that follows, we will be presenting the 

existing and new thoughts on disjunctive programming so that a reader can readily 

understand the developments thus far, and appreciate the potentials for research 

in this area. 

Let us first introduce some fundamental concepts involve& in our investiga-

tion. By the term disjunctive program, we mean a linear or nonlinear program which 

contains logical conditions stated as linear constraints. In our context, logical 

conditions include the following operations, stated in terms of say, conditions 

A and B. 

(i) Conjunction - denoted by AAB, this asserts that both conditions A and 

B must hold. As an example, a polyhedral set may be viewed as a con-

junction of several linear inequalities or half spaces. 

(ii) Disjunction - denoted by A VB, this asserts that either condition A or 

B (or both) must hold. A common example of this, as mentioned above, 
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arises in linear zero-one programs. There, in the presence of the 

restriction 0 < x < 1 on each variable, one has the disjunction that 

either x < 0 or x > 1 must hold. 

(iii) Negation or Complement - denoted by Ti this asserts that condition A 

must not hold. For example, one might assert in some context that the 

total cost 2x1 + 3x 2 , say, must not exceed 7 units. Thus, condition 

A is 2x 1  + 3x2  > 7 and the relevant negation is 2x1  + 3x2 < 7. 

(iv) Implication - denoted by A => B, this asserts that if A holds, then B 

must hold. As an example one might say in some context that if a plant 

i is located at a certain potential site, then the total output from it 

must be at least p i  units. Letting y i  = 1 or 0 according as the plant 

i is located or not, and letting 	xij denote the total output from it, 

the implication condition is 

yi  = 1 => xij  > pi 

3 

Note that this implication is equivalent to the disjunction 

{y i  = 01 V {y  xij  > p i } 
J 

In general, A => B is equivalent to the disjunction AVB. 

Hence, examining the above logical conditions, one may note that conjunctions and 

negations stated in terms of linear inequalities lead to polyhedral sets which 

are, as it is well known, convex. Moreover, implications are essentially dis-

junctions as shown above. Now, it is the operation of disjunction which leads to 

nonconvexities and renders the problem of interest to us. 

Let us now proceed to formulate a disjunctive program in a general setting 

and then cite and briefly examine several important problems which are special 

cases of this problem. The notations we use throughout this study are, as far as 

possible, consistent with those in existing literature. 

Consider the following constraint sets S h , where h £ 11, an index set which 

may or may not be of finite cardinality. 
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Sh = {x: Ahx > bh , x > 0), h EH 

In terms of the sets Sh , one may state a disjunction 

x E U Sh or simply V {Ahx > bh, - A 
hEH 	 heH 

(1.2) 

This disjunction may be imbedded into a general problem called a disjunctive pro-

gram as follows: 

DP: 	 minimize 	f(x) 

	

subject to 	x E X 

x E U {Ahx > bh , x > 
hEH 

where f: Rn  R is lower semicontinuous and where X, is a closed subset of the 

nonnegative orthant of Rn . 

The application of disjunctive methods to solve problems of type DP above, 

involve the derivation of suitable cutting planes or valid linear inequalities 

defined as follows: 

Definition - An inequality nx > no  is said to be a valid inequality for the dis- 

junction x e U Sh if 
hEH 

xeS= 	U Sh implies ffx > We 	 (1.3) 
BEH 

Before proceeding any further, let us pause and examine some special cases 

of Problem DP which have been of interest to researchers. These problems, dis-

cussed along with their applications in the next section, include the generalized 

lattice point problem, the cardinality constrained linear program, the binary 

mixed-integer linear program, the extreme point optimization problem, the linear 

complementarity problem, and numerous others. Later in Chapter VIII we will discuss 

in some detail certain specific problems viewed as disjunctive programs. 
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1.2 Special Cases of Disjunctive Programs and Their Applications 

1.2.1 The Generalized Lattice Point Problem  

This problem may be stated mathematically as follows 

GLPP: 	 minimize 	ctx 

	

subject to 	v = d - Dx > 0 
	

(1.4) 

u = b - Ax > 0 

{ and at least q components of u, corresponding to linearly 
(1.5) 

independent rows of A, must be zero. 

Note that the superscript t will, unless otherwise stated, be used to denote the 

matrix transpose operation. Here, we assume that D is of dimension mxn and A is of 

dimension pxn. Now let us take different combinations of q out of p components of 

u which correspond to linearly independent rows of A. Thus, suppose that there 

are h < (Pq) such combinations and let H denote the index set (1,...,F0. For any 

such combination, say hEH, define the set 

Sh = 	ui  = 0 if i is the index of one of the q components of 

u corresponding to h}, for h EH 	 (1.6) 

Then, Problem GLPP may be restated in a form, usually referred to as the 

disjunctive normal form,  as follows: 

	

minimize 	ctx 

	

subject to 	v = d - Dx > 0 

u = b - Ax > 0 

U E U Sh 
	

(1.7) 
hcH 

Note that constraints (1.5) or equivalently, constraint (1.7) with S h  defined in 

(1.6), essentially states that u must be an interior point with respect to at most 

a p-q dimensional face of the set U = {u: u i  > 0 for each i}. We remark that one 

may relax constraint (1.5) to simply assert that at least q of the p components 
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of u must be zero, whence, h = ( P). 

Problem GLPP has been used as a special subroutine for minimizing a concave 

function over a convex region and for determining the most degenerate solution to 

a linear programming problem. In the latter context, such a solution is desirable, 

for example, in a fixed charge problem which has large fixed costs and linear 

variable costs. In this case, the most degenerate linear programming solution 

yields a good lower bound and/or starting point for any other scheme. Among 

other applications, the multiple choice problem is of significant importance. 

1.2.2 The Cardinality Constrained Linear Program  

This problem is a special case of the generalized lattice point problem, 

and may be stated as follows, 

CCLP: 	 minimize 	ctx 

	

subject to 	Dx < d 

x > 0 

lx1
+ 	

.—q 
	

(1.8) 

where D is of dimension mxn and lx1 +  denotes the number of positive components 

of the vector x. Again, as before, we may transform constraint (1.8) to restate 

the problem in the normal disjunctive form. For this purpose, define the index 

set H = {1,...,( rci)l and let each hell correspond to q particular components of x 

such that set H exhausts all such combinations. Hence, define 

Sh = {x: the q components of x corresponding to h are equal to 

zero) 	 (1.9) 

Thus, Equation (1.8) may be replaced by 

xs U Sh 
	 (1.10) 

heH 

As an application, one may consider the manufacture of several (n) items 

at a production facility and let x i  denote the volume of production for item or 

product i, i=1,...,n. The constraints Dx < d may represent resource limitations 
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and the disjunctive constraints (1.8), or equivalently (1.10) with (1.9), may 

restrict the production to at most (n-q) items. 

In a like manner, one may be concerned with the location of (n-q) facili-

ties at a subset of a number of potential sites. These facilities are required to 

satisfy a certain demand. The problem then may be to optimally locate these 

facilities and determine their capacity so as to minimize costs while satisfying 

demands. 

There is a generalization of Problem CCLP known as the Element Constrained 

Linear Program (ECLP). Here, decision variables y i , 1=1 	n are defined 

according to 

1 	if xi  > 0 

	

yi  = 
	

for i=1 	 
0 otherwise 

The decision vector y=(yi ,...,yn) then is restricted according to a constraint 

set Fy < f. Thus, Problem CCLP is a special case of Problem ECLP with Fy < f 

denoting the single constraint 

y i  < n-q 
i=1 

Hence, in the first example cited above for Problem CCLP, one may have certain 

contingency constraints between products or certain products may be mutually 

exclusive. Such interactions between products would convert the problem into 

an element constrained linear program. 

1.2.3 The Binary Mixed Integer Linear Program  

This problem is also a special case of Problem GLPP. It may be formulated 

mathematically as follows: 

BMILP: 	minimize 	cixi  + c 2x2  

	

subject to 	01x1  + D 2x2  < d 

x1  > 0 

x
21 = 0 or 1 for each i=1 	n 	 (1.11) 



Hence, D is of dimension mxn and A is of dimension (pxn). Let us attempt to 

re-write Equation (1.13). Consider any point x EX and identify those components 

xj  of this point x which satisfy xj  = 0. Let J = {j: xj  = 0) Q: {1 	n}. Now 

construct a matrix I whose rows are comprised of unit vectors e j , each row 

corresponding to a j EJ, where ej has all components zero except for a unity in 

position j. Then consider the matrix (1 . Then one may easily see that a 

point x EX is an extreme point of X if and.onty if (
A 
 has rank n. 

Thus, to write Problem EPP in a disjunctive normal form, consider an 

7 

where D 2  is of dimension mxn. To write Problem BMILP in the disjunctive normal 

form, note that (1.11) is equivalent to the following constraints: 

x21 ui = 1 	i=1 	 

x2i , ui 
	 1=1 	 

{At least n components of (x 2 ,u) are zero) 	 (1.12) 

Now one may transform Equation (1.12) in a manner identical to that used for 

transforming (1.8) to (1.10) through the definition (1.9). Problem BMILP has 

several well known applications such as the multiple choice programming problem, 

the knapsack problem, the fixed-charge location-allocation problem, and others. 

1.2.4 The Extreme Point Optimization Problem 

This problem is closely related to Problem GLPP, and may be stated as 

follows: 

EPP: 	minimize 	ctx 

subject to 	Dx = d 

x is an extreme point of P = {x: Ax.= b, x > 0} 
	

(1.13) 

enumeration of all subsets Jh of the set {1,...,n} such that if one constructs 

a matrix Ih for each such J h , where Ih has rows comprised of vectors e j  for jEJh, 

then the matrix ( T
A  
h) has rank n. Further, let H contain the indices h correspond-

ing to such sets Jh . Then let us define 
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Sh  = 	xj  < 0 for each j E Jh, x > 01 for each h E H 	(1.14) 

Using (1.14), we may now re—write (1.13) to formulate Problem EPP in a disjunctive 

normal form as follows: 

c tx  

Dx d 

Ax = b 

x E U Sh  
hEH 

Applications of Problem EPP include several bilinear programming problems such as 

the location—allocation problem using rectilinear distance measure. The problem 

of minimizing inventory and changeover costs for a single machine scheduling 

situation has also been formulated as Problem EPP. Another application is its 

use as a subroutine in a cutting plane procedure to find an extreme point of a 

set which is also feasible to a system of cuts generated at any stage. 

1.2.5 The Linear Complementarity Problem  

This problem may be stated mathematically as 

subject to 

minimize 

c tx  

Dx = d 

x > 0 

xpxq  = 0 for each (p,q) E Z 

LCP: 	 minimize 

subject to 

where Z is an appropriate set of two—tuple indices. Now, consider the construc— 

IZI 
tion of 2 	distinct sets Jh , h EH = {1,...,2 1z1 }, where each Jh  has exactly one 

of the indices p,q for each (p,q) E Z. Define 

Sh = {x: xj  < 0 for j E ..T h , x > 01 for each h E H. 

Then Problem LCP may be restated in the disjunctive normal form as 
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minimize 	ctx 

subject to 	I)x = d 

x E U Sh 
hEH 

When the cardinality of the set H is small, Problem DP can easily be 

solved using the solution of IHI problem as shown by Theorem 1.1 below. When 

this direct approach is not available, we need more sophisticated tools. This is 

the subject of discussion over the next few chapters. 

Theorem 1.1. 

Consider Problem DP stated above and assume 1111 < m. Define problems 

DPh : minimize {f (x) : x E X 11 Sh } 	for each h E H 	(1.15) 

Let xh solve DPh . Then xh* solves DP, where 

f(xh*) = minimum 	{f(xh)} 	 (1.16) 
11E11 

Proof. By contradiction, suppose x* solves DP with f(x*) < f(xh* ), and 

assume that X* E Sit  for some 1-; E H. Since x* is feasible to DPI; and x 11  solves 

DN, we must have f(x*) > f(xh) > f(xh* ), a contradiction. This completes the 

proof. 

Essentially, Theorem 1.1 involves the solution of 1111 problems in order 

to recover an optimal solution to Problem DP. This may be a viable approach for 

some special problems for which the cardinality of H is not too large. For 

example, one may be considering a production planning problem in which each set 

Sh  may represent the restrictions on the process accruing from the implementation 

of production method h E H. On the other hand, for zero--one linear integer 

programs for example, the application of Theorem 1.1 is tantamount to total 

enumeration and for a complementarity problem which requires, say, u i vj  = 0 for 

j=1 	m, one would need to solve 2m  problems to obtain an optimal solution. 

It is for the solution of such problems, that we devote this study. 
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We now discuss some basic concepts and principles involved in disjunctive 

programming methods. An attempt is made in this chapter to present thoughts 

and ideas and to derive results so that the development is intuitively appealing. 

Thereafter, we discuss in a general context, the derivation of deep disjunctive 

cuts and also look at certain specializations. We then digress momentarily to 

demonstrate how the depth of cut that can be derived depends upon the formulation 

of the disjunctive statement. Based on this exposition, we discuss procedures 

for strengthening given valid cuts. This is then related to the supports and 

facets of the convex hull of feasible points. Following this, we show that dis-

junctive cutting planes subsume all other types of cutting planes by recovering 

several known cutting planes from a general form of a disjunctive cutting plane. 

Finally, we treat special cases of disjunctive programs. First, we demonstrate 

how the notion of the convex hull of feasible points admits two finitely con-

vergent procedures for a special class of disjunctive programs known as facial 

disjunctive programs. Thereafter, we discuss, some specific applications. 

1.3 Notes and References  

Owen [29] considered a class of problems where at least one variable from 

each of several sets is required to be equal to zero. Applications of this 

formulation include integer programming, the linear complementary problem and 

the concave minimization problem. Since valid inequalities were derived from 

certain logical disjunctions, Owen called these valid inequalities disjunctive  

constraints.  He noted that the cuts derived are indeed special cases of valid 

inequalities derived by Glover and Klingman [15] in the context of generalized 

Lattice Point problems. In his paper, Owen has really given a primitive algorithm, 

but the spirit of the approach is that of the cutting plane algorithms proposed 

by Gomory, Balas, Young and others for Integer Programming, by Tui, Balas, and 

Ritter in the context of nonconvex problems with linear constraints. It is 

covered by the general theory of convexity cuts of Glover [16,18], and overlaps 

with the work of Balas [2,3] and Burdet [10,12] using polarity. 
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An excellent survey of disjunctive programming principles and applications 

in the spirit of this chapter may be found in the several works of Balas [6,7], 

and Jeroslow [23,25]. 



Chapter II 

BASIC CONCEPTS AND PRINCIPLES 

2.1 Introduction  

In this chapter, we will lead the reader to the most important and 

fundamental results in disjunctive programming. In order to enable the reader 

to appreciate the subject matter and to gain better insight into it, we will 

develop these results from first principles through well known facts. Toward 

this end, let us commence our discussion with the following well known concept. 

2.2 Surrogate Constraints  

Let us consider the following constraint set 

S 1  = 	y a..x. > b. for each i Q 	x > 01 j — 1  
jEN 

where N = 	is index set for the x—variables and Q l  is an index set for 

the linear constraints in S l  aside from the nonnegativity restrictions. Now 

let us multiply each of these linear constraints by corresponding nonnegative 

parameters X., ieQ i . Then clearly, X E Si  implies that 

Aiaii xi  > Aib i  for each i.E Q 1 	 (2.2) 
jEN 

By simply summing up the constraints (2.2), the following well known result is 

easily established. 

Lemma 2.1  

Let S l  be the constraint set of Equation (2.1). Then x E S i  implies that 

X 	X 	X.a. 	x. > 	X 	X
i i
b 	 (2.3) 

{ 
jEN 	i_EQ1 1 1,j 
	j 	

2
-, 

Q1 

for any set of nonnegative parameters X i , i EQi. 

Let us consider the converse of Lemma 2.1. In doing so, we are addressing 

the following question. Suppose that we are given an inequality ux > u o  which 

is implied by the constraint set S l . That is, xES implies ux > u o . Then, does 

(2.1) 
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there exist a surrogate constraint of the form (2.3) obtained through suitable 

parameters Xi  > 0, i EQ 1  such that this surrogate constraint uniformly dominates 

the given inequality? The answer is yes. We are able to specify parameters 

Xi  > 0, i EQ1  such that if x satisfies (2.3) using these parameters Xi > 0, 

is Qi , then x must satisfy 7x > 70 . We establish this result below and then 

illustrate it through an example. 

Lemma 2.2  

Let 7x > 70  be any inequality implied by S i  of Equation (2.1) and suppose 

that S i  is consistent. Then, there exists a set of nonnegative multipliers 

X i , iEQ1 such that 

F a la i . _< 7j  for each j E N and 70  < X Xib i  
iEQ1 	 isQl 

(2.4) 

Proof. Consider the following linear program P and its dual D 

minimize 	X 7 	 1 	1
.x.: y a..x. > b., isQi , x > 0} 

BEN 	jEN 	
3  — 

 

minimize 	X 7j xj } 

xCS 1 	jEN 

maximize 	X Xib i : 	Xiaij  < 7j , j E N, X i  > 0} 

1-01 

for each i E Q 1  

Now, since x E S 1  implies X Tr i xi  > 7 0 , the primal problem is bounded 
jEN 

below by 70  and hence the feasible region of D is non-empty. Further, since 

S i  is consistent, there exists an optimal solution to Problem D. It is easy 

to see now that the required result holds for any set of dual optimal variables 

Xi , i C Qi. This completes the proof. 

Let us illustrate the above result with an example. Consider 

S i  = {x: x1  + 2x 2  > 2, 3x1  + x2  > 3, x1 ,x2 > 0} 

P: 

D: 



(4/5,3/ 

1♦  
7 

xl+x 2" 1 	."7=-40% 	 x 1-Fx 2= -5- 

x 2 
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Now xl  + 2x2  > 2, xl , x2  > 0 imply that 2x 1  + 2x2  > 2 or that x l  + x2  > 1. 

Alternatively, 3x 1  + x 2  > 3, x1 , x 2  > 0 imply that 3x1 + 3x 2  > 3 or that 

xi + x2 > 1. Hence, the inequality x i  + x2 > 1 is implied by S i . Can we find 

a surrogate constraint which uniformly dominates this constraint? For this 

purpose, we consider Problem D in the proof of Lemma 2.2, namely, 

D: 	 maximize 
	

2X1  + 3A2 

subject to X1 4- 3X 2 1 

 2A1  + A 2  < 1 

A1, X2 

One may readily verify that A l  = 5, A 2  = 5 solves this problem. The 
surrogate constraint resulting from this is x i  + x2  > 4 . It is also interesting 

to note that this was a unique optimal solution to Problem D above. Thus, in 

this case what Problem D essentially did was to translate the cutting plane 

xi + x2  > 1 parallel to itself until it supported the feasible region Si. 

This is illustrated in Figure 2.1 below. 

Figure 2.1. Dominance of a Surrogate Constraint 
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In fact, if ffx = 110  does not support S 1  and Trx > 10 is a valid inequality 

for S 1 , then clearly, xe S i  implies 7x > 70 . Thus, if one solves the problem 

P defined in the proof of Lemma 2.2 and obtains therefrom -110  = minimum (11x) 
xES 1  ^   

then 7 > 70 	hence , 7x > 7 

• 

strictly dominates 7x > 7o- Moreover, Trx > 7 
0 	0 	0 	0 

is a valid inequality for S 1 . Thus, Lemma 2.2 would then yield a surrogate 

constraint which uniformly dominates Trx > Tr o . In other words, non-dominated 

surrogate constraints support S 1 . 

2.3 Pointwise-Supremal Cuts  

We now proceed to recall another well known, pertinent concept. Suppose 

that the sets Sh of Equation (1.1) are comprised of a single linear constraint 

and are given by 

Sh 	 > bi, x > 0 for each h E H 
	

(2.5) 
jcN 

We use the above notation so as to be consistent with the case wherein each 

Sh, h EH may contain several constraints as introduced later. We are considering 

at this point the disjunction x C U Sh. 
hell 

For example, let S I  = {x: 2x1 - 3x2  > 5, x > 0} and S 2  = {x: xl  + 3x2 

 > 4, x > 0} and consider the statement that x satisfies S1  or 5 2 . Then, it 

is a well known fact that x must satisfy [max12,11]x1 + [max{-3,3}]x 2  > min{5,4} 

or 2x1  + 3x2 > 4. Thus 2x 1  + 3x 2  > 4 is a valid inequality for the disjunction 

x e U Sh  since it is implied by each of S l  and 	This This fact is generalized 
hcH 

and formalized below. First consider the following definition. Then, Lemma 

2.3 establishes the required result. 

Definition  

Consider a set of vectors {vh : hell} where for each h EH, vh= 	..... 	vn  . 

Then, the pointwise supremum of this set of vectors, denoted by sup v h , is a 
hEH 

vector v=(vi ,...,vh) with components 

v=supremum{v1.1 }for j=1 ..... n 
hell 
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In a like manner, we define the pointwise infimum of a set of vectors. 

Lemma 2.3  

Consider the constraint sets Sh , hEH as defined in Equation (2.5). 

Then, for the disjunction x C U Sb , the following inequality is valid. 
haH 

X y.x.>yo , where Y = sup 141, y 0  = inf {bi} 
jaN 	 heH 	" 	hell 

(2.6) 

Proof. Consider any R e U S h . Hence, there exists an l-; EH for which 
hall 

^ 	̂ 
ah R 	bh 3-c  > 0  
lj j 	1 ,  

jEN 

This implies that 

L 	- 	 h 

	

X yi Xj  = y Isup 	
J 	

L alj xj 	bi 	inf (bi ) = yo  
jaN 

	

JaN hell 	 JEN 	 hall 

and the proof is complete. 

We will now put Lemmas (2.1), (2.2) and (2.3) together to show that this 

leads to the fundamental result of disjunctive programming. 

2.4 Basic Disjunctive Cut Principle  

Suppose that we have constraint sets of the form (1.1), that is. 

Sb  = 	L ai
h
j xj  > b i  for each iaQh , x > 0 , hCH 	(2.7) 

jaN 

where Qh  is an appropriate index set for the constraints in S b , hall. 

Consider the disjunction x C U Sh . Let us now use our discussion in 
hall 

the two proceeding sections to derive valid inequalities for this disjunction. 

First of all, note that when each Sh , h C H has only a single linear 

constraint, then from Section 2.3 we are able to derive valid inequalities for 

the disjunction x e U Sh. Hence, let us use surrogate constraints to trans- 
hell 

from the given sets Sb  into singleton constraint sets and then use the 

concepts of Section 2.3. 
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More specifically, let A ll, i EQh , hEH be any set of nonnegative para- 

meters. For each h EH, let us use the corresponding multipliers Ai,i E Q h , and 

from the surrogate constraints 

Y I I Allailj   xj  > 	Allbl; for each h EH 
jeN 	 iCQh 

Next, let us define sets Sh , h E H as follows 

Sh = {x: Equation (2.8) is satisfied, x > 

Now clearly, x E S h  implies that xe .gh. Hence, the disjunction x E U S h  
hEH 

may be replaced by the (weaker) disjunction x e U Sh. But then, from 
hell 

Lemma (2.3), valid inequalities for the latter disjunction are of the form 

Q L 
[sup 	X Xiai  )1 xj 	

iE Qh 
 inf I 	Xhibhil 

jEN hcH i_EQh 	 hEH  

This result is known as the forward part of the Basic Disjunctive Cut Principle. 

To arrive at the converse statement, consider any valid inequality X IT.x. > 
jeN 

implied by x E U Sh, and assume that each S h  is consistent. Thus, since 
hcH 

x E Sh  implies x E U Sh , then 'ix > 70  is a valid inequality for each S h , h C H. 
hcH 

Now, applying Lemma 2.2 for each h EH, we may hence assert that there exist 

nonnegative parameters Al, 'cc: 1  such that 

L xhi  iah 	J 7 for each j EN and 70  < X Aih  b ih  for each h EH 

l icQh 	 icQh 	JJJJ 

This in turn implies that 

sup [ 	Ahah  1 < 7 for each j EN and if < inf 	y 	 (2.11) 
hcH ieQh  i ij — 	 0 

hEH iEQh  
— 	 i 

This result is known as the reverse part of the Basic Disjunctive Cut Principle. 

Hence, the forward part gives us a set of valid inequalities for the disjunction 

x e U Sh , one for each choice of A
:1 ieQh ,hcH. The reverse part then 

hEH 

(2.8) 

(2 .9) 

(2.10) 
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asserts that if each Sh  is consistent, then any valid inequality may be uniformly 

dominated by a disjunctive cut of the type (2.10). These results are stated 

formally below. 

Theorem 2.1 (Basic Disjunctive Cut Principle)  

Let Sh , hEH be constraint sets given by Equation (1.1). Here, IHI 

may or may not be finite. Suppose that at least one of the linear inequality 

systems Sh, h EH must hold. Then, for any choice of nonnegative vectors 

A
h 

= (X, i E Qh), the inequality 

[sup (Xh )
t Ah ] 	inf (Ah )t bh 

hEH heH 

is a valid disjunctive cut, where the superscript t denotes the transpose 

operation. 

Furthermore, if every system Sh  is consistent, then for any valid 

inequality y 7.xj  > 
0' there exist nonnegative vectors X

h , h EH, such that 
jEN 

7 < inf (Xh ) tbh and for each j EN, the jth component of sup(X
h

)
t
A
h 

does not 
0 — 

hEH 	 hEH 
exceed n j  . 

Thus far, we have demonstrated that (2.10) yields valid inequalities 

with no mention being made regarding the selection of values for the parameters 

h 
Ai , i E Qh , hE H. This is the subject matter of the next chapter. 

2.5 Notes and References  

The basic disjunctive cut discussed in Section 2.4 is due to Balas, 

Glover, and Jeroslow. The forward part appears in Balas [4,6] and the 

converse in Jeroslow [25]. The same result in a different setting was given 

by Glover [18,19]. 



Chapter III 

GENERATION OF DEEP CUTS USING THE FUNDAMENTAL 
DISJUNCTIVE INEQUALITY 

3.1 Introduction  

Recall from Chapter I that our motivation in using disjunctive programming 

methods is to aid us in solving nonconvex problems of the type 

DP: 	 minimize 	f(x) 

	

subject to 	x c X 	 (3.1) 

x e U Sh 	 (3.2) 
heH 

where f: Rn  R is lower semicontinuous, X is a closed subset of the nonnegative 

orthant of Rn  and each Sh , h EH is given by Equation (1.1). 

Adopting a relaxation strategy to solve Problem DP suppose we relax con-

straint (3.2). If a solution to the resulting problem is feasible to (3.2), then 

it solves Problem DP. Otherwise, we have a point infeasible to the disjunction 

(3.2). We thus derive a cut which is valid in the sense that it deletes the 

current point, but deletes no point satisfying (3.2). We add this inequality to 

the relaxed problem and update the current solution. Thus, at any stage, we 

solve the problem to minimize f(x) subject to x E X and x satisfies the linear 

disjunctive inequalities or cuts generated thus far. The procedure terminates 

when a solution to such a problem satisfies (3.2). 

Now in Chapter II we demonstrated that (2.10) defines valid cuts for the 

disjunctive statement (3.2). Given the current point infeasible to (3.2), we 

now address the question of selecting nonnegative values for the parameters 

Ah icQh' hcHin the inequality (2.10) so as to derive a deep disjunctive cut. 

We will be devoting our attention to the following two disjunctions titled DC1 and 

DC2. We remark that numerous disjunctive statements can be cast in the format of 

DC1 or DC2. 
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DC1• 

Suppose that each system S h  is comprised of a single linear inequality, 

that is, let 

n 

	

Sh = x: 	a
h
j  xj  > b

h 
, 	> 0) for hEli={1 	 l 	1  hl 	(3.3) 

j=1 

where we assume that h = IHI < co and that each inequality in S h , h EH is stated 

with the origin as the current point at which the disjunctive cut is being 

generated. Then, the disjunctive statement DC1 is that at least one of the sets 

Sh, heti must be satisfied. Since the current point (origin) does not satisfy 

this disjunction, we must have 13'1 > 0 for each hell. Further, we will assume, 

without loss of generality, that for each h EH, a li  > 0 for some jE{1,...,n} 

or else, Sh  is inconsistent and we may disregard it. 

DC2: 

Suppose each system Sh  is comprised of a set of linear inequalitites, that 

is, let 

1  n 

	

L h 	h 

3-J J 	1   
Sh  = x: L a. .x. > b• for each i E Qh , 	x > 0} for hell={1 	la (3.4) 

j=1 

where Oh , h EH are appropriate constraint index sets. Again, we assume that 

h = IHI < Po and that the representation in (3.4) is with respect to the current 

point as the origin. Then, the disjunctive statement DC2 is that at least one of 

the sets Sh, h E H must be satisfied. Although it is not necessary here for b i > 0 
for all i E Qh one may still state a valid disjunction by deleting all constraints 

with b i  < 0, i EQh  from each set S h , h E H. Clearly a valid cut for the relaxed 

constraint set is valid for the original constraint set. We will thus obtain a 

cut which possibly is not as strong as may be derived from the original constraints. 

To aid in our development, we will therefore assume henceforth that b i > 0, i E Qh , 

h e H. Figure 3.1 below illustrates the possible weakening of the cuts derived 

by such a deletion of constraints. Observe that since a valid cut defines a 

closed half—space which contains U Sh , this half space must also contain the 
hEH 



convex hull of the new U S h  after deletion of 
hell 

constraints 1,2,3 and 4 

>», convex hull of the original 

U Sh 
heH 

••••••„ 
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the closure of the convex hull of U S h . Since the closure of the convex hull 
heH 

of the union of the sets S h , h eH resulting after the deletion of the constraints 

as above contains the closure of the convex hull of the union of the original 

sets Sh, heH, the family of valid cuts derived by the new disjunction are a 

subset of those that are valid for the original disjunction. Incidentally, one 

may also note that facets of the closure of the convex hull of feasible points 

are desirable deep cuts. 

Before proceeding with our analysis, let us briefly comment on the need 

for deep cuts. Although intuitively desirable, it is not always necessary to 

seek a deepest cut. For example, if one is using cutting planes to implicitly 

search a feasible region of discrete points, then all cuts which delete the same 

subset of this discrete region may be equally attractive irrespective of their 

depth relative to the convex hull of this discrete region. On the other hand, 

if one is confronted with the problem of iteratively exhausting a feasible region 

which is not finite, then indeed deep cuts are meaningful and desirable. 

Figure 3.1. Formulation of the Disjunction DC2 



4,  xI 

x2 x 2 

criterion 
values 

4 

criterion value for 

1'41;  either cut 

(a) (b) 

Figure 3.2. Recognition of Dominance 
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3.2 Defining Suitable Criteria for Evaluating the Depth of a Cut  

In this section, we will lay the foundation for the concepts we propose to 

use in deriving deep cuts. Specifically, we will explore the following two 

criteria for deriving a deep cut: 

(i) Maximize the euclidean distance between the origin and the nonnegative 

region feasible to the cutting plane 

(ii) Maximize the rectilinear distance between the origin and the nonnegative 

region feasible to the cutting plane. 

Let us briefly discuss the choice of these criteria. Referring to Figure 

3.2(a) below, one may observe that simply attempting to maximize the euclidean 

distance from the origin to the cut can favor a weaker cut over stronger cuts. 

However, since one is only interested in the subset of the nonnegative orthant 

feasible to the cuts, the choice of criterion (i) above avoids such anamolies. 

Of course, as Figure 3.2(b) indicates, it is possible for this criterion to be 

unable to recognize dominance and treat one cut and another one which dominates 

it as alternative optimal cuts. 
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Let us now proceed to characterize the euclidean distance from the origin 

to the nonnegative region feasible to a cut 

zi xi  > z0 , where z0  > 0, zj  > 0 for some j6{1,...,n} 
j=1 

The required distance is clearly given by 

0e = minimum {1Ix  C
n 

 z.x. > z0 , x > - 0 ,  - 
j=1 

where Ilxll = 	L  x. . Consider the following result 
j=1 

Lemma 3.1  

Let 0
e 
be defined by Equation (3.5) and (3.6). Then 

0 - 

e  

z0  
(3. 7) 

 

where, 

Y= 	yn), yj  = maximum {0,zi }, j=1 	n 	 (3.8) 

z  Proof.  Note that the solution x* - 	°  y is feasible to the problem 
zo 	 (11 Y11 2 ) 

in (3.6) with 	x*II = 	. Moreover, for any x feasible to (3.6), we have, 

11Y11 
20 

This completes < 	Z.X. < 	yix. 	
Y
—  H Y 11 114 , or that, 11 x 11> —

II II — j=1 	j=1 

the proof. 

Now, let us consider the second criterion. The motivation for this 

criterion is similar to that for the first criterion and moreover, as we shall 

see below, the use of this criterion has intuitive appeal. First of all, given a 

cut (3.5), let us characterize the rectilinear distance from the origin to the 

nonnegative region feasible to this cut. This distance is given by 

(3.5) 

(3.6) 
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0
r = minimum {1.1: y .. 4 	.0, . > 

j=1 3 

where lx1 = yIxj l. Consider the following result. 

Lemma 3.2 

Let O r be defined by Equations (3.5) and (3.9). Then, 

zo  
O = — where zm  = maximum z 4  
r Zm  j=1 	n 

Proof. Note that the solution x* = ... 0) with the m th  z 'm  " 

component being non-zero, is feasible to the problem in (3.9) with lx*I = 7,zi91 -1  . 

Moreover, for any x feasible to (3.9), we have, 

f2 < 	fi x. < 	x = Ix' 
zm - 	'm J — j=i 	j=1. 

This completes the proof. 

Note from Equation (3.10) that the objective of maximizing O r  is equivalent 

to finding a cut which maximizes the smallest positive intercept made on any axis. 

Hence, the intuitive appeal of this criterion. 

3.3 Deriving Deep Cuts for DC1  

It is very encouraging to note that for the disjunction DC1 we are able 

to derive a cut which not only simultaneously satisfies both the criterion of 

Section 3.2, but which is also a facet of the set S defined by (3.11) below. 

S = closure convex hull of U S h 	 (3.11) 
hcH 

This is a powerful statement since all valid inequalities are given through 

(2.10) and none of these can strictly dominate a facet of S. 

We will find it more convenient to state our results if we normalize the 

linear inequalities (3.3) by dividing through by their respective, positive, 

right-hand-sides. Hence, let us assume without loss of generality that 

(3.9) 

(3.10) 
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n 
Sh = Ix: y a"1Jj  x > 1, x > (1 for hell={1,...,h} — 	— 

J=1 
(3. 12) 

Then the application of Theorem 2.1 to the disjunction DC1 yields valid cuts of 

the form: 

F { 	
lj 

max A
h
1
a

h 	
x. > min{A l } 

j=1 heH 	 hell 

h 
where A

1 , 
hell are nonnegative scalars. Again, there is no loss of generality in 

assuming that 

Ah = 1 Ah 
> 0 hEH={1 r 

1 	9  1 - 9  

since we will not allow all A h 
, 

h eli to be zero. This is equivalent to normalizing 

h 
(3.13) be dividing through by L A 1 . 

hell 
Theorem 3.1 below derives two cuts of the type (3.13), both of which 

simultaneously achieve the two criteria of the foregoing section. However, the 

second cut uniformly dominates the first cut. In fact, no cut can strictly 

dominate the second cut since it is shown to be a facet of S defined by (3.11). 

Theorem 3.1  

Consider the disjunctive statement DC1 where S h  is defined by (3.12) and 

is assumed to be consistent for each hell. Then the following results hold 

(a) Both the criteria of Section 3.2 are satisfied by letting 

ai = 	= 	say, for h E H 

in inequality (3.13) to obtain the cut 

n 
ali xi  > 1, where a, 	 , j=1,...,n = max s,. * 	 ij 	 ij 

j=1 	 hell 

(3.13) 

(3.14) 
hell 

(3.15) 

(3.16) 



** 	
= al:j  if ati  > 0 

alj
, 	j=1,...,n 

< a*lj  if a*l 
 < 0 

— 	 j — 
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(b) Further, defining 

h 
yh  = 

j
inimum

0 	l 
 fa*
j l 
/ah

j 
 1 > 0, hell 

1 	> alj 

and letting 

h h 	p = X 1 
h** 

1 
= y 	, say, for h E H 1 L Y1  

pen 

in inequality (3.13), we obtain a cut of the form 

F a**x.
J 
 > 1 
— j=1 lj  

which again satisfies both the criteria of Section 3.2. 

(c) The cut (3.19) uniformly dominates the cut (3.16); in fact, 

(3.17) 

(3.18) 

(3.19) 

(3.20) 

(d) The cut (3.19) is a facet of the set S of Equation (3.11). 

Proof. 

(a) Clearly, A 131_  = 1/h, hell leads to the cut (3.16) from (3.13). Now 

consider the euclidean distance criterion of maximizing 0 e  (or 8 2e ) of Equation 

(3.7). For cut (3.16), the value of 0e is given by 

(0*02 = 
(Y3  * ) 2  > 0 where y. = max{0,a ly , j- ..... n * 	' -1 

j=1 
(3.21) 

Now, for any choice A h  h H, 

= 	I (A l )] /// y yj  = (A 1) 	. 	say, 
hEH 	j=1 	 j=1 

2 	min ( a l) 
,h 2 	2 	py 7. y 2 sa  

(3.22) 

 
where y = maxf0,max A lai

h  
i l. If ai = 0, then 0 e 

= 0 and noting (3.21), such a 
hell 

choice of parameters Ah  h EH is suboptimal. Hence, A P  > 0
' 
 whence (3.22) becomes 

1  
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( 

	

P 	Yi 2 

	

0! = 12. 	--= . But since (A lh  /A 1P  ) > 1 for each h EH, we get 
P j1 Ai  

h 
A yj /Al = max {0 , max 	alh  } _> max { 0, max a ii

h  } 
= y*  

hell A i 	 hal 

Thus e 2  < (0*) 2  or that the first criterion Is satisfied. e — e 

Now consider the maximization of 0 r  of Equations (3.9), (3.10). For the 

choice (3.15), the value of 0 r  is given by 

e* — 	1 	> 0 r 	* 
max ali  

j 

Now, for any choice 4, h EH, from Equations (3.10), (3.6) we get 

(3.23) 

, 
e r  = (min A i  \ (max max A 1

h 
 al
h 
j = A Vinax max A,

h 
 a,
h  

. , say. 
hell 	j heH 	J 	j hEH 

As before, Al = 0 implies a value of o r  inferior to 4. Thus, assume A l;.  > O. 

h ..  

	

Then, 0 r  = 1///max max  
Al a 	But (Al /A1) ) > 1 for each h EH and in evaluating 

hEH XY 1J  
O r , we are interested only in those je{l,...,n} for which a1 > 0 for some h EH. 

Thus e r  < 1/max max a l . = 0
*
, or that the second criterion is also satisfied. 

j hEH 	r  
This proves part (a). 

(b) . and (c). First of all, let us consider the values taken by -4. , hell. 

Note from the assumption of consistency that yi, hell are well defined. From 

(3.16), (3.17), we must have yi > 1 for each hell. Moreover, if we define from 

(3.16) 

H* = {heH: alk  = alk > 0 for some 1(611 , 	nil 	 (3.24) 

then clearly H* # 4} and for hEH*, Equation (3.17) implies yi < 1. Thus, 

1 for heH*  

Y
1 > 1 for hH*  

(3.25) 
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Hence, 

min min yi  = 1 
	

(3.26) 
hell 

or that, using (3.18) in (3.13) yields a cut of the type (3.19), where, 

** 	h h al* 
 j  hell 
= max a l y1 , j=1,  	 (3.27) 

- 

Now, let us establish relationship (3.20). Note from (3.16) that if 

aij 
< 0, then all . < 0 for each h EH and hence, using (3.25), (3.27), we get that 

13 — 

(3.20) holds. Next, consider alj  > 0 for some jE{l,...,n}. From (3.24), (3.25), 

(3.27), we get 

** 
a 	= max{max al . 	max all' i y10 lj  

hEH 	3'  hEB* 	- 
h ali >0  

where we have not considered h If* with a lj  < 0 since a**lj > 0. But for h 01* 

with ahj  > 0, we get from (3.16), (3.17) l 

max ar 	 max.1.  

a 	

4 

= max a ljY1 = alj 	h 
k:alk>0 	alk  

min 	rol lkd 

	

 	< 
h 	— 	 h 

a,. 
h 	reH a'J  

ali 	
,. 

rEH 

h h 	h (3.29) 

Using (3.29) in (3.28) yields aVi! = 	which establishes (3.20). 

Finally, we show that (3.19) satisfies both the criteria of Section 3.2. 

This part follows immediately from (3.20) by noting that the cut (3.16) yields 

O e  = 0: of (3.21) and O r  = O of (3.23). This completes the proofs of parts (b) 

and (c). 

(d) Note that since (3.19) is valid, any xES satisfies (3.19). Hence, in 

order to show that (3.19) defines a facet of S, it is sufficient to identify n 

affinely independent points of S which satisfy (3.19) as an equality, since 

clearly, S is of dimension n. Define 

(3.28) 

J I  = {jE{l ,,,,, n}: all > 0} and let J 2  = fl ..... n} - J I 	(3.30) 
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e = (0 	 1 
** ' a1p 
	0), 	pe.11 	 (3.31) 

have the non-zero term in the pth position. Now, since pCJ 1 , (3.20) yields 

** 	* 	_ hp , say. al  = al  = max alp  - alp  
P 	P 	hell 

Hence, ep e Shp  and so, epcS and moreover, ep  satisfies (:3.19) as an equality. 

Thus, ep ,pcJ i  qualify as 1J 1 1 of the n affinely independent points we are seeking. 

Now consider a qc..72 . Let us show that there exists an Shq  satisfying 

h h 
Yqaq= a;*  for some peJ i  1 1p 

and 	 (3.32) 

h h 	** 
Yqaq= a 1 	lq 	lq 

* 
From Equation (3.27), we get al*  q  = max 	= 	say. Then for this 110, 

hcH 

Equation (3.17) yields y lq = minimum {alj/alhq _ } - al
* 
 p /alp

hq 
 , say. Or, using (3.20) 

j:a
h
q>0 

lj 

y
h
q a

h
q = a

* 
= a

** 
> O. Thus (3.32) holds. For convenience, let us rewrite the 

1 	1p a
lp 	1p 

set Shq  below as 

	

all Shq  = {x: a42.1 xp  + ail xq  + 	all xj  > 1, x > 0) 

j#p,q 

Now, consider the direction 

1 	 1 	 ** 
(0 	 ** "" 

alp   a  
1q 	

lq 

** 
(0,..., 	0 ,..., 	A , ...,0) if alq = 0 

d 

(3.33) 

(3.34) 

where A > O. Let us shown that dq  is a direction for Sh . Clearly, if a lq  = 0, 
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h, 
then from (3.32) a l4 = 0 and thus (3.33) establishes (3.34). Further, if a**lq < 0 

then one may easily verify from (3.32), (3.33), (3.34) that 

ep  = (0,  	
. 	 1 

yh9 //a**
1p 
 .... 0) 6 Shq  and e + d[y

h 
d
9 

 ] 6 Sh  for each 	> 0 1  

where ep  has the non-zero term at position p. Thus, d q  is a direction for Sh q . 

It can be easily shown that this implies dq  is a direction for S. Since 

ep  = 	 ,...,0) of Equation (3.31) belongs to S, then so does (e p  + dq ). 
a1p 

But (ep  + dq ) clearly satisfies (3.19) as an equality. Hence, we have identified 

n points of S, which satisfy the cut (3.19) as an equality, of the type 

ep  = (0   , 	0) for pEJ1 
a1p 	

(3.35) 

eq  = dq + ep  for some pcJ 1 , for each qEJ 2  

where dq  is given by (3.34). Since these n points are clearly affinely independent, 

this completes the proof. 

Thus, in view of Theorem 3.1, it is "optimal" to derive a cut (3.19) for 

the disjunction DC1. In generalizing this to disjunction DC2, we find that such 

an ideal situation no longer exists. Nevertheless, we are able to obtain some 

meaningful results. But before proceeding to DC2, let us illustrate the above 

concepts through an example. 

Example  

Let H = {1,2}, n=3 and let DC1 be formulated through the sets 

	

xi 	2 
S i  = {x: x i  + 2x 2  - 4x 3  > 1, x > 0}, S 2  = {x: 	+ 	- 2x3  > 1, x > 0). 

L * 
The cut (3.16), i.e., L ali xi  > 1, is xi  + 2x 2  - 2x 3  > 1. From (3.17), 

1 	„1 2, 	 , 1 	2 
yi  = min t- 	= 1 and y 2 = mint--- 	= 2 1 ,  2 	1/2 '1/3 
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Thus, through (3.18), or more directly, from (3.27), the cut (3.19), i.e., 

X al /j! xj  > 1 is xl  + 2x 2  - 4x 3  > 1. This cut strictly dominates the cut (3.16) in 

this example, though both have the same values 1/S and 1/2 respectively for 

O e  and e r  of Equations (3.6) and (3.9) respectively. 

3.4 Deriving Deep Cuts for DC2  

To begin with, let us make the following interesting observation. Suppose 

that for convenience, we assume without loss of generality as before, that 

b i  = 1, iEQh , h E H in Equation (3.3). Thus, for each h E H, we have the constraint 

set 

1n 
h Sh  = 	x: y a.x. > 1, ic0h, x > 0 

j=1 ii i  -- 	 — 
(3.36) 

Now for each h EH, let us multiply the constraints of Sh by corresponding scalars 

d i  > 0, iEQh  and add them up to obtain the surrogate constraint 

) 
X S1a1 	x. > hcH 

j=1 	iEQhEQh  h 

Or, assuming that not all (5 11 are zero for iEQh , i.e., letting each set Sh, h EH 

govern the cut, (3.37) may be re-written as 

Finally, 

n 	 (S i 
a, 	x. 	> 	1, 	hell 

3  — 

hall, we may write (3.38) 

> 1 for each hEH 

as 

(3.38) 

(3.39) 

j=1 	iEQh  	X 	611\ P 
\P6Qh 	

I 
 

[ 

denoting 6 11/ X 	d i; by All for iEQh , 

PEQh 

n 
x 

Xlj )j j=1 (iEQh  

where, 

(3.37) 

X ai = 1 for each hall, 	> 0 for iEQh , hell 
	

(3.40) 

i6Qh 
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Observe that by surrogating the constraints of (3.36) using parameters Al, icQ h , 

h E H satisfying (3.40), we have essentially represented DC2 as DC1 through (3.39). 

In other words, since xeSh  implies x satisfies (3.39) for each h Ell, then given 

icQh , h E H, DC2 implies that at least one of (3.39) must be satisfied. Now, 

whereas Theorem 2.1 would directly employ (3.37) to derive a cut, since we have 

normalized (3.37) to obtain (3.39), we know from the previous section that the 

optimal strategy is to derive a cut (3.19) using inequalities (3.39). 

Now let us consider in turn the two criteria of Section 3.2. 

3.4.1 Euclidean Distance-Based Criterion  

Consider any selection of values for the parameters 4, icQh , h EH 

satisfying (3.40) and let the corresponding disjunction DC1 derived from DC2 be 

that at least one of (3.39) must hold. Then, Theorem 3.1 tells us through 

Equations (3.16), (3.21) that the euclidean distance criterion value for the 

resulting cut (3.19) is 

e e (A)  = 11/77-7.1 	(3.41) 
j=1 

where, 

= 	j=1 ,...,n Y.  (3.42) 

and 

z. = max { X Xhah j  }' j=1 	 (3.43) i 
hcH iEQh  

Thus, the criterion of Section 3.2 seeks to 

maximizel0e (X): A = (A) satisfies (3.40)1 	 (3.44) 

or equivalently, to 

minimize { 	y?: (3.40), (3.42), (3.43) are satisfied). 	(3.45) 
j=1 3 
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It may be easily verified that the problem of (3.45) may be written as 

PD • ? minimize yj  
j-1 

L subject to 	y

j 

 > L X i
h 

 a i
h  
j  for each hcH 

ieQh  
for each j=1 	 

L 	h L X i  = 1 
ieQh  

for each hell (3.48) 

A i  > 0 ieQh , hcH 
	

(3.49) 

The equivalence follows by noting that any optimal solution to PD2 must satisfy 

(3.42) as an equality. In particular, we hEve deleted the constraints y j  > 0, 

j=1 	n since for any feasible X i , ieQh , hell, there exists a dominant solution 

with nonnegative yj , j=1,...,n. This relaxation is simply a matter of convenience 

in our solution strategy. 

Before proposing a solution procedure for Problem PD 2 , let us make some 

pertinent remarks. Note that Problem PD2 has the purpose of generating parameters 

Xi, .  
Xi , ieQh , heH which are to be used to obtain the surrogate constraints (3.39). 

Thereafter, the cut that we derive for the disjunction DC2  is the cut (3.19) ob- 

tained from the statement that at least one of (3.39) must hold. Hence, Problem 

PD2 attempts to find values for 	ieQh, hail, such that this resulting cut 

achieves the euclidean distance criterion. 

Problem PD2  is a convex quadratic program for which the Karush-Kuhn-Tucker 

conditions are both necessary and sufficient. Several efficient simplex-based 

quadratic programming procedures are available to solve such a problem. However, 

these procedures require explicit handling of the potentially large number of 

constraint in Problem PD2. On the other hand, the subgradient optimization proce-

dure discussed below takes full advantage of the problem structure. We are first 

able to write out an almost complete solution to the Karush-Kuhn-Tucker system. 

We will refer to this as a partial solution.  In case we are unable to either 

actually construct a complete solution or to assert that a feasible completion 

(3.46) 

(3.47) 
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exists, then through the construction procedure itself, we will show that a sub-

gradient direction is available. Moreover, this latter direction is very likely 

to be a direction of ascent. We therefore propose to move in the negative of 

this direction and if necessary, project back onto the feasible region. These 

iterative steps are now repeated at this new point. 

3.4.1 Karush-Kuhn-Tucker Systems for PD2  and Its Implications  

Letting 	 j=1,...,n denote the lagrangian multipliers for con- 

straints (3.47), th , hell those for constraints (3.48), and 4, ieQ h , h H 

those for constraints (3.49), we may write the Karush-Kuhn-Tucker optimality 

conditions as 

V u1.1  = 2-. L 	j 	Y j 	j=1,...,n 	 (3.50) 
hell 

h L u.a.
h  

+ th  - w
h = 0 for each ieQ h , and for each hEH lj   

hly hh 
u.
J 	

X.a
ij 	J 

- y. = 0 for each j=1,...,n, and each hEH 
ieQh 

Ow11  = 0 for ieQh, hEH 
i 

wi  > 0 ieQh , hEH 

u. > 0 j=1,...,n, hell 
J — 

Finally, Equations (3.47), (3.43), (3.49) must also hold. 

We will now consider the implications of the above conditions. This will 

enable us to construct at least a partial solution to these conditions, given 

particular values of XI, ieQh , hell. First of all, note that Equations (3.42), 

(3.45) and (3.55) imply that 

j=1 
(3.51) 

(3.52) 

(3.53) 

(3.54) 

(3.55) 

yj  > 0 for each j=1 	n 	 (3.56) 
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yj  = rnax 0, 1 	r 	
h 

Xiai
h 
j , hEH 	for j=1,...,n 

iEQh  
(3.57) 

Now, having determined values for yj = j=1, 	n let us define the sets 

{(1)} if yj = 0 

Hj  • = 
	 for j=1,...,n 	 (3.58) 

 
yj  = / Xih  a i

h  i  > 0} 
iEQh 

Now, consider the determination of 	
' 

Lib 	j=1,...,n. Clearly, Equations 
J 

(3.50), (3.52) and (3.55) along with the definition (3.58) imply that for each 

j=1,...,n 

r 
uj  = 0 for hEH/Hj 	 / ij and that 	u.

h  = 2y uh > 0 for each 	. 
J  hell 	

het] 

Thus, for any jc{1,...,n}, if flj is either empty or a singleton, the corresponding 

values for uj , hEH  are uniquely determined. Hence, we have a choice in selecting 

values for uj , h E Hi  only when 111j 1 > 2 for any jE{l,...,n}. Next, multiplying 

(3.51) by ai  and using (3.53), we obtain 

{qailj } + - h  t 	L Xh = 0 for each hcH 
j=1 	icQh 	 icQh 

Using Equations (3.43), (3.52), this gives us 

r 
th  = — 	 u

h
y for each hcH 

j=1 

Finally, Equations (3.51), (3.61) yield 

wh 	h 
Lai 

 h 
F. uj 	j  — yj ] for each icQh , hEH 
j=1 " 

(3.59) 

(3.60) 

(3.61) 

(3.62) 
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Notice that once the variables 	 j=1 	n are fixed to satisfy (3.59), 

all the variables are uniquely determined. We now show that if the variables 

h 	. wj , iEQh , h EH so determined are nonnegative, we then have a Karush-Kuhn-Tucker 

solution. Since the objective function of PD2 is convex and the constraints are 

linear, this solution is also optimal. 

Lemma 3.3  

Let a primal feasible set of values for XI, icQh, h EH be given. Determine 

values for all variables yi, 	th , will.  using Equations (3.57) through (3.62), 

selecting an arbitrary solution in the case described in Equation (3.59) if 

111j 1 > 2. If wi > 0, iEQh, hEll, then X II', iEQh , hEH solves Problem PD2. 

Proof. By construction Equations (3.47) through (3.52), and (3.55) clearly 

hold. Thus, noting that in our problem the Kuhn-Tucker conditions are sufficient 

for optimality, all we need to show is that if w = (wip > 0 then (3.53) holds. 

But from (3.52) and (3.62) for any hell, we have, 

h 
YX1y11=XXIII/44.-+XIII-[/ X.

h ah 
 - y.]) = 0 

iEQh 	iEQh 	j=1 	 j=1 iEQh 	
ij 

for each hEH. 

Thus, Xi  > 0, wi > 0 iEQh , h EH imply that (3.53) holds and the proof is 

complete. 

The reader may note that in Section 3.4.1(d) we will propose another 

stronger sufficient condition for a set of variables XI, iEQh , hcH to be optimal. 

The development of this condition is based on a subgradient optimization procedure 

discussed below. 

3.4.1(b) Subgradient Optimization Scheme for Problem PD 2  

For the purpose of this development, let us use (3.57) to rewrite Problem 

PD2  as follows. First of all define 

A = {X= (4): constraints (3.48) and (3.49) are satisfied} 	(3.63) 
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and let F: A -4. R be defined by 

n 
F(A) = y [maximum (0, X A.

h 
 a.
h  
. hcH}]

2 
i (3.64) 

j=1 	 icQh 

Then, Problem PD2 may l  written as 

minimize {F(A): A e AI 

F Note that for each j=1 	 / gi (A) = max (0, 	Xi h  aih i , hCII} is convex and 
ieQh 

nonnegative. Thus, [gi (A)]
2 
is convex and so F(A) = X [gi (X)] 2 is also convex. 

j=1 
The main thrust of the proposed algorithm is as follows. Having a 

solution A at any stage, we will attempt to construct a solution to the Karush-

Kuhn-Tucker system using Equations (3.50) through (3.55). If we obtain non-

negative values wi for the corresponding variables will. , ieQh , hEH, then by Lemma 

3.3 above, we terminate. Later in Section 3.4.1(g), we will also use another 

sufficient condition to check for termination. If we obtain no indication of 

optimality, we continue. Theorem 3.2 below established that in any case, the 

vector w = W constitutes a subgradient of f(.) at the current point A. We 

hence take a suitable step in the negative subgradient direction and project 

back onto the feasible region A of Equation (3.63). This completes one iteration. 

Before presenting Theorem 3.2, consider the following definition. 

Definition 3.1  

Let F: A -4- R be a convex function and let A E A c km. Then E RM  is a 

subgradient of F(.) at A if 

F(A) > F(7) + t (A-X) for each A e A. 

Theorem 3.2  

Let A be a given point in A defined by (3.63) and let W be obtained from 

Equations (3.57) through (3.62), with an arbitrary selection of a solution to 

(3.59). 
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Then, w is a subgradient of F(•) at A, where F: A + R is defined in 

Equation (3.64). 

Proof.  Let y and y be obtained through Equation (3.57) from A E A and 

A E A respectively. Hence, 

F(X) = 	y? and F(A) = 	71 
j=1 	 j=1 

Thus, from Definition 3.1, we need to show that 

L 	- Ai) < 7
CnC 	- 7. Yj  

hcH ieQh 	 j=1 	i=1  

r  - 
Noting from Equations (3.52), (3.62) that y 	L wi

h-h 
 = 0, we have, 

hEH ieQh  

/ 	/ 17'11(4 - 	/ 	77114 	/ 	/ 711j1 Ahi. 	- 7j] 
hEH ieQh 	 hEH ieQh 	heH ieQh j=1 

= 	 / 	,h_h . \ 	/11  r 7,11 	7 	All ]  
L uj 	L Aidij ) 	 jlj 

heH j=1 	ieQh 	hEH j=1 	icQh 

Using (3.48) and (3.50), this yields 

X 7.h ( 
L wi  kAi 	A

i) 	 711:1 	v 	,h_h  
L Aiadj 	

2 
L Yj 

hEH ieQh 	 heH j=1 ieQ
h  

Combining this with (3.65), we need to show that 

1 	17113 ( 1 	< 	+ 	Tr 
hEH j=1 	ieQh 	J 	

}r 
j=1  J 	j=1 

But Equations (3.50), (3.55), (3.57) imply that 

uh 
j l 	A

h 	
< I 	/ h  yj  = 2 L YjYj 

r 	- h 
j aij 	 uj  

hEH j=1 	icQh 	 hEH j=1 	 j=1 

<211 ylI IIYII 	< 11711 2  + 11711 2  

(3.65) 

(3.66) 
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so that Equation (3.66) holds. This completes the proof. 

Although, given X e A, any solution to Equations (3.57) through (3.62) 

will yield a subgradient of F(•) at the current point A, we would like to generate, 

without expending much effort, a subgradient which is hopefully a direction of 

ascent. This would hence accelerate the cut generation process. Later in Section 

3.4.1(b) we describe one such scheme to determine a suitable subgradient direction. 

For the present moment, let us assume that we have generated a subgradient W and 

have taken a suitable step size 0 in the direction -W as prescribed by the sub-

gradient optimization scheme. Let 

(3.67) 

be the new point thus obtained. To complete the iteration, we must now project 

A onto A, that is, we must determine a new A according to 

	

Anew E PA (a) = minimum ill ), -7 11: A e A) 
	

(3.68) 

The method of accomplishing this efficiently is presented in the next subsection. 

3.4.1(c) Projection Scheme  

For convenience, let us define the following linear manifold 

Mh  = (A, ieQh : 	1 x = 1 ) , hell 

16Qh 

and let Mb  be the intersection of Mh with the nonnegative orthant, that is, 

Rh = f4, 1EQh :  / 4 = 1,  4 0, 100 
10h 

Note from Equation (3.63) that 

A= Tilx—x171 1 1 

(3.69) 

(3.70) 

(3.71) 
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Now, given A, we want to project it onto A, that is, determine Anew  from Equation 

(3.68). Towards this end, for any vector a = (ap isi), where I is a suitable 

index set for the III components of a, let P(a,I) denote the following problem 

P(a,I):  minimize 	y (A1  - al)
2

: 	Ai  = 1, A i  > 0, lei} 
ler 	 ieI 

(3.72) 

:111::::: ' problems Pah ,Qh). 

Then to determine knew,  we need to find the solutions ( 	ieQh  as projections 

onto Rh  of Th  = ( Th , ieQh) through each of the IHI seP  

Thus, henceforth in this section, we will consider only one such hell. Theorem 

3.3 below is the basis of a finitely convergent iterative scheme to solve 

Problem P(Xh ,Qh )• 

Theorem 3.3  

Consider the solution of Problem NE
k
,Ik), where E

k 
= (E

k
,icIk), with 

110 > 1. Define 

—  Pk = (1 	/ k)/// l ikl 
lerk 

and let 

k 	k 
= 	( Pic)iic 

where lk  denotes a vector of lI k l elements, each equal to unity. Further, define 

Ik+1 = {lei 	
k 

• 	> 0) i 

—k 
Finally, let E k+I defined below be a subvector of E , 

k+1 = k+1 . 
, leIk4.1 ) 

	

+1 — 	 ^ 
where, E.

k 
 = Ei

k 
 , ieI.K+1* 	

k+1 
Now suppose that E 	solves P(Ek+1 

Ik+1 ). 

—k 	 —k 
(a) If E > 0, then E solves P(E

k
,Ik ) 

-k 

	

(b) If E 	0, then E solves P(Ek ,Ik), where E has components given by 

(3.73) 

(3.74) 

(3.75) 

(3.76) 
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Bi 	, if 1-6/k+1 	for each ieIk  

ai  = 	 (3.77) 

0 	otherwise 

Proof.  For the sake of convenience, let RP(a,I) denote the problem obtained 

by relaxing the nonnegativity restrictions in P(a,I). That is, let 

	

RP(a , I): minimize 1  y (A 1  - a.)
2

: 	A = 11 2  
icI 	 icI 

-k 
First of all, note from Equation (3.73), (3.74) that 8 solves RP(8 ,I k ) 

k 
since 8 is the projection of 8

k 
onto the linear manifold 

(A = ( x i ozik): 	7.  Xi  = 1} 
	

(3.78) 
ic Ik  

k 	 -k 
which is the feasible region of RP(8 k ' Ik) ' Thus, 8 > 0 implies that a also 

solves P(8
k
,Ik). This proves part (a). 

Next, suppose that a

- k 

 O. Observe that 8 is feasible to P(8
k
,Ik )  since 

k+1 	k+1 

	

^ 	 ^ 
from (3.77), we get 8 > 0 and 	8i = 	8 	= 1 as 8 	solves 

icIk 	ieIk+1 
P(13k+1  ' ik+1 ).  

Now, consider any A = (At , inIk) feasible to P(8k ,Ik). Then, by the 

-k 
Pythagorem Theorem, since 8 is the projection of 8

k 
onto (3.78), we get 

IIA _ 0, 1 .2 = 

	

II A 
_ T3k 11 2 	T3k _ ak ii 2 

Hence, the optimal solution to P(T k ,Ik) is also optimal to P(8k ,Ik). Now, 

suppose that we can show that the optimal solution to Problem P(il k ,Ik) must 

satisfy 

Ai 	0 for l4Ik+1 	 (3.79) 

+1 ^ 
Then, noting (3.76), (3.77), and using the hypothesis that 8 	solves 

" 13  
k+1

Jk+1 ),  we will have established part (b). Hence, let us prove that 

(3.79) must hold. Towards this end, consider the Karush-Kuhn-Tucker equations 
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for Problem P(Tk ,Ik) with t and wi , iEIk  as the appropriate langrangian 

multipliers. 

X Ai  = 1, Ai  > 0 for each iEIk 
 jerk 

(A.-Til1  i-t-w.=0 and wi  > 0 for each iEIk 1  

X iwi  = 0 for each itI k 	 (3.82) 

Now, since X 	= 1, we get from (3.80), (3.81) that 
iEIk 

t = y 	 > 0 (3.83) 
iEIk   

But from (3.81), (3.82) we get for each iEIk , 

0 = wix i  = x i cx, + t — 

which implies that for each iEI k , we must have, 

-k 
either A i  = 0, whence from (3.81), w i  = t - Si  must be nonnegative 

k 
Or 	Ai  = Si - t, whence from (3.81), wi  = 0. 

In either case above, noting (3.80), if Si  < 0, that is, if i4Ik+1 , we must have 

i 	0. = 0 	This completes the proof. 

Using Theorem 3.3, one may easily validate the following procedure for 

finding Anew  of Equation (3.68), given 7 11 . This procedure has to be repeated 

separately for each hcH. 

Initialization  

0 =h 
Set k=0, 8 = A , 1 0  = Qh . Go to Step 1. 

Step 1 

Given 8
k 

Ik , determine pk  and 8
k 
 from (3.73), (3.74). If 8

k 
> 0, then 

-h 
terminate with A new having components given by 

(3.80) 

(3.81) 
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0 otherwise 

Otherwise, proceed to Step 2. 

Step 2  

Define II04, E
k+1 

as in Equations (3.75), (3.76), increment k by one and 

return to Step 1, 

Note that this procedure is finitely convergent as it results in a 

strictly decreasing, finite sequence III( ' satisfying III( ' > 1 for each k, since 

Sk  = 1 for each k. 
icIk 

Example  

h 
Suppose we want to project a= (-2,3,1,2) on to A e R4 . Then the above 

procedure yields the following results. 

Initialization  

k=0, B0 = (-2,3,1,2), 10 = (1,2,3,4}. 

Step 1  

PO 	
1 	, 

= -3/4, SD = (- 
11 9 7, 5 ) 

Step 2  

1 	9 1 5 k=1, II  = (2,3,45, E1 = (w, T , -47) 

Step 1  

11 	I p 	- 	 4 ( 	-
2 1 ) 

1 	12 

Step 2  

4 1 
k=2, 12 = {2,4}, E

2 
 = (-5-,73") 

Step 1  

1 -2 
P2 = - 	E = (1,0) > 0 

-h 
Thus, a

new 
= (0,1,0,0). 
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3.4.1(d) A Second Sufficient Condition for Termination  

As indicated earlier in Section 3.4.1(b), we will now derive a second suf-

ficient condition on W for A to solve PD 2 . For this purpose, consider the 

following lemma. 

Lemma 3.4  

Let A C A be given and suppose we obtain W using Equations (3.57) through 

(3.62). Let W solve the problem. 

PRh : minimize 1 1 	 - 2 	
141.1  = 

L„, 
0, w. < 0 for iEJh 1 

ieQh 	 isQh 

for each hEH 

where, 

-h 
Jh  = {iCQ • A = 0}, hEH 

Then, if w = 0, a solves Problems PD 2 . 

Proof.  Since C.:2 = 0 solves PRh , hEH, we have for each hEH, 

6;13 2  < 	- wi" 2  .1 ) 
1 

iEQh 	16Qh 

L for all wi , icQh  satisfying L wih   = 0, wi  < 0 for iEJh . Given any A E A 
iEQh 

and given any p > 0 define 

h -h 	h de 
wi  = (A i  - A i)/ p, iEQh , hEH 

V' 	 - 
Then,Lwi

h 
 =OforeachhcHandsinceA.

h 
 =0 for iEJh , hEH, we get w,h  < 0 for i 

iEQh 
icJh , hcH. Thus, for any A E A, but substituting (3.86) into (3.85), we have, 

U2 
	6.7111\ 2 < y 	

- 	pW112 2  ) for each hcH 

iEQh 	iEQh 
(3.87) 

(3.84) 

(3.85) 

(3.86) 
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But equation (3.87) implies that for each h E H, X
h  = Xh  solves the problem 

minimize I X {[al  - (Xh  i  - -h  wi )] 2 	L c Xh = 1, X. > 0, iEQh  }for each hEH 
iEQh 	 1-6Qh 	

1 — 

	

In other words, the projection P A(A - Wp) of 	- Wp) onto A is equal to A for 

any p > 0. From the theory of subgradient optimization, since w is a 

subgradient of F(.) at A, then A solves PD
2' 

This completes the proof. 

Note that Lemma 3.4 above states that if the "closest" feasible direction 

-w to -W is a zero vector, then A solves PD2. Based on this result, we derive 

through Lemma 3.5 below a second sufficient condition for A to solve PD2 . 

Lemma 3.5  

Suppose w=0 solves Problems PRh , h EH as in Lemma 3.4. Then for each 

h EH, we must have 

(a) wi = th , a constant, for each ittJh  

(3.88) 

(b) wi < th  for each iEJh 

where Jh  is given by Equation (3.84). 

Proof. Let us write out the Karush-Kuhn-Tucker conditions for Problem PR h , 

for any hell. We obtain 

- W11) + th  = 0 for i*jh  

- (wh  - w.h  ) + th - u i  = 0 for iEJh i 	1 

ui > 0, iEJh , 444 = 0 iEJh  

X wi = 0, wi > 0 for iEJh, th unrestricted 
iEQh  

If w=0, solves PRh , h EH, then since PRh  has a convex objective function and linear 

constraints, then there must exist a solution to 
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-h wi  = th  for each itJh  

and 

u. = (th 	i 
- wh  ) > 0 for each itJh . 

This completes the proof. 

Thus Equation (3.88) gives us another sufficient conditon for A to solve 

PD2 . We illustrate the use of this condition through an example in Section 

3.4.1(g). 

3.4.1(e) Schema of an Algorithm to Solve Problem PD2  

The procedure developed above is depicted schematically in Figure 3.3. 

In block 1 an arbitrary, or preferably a good heuristic solution, I c A is 

sought. For example, one may use Ai  = 1/1Qh l for each ialh , for h c H. For 

blocks 4 and 6, we recommend the standard procedural steps adopted for the sub-

gradient optimization scheme. 

3.4.1(f) Derivation of a Good Subgradient Direction  

In our discussion in Section 3.4.1(a), we saw that givenaAEA of 

Equation (3.63), we were able to uniquely determine y j , j=1,...,n through 

Equation (3.57). Thereafter, once we fixed values rth  for u1.1
' 
 j=1 	n  heti 

J 

satisfying Equation (3.59), we were able to uniquely determine values for the 

other variables in the Karush-Kuhn-Tucker System using Equations (3.61), (3.62). 

Moreover, the only choice in determining 7113, j=1 	n hEHarose in case 

IHil > 2 for some jE{1,...,n} in Equation (3.60). We also established that no 

matter what feasible values we selected for uj, jc{1 	n}, h E H, the correspond- 

ing vector w obtained was a subgradient direction. In order to select the best 

such subgradient direction, we are interested in finding a vector W which has the 

smallest euclidean norm among all possible vectors corresponding to the given 

solution A e A. However, this problem is not easy to solve. Moreover, since 

this step will merely be a subroutine at each iteration of the proposed scheme 

to solve PD 2 , we will present a heuristic approach to this problem. 
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f. 's a suitable sub- 

gradient optimization 

termination criterion 

satisfied? 

0 

47 

For j=1 	 

determine 3,- j , 
-h uj , hEH, using 

Equations (3.57), 

(3.59). Hence, 

determine W from 

Equation (3.62). 

s 77 ). 0 or 

does w satisfy 

Equation (3.88) 7  

4  

Select 0 

and let 
= - 
A=A  - ew 

erminate with 

as an optimal solu-

tion to PD 2 

Replace 

A by P(A) 
of Equation 

(3.68) 

Yes 

Terminate with A as an 

estimate of an optimal 

solution to PD2 

Figure 3.3. Schema of an Algorithm for Problem PD2  

Towards this end, let us define for convenience, mutually exclusive but 

not uniquely determined sets Nh , h EH as follows 

Nh 	fic{1 ..... n}: hetij of Equation (3.58)1 

Ni  n NJ  = {0 for any i, jai and U Nh  = {jc{l,...,n}: yj  > 0} 
neH 

(3.89) 

(3.90) 
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In other words, we take each jEf1,...,n1 which has 7 i  > 0, and assign it to some 

hali , that is, assign it to a set Nh , where hEHj. Having done this, we let 

1 27 if jENh 

u-h = 	 for each jE{1 ..... n}, hEH. 

0 otherwise 

Note that Equation (3.91) yields values 71 11 for u1;, jEfl,...,n1, heH which are 

feasible to (3.59). Hence, having defined sets Nh , heH as in Equations (3.89), 

(3.90), we determine 1-11.1  je{1 ..... n}, h E H through (3.91) and hence w through 

(3.62). 

Thus, the proposed heuristic scheme commences with a vector w obtained 

through an arbitrary selection of sets Nh , hcH satisfying Equations (3.89), 

(3.90). Thereafter, we attempt to improve (decrease) the value of w tw in the 

following manner. We consider in turn each jEfl 	n} which satisfies 1H,
J
1 > 2 

and move it from its current set Nhj , say, to another set Nh  with hEHj , hOhi, if 

this results in a decrease wtw. If no such single movements result in a decrease 

in wt
w, we terminate with the incumbent solution w as the sought subgradient 

direction. This procedure is illustrated in the example given below. 

3.4.1(g) Illustrative Example  

The purpose of this subsection is to illustrate the technique of the 

foregoing section for determining a good subgradient direction as well as the 

termination criterion of Section 3.4.1(d). 

Thus, let H = (1,2}, n=3, 1Q11 = 1Q21 = 3 and consider the constraint 

sets 

(3.91) 

2x1 - 3x 2  + x3  > 

X1 + 2X2 3x3 > 

3x1 - x2 - x3 

xl ,x29 x3 

and S2 

3x1 - x2 - x3 > 1 

 2x1 + x2  - 2x3  > 1 

- xl  + 3x2  + 3x3  > 1 

xl' x2 ,x3 > 
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Further, suppose we are currently located at a point A with 

1 	—1 	—1 	—2 	—2 	—2 
= 0, 1 2  = 5/12, 1 3  = 7/12; X i  = 7/12, 1 2  = 0, A 3  = 5/12. 

Then the associated surrogate constraints are 

4 x 	1 	2 
73 1 T, x2 	x 3 > 1 for h=1 

and 	 (3.92) 

3 x1 +3 xl
+2 

 x2 + x3 > 1 for h=2 

Using Equations (3.57), (3.60), we find 

2 
Tr, = 4 — with HI  = {1,2}, 	= — with H 2  = {2} and 3 	3 

= -
2 
with H

3 
= {1, 2}. 

3 	 2 	3  

Note that the possible combinations of N 1  and N2  are as follows: 

(i) N1  = 111, N2  = {2,3}, 

(ii) N1  = {0}, N2 = {1, 2 ,3}, 

(iii) N1  = {1,3}, N2  = {2}, and 

(iv) N1 = {3}, N2 = {1,2}. 

A total enumeration of the values of u obtained for these sets through 

(3.91) and the corresponding values for w are shown below. 
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uj
h 	, 
,, jell 	n} wih  , ieQh , hdH 

N1 	N2 

1--.1  /--1 
0
  

1-1  
C

A
 

0
  

,--I  C
I
 

0
  

("4
 1-1  

0
  

CA  
C

A 
0
  

2 
u3 

1-1  
r-.1 

,-I  C
A

  

-m
 

3  

C
A  

,--1 

C
A

 C
A 

C
A

 C•1 

wt  w 

{1} 	{2,3} 8/3 0 0 0 4/3 4/3 16/9 -56/9 40/9 -40/9 -28/9 56/9 129.78 

{M} 	{1,2,3} 0 0 0 8/3 4/3 4/3 0 0 0 0 - 4/3 0 1.78 

{1,3} 	{2} 8/3 0 4/3 0 4/3 0 20/9 -28/9 20/9 -20/9 4/9 28/9 34.37 

{3} 	{1,2} 0 0 4/3 8/3 4/3 0 -4/9 28/9 -20/9 20/9 20/9 -28/9 34.37 

Thus, according to the proposed scheme, if we commence with N i  = {1}, N 2  = {2,3}, 

then picking j=1 which has 	= 2, we can move j=1 into N2  since 22 111 . This 

leads to an improvement. As one can see from above, no further improvement is 

possible. In fact, the best solution shown above is accessible by the proposed 

scheme by all except the third case which is a "local optimal". 

We now illustrate the sufficient termination condition of Section 

h=11 -4 
3.4.1(d). The vector W obtained above is (0,0,0 0;7,0). Further the vector X 

h=1 h=2 
-5 

12 , 12
I 
 12 ' 

is (0, 	7 	7 	0 , -17 ). Thus, even though w 0, we see that the 

conditions (3.88) of Lemma 3.5 are satisfied for each h EH = {1,2} and thus the 

given X solves PD 2 . 

The disjunctive cut (3.19) derived with this optimal solution 7■ is 

obtained through (3.92) as 

4 	2 	, 2 
xl 7 x2 - 7 x3 > 1 	 (3.93) 

3.4.2 Maximizing the Rectilinear Distance Between the Origin and the Disjunctive 
Cut 

In this section, we will briefly consider the case where one desires to 

use rectilinear instead of euclidean distances. Extending the developments of 

Sections 3.2, 3.3 and 3.4.1, one may easily see that the relevant problem is 
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minimize( maximum 	y.: constraints (3.47), (3.48), (3.49) are satisfied}. 
jet]., 	n} 

The reason why we consider this formulation is its intuitive appeal. To see this, 

note that the above problem is separable in h e H and may be rewritten as 

PD1 : minimize{
h 
 : h > c Alai for each j=1 ,,,,, n, 	Ai

h  
= 1, A i  > 0 

ij 
icQh 	 icQh 

h 
for each iEQh 	> 0} 	for each h E H. 

Thus, for each hell, PD1  seeks 	iEQh  such that the largest of the surrogate 

constraint coefficients is minimized. Once such surrogate constraints are ob-

tained, the disjunctive cut (3.19) may be derived using the principles of Section 

3.3. 

As far as the solution of Problem PD 1  is concerned, we merely remark that 

one may either solve it as a linear program or rewrite it as the minimization of 

a piecewise linear convex function subject to linear constraints and use a sub—

gradient optimization technique. We further note that the structure of Problem 

PD 1  may render it more amenable to the latter solution technique. 

3.5 Other Criteria for Obtaining Deep Cuts  

In this section, we will briefly deal with some other plausible criteria 

which one may adopt. Since DC1 is a specia case of DC2, we will treat only 

the latter case. Further, we will consider the original disjunction DC2, that 

is, we will not require bi > 0 for each i E Qh , h H. Note that the basic dis- 

junctive cut for DC2 is given by Equation (2.10) rewritten below for convenience 

n 
h h 	 h  

[max { X A.a..}] x > min 	X A.b
h 
 } 

— 	 i 
j=1 	 1 13 iEQh 	 hail icQh 

(3.94) 

Now, a criterion which may be suggested would be to maximize the surplus with 

respect to the origin. This would mean that the right—hand—side of (3.94) should 

be made as large as possible, with, of course, some restriction on the overall 
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magnitude of the minimand such as 

I 	/Xh h b = h
' 
 say 

i  
iEph  

where, 

h = 

One may easily verify that this implies it is optimal to select 

L 	h h L Xibi = 1 for each hEH. 
ieQh  

Other than the restriction (3.96), we are still free to select nonnegative values 

for X i , iEph , hell. Since the resultant cut (3.94) should at least support S 

(Equation 3.11)), we may simply select a set of positive coefficients X 3 , jEN and 

solve the linear program. 

LP: 	minimize 	
6.13) jEN 

subject to r 	h L 	h 	1 i 
icQh 

for each hEH 

icQh 
aiaij  < y 	for each hEH, for j=1 ..... n 

A i .> 0 , iEQh, hEH 

y , jEN are unrestricted in sign. 

Essentially, the constraints of Problem LP conform with those of Problem PD 2 

 (Equations (3.47), (3.48), (3.49)). Choosing different values for di  > 0, jEN in 

the objective function of LP would yield different cuts (through the parameters X i , 

iE0111 , hEH), all of which would be nondominated supports of S, including facets 

(3.95) 

(3.96) 

of S. 
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3.6 Some Standard Choices of Surrogate Constraint Multipliers  

We now present two standard procedures for selecting values for the 

parameters X
i' 

ieQ
h' 

hEH for the disjunction DC2. Although not strongly motivated, 

these solution procedures have intuitive appeal. 

The first of these methods prescribes that the constraint sets S h , h E H 

be first represented in the form given in Equation (3.36), and then one may select 

ai = 1 /// 1Qh 1 for each ieQh , for h e H. 

As a second method, one may identify for each he'll, a constraint which has 

the largest number of minimal column elements. That is, for each hell, we compute 

minimum 	ieQh 1 for each jcN and identify the constraint TeQh which contains 

the maximum number of these I•d minimal coefficients. On the other hand, we may 

let t be the constraint with the most number of negative coefficients for each 

h E H. We then seta = 1 and Xi = 0 for ieQ h , iOi, for each hell. 

Before illustrating the above two methods, we draw the readers' attention 

to an obvious, though pertinent, fact. Suppose we are given constraint sets S h , 

heH of Equation (3.12) as in DC1 and the disjunction states that at least k of 

these constraints must be satisfied, where k < IHI. Then, by grouping the 1111 

sets k at a time, we may equivalently represent this disjunction as DC2, stating 

that at least one of the resulting (0 sets must be satisfied. A disjunctive 

cut may now be derived based on the statement DC2. There is, however, an 

alternative approach. Note that we may choose to delete any (k-1) of the 1111 

constraint sets and then assert that at least one of the remaining sets must be 

satisfied. This would then represent the given disjunction as DC1. Of course, 

for k=1, both the alternatives are identical. For smaller values of k, the latter 

technique is likely to be superior to the former technique since by deleting the 

rows which contain the largest number of column-maxima, one can usually do 

better than say, by averaging coefficients. On the other hand, for k close to 

1111, the former is likely to be better since by taking the average, say, of 

several k numbers of arbitrary sign would tend to produce smaller cut coefficients. 

These are simply general rules of thumb and clearly one may produce examples which 
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indicate the contrary. We now illustrate the two methods proposed above for 

selecting values for X II, ieQh , 

Example  

Consider the example of Section 3.4.1(g). The first method discussed above 

yields 	= 1/3 for each icQh , h e H. This gives surrogate constraints 

4 	2 	 4 
xl  - x2  + x3  > 1 for h = 1 and x l  + x2  > 1 for h = 2. 

Hence, the disjunctive cut is 

4 
x l 	x2 	x3 	1 
	

(3.97) 

This cut is uniformly dominated by the cut (3.93) derived through Problem PD2. 

The second method discussed above suggests that we should use X 3
1 
 = al  = 1 

andX.=0 otherwise for h=1,2, and i=1,2,3. This yields the cut 

	

3x1 - x2 - x3 > 1 
	

(3.98) 

Neither (3.98) nor (3.93) uniformly dominate the other. However, the values of 

the euclidean and the rectilinear distance criterion for each of these cuts (3.93) 

and (3.98) are respectively 0.6123, 0.75 and 0.111, 0.333. 

3.7 Note and References  

The question of how to specify the cut parameters a i has been addressed 
before in the general context of cutting plane theory. However, Balas [7] and 

Glover [19] have addressed the question of finding these parameters in the context 

of disjunctive programs. The parameters defined in equation (3.15) was used by 

Balas [6]. The cut defined by (3.19) and (3.20) was motivated by a similar result 

due to Glover [18] in the context of convexity cuts. This chapter contains 

several results in the context of disjunctive programming due to appear in [ ]. 



Chapter IV 

EFFECT OF DISJUNCTIVE STATEMENT FORMULATION ON DEPTH OF 
CUT AND POLYHEDRAL ANNEXATION TECHNIQUES 

4.1 Introduction  

In this chapter, we wish to emphasize two important salient features of 

disjunctive programming methods. Both these features basically relate to the 

issue of depth of cut. More specifically, we will first illustrate that one 

can derive cuts differing in depth through different formulations of a given 

disjunctive statement. Secondly, we will exhibit some connections between dis-

junctive programming technqiues and known polyhedral annexation methods. Based 

on the latter exposition, as well as on some further development, we will exhibit 

how one may strike a reasonable tradeoff between the effort involved to generate 

a cut and its depth. 

The organization of this chapter is as follows. First, we illustrate 

the above tradeoff involved through a numerical example. Thereafter, we make 

some general remarks and in particular we relate these ideas to two specific 

cases, namely, the generalized lattice point problem and the linear complemen-

tarity problem. Next, as in Chapter III, we consider two situations — one in 

which each set Sh, hcH (Equation (1.1)) contains exactly one constraint and a 

second case in which each set S h , hell may contain more than one constraint. 

Using the first case, we establish connections between disjunctive programming 

methods and polyhedral annexation techniques. Following this, we demonstrate 

two schemes by which improved disjunctive cuts may be derived through suitable 

disjunction formulations. Finally, we present extensions of these developments 

to the second case. 

4.2 Illustration of the Tradeoff Between Effort for Cut Generation and the Depth  
of Cut  

Consider the problem 

maximize 	2x1 + 3x2 



L.P. optimal solution of 
value 25 

(0,0) 	 (8,0) 
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subject to 	xl  + x2 < 10 or xl  + x2  + si  = 10 

xl 	< 8 or xl s2 = 8  

x 2 	5 or 	x2 -I- s 3 = 

xl' x2 	0,  
s l ,s 2 ,s3  > 0 

Further, suppose that the following disjunctive statement must hold: 

{Either xl  or x 2  must equal zero, i.e., xix2  = 0} 

Relaxing the disjunctive statement and solving the corresponding linear 

program, we obtain the solution depicted in Figure 4.1. 

Figure 4.1. LP Solution with the Disjunction Relaxed 
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The simplex tableau corresponding to this optimal linear programming 

solution, which incidentally is feasible to the disjunction, is given below. 

Non—basic variables 
BM 

51 
s3 

objective function 2 1 25 

Basic 
Variables 

x1 1 —1 5 

s 2 —1 1 3 

x2 0 1 5 

From this tableau, we can represent x l  and x2  in terms of the non—basic 

variables as 

xl 	— si s3 

(4.1) 

x2 = 5  — 5 3 

Hence, the disjunctive statement x ix2  = 0 may be restated as follows. At 

least one of the constraints x l  < 0 or x 2  < 0 must be satisfied along with 

nonnegativity restrictions. In terms of the current nonbasic variables, this may 

be restated as implying that at least one of the following constraint sets must 

be satisfied 

f(s 1 ,s 3 ): s l  — s 3  > 5, 5 l ,5 3  > 0) 

(4.2) 

{(51'53): 	
s3  > 5, sl ,s 3  > 0}. 



cut (4.4), viz 
xl + 2x2  < 10 

(5,5) 

(10,0) 
	Vs X

i  

Figure 4.2. Deepest Cut for the Formulation (4.2) of the Given Disjunction 
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Now, from our analysis in Chapter III, we know that the best cut which one may 

derive from this disjunction is 

[maxa , 	+ [max{_ 	14]s
3 
 > 1 

5 	 5 	5   

i.e. 	s
1 
 + s

3 
 > 5 
	

(4.3) 

This cut may now be appended to the above tableau and the optimization procedure 

continued. The reader may note that, we can use Equation (4.1) to re—write the 

cut (4.3) as 

	

x1 + 2x 2 < 10 
	

(4.4) 

Now, let us get a geometric interpretation as to why (4.3) is indeed the 

deepest cut. Note that in specifying the disjunction (4.2), we have neglected 

nonnegativity on s 2  in the tableau representing the current point. Effectively, 

we neglected the constraint x l  < 8 and used only "local" information. As a 

result, we implied that the feasible region of the problem is 

{xi  = 0, 0 < x 2  < 5} U {x 2  = 0, 0 < xl  < 10}. The convex hull of this region 

is S' and is depicted in Figure 4.2 below. One may observe from S' that the 

best corresponding cut is precisely cut (4.4) 



x 2 
A 

(0,10) Deepest cut 
5x1  + 8x2  < 40 

4- 

jiA*4% (0 5) 	 (5,5) 

/11/4 

cut (4.4), viz., 
xl  + 2x 2  < 10 

(10,0) 

(8,2) 

,/  
(0,0) 	 (8,0) 

4- 

Figure 4.3. Deepest Cut 
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Now, let us specify the disjunction using additional information. We know 

for the above example problem that we must have either x 1  = 0 whence, 0 < x2  < 5 

or we must have x 2  = 0 whence, 0 < xl  < 8. This feasible region to the example 

problem is shown darkened in Figure 4.3. Now, any valid cut should not delete any 

points in this feasible region. Since the half-space feasible to a cut is a 

closed convex set, the cut must not delete any point in the convex hull S of this 

feasible region shown thatched in Figure 4.3. Hence, a deep cut can at best 

support S, and the best cut in the present context is clearly 5x 1  + 8x 2  < 40. 

This cut as well as the cut (4.4) is shown in Figure 4.3. 
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We will now see how the deepest cut 5x 1  + 8x2  < 40 can be derived 

algebraically. Obviously, to obtain this cut we must consider all the constraints 

of the original problem. In other words, the nonnegativity restrictions on s 2 

 must be included as well. Since 

	

s2 - 3  + 8 1 - s 3 
	 (4.5) 

in the tableau representing the current point, the given disjunctive statement 

implies that at least one of the following constraint sets must be satisfied. 

S1 : {(s 1 ,s 3): s1  - s3  > 5 

s i  - s 3  > -3 

s i ,s 3 
 > 0} (4.6) 

S 2'•  {(sl' s3 )' 
' s3  > 5 

81 - 8 3 > -3  

si , s3 > o} 

Using multipliers 5 and 0 for the constraints of S l  and multipliers 8 and 

5 for the constraints of S2, we obtain the surrogate constraints 

5s 1  - 5s 3  > 25 and 5s 1  + 3s3  > 25 

This yields the disjunctive cut 

	

5s 1  + 3s 3  > 25 	 (4.7) 



(a)
• 	

(b) 

Figure 4.4. Illustration in the Nonbasic Variable Space 
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or, using Equations (4.1), this may be rewritten as 

5x 1 + 8x2 < 40 
	

(4.8) 

As depicted in Figure 4.3, the cut (4.8) is the deepest possible for the given 

disjunction. Later in Sections 4.4 and 4.5, we will show how (4.7) or (4.8) 

may be derived conveniently through (4.6). 

So far we have illustrated the cuts in the (x 1 ,x2) space. In the space 

defined by the nonbasic variables (s i ,s 3 ), the cuts are as given by (4.3) and 

(4.7). These cuts are illustrated in Figures 4.4(a) and 4.4(b) respectively. 

Through this example, we have demonstrated that one needs to consider all 

the constraints of the problem if a deepest cut is to be recovered through the 

disjunctive principles. However, this would lead to greater effort in the cut 

generation process. We now indicate the implication of this on the Generalized 

Lattice Point Problem, and the Linear Complementarity Problem. 
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4.3 Some General Comments with Applications to the Generalized Lattice Point  
and the Linear Complementarity Problems  

Very briefly, we will illustrate through the Generalized Lattice Point and 

the Linear Complementarity problems the tradeoff which may be involved in the 

formulation of disjunctions. Recall our formulation of the Generalized Lattice 

Point Problem (GLPP) in Section 1.2.1 and let us rewrite it in a slightly 

different manner. 

Note that if one selects q of the p components of u corresponding to 

linearly independent rows of A and restricts these q components to be zero, then 

one is confining the point u to some p—q dimensional facet of the set 

U = {u: ui  > 0, i=1 	
 
p} 
	

(4.9) 

Letting F 1,...,FT; be the set of such (p—q) dimensional facets of U and denoting 

H={1 	R}, the set Sh of Equation (1.6) may be alternatively written as 

Sh = {u: u C Fh } , h e H 
	

(4.10) 

Hence, Problem GLPP may be written as 

minimize 	c x 

subject to 	v = d — Dx > 0 

u = b — Ax > 0 

u e U Sh 
heH 

where Sh' hEH is given by Equation (4.10). If the rank of A is less than the 

number of rows A, that is, if A is not of full rank, then Problem GLPP poses an 

extra difficulty. One may relax the disjunctive statement in such a case to 

read 

{at least q of the p components of u are zero} 	 (4.11) 
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Now, one may unambiguously let H={1 ..... ( I:)1 and correspondingly define sets 

Sh , h E H, each corresponding to a unique combination of q out of p components of 

u restricted to zero. This modification makes the cut generation process much 

simpler and hence faster. However, this is at the expense of the depth of cut 

that can be derived therefrom. 

Similarly, in the linear complementarity problem LOP considered in 

Section 1.2.5, one may be considering the violation of a particular disjunction 

xpxq  = 0, say, in a solution to a relaxation of this problem. Hence, as exhibited 

in the foregoing section, one may simply use the constraints corresponding to 

xp < 0 and xq  < 0 in order to derive a cut. Alternatively, one may choose to 

incorporate in the disjunction formulation the nonnegativity restrictions on the 

other basic variables as well. 

Let us now generalize this concept to the situation of interest to us, 

namely the case where the objective function f is quasiconcave, and the set X of 

Problem DP (Section 1.1) is polyhedral. In order to establish connections 

between disjunctive programming techniques and polyhedral annexation methods, and 

to simplify the presentation, we will initially assume that each of the sets S h , 

h EH is comprised of only a single constraint. Again, we will assume that a 

relaxation strategy is being adopted to solve Problem DP, so that currently, we 

have an extreme point optimal solution to the problem minimize {f(x): xEX, x > 0}, 

which violates the disjunction x E U S h . Here, we are assuming that the set X 
hcH 

is comprised of the original linear constraints along with any valid inequalities 

which may have been generated over previous iterations. Accordingly, in terms 

of the current nonbasic variables, let the sets X and S h , hEH be given by 

X = {x: Cx < g} E {x: 	gfixi  < gi  for i=1,...,m} 
jeJ 

Sh = {x: 	a.x.J 
 > 1, x > 01, hEH 

J   
jeJ 

(4.12) 

(4.13) 
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where J is the index set of the nonbasic variables. For each set S h , hcH, we 

have normalized the single constraint by its respective right-hand-side which 

must be positive since the origin violates each such constraint. Now, in order 

to derive a valid inequality which deletes the origin, one may invoke the dis-

junction 

x E U Sh 
	 (4.14) 

hcH 

However, we propose to derive stronger cuts by invoking the alternate disjunction 

x E U XSh 
hcH 

where, 

XSh  E X R Sh  = {x: Gx < g, 	aih jx > 1, x > 0) 
j

r 

EJ 

Note that one may invoke other valid disjunctions between the extremes (4.14) 

and (4.15) by adding on a subset of the constraints of X to each of the sets Sh, 

h CH. As we have see, in the formulation of the disjunction, there is a tradeoff 

involved between the strength of the inequalities derived and the effort expended 

in generating these inequalities. Now, one viable approach is to commence with the 

disjunction (4.14) to obtain an initial cut, and then to sequentially add on 

constraints of X, attempting at each step to improve the current cut. This is 

basically the central point of the discussion of the following section. 

4.4 Sequential Polyhedral Annexation  

In this section, we will first briefly discuss the polyhedral annexation 

technique as is relevant to the present exposition. We will then demonstrate 

how an algorithmic scheme called sequential polyhedral annexation may be 

implemented to use the set X defined by (4.12) in order to improve the fundamental 

cut (3.19) available from the disjunction (4.14). We will also indicate some 

(4.15) 

(4.16) 
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drawbacks of this method which lead us to proposing a variation of the scheme. 

This variation, however, involves additional effort in generating a cut. 

Let us begin our discussion by making the observation that a disjunction 

which stipulates that at least one of the sets Sh of Equation (4.13) must be 

satisfied is equivalent to the statement that the interior of the polyhedron 

SH = {x: 	ahx
I 
 < l, for each hell} 

jeJ 
(4. 17 ) 

contains no feasible points in the nonnegative orthant. Henceforth, for the sake 

of convenience, we will call a polyhedron NFIP if its interior contains no feasible 

points in the nonnegative orthant. Thus, the polyhedral annexation procedure 

essentially does the following. Given several NFIP polyhedra, the technique 

suitably annexes them to each other in order to derive a new NFIP polyhedron of 

the type (4.17). Then, based on the constraints of this polyhedron, a cut of the 

type (3.19) is generated. The annexation scheme is based on the following main 

result. 

Theorem 4.1  

Let the polyhedra 

S = {x: 	aPx. < by  for each ptP} 
	

(4.18) 
.3 

and 

SQ  = {x: 	alxj  < bq for each qcQ} 	 (4.19) 

j 

be NFIP. Then, for any keP, and for any nonnegative parameters pkg , pq , qcQ, the 

following polyhedron is NFIP: 
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SR 	{x: X ari
x
i 

< b r  for each rER} 
J 

 E {x: L a.
P 
 x. < b

p 
for each pEP — {10 
	

(4.20) 

j 

X (p
kq 3 

a. + p 
qj 
aq )x

i 
 < (pkq  b

k
+pbq) for each qEQ1 --  

Proof. By contradiction, suppose S R  is not NFIP. Then, there exists a 

feasible, nonnegative x satisfying 

aP.x. < by  for each p e P — {k) 
j  3 

X(p. 
g 
a
k 

+ p 9 .3 
a.)x. < pkq b

k 
+ p bq for each qEQ 

j 	K   

The first of these inequalities implies that L ak  x. > bk or else, Sp  would not 
j 	3 

be NFIP. This along with the second inequality implies that 

{ X aqx. — 0} < pkq {bk 
 — X al; p  xj } < 0, or that SQ  is not NFIP, a contradiction. 

J 

This completes the proof. 

In terms of the traditional disjunctive programming methods, Thoerem 4.1 

has the following interpretation. The condition that at least one of the 

constraint sets 

Sp = {x: / ajxj  x. > bp , x > 0}, peP 

j 
J   

and at least one of the constraint sets 

Sq  = {x: X a
j
x
j 
 > bq , x > 0}, qEQ 

 
j 

must be satisfied, implies the weaker condition that at least one of the following 

constraint sets must be satisfied for some kEP 

(4.21) 

(4.22) 



Sp  for pEP - {k}, 

r k 	k 	qx > bq , x > 0} for qEQ > b Sk,q = {x: / aj xk 	, 	aj j  

Given any set of nonnegative surrogate multipliers p ke  pq  for the two constraints 

in each of the sets SR,q , qEQ, this in turn implies that at least one of the 

constraint sets 

S for pEP - 

(4.24) 

Skq  = {x: 	(p. a. + p a)x 	(p b
k + p bq), x > 0} for qCQ Kqj 	qjj— > kg 

must be satisfied, or that SR  of Equation (4.20) must be NFIP. 

Clearly, the choice of kEP for the purpose of annexation is crucial with 

regard to the strength of the inequality which may be derived from the disjunction 

(4.24). We will now discuss this choice in the context of a method known as 

sequential polyhedral annexation, as applied to the concepts introduced in 

Section 4.2. 

Thus, suppose one has derived the following cut (3.19) from the disjunction 

that at least one of the sets Sh, h EH of Equation (4.13) must be satisfied 

I 7ii xj  > 1 
j EJ 

(4.25) 

The question addressed at this point is whether or not a given cut coefficient 

kEJ can be improved (decreased) without worsening (increasing) the other 

coefficients. (In the discussion below, the reader may note that the sets X, 

SH , Sp  and SQ  are defined by (4.12), (4.17), (4.18) and (4.19) respectively). 

The manner in which the sequential method proposes to accomplish this is to 

commence with the NFIP polyhedron SH and annex constraints of X one at a time. 

During this annexation process, that constraint which is a "blocking hyperplane", 
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(4.23) 
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i.e., forms a "block", for the k th  edge extension, is chosen to be surrogated with 

the newly added constraints. That is the cut coefficient 7f k  is determined by 

that particular constraint through (3.19). In other words, the surrogation serves 

the purpose of attempting to rotate this blocking hyperplane so as to permit an 

improved edge intercept. Of course, if more than one constraint form a block 

for the kth  edge extension, then this process will have to be repeated for each 

of the blocking hyperplanes. Thus, starting with S p  equal to Su , a set SQ  with 

IQ' = 1 is chosen to contain a single constraint of X. Let us assume that a 

constraint kEP of Sp  forms a block for the kth  edge extension. Then, Sp  and SQ  

are annexed through nonnegative parameters p kq  and pq  as follows. 

Note that since the origin is infeasible to each S i,, pcP of Equation (4.21), 

we may assume as before without loss of generality that by = 1, pcP. To maintain 

consistency, we may also stipulate without loss of generality that the surrogation 

makes the right hand side of the constraint in S kq  of Equation (4.24) equal to 

unity, i.e., pkq  + pkqbq  = 1. Thus, under the restriction that the cut derived 

from the disjunction (4.24) improves the kth  edge intercept without worsening 

the other edge intercepts, we are searching for parameters p kq , pq  satisfying 

pq  > 0, pkq  = 1 — pqbq > 0 	 (4.26) 

	

j >pkqj + pqj 	for each jEJ 	 (4.27) —  

One may easily deduce from this that the appropriate choice reduces to finding 

the largest pq  > 0 satisfying 

— 	k 
71. 	a. 
J — 3  

p < minimum 	  : (aq  — akbq) > 0 
q 	jEJ 	— akbq) 

J 

and 	 (4.28) 

pq  b q  < 1 
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Then v./cc, is given through (4.26) and thus, the resulting NFIP polyhedron S R  of 

Equation (4.20) becomes the new polyhedron of the type (4.18). The cut (3.19) is 

updated, if necessary, with this new NFIP polyhedron (or disjunction) and the 

process is similarly repeated until the improvement of all edge intercepts have 

been attempted using all the constraints of X one at a time. Note that at each 

annexation, if the corresponding parameter p q  obtained through (4.28) turns out 

to be zero, then this implies that SR S Sp so that no improvement is possible with 

the current annexation. 

Now, there is one principal drawback of this technique and that is, the 

final cut derived is dependent on the order in which one considers the constraints 

of X of Equation (4.12) to be used as sets SQ  of Equation (4.19). We illustrate 

this fact below through an example and then proceed to propose an alternative 

method. 

Illustrative Example  

Let us modify the example of Section 4.2 by adding an additional constraint 

to the set X of Equation (4.12). Hence, let the sets of Equation (4.13) or 

(4.21) be 

sl 	3 S 1  = f(s 1 ,s 3 ): —§- — 	 1, sl ,s 3  > 01, 

s 3  
S 2  = f(si ,s 3): 	> 1, si ,s 3  > 01 	 (4.29) 

and suppose X is given by 

X = f(s i ,s 3): — s l  + s 3  < 3, — s l 	3s3  < 121 	 (4.30) 

The sets X5 1  and XS 2  of Equation (4.16) as well as the best cut available from 

the disjunction (4.15) are depicted in Figure 4.5. 



s l  
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s3 

deepest cut 

Figure 4.5. Deepest Cut From the Improved Formulation 

Now, the cut (3.19) available from the disjunction (s i ,s3 ) c S 1  U S 2  is 
si 	3  

+73- > 1. This cut passes through the points T and W of Figure 4.5. One 

can see that the extension corresponding to edge s l  cannot be improved. Hence, 

let us attempt to improve the edge intercept corresponding to 8 3  using the 

sequential polyhedral annexation scheme. Towards this end, note that the 

constraint of S 2  represents the blocking hyperplane. Using the first constraint 

of X in the initial set Sq  of Equation (4.19), (with the inequality reversed) 

the relationships (4.28) yield 
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, 	 > 0 ) , -3p < 1, p pg.< minimum) 	
5 
(0)(-3) 	 q 	q 

1 
The largest pq  satisfying this is pq  = 3 , whence (4.26) gives p kg.  = 1 - (

1
3)(-3) = 

8 
. Thus, the disjunction (4.24) is (s i ,s 3 ) E S1  U Sal  where, 

1 S 2q  - {(5 1 ,s 3 ): 3  s. + 25 —3 s
3 
 > 1, s

l'  s 3 
 > 0} E New S 2, say 

The cut (3.19) from this disjunction is 

3 s1 + 3 
 5 3 > 1 

which passes through points U and W in Figure 4.5, and is also shown in Figure 

4.4(b). Now let us repeat this by taking S i  as in (4.29), S 2  as given by (4.31), 

the second constraint of X forming the set S Q , and the constraint of S 2  represent-

ing the blocking hyperplane for the edge s 3  in the cut (4.32). The relation-

ships (4.28) yield 

1 _ 1 
( 	5-  75  

p < minimum 	1 	 • , -12P < 1, p 
q 	 1 - () (-12) ' 	 q 	q > 0  

5 

which implies, that p q  = 0 or that no further improvement is possible. 

In this example, if one had considered the constraints of X in the reverse 

order then one would have obtained the deepest cut as shown in Figure 4.5. 

However, the appropriate ordering of the constraints of X is a combinatorial 

problem. Furthermore, conceivably it may be possible in some instances that the 

best cut is not recoverable no matter in which order the constraints of X are 

considered. 

The method we propose to employ in the next section considers all the 

constraints of X simultaneously, that is, examines the disjunction (4.15) itself 

in an attempt to improve edge intercepts one at a time, holding other edge inter- 

1  - 0 

(4.31) 

(4.32) 
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cepts fixed at each stage. This technique is easy to implement and directly 

yields the best cut coefficients, the corresponding appropriate surrogate multi-

pliers being available, if required, as a set of optimal dual variables. 

4.5 A Supporting Hyperplane Scheme for Improving Edge Extensions  

Suppose as before that we are given sets Sh, hell defined by Equation 

(4.13) with the stipulation that at least one of these sets must be satisfied. 

We re-emphasize here that we continue to assume that each set S h  has only one 

constraint merely for convenience. In addition, we are given a constraint set X 

(Equation (4.12)) which must also be satisfied by an feasible point. The dis- 

junction under consideration is that x 	U XSh (Equation (4.15)) where, as in 
hell 

Equation (4.16), XS h  = X n Sh , 

Thus, assume that currently, we have a cut of the form 

x. > 1 
jeJ 	3  — 

(4.33) 

which is valid for the disjunction (4.15). Note that initially, (4.33) may be 

taken as the cut (3.19) derived from the disjunction x e U Sh. 
hell 

Now, consider a kEJ and suppose that we are presently trying to improve the 

kth edge intercept, that is, decrease ;10  Towards this end, let us assume that 

we are able to solve for each h H 

Pkh : 
	minimize 	

11"kh 

subject to 

and 

_ 
11"khxk 	L Tri xi  > 1 for each X £ XS

h 
jeJ 
jOk 

, - 
Trkh xk  + 	njxj  = 1 supports XSh  

jeJ 
jtik 

(4.34) 
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Let 

5*  . maximum arkh} 
heH 

where :iikh  is the solution to problem Pkh . Now consider the cut 

-* 
71.

kxk 
+ E i

j
x
j 	

1 
jeJ 
Vic 

Clearly, (4.36) is satisfied by each x e U XSh , that is, (4.36) is a valid cut 
heH 

for the disjunction (4.15). Moreover, any inequality 1 Tri xi  2 1 with Tri  = xj  
jeJ 

for jeJ - {k} and 'irk  < irk is not valid because it deletes a point x of XSR at 

which the corresponding hyperplane ir kgxk  + 	ffx = 1 supports XSh, where h ell 
jeJ 

is an index for which equality holds in (4.35). To see this, it is sufficient 

to show that if ifkh > -co in (4.34), then a point of support referred to in (4.34) 

occurs at an R satisfying zk  > O. This is clearly so, for if not, then iikh can 

be reduced still further. Thus, (4.36) gives the best intercept possible for 

the k th  edge when all other intercepts are held fixed. Hence, replacing .71.k  of 

(4.33) by .17:, we would obtain a (possibly) new valid cut (4.33). This process 

may now be repeated for each edge in turn till no further improvement is possible. 

Of course, different cuts may be obtained by considering the edges in different 

orders, but each of these cuts cannot be uniformly dominated by any other cut. 

We will now proceed to discuss the determination of 	the coefficient 

of xk in the cutting plane under consideration, given through (4.34). The 

problem we formulate below to accomplish this, has the following motivation. 

Observe that the cut hyperplane is constrained to pass through (n-1) linearly 

nj 
uniquely define the cutting plane, we need to identify a suitable point x which 

has xk  > O. Now, according to Equation (4.34), this cutting plane will need to 

support the set XSh with each point of XSh being feasible to it. Hence, in order 

to determine Trkh' we may hold the intercepts on the axes jeJ - {k} fixed and 

(4.35) 

(4.36) 

independent points of the form (0 	 1 	0) for jeJ - {k}. In order to 
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decrease the intercept on the kth  axis (increase 7kh) until the hyperplane merely 

supports XSh  at some point x with xk  > O. This problem is mathematically stated 

below. Theorem 4.2 later establishes that an optimal solution to this problem 

yields 7
k 

= 7
kh 

f)kh' 
	 maximize 	7

k 

	

subject to 	7k
x
k 
+

j
x
j 

= 1 
jeJ 
jOk 

x e XSh 

xk 

Note that 7k  is unrestricted in sign. Now using Equations (4.12), (4.13), (4.16) 

and solving for 7k  through Equation (4.37), we may rewrite the above problem as 

maximize 
jEj 

5 .  L 
3\Xki 

k 

jOk 

subject to (all gi 
 j eJgiikx0—xk 

for i=1,...,m 

h (!a  
aj \xk , xk 

jeJ 

(
xk
It) > 0, xk 

> 0 

Finally, letting 

= 	and yj  = 4- 	for each jeJ 
1 
	 xi 	

(4.40) 

(4.37) 

(4.38) 

(4.39) 
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we obtain the following linear programming problem in IJI variables 

	

LPkh : 
	maximize 	z(,y) 	- / 	Y 

jeJ 
jOk 

	

subject to 	C gij 
y 

 j  - gib  — 
< -g

ik 
 for 

jeJ 
Dik 

r  _ 	ah_ < 
" 	j 7 .1 ak 

jOk 

E> 0, yj  > 0 for jeJ - {k} 

Consider the following result. 

Theorem 4.2 

- - 
If Problem LPkh is feasible, then it has an optimal solution 

E, y , jej - {k) 

with E < co. Moreover, the optimal solution values of Problems LP kh  and Problem 

Pkh (defined by 4.34)) are equal. 

Proof. Note that the constraints of Problem LP kh  may be rewritten as 

L 
h I 	

a - 
g i E < 0 for i=1 	m• - L aiyi  + < 0 and yk  1, with 	y > 0. 

jeJ 	 jeJ 

	

Letting p i , 	 y and al, be the respective dual variables associated with 
these constraints, the dual to Problem LP kh  may be written as 

	

DLPkh : 	minimize 	Ok  

	

subject to 	alp' - 7 gi ,p i  < 	for jeJ - {k} 
1=1 	J  

h 
akY - 7 

11 gioi_<_ = 

y - 

 

m gipi  > 1 	 (4.43) 

1, P> 0  

(4.41) 

(4.42) 
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- 	_ 
Letting 6k  denote the minimum value of 6 k , we will show that Sk = 71-kh• lie have 

from (4.34) 

7khxk 	X x
j xj  2 1 	for each xEXS h 

jEJ 
jOk 

(4.44) 

L - 
.x. = 1 

 ^ 
7 x 	L 7 
kh k  

jEJ 
jk 

for some xEXS h (4.45) 

Hence (4.44) is implied by XSh  and Lemma 2.2 asserts the existence of y > 0, 

p i  > 0 satisfying (4.41) through (4.43) with R -k = /rich• That is y, Ii i  and rikh  is 

- _ 
feasible to DLPkh. Thus LPkh  is bounded. Hence,.< ; < x 	kh 	Now let y, p i  

and 6k  solve DLPkh . Then, xEXSh  implies 

h- 
X [a i Y - 	 > 	- 7 

jEJ 	i=1 j 
	— 

i=1 

Then noting (4.41) through (4.43), we get 

+ X Tr )7. >1 	for each xEXS h kk 	jj— 
jEJ 
jk 

- 	_ 
We have shown that 

13k < 710). Now if 6k  < 7kh, then from (4.45) 

	

k
x
k 
+ 	Fx < 1 

jEJ .3 3  
jOk 

contradicting (4.46). Hence Sk = 7Tich• 

Finally, since LPkh  is bounded, there exists an optimal extreme point 

solution (T,Y) with T finite. This completes the proof. 
Corollary  

Let T, yj , jEJ - NI solve LPkh  with T < -, and with 17.1(  as the corresponding 

Yi 
objective function value. Then, 7k  = 6k , xk  = 1 and x = 	for jEJ - {0 solves 

E 

(4.46) 
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Pkh .  

It is easy to show that the following expedient for determining Trk of 

Equation (4.35) through the solutions of Problems LP kh , hell for a given keJ, 

is a valid scheme. 

Step 1  

Consider the cut (3.19) derived for the disjunction x E U S h . Let h EH 

hEH 
be a "blocking hyperplane" for the k th  edge as defined in Section 4.4. 

Step 2 

Solve LPkh . If LPkh is infeasible, then select any hell not considered 

thus far and repeat Step 2. (If LPk h  is infeasible for each hell, then x k  = 0 for 

each x e U XSh and the variable xk  may be disregarded from the problem). Other- 
heH 

wise, obtain an optimal solution value W I k.. 	f 	 terminate with 17k = Trk . - 7rkh 	7r1(9  

If each heH has been considered, terminate with Trk given through Equation (4.35). 

Otherwise, select an hell not considered thus far and repeat Step 2 by solving 

Problem LPkh  with the added restriction that its objective value be at least 

equal to the largest of the objective values of problems :LP kh  that have been 

solved before this for other h e H. 

We remark at this point that the development of the present section may be 

easily extended to a broader class of problems in which each of the sets S h , hEH 

may contain more than one constraint. This is accomplished by simply writing 

the second constraint of LPkh for each of the constraints in Sh. Further, Step 1 

of the scheme discussed above may be started from an arbitrary h or from one 

determined heuristically. 

We also draw the readers' attention to the linear programming approach 

(Problem LP) of Section 3.5 for deriving deep'cuts. This formulation is similar 

in thrust to Problem DLP kh  of the present section and may be used to obtain 

supports of the closure of the convex hull of {x: x C U Sh } which are valid 
heH 

cuts for the corresponding disjunction x C U Sh. 
hell 
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4.6 Illustrative Examples  

Suppose that we are given 

S1 	{x: -x1  + x2 
	1, > 1 x > 0} and S 2 	{x: = ix x1 

	1, x > 1 	> 0}  •   

Consider the following three examples of the set X: 

(I) X = {x: 2x 1  - 2x2  < 1} 

(ii)X = {x: 2x1  - x2  < 11, and 

(iii)X = {x: 6x1  - 2x2  < 3}. 

These three cases are depicted in Figure 4.6. Also shown in this figure are the 

respective best cuts available. 

Now, the cut (3.19) from the disjunction x e U S h  is xl  + x2  > 1. 
heH 

Figure 4.6. Cuts for the Three Illustrative Examples 
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Using the development of the previous section to improve the extension 

corresponding to the variable x l  holding the other extensions fixed yields the 

following problem. Note that h=2 is selected at Step 1 in each case. 

Example (i) Example (ii) Example (iii) 

Problems maximize E — y 2  maximize E - y2 maximize E - y2  
LPwith kh 

k=1, h=2 
subject to 2y2 + E > 2 subject to y 2  + E > 2 subject to 2y 2  + 3E > 6 

E< 1 E< 1 _ E < 1 

E. Y2 > 0  F, Y2 > 0  9 Y2 > 0  

Solution 

Value: 1/2 0 —1/2 

E 1 1 1 

Y2 
1/2 1 3/2 

One may easily verify that the Problem LPkh  with h=1 yields smaller objective 

values in each case. Further, the edge extension corresponding to x 2  cannot be 

improved. Hence, the best cuts obtained in each case are 

Example (i) 
	

1/2 xl  + x2  > 1 

Example (ii) 
	

x2 > 1  

Example (iii) 
	

—1/2 xl  + x2 > 1 

These cuts are illustrated in Figure 4.6. 

We will now proceed to discuss another important concept closely related 

to the depth of disjunctive cuts. Specifically, as briefly mentioned on several 

occasions thus far, facets of the closure of the convex hull of the set U Sh 
hell 

constitute highly desirable disjunctive cuts. In fact, if one replaces the 

nonconvex set U Sh  by the closure of its convex hull, which is polyhedral 
heH 

whenever Sh  are defined by a set of linear constraints with IHI < m, then the 

nonconvex disjunctive program may be effectively replaced by its convex equivalent. 
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A method of identifying and generating such facets is the topic of our discussion 

in the following chapter. 

4.7 Notes and References  

Recall that a valid cut is nondominated if it supports the closure of the 

convex hull of the feasible region. This chapter first shows how the strength 

of a disjunctive cut depends on the formulation of the disjunctive statement. 

Thus, one can conceivably derive a number of different nondominated cuts, each 

corresponding to a different formulation. A related thought that is pursued in 

this chapter is as follows. Given a valid cut, possibly a nondominated cut 

corresponding to one formulation, can we improve upon this cut. In particular, 

the improved cut is a nondominated cut corresponding to a new formulation obtained 

from the previous one by adding one constraint. The answer is affirmative, and 

it is precisely the polyhedral annexation scheme of Glover [19]. A further 

thought that arises is whether the strength of the final cut thus derived is 

dependent upon the order in which the constraints are added. The answer again 

is affirmative. In Section 4.5 therefore a scheme is developed whereby a given 

valid cut is improved by considering all the constraints simultaneously. 



Chapter V 

GENERATION OF FACETS OF THE CLOSURE OF THE 
CONVEX HULL OF FEASIBLE POINTS 

5.1 Introduction  

In this Chapter, we examine a procedure for replacing the disjunctive 

statement in a problem by linear inequalities which represent the facets of the 

closure of the convex hull of points feasible to the disjunction. In particular, 

we present necessary and sufficient conditions for an inequality to define a 

facet of the closure of the convex hull of feasible points. The actual generation 

of such facets is a hard problem. However, for a special class of problems 

(called "facial problems" in this chapter) it is possible. to obtain the closure 

of the convex hull of points satisfying disjunctions, in a sequence of q steps, 

where each step generates the closure of the convex hull of points satisfying 

one disjunction only. 

To simplify the presentation, we will avoid proving results and will simply 

state them and illustrate them through a numerical example. To begin with, let 

us state the form of the disjunctive program DP of Chapter I which we will be 

working with in the present context 

DP: 	 minimize 	f(x) 	ctx 

	

subject to 	x E X ,= {x: Dx > d, x > 

V {Ahx bh , x > 0} 
hcH 

The linear program obtained by relaxing the disjunctive statement of Problem DP is 

LP: 	 minimize 	c tx 

subject to 
	

Dx > d 

x > 0 
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We will assume henceforth that both DP and LP are stated above in terms of the 

nonbasic variables at the current optimal solution to LP. Thus, the current 

solution is x = 0 with feasibility implying that d < 0 and optimality implying 

that c > 0. 

To illustrate, let us work with the numerical problem of Section 4.2 

throughout this chapter. From the optimal tableau for Problem LP given in 

Section 4.2, we deduce 

DP: 	 minimize 	2s1 + s 3 

	

subject to 	-sl  + s 3  > -5 

51 - 5 3 > -3 

 - s3  > -5 

51' 5 3 > 0 

1
s 1 -5 3 > 5 5 3 > 5 

51' s3 	0 	V 51' 5 3 > 5 

 5.2 A Linear Programming Equivalent of the Disjunctive Program  

In this section, we will write a linear program ELP which is in a defined 

sense equivalent to the nonconvex problem DP given above. For this purpose let 

us define the following sets. 

For each heH, let 

Fh  = {xeRn : Dhx > dh , x > 0} E 	Dx > d, Ahx > bh , x > 0} 
	

(5.1) 

represent the points feasible to LP which are also feasible to the h th , heH, 

disjunctive constraint. Also let 

F = U Fh = IxeRn: V {Dhx > dh , x > 0} 
hen 	 heH 
	 (5.2) 
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Finally, let us denote the feasible region of LP as 

F0  = {xERn : Dx 	x >0} 	 (5.3) 

Let us assume that IHI < 0. and let us define 

H* = (hEH: Fh  # 101 	 (5.4) 

Now, let us characterize the closure of the convex hull of F, denoted by 

cf., cony F.  Note that any xEF may be written as 

Lx = L goh u
h 
 , where uh Fh , hEH* , and where, 

hEH*  

hell

r *h 
L 	= 1 ' 0 

 Hence, substituting g =.g
o
h uh  and noting that D huh > dh , u

h 
> 0 we get 

xERn: x = c gh 
hEH*  

	

hh 	hh D E > d go , hEH*  

cit cony F = (5.5) 

h h 
(gi, go) > 0, hell*  

It may be shown that if the feasible region of LP is bounded, then (5.5) is true 

with H* replaced by H. Now, if LP has a finite optimal solution, then directly 

using the characterization of Equation (5.5), we may write a linear program ELP 

equivalent to Problem DP in the sense of Theorem 5.1 stated below. 
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ELP: 	 minimize 	y ct h  
hEH 

	

subject to 	D
h h > dhh hEH 

41) = 1  
hell 

hh
) > 0, heH 

Let us denote the feasible region of Problem ELP as P. Then consider the 

following result stated without proof. 

Theorem 5.1  

Problems DP and ELP are equivalent in the following sense 

(i) For every extreme point x of c2, cony F, there corresponds an extreme 

point of P with components 

k , , (:)) = (x, 1) for some kEH 

0 otherwise 

(ii) All extreme points of P have components of the following form 

	

1) 
	

for some kEH 

0 otherwise 

where, x = ec.  is an extreme point of F k  

(iii) x is optimal to DP if and only if the corresponding extreme point of 

P defined in (i) above is optimal to ELP. 

For the moment, we will not involve ourselves with the description of 

specialized solution procedures for Problem ELP. We merely remark that there do 

exist simplex—based decomposition solution schemes which exploit the structure 

of ELP. We will now proceed to give an alternate characterization of the set 

cR cony F which permits the explicit generation of the facets of the convex hull 



(10,5) 

(0,3) 
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of feasible points. Before that, let us illustrate some of the concepts intro-

duced in this section through our numerical example. Figure 5.1 is provided 

below for this purpose, and may be referred to along with the statement of 

Problem DP. 

s 3 	 Fo =Region feasible to LP 

(0,0) 	 (5,0) 

Figure 5.1. Illustration of the sets F0 , F1 , F2, F, cR cony F 

5.3 Alternative Characterization of the Closure of the Convex Hull of Feasible 
Points  

In this section, we will lay the foundations for the procedure which will 

generate facets of the set et cony F. In particular, we will present an 

alternative characterization for the latter set. To begin with, let us informally 

r conceptually introduce certain definitions which we will find necessary to 

se in the following exposition. 

By the polar set of F, we mean the set 

F°  = 	E Rn : 	< 1 for each xCF} 	 (5.6) 
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By the scaled polar of F with scale parameter 7 0 , we mean the set 

Of 

	

F 	/ = { E Rn : 7x < 7
0 
 for each xEF} 0 —  

The scaled reverse polar of F with scale parameter 7 0  is the set 

	

F# (7
0 
 = L I7 C Rn : / 	

n
: ffx > 7

0 
 for each xEF} E — F

0
ff k—) 

—  

Given two sets S and T, their Hinkowski Sum is the set 

	

S + T = {x: x = s + t, s ES, tcT} 	 (5.9) 

The conical hull of S is the set 

	

cone S = {x: x = 1 Xixi , xi  E S for each i, Xi  > 0) 	(5.10) 

The linear hull of S is the smallest subspace of R n  containing S, that is, 

	

th S = {x E Rn : x = 1 Xixi , xi  e S for each 11 	 (5.11) 

The affine hull of S is the set 

	

aff S = {xeRn: x = 1 X ix i , xi  E S for each i, 	Xi  = 1) 	(5.12) 

The orthogonal complement of S is the set 

r S = tir e Rn : Trx = 0 for each xES} (5.13) 

The recession cone of S is the closed cone which is a closure of the set of 

directions of S, that is, 

(5.7) 

(5.8) 
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C(S) = CL{VERn : xES implies that x + Xv E S for all X > 0) 	(5.14) 

The linearity of S is the dimensionality of the largest subspace contained in C(S), 

that is, 

kin S = dim {R: R is a subspace of C(S) and 

Q e R for each subspace Q of C(S)} 	 (5.15) 

Note that for a set T, the dimension of T, denoted dim T, is the dimension of the 

linear hull of T. 

Let us turn our attention to the scaled reverse polar of F, O(n0), 

(Equation (5.8)) which we will find very important in the present context. Note 

that F o ) is the set of all normals to the hyperplanes which define valid cuts 

for the stated disjunction. Hence, two alternative ways of writing O(n0) are 

given below 

(a) F4 (n0) = 

	

	Rn: nxi  > no  for each x i  a vert ck conv F 

ncli > 0  for each d i  C dir ct conv F) 

. (b) F ii (no) = {7r C Rn: 	oho + ahAh, > 	hcH*  for some eh , ah  > 0 , 

hell* such that Ohd + ahbh  > no } 

Above, for a polyhedral set S, vert S denotes the set of extreme points of 

the set S and dir S denotes the set of directions of S. 

Note that the sign of no  is important in this context since we can always 

scale nx > no  so that no  is either +1 or -1 or O. These latter three cases will 

henceforth be of primary interest to us. Further, whenever the sign of n o  is 

inconsequential, we will simply write F#  instead of O(n0). Finally, note that 

the characterization (5.16) of O(n 0) is conceptual whereas that of Equation 

(5.17) is accessible. To aid our understanding of F # , let us actually construct 

(5.16) 

(5.17) 
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it using (5.16) for our problem, using values of 1, -1, and 0 for 7 0 . 

As depicted in Figure 5.1, ci conv F is a polytope with extreme points 

(2,5), (5,0), (10,5). The set dir ci corm F is vacuous. Using Equation (5.16), 

we have, 

F(70) 

= (ff
1'
7
2
): 27

1  

1071 

+ 57 2  

57 

+ 572 

1 

>  — 0 

> 7 0 

> 0 

71 , 7 2  unrestricted 

Figure 5.2 illustrates the sets F # (1), F1 (-1) and F 1 (0). 

Some useful properties of the reverse polar are stated below without proof. 

Lemma 5.1  

Let S and T be arbitrary sets. Then, 

(AS)1 = 1  (S11),  -= < A < co 
A 

S a T implies S# T# 

(S U T) 11  = s#n T# 

Based on these properties, one may establish the following important relationships 

between F #  and ci cony F. 

Theorem 5.2  

(i) If 70  > 0, then 

0 e ci cony F <=> F#  = 	<=> 0 is bounded 

(ii)If 70  < 0, then F#  0 {4)}  and 

0 c int cony F <=> F# is bounded. 
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7
1  

07 1  — 57 2  = —1 

/////// 

(0,0) 

107 1 — 57 2 = 27 1  + 57 2  =0 

Figure 5.2. Construction of 0(7) for 7 0  = 1, —1, 0 
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However, the set more closely related with cR cony F is the set (F # ) #  denoted by 

F". Suppose that F#  # {4'}. That is, from Theorem 5.2 above, assume 

that 0 4  c9 cony F. In other words, the point we are currently located at 

(assumed to be the origin) is infeasible to the disjunction. Then, note from 

Equation (5.8) and the definition of valid inequalities that 

F
o
) = {lc a Rn  = x is feasible to all valid inequalities 

of the form Trx >} 0 

Thus, clearly, we have, 

6 cony F = 	 0#(70) 
7
0
=1

'
-1

'
0 

Since the set of all valid inequalities are jointly determined by F(1), F(-1), 

F# (0), then from (5.18), the intersection (5.19) defines the closure of the convex 

hull of feasible points. Two alternative ways of rewriting F" are given below 

(a) 04 (70) = xeRn : Tr ix > Tr°  for all Tr i  C vert F# (110 ) 

(5.20) 

dix > 0 for all d i  e dir 0(Tro) 

(b) From definitions (5.9), (5.10) and (5.19) one may alternatively show. 

that 

6. (cony F + cone F) if 7
0 

> 0 

01/ (710) = 	ci cone F 	 if 7
0 

= 0 
	

(5.21) 

ci cony (F U {0}) 	if 7
o 

< 0 

As before, we may use the characterization (5.16) to construct F H (710 ) from the 

sets F#(710) of Figure 5.2. These sets are depicted in Figure 5.3 below. The 

reader may find it interesting to verify diagramatically the definition of 

Equation (5.21). 

(5.18) 

(5.19) 
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(0,0) 

(5,0) 

(0,0) 

(0,0 

Figure 5.3. Construction of F"(7 0) for 11
0 
 = -1

" 0 

Next, we state some useful properties of the set 0 and some important 

results concerning Fi and F. These are based on the definitions (5.8) through 

(5.15) introduced earlier. 

Lemma 5.2  

(a) If F# = [(1)} (which necessarily means that Tr 0  > 0), then F
0# = Rn 

(b) = 

(c) aff F" = Rh F" = Rh F 

(d)Rh F = EL  where 

L = largest subspace contained in the recession cone C(FO) 

of F° E linearity space of 
	 (5.22) 

(e) dim pH  + Rin F" = n 
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(f) dim F## ={ dim F if 0 E aff F 

dim F + 1 if 0 e aff F 
(g) F 11  = (F 11  fl Rh F) + L. (This follows from (d) above and fact that L 

defined in (5.22) is a subset of F 11 ). 

(h) Lowest dimensional faces of F 11  are of dimension (n - dim F"). 

For our example problem, 

aff 0# = Rh 0#  S 2.12 F E tl  E R2  

Rin F 11  E L = {c} for each 71 0  

dim 0#  = 2 (=n) 

Also, 0 E aff F and dim F= 2 

Since L = {0}, Rh F = 
R2 ,  O a R2 , Fit = (F #  fl Rh F) + L = On R2 . 

Lowest dimensional faces of F 11  are of dimension (n - dim F) = (2-2) = 0 

i.e., lowest dimensional faces of F 11  are extreme points. 

5.4 Generation of Facets of the Closure of the Convex Hull of Feasible Points  

In this section, we will characterize the facets of the set et corm F in 

terms of the sets F #  and 011  discussed in the foregoing section. For the sake of 

completeness, let us define a facet. 

Definition  

7x > 70  is a facet of a d-dimensional set S if 

7x > 70  for each x e S and 

7x = 710  for exactly d affinely independent points of S. 

Theorem 5.3 stated next characterizes the facets of the set F ##  which play 

an instrumental role in determining the facets of a conv F as will be seen shortly. 

Theorem 5.3  

7x > 70  is a facet of F 011 and 7 E Rh F 

if and only if 

{ 	 } 

70  # 0, it # 0, 7 e vert (F 11  fl 1...1-) 

or 70  = 0, 7 0 0, Tr E dir (F 11  fl LL) 

Note: Recall from Lemma 5.2(d) that Li = Rh F. In this theorem, the statement 

it c Rh F becomes necessary for the following technicality. Suppose 011  is less 
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than full dimensional. Then a facet of F" defined by a hyperplane H can also be 

defined by a family of hyperplanes H' such that 

(Rh F) fl H' = (kh F) fl H 

Thus, we specify a particular hyperplane from this family which has its normal it 

lying in kh F. 

Since for our problem, the largest subspace contained in the recession cone 

of F#  is of zero dimension, i.e., in F# = 0. Thus, (5.22) yields L = {4} or 

E that kh F = L = R2 . Hence, F# fl LL = F# in this case. Thus, in the present case, 

Theorem 5.3 above follows from the fact that F" may be defined as in Equation 

(5.20). 

Let us now consider an important result for computing facets of F##. 

Theorem 5.4  

Let g c Rn , itx > w o  be a facet of F" and let 71 E kh F. Then, 

g c {x E 011 : itx = 7t0 }<=>ITg=71 0  supports F#  and contains it, where, 

vert Of) LL  if 71
0 

# 0 

W E 

dir F#  fl Ll'if w0  = 0 

For example, in our illustrative problem, consider 71 0  = 0. Let us examine 

F1' 1 (0). The facet 5s 1  — 2s 3  > 0 has it = (5,-2) lying in kh Fit R 2 . Further, 

g= (2,5) t  say, belongs to F(0) with wg = 0. (Note that w o  = 0 here). Then 

the theorem implies that 2x 1  + 5x2  = 0 supports F#(0) and contains the point 

= (5,-2) where, as seen in Figure 5.2, w = (5, -2) E dir F#(0) (since LL = R2 

 here). The converse result is also true. 

Now, let us consider the main result of this section. This result 

characterizes the facets of ck conv F in terms of the sets F# and F 111 . Two cases 

are considered, e.g., w o  # 0 and w o  = 0. A discussion of this theorem and its 

implications follow after its statement. 
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Theorem 5.5  

(i) Suppose 70  0 0. Further, assume that 0 C aff F. Then, 

{7x > 70 is a facet of ci conv F} <=> {7rx > 7 0  is a facet of O il } 

Corollary  

Assume 0 E aff F, it E Rh F. Then, 

17x > 70  is a facet of ci conv F} <=> {7 0 0, 7 C vert On Lt 

(ii) Suppose 70  = 0. If 7x > 0 is a facet of ci cony F, it E 121.1 F, then 

this implies that 

0, and that 7r is an extreme direction of F
#  (1 L

JIL 
 

Conversely, if it 0 0, it E dir (O(1 EL), and d=dim F##, then either 

(a) 7x > 0 is a facet of ci cony F, or 

(b) 7x > 0 is a (d-2) dimensional face of ci cony F such that this (d-2) 

dimensional face is an intersection of two adjacent facets of the type 

71x > 7
1 71 > 0 - 0' 0 

and 

2 	2 
7
2
x > 7 70 < 0 - 0' 

with 

/ 71 72 \ 

= n0 	it0 
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Note: Let us consider case (i) first, e.g., T o  0 0. Note that if 0 ¢ aff F, 

then this implies that dim F = d-1 and that each facet 7x = 7 0  of F##  contains all 

of ck cony F, instead of being a facet of ck cony F as when 0 E aff F. Thus, in 

case 0 ¢ aff F, a facet of ck cony F is given by the intersection of nx = no  and 

a (d-2) dimensional face of F#  corresponding to an edge or a 1 dimensional face 

of F' n 
Secondly, note from Lemma 5.2(c), (d) that if F## is full dimensional, then 

L = {0}, or, UL  = Rn . This implies that one may examine the non-zero vertices of 

F" itself to obtain facets of ck cony F. 

Thirdly, if d = dim F## < n, then kin F# = (n-d) > 0 (see Lemma 5.2 (e)). 

Hence, F#  has no extreme points. However, there is a one- to-one correspondence 

between vertices 7 of F" fl 1:1  and (n-d) dimensional faces of FO which are of the 

form a + L, where L is given by (5.22). These are the lowest dimensional faces of 

F# (Lemma 5.2(h)). 

Again, the corollary in case (i) Of the theorem designates a + L to be an 

(n-d) dimensional face of F#. In particular, if F" is of full dimension, i.e., 

d=n, then this Corollary states that 

{nx > no  is a facet of ck cony F) <=> fn 0 0 is an extreme point of F#} 	(5.23) 

Case (ii) of the theorem states that if 7 0 0 belongs to the set dir F# fl L1 

or, if F" is of full dimension, and n # 0 belongs to dir (0) itself, then nx > 0 

may be used in a system of linear inequalities which characterize ck cony F in 

either case (a) or (b) of the converse. 

Let us illustrate some aspects of this theorem through our numerical example 

first, and then discuss the utility of this theorem. 

Let us begin with Case (i). Note that 0 e aff F and that F# fl 111  = F# in 

our problem. The facets of ck cony F of the type nx > 70 , 70  0 0, are 
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si 	3s3  
(1) 581  + 38 3  > 25, i.e., —5- + 	> 1, which is a facet of F(1) with 

\5 
,
25/
1 being the only extreme point of F 1 (1) 1 

 

-6 1 63 
(2) -s 1  + s 3  > -5, i.e., 	+ 	> -1, which is a facet of F"(-1) with 

(4- 	being an extreme point of F # (-1) 

and 
s 3  

(3) -s3  > -5, i.e., —5--  > -1, which is also a facet of F"(-1) with 

(0 
-1 
-- )being the only other extreme point of F(-1). 5 

To verify Case (ii), observe that extreme directions n of F#(0) fl 	F#(0) 

here, are (0,1) and (5,-2). Hence nx > 0 has the form x 2  > 0 and 5x1  - 2x 2  > 0. 

Since d=2 in our problem, both these define d-2=0 dimensional faces of ct cony F, 

i.e., they define extreme points (5,0) and (2,5) respectively of ci cony F. Hence 

case (ii) (b) of the converse applies. Further, (5,0) is the intersection of 

1 	1 
adjacent facets 5s 1  + 3s3  > 25 and -s i  + s 3  > -5 with 75- (5,3) + 3 (-1,+1) = 

8 	 8 
(0 93) which defines 	x2  > 0 or x2  > 0. Similarly, (2,5) is the intersection 

of adjacent facets 5s1 + 3s3 > 25 and -s 3  > -5 with 5 (5,3) + 	(0,-1) = 

2 	 1 	2 
(3,-TO which defines 3 x l  - 	x2  > 0 or 5x1  - 2x2  > 0. 

Implementation  

Now, we know that if we obtain an extreme point n(00) of F #  fl Li-, for 

no  0 0, then nx > n o  defines a facet of a cony F if 0 c aff F (or contains 

ct cony F if 0 4 aff F). Further, if n(00) is an extreme direction of F #  fl LL 

 with no  = 0, then nx > 0 either defines a facet of ci cony F or again, contains 

ci cony F. In any case, nx > no  is a valid inequality in the system defining 

cf. cony F. By virtue of Theorem 5.5, it is also sufficient to represent ci cony F 

by the system of inequalities of the type nx > no  where n is either an extreme 

point of F 11 fl LL if no  0 0 and is an extreme direction of F# fl CIL  if no  = 0. 

The basic problem at hand then, is to identify extreme points or extreme 

directions of F#  fl LL, as appropriate. The concept utilized in accomplishing this 

is that if one minimizes a linear function g, say, over F#, and if the minimum value 
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is finite, then one will have detected a lowest dimensional face of 

Hence, assume as before that 0 e ci cony F, that is, the current point 
(origin) is infeasible•to the disjunction. Then the problem we wish to examine is 

Pl(g,n0 ): 	 minimize 	{gn: 7r e F#(n0)} 

Alternatively, using the characterization of 0(710) given through Equation (5.17), 

we have 

Pl(g,n0 ): 

	

minimize 	gn 

	

subject to 	uhDh  < n 

uhdh  > W — 0 

uh > 0, 11 unrestricted 

p where uh  = (0
h
,D
h
) and Dh  = (Ah  ). 

The dual of this problem may be written as 

P2(g,W0 ): maximize z = Xn0E0  
hell*  

subject to 	Dhe > dhee" heH*  

y ch g  

hEH*  

h h co , C > 0, heH*  

For our example problem, Pl(g,n 0 ), P2(g,n0) may be written as follows 
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P1(g,70 ): 	minimize 	gi Mi 	g272 

	

subject to 	—111  + u 2  + u4  <7
1  

	

1 	1 	1 	1 
ul u2 u3 u4 <72 

—u
2 
+ u

2 
< 7 

	

1 	2 — 1 

	

2 	2 	2 	2 
ul u2 u3 u4 <72 

—5u
1
1 
 — 3u2

1   — 5u3  5u1 > 7 

	

3 	4 — 0 

—5u — 3u2  5u2 + 5u 	7 

	

1 	2 	3 	4— > 0 

uh  > 0 h=1 2 j=1 2 3 4 

	

j 	 f 

7
1'

72 unrestricted 

and 

P2(g,70 ): 	maximize 	Eo
1 
 + Co  70  

subject to 
1 	1  

—Cl + CZ > —5E0
1  

1 	1 
1 — 2?-3C0 

— E2 > —5E
1 

 — 

-E2 — > —5E
1  

2 	2 	2 
— 1 

+ 2 >  —5 C0 

2 	2 	2
— 

Cl 	2 —3 0 

2 	2 

	

—2 2 — 	0 

E
2 

>
2 

2 — 	0 

1 	2 
El El - gl 

0. 4. 	= g 
2 	2 	2  

Eh  E > 0, h=1 2. j=1 2 op j 	" 	p 
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The task at hand then, is to find a characterization of g such that Pl(g,n o) has a 

finite minimum, that is, P2(g,n0) is feasible with a finite maximum. Since 

Fit # [0, P1 is finite if and only if P2 is feasible. Such a characterization of 

g is given through the following theorem. 

Theorem 5.6 (Characterization of g)  

(i) If g c ci cony F, g # 0, then for every A > 0 such that Ag c c12. cony F 

(and such a A exists), we get 

	

h -h r 	h 
P2(g,n0 
	 ' ) has a feasible solution E = (E E 0'  ) with 2, *  Co  = 1/A 

hcH 

	

Conversely, if C is feasible to P2(g,n 0) with 1/A = 	q, then 
htH*  

g E ci cony F, g 0 0, As E ci cony F. 

(ii) If no  # 0, then a solution E feasible to P2(g,n o) is also optimal 

if and only if the objective function value z = n o (1/7), where 

1 minimum {A: Ag c ci cony F} if n0  > 0 T . 

(iii) If n
o 

0, any feasible solution E to P2(g,0) is optimal with value 

- 
z = 0. However, Pl(g,0) has an optimal solution (n,u) with erg = 0 and 

0 if and only if g c boundary of c9. cony F. 

Illustration  

For the sake of illustration, let us consider part (ii) of the above 

theorem. Consider 7
0 
 . 1 and g = (1,1), say. Then, 

= minimum {A: A(1,1) c ck cony F} = 25/8 

Further, minimum {ni  + 72 } occurs at (5,25)  with objective value 

n C Fit(1) 

maximum {A: Ag E ci cony F}  if no  < 0 
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8/25 = 70 /1.  - 1/(25/8). 

For part (iii) above, note that g E boundary ck cony F and 70  = 0 implies 

that P1(g,0): min 14: n E F li (0) has an infinite number of alternative optimal 

solutions along some extreme direction of F#(0) n L. Note that F 11 (0) is a poly-

hedral cone with the vertex at the origin. Hence (0,0) is also optimal and the 

optimal value is therefore always = O. 

Next, we give a characterization of solutions of Pl(g,7r 0 ) for a given got ° 

 such that these solutions contribute towards determining facets of FO° (and hence 

of ci cony F) by detecting extreme points and extreme directions of F#. Such 

solutions are called regular solutions.  Again, we consider cases TT°  # 0 and 

wo  separately. 

Theorem 5.7 (Regular Optimal Solutions)  

(i) Suppose 71 0  # O. Then, 

{; E F #  is an extreme point of 	fl Ell <=> {(a) 71 E Li  and (b) there 

exists a p e UL  such that 

- 7 E L is the unique 

point which minimizes 

itp on F li } 

Accordingly, if 0,70 is optimal to Pl(g,Tr o ) for some g E ck cone F, 

then 

E vert F #  fl ELI <=> {(1) n E L1  and (2) there exists a y e 171 such 

that if (7r,u) solves Pl(g 	y,Tro ) and if 

71 E Li  then this implies that it = W. } 

If (F,71) satisfies these latter conditions (1) and (2), we call it a 

regular solution. 

(ii) Suppose 70  = O. (Note: In this case, 	is a cone and Fon 	is a 

pointed cone, that is, has an extreme point at the origin). Then, 
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{7 6 F 11  is an extreme direction of F 11  fl LL} <=> f(a) it # 0, if 6 L 1  and 

(b) there exists a 

p E VI  such that up to 

a positive multiplier, 

it E LI  is the unique 

point which minimizes 

Trip on F 11 } 

Accordingly, if some (1',17) is optimal to Pl(g,0) for some g E boundary 

ci cone F (recall that this gives rise to extreme directions of 

0/ (0)n 111", then, 

(Tr 6 dir F °  fl 4)<=> (1) Tr # 0, 5T E L'a' and (2) there exists a y 6 Li• 

such that if (ir,u) solves Pl(g + y,0), and 7 0 0, 

7 E L1, then this implies that Ti = ATT, A > 0. 

If (ii- ,71) satisfies these latter conditions (1) and (2), we call it a 

regular solution. 

Interpretation  

Consider Case (i). This simply says that for every extreme point 51 of 

On L1, there exists a vector p which one may use in min {Trp: 7 E 0}such that 

this extreme point is a unique minimizing point. Moreover, given an extreme point 

optimal solution (7,71) to Pl(g,ff 0), we can always perturb the objective function so 

that this extreme point is the unique optimal solution. 

1 3 
For example, in our illustrative problem, consider Tr o  = 1. Then 	is 

an extreme point of F °  fl L'1'. Further, clearly, 

(a) (54) E UL  E R2 , and 

(b) taking p = (5,3), say, the problem min Sin  + 3ff2 : 7 E OM has 
1 3 
5'25 as its unique optimal solution. 

Similar remarks hold for Case (ii). Here, the uniqueness of the optimal 

solution is upto a positive multiplier since we always encounter alternative 

optimal minimizing points along extreme directions in this case. 
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An important and relevant result which ties in the above statements is 

given next. 

Lemma 5.3  

If Pl(g,70) has an optimal solution, then it has a regular optimal solution. 

We will now characterize facets of F## (and hence of ct conv F) in terms of 

regular optimal solutions to Pl(g,7 0 ). 

Theorem 5.8 (Characterization of facets of 0°, and hence facets of c2 conv F,  
in terms of regular optimal solutions)  

(i) Suppose 70  0 0. Let g e ck cone F, g 0 0 and let 

minimum {X: Xg c c2 cony F} if 7 0  > 0 
7k = 

maximum {X: Ag E c2 cony F} if 7 0  < 0 

Then, 7x > 7 0 , (70  0 0), 7 C kh F is a facet of F1111  containing the 

point Ag, if and only if 7 - TT for some regular optimal solution (VI) 

to Pl(g,70 ). 

(ii) Sleppose 70 = 0. Let g e boundary c2 conv F, g # 0. Then, 7 x > 0, 

n c VI F is a facet of 0 0  containing the point g if and only if 

7 = an for some X > 0 and some regular optimal solution (3,71) to 

Pl(g,0). 

Illustration  

Consider Case (i) above, and let no  = 1. Consider the facet 

5s 1 	3s3  
 

25 + 25 
 --- >1 of F" and recall that for our problem 2.11 F = R2 . Now, since this 

is also a facet of ck cony F, hence for any g c a conv F, we can find the 

1 3 
appropriate A such that X g lies on this facet. Moreover, 7 = (-5,79 here is a 

regular optimal solution to Pl(g,l) for any g C ck conv F. 

Next, consider Case (ii). Here, the vector g = (2,5), say, belongs to the 

boundary of ci cony F, g 0 0. Then, 5s 1  - 2s 3  > 0 is a facet of F" (0) containing 

(2,5). Moreover, taking A = 1, we see that 7 = (5,-2) = W solves the problem to 

minimize 27 1 + 57 2 subject to 7 e 0(0). In fact, any point along the ray 
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satisfying 271  + 5n2  - 0 solves this latter problem. Hence, n = a7, A = 1 for 

some regular optimal solution (7,7:) to Pl(g,0). 

Summary and Notes: Using Theorem 5.7 and 5.8 above, all the facets of F44  may be 

obtained by solving Pl(g,70) (or its dual) for various vectors g c ck conv F. 

Further, from Theorem 5.5, each such facet is, or yields in conjunction with some 

other facets of F44 , a facet of ci cony F. The following points are worth 

noting: 

(i) If Tro  # 0, A is as defined in Theorem 5.8(i), and if A g is the convex 

combination of k extreme points and extreme directions of ck conv F 

(1 < k < n) then this implies that each of these vertices and extreme 

direction vectors are contained in each facet of ci cony F that 

contains A g. Moreover, each such facet can be obtained by solving 

Pl(g,70) (or its dual). 

For example, refer to Figure 5.4 below. A g is the convex combination 

of extreme points (2,5) and (5,0) of ck cony F. Only one such facet 

contains these extreme points and also X g, and this facet is generated 

by solving Pl(g,70) as demonstrated in the illustrative example solved 

below in Section 5.5. 

(5,0) 

Figure 5.4. Representation of Ag 
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(ii) Analogous remarks hold for the case 7 0  = 0 as in (i) above. 

(iii) If g corresponds to an extreme point of ct cony F, then solving 

Pl(g,710) with 70  = 1, -1 and 0 gives all the facets of ck cony F con-

taining the vertex g. This is a special case of remark (i) above. 

Furthermore, for a given 70 , the associated facets all correspond to 

alternative regular optimal solutions of Pl(g,7r 0). Thus, if one facet 

containing g is found, the others are easily obtained therefrom. 

Specialized schemes for solving Pl(g,70) and P2(g,70) may be devised and 

are in fact available. However, since this leads away from the motivation of our 

present disucssion, we avoid these schemes here. We next illustrate in detail 

the method of determining facets of c2 cony F for our example problem. 

5.5 Illustrative Example  

Consider the example problem we introduced in Section 5.1. We will first 

obtain facets of the "> 1 type", then of the "< -I type" and finally of the 

"> 0 type for ck cony F. 

1. "> 1 type" facets (70=1). Here, we are interested in solving Pl(g,l) for 

various vectors g e c9 cone F. If (n7 ,11) is obtained as a regular optimal 

solution, then we put 71 = Ti and derive 7 x > 1 as a facet of F" and hence 

as a facet of ck cony F. 

2 3 
We note here, that for any g e ck cone F, we get n = (3,E) in the regular 

optimal solution. Also, note that as illustrated in Figure 5.4, defining 

A as in Theorem 5.8(i), for g e ck cone F, 7,g lies on the facet 5s 1  + 3s 3  > 25 

of ck cony F. Indeed, this is the facet we obtain here using n = W in 71 x > 1, 

s l 	383 
that is 	 > 1 or 5s 1  + 3s 3  > 25. Moreover, this is the only .1 > 1 type"25 

facet O. cony F. 

2. "> -1 type" facets (70=-1). Now again, we need to solve Pl(g,-1) for various 

vectors g e c2 cone F. In our problem, depending on the values of g selected, 

we obtain either (- 
1 

 5) 
	 1 or (0, - 	as 	in regular optimal solutions. 

Thus, 
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-s 1 	s 	 -s 3 5 + 	
5 

—1 and — > -1 are facets of F## (-1) and hence of ck corm F. 
— 

Thus, the only "> -1 type" facets of ck conv F are s l  - s 3  < 5 and s3  < 5. 

3. "> 0 type" facets (n o  = 0). Now, we need to solve Pl(g,0) for vectors 

g e boundary ck cone F, g 0 0. Thus, we may either select 

g = A(2,5), A > 0 

Or 

g = A(5,0), 	> 0 

The first choice of g yields 

= 13(5,-2), a > 0 in the regular optimal solution to Pl(g,0) 

and the second choice yields 

13(0, 1 ), 3 > 0 

This gives us 5s 1  - 2s3 > 0 and s 3  > 0 as facets of 0 1/ (0). (Note that 

(5,-2) and (0,1) are extreme directions of F#(0)fl LI = 0(0) here, since 

1:‘ = R 2 ). Now, according to case (ii) of Theorem 5.5, consider the facet 

5s 1  - 2s 3  > 0. (Similar remarks hold for the facet s 3  > 0). Either this is 

a facet of ck cony F or it defines a 0-dimensional (d--2 dimensional in 

general) intersection of facets of ck cony F. As observed earlier, in either 

case, we can use these inequalities as defining half-spaces for ck conv F 

without any inhibitions. At most, as seen in Figure 5.5 below, we will have 

introduced degeneracy in the problem. Thus, the set et cony F obtained above 

may be defined by the inequalities. 
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5s1  + 3s 3  > 25 

s l — s 3 < 5  

s 3  < 5 

5s 1  — 2s 3  > 0 

s 3  > 0 

These inequalities may now replace the disjunctive statement in Problem DP. 

The set ck cony F is depicted in Figure 5.5 below. 

Figure 5.5. Inequalities Defining cf, cony F 
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5.6 Facial Disjunctive Programs  

As may be apparent from our foregoing discussion, if IHI is large, then 

the solution of Problem DP through the generation of facets of ck cony F is pro-

hibitive. For example most mixed integer linear programs would be intractable 

by this technique due to the size and complexity of Problems Pl(g,1T0) and 

P2(g,7r0 ). However, this technique is attractive for small IHI. 

Hence, for a large 1111 there is a need to relax some disjunction and in 

some manner, use facets obtained for some enforced disjunctions to generate facets 

for other disjunctions when they are also simultaneously enforced. It turns out 

that such a procedure is possible for special disjunctive programs called facial  

disjunctive problems. 

Before we discuss this, let us consider Problem DP. This problem has been 

stated in the so called disjunctive normal form. There is another way of writing 

Problem DP, which we will find more convenient in the present context. Suppose 

that for each heH, Ah  x > bh  has 1Qh = QI inequalities, where Q is the index set 

of these inequalities. Then, we may construct IQI sets Hi , j EQ such that for 

each heH, exactly one of the inequalities in Ah x > bh is placed distinctly in 

each of the sets H j , j e Q. Thus, H is the cartesian product of the H j , jeQ, that 

is, 

H = II Hj  
jEQ 

(5.24) 

Problem DP may now be stated in the so-called conjunctive normal form 

	

minimize 	f(x) = c tx 

	

subject to 	xeF0  = fx: Dx > d, x > 0) 

A [ V 	> 
jEQ iEH 



108 

where, 

{x: Ahx > bh , x>0} = {x: aix > bi, iEQ, x>0}, hEH 	(5.25) 

and F0  is as defined in Equation (5.3). Now consider the set F defined in Equation 

(5.2) and let us denote iC by F Q . Accordingly, for a set T c Q, let us denote the 

corresponding set of feasible points to the (relaxed) disjunction as F T . Thus, 

T c Q => FT  FQ 	 (5.26) 

The set ck conv FT  will be called a partial convex hull of F for Tc. Q. Now, 

suppose we use the disjunctions in some set T C Q alone and as before generate all 

facets of FT . Further, suppose that we now replace the disjunctions in T with 

these facets in the original problem. Does the solution of the resulting problem 

satisfy the disjunctions in T? The answer is yes for special problems called 

facial disjunctive programs described below. 

Consider the following definitions. 

Definition 5.1  

Let F0  be a convex set. A subset F of F 0  (possibly empty) is called a 

face of F 0  if there exists a supporting hyperplane of F0  whose intersection with 

F0 defines F. 

Definition 5.2  

A disjunction V {a llx > O} is called facial with respect to F 0 , if 
ieHj  

: 	> blp Fh = F n {xERn  
i 	0 

(5.27) 

is a face of F 0  for each lay (Note that a face may be an extreme point, an 

edge, ..., a facet or the entire set). A disjunctive program is said to be a 

facial disjunctive program if F1  is a face of F0  for each iCIlj  and for each jEQ. 
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EXAMPLE.  In our problem, we have, 

1 
F1 = F0 n f(s s 3 ): s 3

> 5). 

and 

F2 = F
0 
 n {(s 1 ,s 3 ): s l  - s 3  > 5}. 

These are depicted as F1 and F2 respectively in Figure 5.1. As one may see in that 

figure, Fl and Fi are faces (facets in this case) of F 0 . Hence, our problem is 

facial. 

Necessary and Sufficient Condition for allx > 01  to be a Face of  F 0 :  Theorem 5.9. 

Let Fi be as defined in Equation (5.27). If there exist (p,v) E Rm  x Rn 

 satisfying 

p(-D) + v(-I) = al_ 

p(-d) 	= 01 
	

(5.28) 

(p,v) > 0 

then Fi 
is a face of F 0 , namely, 

Fi = {xtF0 : aix = 	= {xtF0 : Dix = di  for each iEM+ , 

	

x = 0 for each jES4} 
	

(5.29) 

where Di is the ith row of D and 

	

= lien: p i  > 0), N+  = fjEN: vj  > 0) 	 (5.30) 

Conversely, if Fi is a face of F 0 , and F0 0 F 11 # {0, then there exist (1.1,V)ER9x11." 
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satisfying the property (5.28). 

Henceforth, we will assume that F 0  is bounded (we may regularize it if 

necessary) and that DP is facial. This implies that Fh of Equation (5.1) is a 

polytope for each h e H, that is cony F S  (Econv F) is a polytope. 

Consequence of the Facial Property: 

Theorem 5.10  

If DP is facial and F 0  is bounded, then 

{Extreme points of cony FQ} = U {extreme points of Fh } 
hcH 

i..{extreme points of F 0 } 

For example, in our problem, referring to Figure 5.1, we have, 

{extreme points of cony = {(2,5),(10,5),(5,0)} 

{extreme points of Fl } = {(2,5),(10,5)} 

{extreme points of F2) ° {(10,5),(5,0)} 

{extreme points of F0) {(0,0),(0,3),(2,5),(l0,5),(5,0)} 

Practically speaking, the most important consequence of the facial property 

is that cony FQ  may be obtained in as many steps (IQI), as there are disjunctions 

in the conjunctive normal form, by applying the disjunctions one at a time alone. 

Now, when DP is facial and F0 is bounded, it turns out that if T c:Q, icHj and 

jeQ-T, then, 

Fh n cony FT  = conv[F
h n FT] 
	

(5.31) 

In other words, having cony FT, for some Tc Q, we select an Fi not yet considered 

and compute conv[Fil fl FT] simply as Fi fl cony FT . This leads to another important 

result. 
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Theorem 5.11  

Assume that DP is facial and that FO is bounded. Then, for any T c Q, 

conv[FQ—T  n cony FT] = conv [FQ] 

This main result is used to compute conv[FQ] in the following manner. Let 

Q={ .1 1PJ2 	lq }  where q 	Then as a corollary to the above theorem, we have, 

{ici} {j2} 	[JO 
cony FQ = conv[F 	n conv{... n conv(F 

	n cony F 	)...)}1 	(5.32) 

We may now apply (5.31) to the decomposition (5.32) in order to compute corm FQ in 

q = IQ' steps. 

We terminate a brief discussion of facial disjunctive programs at this 

point. Later, in Chapter VII, we will return to facial disjunctive programs as a 

special case of Problem DP and will present two finitely covergent algorithms to 

solve such problems. One of these procedures is based on Theorem 5.10 whereas 

the other is based on Theorem 5.11. Both of these procedures solve Problem DP 

by generating facets of ck conv FQ as and when needed till either an optimal 

solution is obtained or all the facets of ck cony FQ have been generated, whence 

the problem is necessarily solved. 

Thus far, we have addressed the question of generating deep disjunctive 

cuts. In the next chapter, we will examine some of the cutting planes available 

in the literature and identify them as basically disjunctive cutting planes by 

putting them in the general format of the latter type of cuts. 
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5.7 Notes and References  

This chapter is heavily based on the results of Balas in [5]. If the 

facets of the closure of the convex hull of feasible points are known, clearly 

the problem of solving disjunctive programs is trivial. Balas' study takes an 

important step in characterizing them. Furthermore, for a special important 

case of disjunctive programs, the study opens up the possibility of generating 

the facets sequentially. 



Chapter VI 

DERIVATION AND IMPROVEMENT OF SOME EXISTING CUTS THROUGH 
DISJUNCTIVE PRINCIPLES 

6.1 Introduction  

In discussing the basic disjunctive cut principle, we indicated that it 

subsumes all other cut generation principles. In this chapter, we will demonstrate 

this to a certain extent by actually deriving some existing cutting planes as 

disjunctive cuts. In the process, it will be seen that the disjunctive principles 

may be used to actually improve upon three cuts. In fact, for the first type of 

cut we discuss below, we will utilize the concepts of Chapter IV to obtain an 

improved version of the existing cut. 

6.2 Gomory's Mixed Integer Cuts  

Consider a mixed integer program where only certain variables are constrained 

to be integral. Suppose we have a simplex tableau representation of a basic 

feasible solution to the corresponding problem with integrality relaxed. Further, 

assume that this solution does not satisfy the integrality constraints. In 

particular, let us identify a basic, integer—constrained variable x i  whose current 

value, aiO , is non—integral. Let us write the representation of xi in terms of 

the non—basic variables tj, jeJ in the tableau representing the solution at hand 

as follows 

xi  = aiO + 	aij(—tj) 	 (6.1) 
jeJ 

Now, partition J as 

J = Jl U J 2 
	 (6.2) 

where 
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J1 	
integer-constrained} 
	

(6.3) 

and 

J 2 	- 	 (6.4) 

Further, denoting the largest integer less than or equal to a given real number 

p as [p] and denoting the smallest integer greater than or equal to a given real 

number p as <p>, we may write 

ai0 = [ai0 1 	fi0 2 f i0 > 
	

(6.5) 

aij  = [aij ] + f ij , for jeJ 	 (6.6) 

Substituting (6.5), (6.6) into (6.1), we obtain 

xi  = [aio] + f io + X ([aij ] + f ij )(-ti ) + X aij(-tj) 
jell 	 icJ2 

Or 

xi - [a io] - y 	[aij]( -tj) = f io  + y fij(-tj)  + y aij (-ti) (6.7) 
jell 	 jeJi 	 jtJ2 

Now, let us introduce a new set of parameters (P ij , jeJ U 101 defined as follows 

(Aio = f io 

(Pij  = aij  for jeJ 2  

f ij 	if fij  < fio  

cij = 

	

	
for jeJi 	 (6.8) 

f ij -1 if f ij  > f io  
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These parameters are merely notational expedients. Substituting (6.8) into (6.7), 

we obtain 

	

xi  - [aio ] - y 	[aii ](-ti) - 	(-tj ) = Oio 	/ (Oij(- tj) 	(6.9)  
i6j1 
	

jell 	 jEJ 

Finally, denote 

Yi = 4)10 	/ c43 (-9 )  
jeJ 

(6.10) 

Observe in Equation (6.9) that the left hand side is necessarily integral 

and hence, so is the right hand side. That is, y i  of Equation (6.10) should 

necessarily be integral. In particular, the following disjunction must hold 

	

fy i  < 01 V {Yi > 1} 
	

(6.11) 

that is, 

hjtj > c1) 1.0 1  V { / -(15ij tj > 1  - (40 1  
jeJ 	 jeJ 

Noting from (6.5), (6.8) that 0 < M io  = f10 < 1 whenever xi  is fractional, we may 

use the basic disjunctive cut principle along with the deep cut notion of Section 

3.2 to first write the above disjunction as 

hi 
{ 	 tr-ti  > i}V { 	t > l} 
jeJ JO 	 jeji-Oio  

and then derive the cut 

jeJ 	JO 1-4 i0 
max{ tij  cift > 1 

	

4) 	— 
	 (6.12) 
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Note in Equation (6.12), for each jeJ, the cut coefficient is determined by the 

nonnegative element of the pair. Thus, if we define 

Jk = {jeJk : 	> 0}, J:={j6Jk : 	< 0} for km1,2
ij 
	 (6.13) 

we may write (6.12) as 

.4 	 -0 	 , 	044 	, 	0. 
t + y 	 t + 	t. + L 	t > 1 

	

-1-4, J-1-1—J. 4. 01.0 	J- 	15 i° 	jeJi 	Rio 	36-12 	JE 	1- 2 	i° 

Finally, substituting (6.8) into this cut, we obtain Gomory's mixed integer 

cut as 

1-f 

 X 	
r 	, 	

4 

	

i 	r 	-a4i  

c. 	4 	1_f 	+ .4+ 	t+ 	 tj 	1 	(6.14) t 
jeJI '10 J 	icJ1 	i°  j 	JeJ2 JO 	JEJ2 I i i0 

Now, let us consider improving this cut. The concept of the strategy we 

employ is basically that of Chapter IV. More specifically, we reformulate the 

disjunction (6.11) to incorporate additional constraints as follows 

< 0 	 cyi  > 1 

xh  > 0, hEI h  > 0, 

where I denotes the set of basic variables. Hence, letting 

xh  = aho  + y ahj (-tj ) for "lei 
jEJ 

we may rewrite (6.15) by using (6.10), (6.16) as 

(6.15) 

(6.16) 
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/ (1) ij tj ..- (40 
jeJ 

1 (-ahi )ti  > -aho , heI 
jeJ 

V 
.JJ 

/ 
jeJ 

(-01j )ti  ? 1 - (P io  

(-ahj)tj ? -aho , heI (6.17) 

1 	1 
Letting A

0' 
A heI be the nonnegative multipliers for the first set of constraints 

in (6.17) and A20' h A2 ' heI those for the second set, we may write the appropriate 

surrogate constraints as 

V 	1 .A 	11 	i' •> (1CA 	
/ A  4"' - 4 'hahjj 	vi0 Ahah0 )04'ij 	 — jeJ 	heI 	 heI 

and 

heI jeJ 

2 	 2 	2  

	

(-A0(4.1 - 	Ahahj )ti >- A0(1-1 	he
0) 	/

I  A
hah0 

Using the concepts of Chapter III, the disjunctive cut we derive is 

jeJ 	 heI 	 heI 

	

maxfAohj  - 	Ahalli , -Aohj  - I Ahahi lti  > 1 
1 	 1 	2 	 2 	

(6.18) 

here 

r 

I 
A 00 i0 - 

h
L Ahah0 = 1 
e 

A0 (1-0J0 )    I Ahah0 = 1  
heI 

1 	1 	2 	2 A0' Ah' A0'h .1 0 	heI 	 (6.19) 

learly, (6.18) can be made to uniformly dominate Gomory's mixed integer cut 

6.12) (or(6.14)) since the latter is obtained from the former by selecting 

1 	 2 
= 1/00 , Ao  = 1/(1-00) and Ah  = 0, k=1,2, ha. Again, for the appropriate 
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selection of parameters in (6.18), (6.19), one may resort to the concepts of 

Chapter III. Alternatively, one may handle the constraints xh  > 0, heI of Equation 

(6.15) in a manner similar to that recommend in Chapter IV. 

6.3 Convexity or Intersection Cuts with Positive Edge Extensions  

In this section, we will discuss the general setting through which convexity 

or intersection cuts are derived with the purpose of demonstrating how the dis-

junctive cut principle is capable of generating such cuts. Hence, consider a 

convex set 

	

C = {x: a
hx < b

h , hell} 
	

(6.20) 

defined by certain hyperplanes ahx < bh , hEH, where ah=(41. 	an). Further, 

let bh  > 0, hell and suppose that we are currently located at the origin. In this 

setting, let us assume that there exists a subset S of the nonnegative orthant of 

Rn  which contains points of interest to us. Suppose we have identified a set C 

which contains the origin, but no point of S, i.e., S n C = {0. The point we 

are currently located at, viz., the origin, is not of (further) interest to us. 

Our intention now is to use the set C to generate a cut which deletes the origin 

but no point of S. 

Accordingly, let us identify the n half lines 

= {x: x = Xe 	A > 0) j=1 ..... n 
	

(6.21) 

where ej  is the j th  unit vector. These half lines are defined by the coordinate 

axes incident at the origin. Let us now proceed along each of the half lines 

(6.21) in turn and compute the maximum distance 3kj  we can traverse along this 

direction and still remain within the set C. In other words, 

	

Xj  = sup{X > 0: (ah)(Aej) < bh , heHI 	for j=1 	n 	(6.22) 
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Then, it can be shown that a valid convexity cut is given by 

n 
(1/L)x > 1 

j=1 	j  
(6.23) 

Typically, one works with the simplex tableau representation of the current point, 

whence, xj , j=1 	n are the nonbasic variables. Accordingly, C is defined in 

temsofmnbasievariablesandattilecurrentpnint,x.=0, j=1 ..... n. 

Now, let us apply the disjunctive principle to this situation. Observe 

that since S n C = 10, we are only interested in those points x > 0 which violate 

at least one of the inequalities defining C. Thus, we may stipulate that at 

least one of the systems 

ahx > b
h 

hcH 

x > 0 

holds. Using Theorem 3.1, a suitable cut which one may derive through Equation 

(3.16) is given by 

n 
{suigel:Vbh )}x.

J 
 > 1 

J=1 h6H 

Note that one may have preferably chosen the cut given by Equation (3.19) instead. 

However, we will work with the above cut to preserve simplicity as well as to 

derive certain known cuts in the literature. Returning to Equation (6.22), we 

observe that 

h h h 
inffh /a.: a-

J 
 > 0) 
 hell 

a. = 
	 j=1 	 

cc,  if a
h < 0 for each h6H 

(6.24) 



Disjunctive cut (6.24) 

Intersection Cut (6.23) 
/ 

(0,0) 

x2 
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Hence, the cut (6.23) has coefficients 

h 	h 	 h > 0 sup{a 4 /b
h 
 : aj  > 01 if at least one aj  

hEH ' 
1/5:j  = 

0 if all a
h
i 
 < 0 

j=1,...,n 	(6.25) 

Comparing (6.24) and (6.25), we note that if 0* C for any jE{1,...,n}, then 
at least one aj

h  
 > 0, heH for each jell ..... n}. In this case, (6.24) and (6.25) 

are identical. However, if & .1  c:C for at least one jE{1,...,n}, then the 

corresponding coefficient 1/X j  is zero for the cut (6.23) but may be negative for 

the cut (6.24). Hence, (6.24) uniformly dominates (6.23), and may strictly 

dominate it. This latter case is depicted in Figure 6.1 below. 

Figure 6.1. Illustration of Disjunctive and Intersection Cuts 
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Several existing cuts are subsumed under the category just described. 

Notice that we have not required the set II to be of finite cardinality. Thus, 

C need not be polyhedral. Therefore, hypercylindrical or spherical intersection 

cuts are also recovered under the discussed framework. In this situation, a 

hypercylinder or sphere containing the origin but no integer valued points 

(integral in terms of original variables) may he defined. Accordingly, the con-

straints in C represent tangential hyperplanes to the hypercylinder or sphere. 

If one uses a stronger condition and requires each constraint of C to simply 

correspond to a tangent to the sphere at some integer point, then one recovers 

octahedral cuts. Similarly, to obtain diamond cuts, one may use the condition 

that at least III of the 2H constraints x i  < 0, x i  > 1, iEI must hold. This 

latter cut may be further strengthened by replacing x i  by y i , fel as defined in 

Equation (6.10). 

Again, various polar cutting planes may be recovered from the above dis-

cussion by letting C be an appropriate reverse polar set. In this connection, 

the reader may note that the negative edge extension cut and the reverse polar cut 

would be identical to the disjunctive cut derived above. 

We will now proceed to discuss one such special case: in the next section. 

We will show how the convexity cuts generated in this case are subsumed under the 

isjunctive cut principle and how these cuts may be further strengthened. 

..4 Reverse Outer Polar Cuts for Zero-One Programming  

Consider a program in (x,y) of the form 

	

minimize 	cx + dy 

	

subject to 	A(x,y) = b 

xCS 

x,y > 0 

ere, S is some set of points of interest to us. Also, currently, suppose we 

ave a basic solution (x,y) to the linear program with the constraint xES relaxed. 
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Further, assume that 7 Et S. Now,, let us define the set C. For this purpose, let 

us say that we can identify some bilinear function 

f(x,z): Rn xRn 	R 	 (6.26) 

and a scalar k which are such that if we let C be the level set 

C = L(k) = fx: f(x,x) < k} 	 (6.27) 

then C contains 77, but int C contains no point in S fl X, where, 

X = fx > 0: A(x,y) = b for some y > 01 	 (6.28) 

One may now polarize the function f(.,.) by replacing its argument (x,x) 

by (x,z) in (6.27) and thereby define a reverse polar set, alternatively called 

the scaled generalized reverse polar of X, with scalar k, as 

X° (k) = fzsRn : f(x,z) < k, for each x E xl 

= {zcRn : f(x,z) < k, for each x c vert X} 	 (6.29) 

where we have assume that X is bounded and that vert N represents the set of 

extreme points X. Note that although f(.,.) or L(k) may be nonconvex, X ° (k) is 

a convex polyhedral set. Further, by suitably defining f(.,.) and k, we can 

have R lying in the interior of X° (k) with X° (k) containing no point in X n S. 

That is, anyzaXnSmust satisfy f(x,z) > k for at least one vector x of X. 

Since f(x,z) is linear in z for a fixed X, we may use the basic disjunctive cut 

principle on this statement. Let us now illustrate the application of this to 

0-1 integer programming. In this context, S is the set of integer valued points 

and currently, R rt. S. Also, among other constraints, X contains the constraints 

xj  < 1 for each variable x j . Given the simplex tableau representing the current 
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point x, we may identify the half lines 

= {x: x = 7 - ai X j , Xj  > 0}, jsJ 	 (6.30) 

where J is the index set associate with n nonbasic variables. The function f(.,.) 

which we select is given by 

f(x,z): (x - 
1 
 e)

t 	1 
G(z - 	e), (x,z) E R x n  Rn  (6.31) 

where e=(1,...,1) and where 

gl 
0 

g2  

0 gn 

gi = n 2 gi > 0, i- 	 (6.32) 
i=1 

G = 

and g i  > 0 for at least one i6{1,...,n} for which 0 < x i  < 1. Further, we take 

the value of k to be
4 	

Then, the set C is the level set 

C = L(4) = {x: (x - 	e) tC(x - >> e) < 44 	 (6.33) 

This may be simplified to 

C = L(4) = {x: E g i x,
1
(x.

1
-1) < 01 

i=1  
(6.34) 

ence, all 0-1 points are contained in the boundary of the set 1,(4) while from 

(6.32), we observe that 7 s int L(141). Thus, int 1,( 1) contains 7 but no point in 

fl S. Continuing, we have from Equation (6.29), 

X0(4) 
	f 
= {z: (x - -1 e)

t
C(z - -1 	1  e) < -1  for each xEX1 

2 	 2 	— 4 
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Or 

Xo () = {z: (x - 	e) tGz < 	xtGe 	for each xEX} 	 (6.35) 

One may show that int e( ril ) contains R but no point in X S. Hence, any point 

zEXnSmust satisfy at least one of the inequalities 

	

(x - 1 	
2 

e) tG z > 	xtG e , for xtX. 
2  

Now, since z c X, from (6.30), we may write it as 

	

7 	j - L a t. 
jEJ 

Wheret.,j EJ are the current nonbasic variables. Substituting (6.37) into 

(6.36), we must have at least one of the following inequalities holding 

2 e - x) t G a3  t. > 1(x + 	tG e - xtG , for xEX 
jEJ 

But note that 

1 	 1 
(x + :7)

t
G e - x

t
G x
- 
= 	E (xi  + Ri )g i  - 

2 	xi ) gi 1 E(x, + x l )g i  -x,1Rig.1  = 2 	1 	1 	1 E(x. - R.)
2
g. >0 (6.39) 

-2 	- 

	

since xi
2 
 < xi , xi  < xi , g i  > 0 for each i=1 	n and g i  > 0 for some i for which 

0 < xi  < 1 (see (6.32)). 

Thus, the right hand side of (6.33) is positive and we may normalize 

(6.30) by its right hand side for each xEX. Thus, applying Theorem 3.1, Equation 

(3.16), we may derive the disjunctive cut 

(6.36) 

(6.37) 

(6.38) 
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(1/7)t. > 1 
ICJ J J — 

where, Ti , jEJ is given by 

1 
(-I e - x) tG ai 

(1fi,.)=. max 1 	 IE.]. 
J 

	

	 (x+R)tce - xt 	'GR 
xEX -2-  

(6.40) 

Now, let us determine the intersection cut based on e(4) of (6.35). This cut is 

given as 

(1/5,.
J
)t. > 1  J — jCJ 

max{A.: z = (Tc - aiX.) 

= nax{X.: (x - 2  e) tG(R - ak) < ,.x tGe for each xEX} 

= max{A. 	j2 : A(-1  e - x) tGai < .-327- (x + R. ) tGe - 	x tGR for each xEX} j  

But noting (6.39), we obtain 

• 

(-2- e - x)
t 

 GEJ 

A. = max{X.: A.  	< 1 for each xEX} j 	j J[1(x + -Wce - ) tcTi -- 
2 

1 
e - x) tGai  

A. = max{X.: A. max 	_ 	1} 
J xEx  [1 ( x  + c) 	— xtGi  

2 

where 

or 

(6.41) 

(6.42) 
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Thus, if (1/Ti ) > 0 in (6.40), then from (6.42), we observe that 1/A i  = 1/Ti . 

On the other hand, if 1/A. < 0 in (6.40), then 	m or 1/), j  = O. Hence, the 

cut 	 t. > 1 uniformly dominates y (,_ t j  > 1 and in fact, the former 
jtJ Aj 	 jeJ Aj 

(disjunctive) cut implies the latter (intersection) cut. 

Before concluding, we note that polar cut results analogous to those given 

for 0-1 programming above, may be obtained for (nonconvex) quadratic programming 

problems as well. 

In the final two chapters of these notes, we will consider some special 

cases of disjunctive programs. To begin with, in the next chapter, we will 

treat facial disjunctive programs as introduced in Chapter V. Specifically, we 

will discuss two finitely convergent schemes for solving such problems. There-

after, in Chapter VIII, we will dwell briefly on specific applications of some 

of the classes of disjunctive programs introduced in Chapter I. 

6.5 Notes and References  

In view of Theorem 2.1, any valid cut for a disjunctive program should be 

recoverable or can he dominated by a disjunctive cut of the theorem. Balas [4,6] 

has discussed this relationship in some detail for integer and nonlinear programs. 

As noted by Balas [4,6] and Clover [13,19], the new cuts clearly have the 

capability of improving some of the well—known cuts, and this is demonstrated by 

the discussion in the chapter. 



Chapter VII 

FINITELY CONVERGENT ALGORITHMS FOR FACIAL DISJUNCTIVE PROGRAMS WITH 
APPLICATIONS TO THE LINEAR COMPLEMENTARITY PROBLEM 

7.1 Introduction  

In our discussion of Chapter V, we had introduced a special class of dis-

junctive programs called facial disjunctive programs, examples of which included 

the zero-one linear integer programming problem and the linear complementarity 

problem. We had seen that for this special class of problems, it was relatively 

easy to generate the convex hull of feasible joints. In this chapter, we will 

discuss two finitely convergent schemes which solve facial disjunctive programs 

by generating facets of the convex hull of feasible points as and when needed, 

until such time as either a suitable termination criterion is met or the problem 

is solved through the generation of the entire convex hull. 

The organization of this chapter is as follows. We first briefly discuss 

how Theorem 5.11 may be exploited to develop a finite scheme for facial dis-

junctive programs. Thereafter, we present in greater detail, a second alternative 

method based on Theorem 5.10. This technique is the principal thrust of this 

chapter. Finally, we demonstrate how this latter method may be specialized for 

the linear complementarity problem. 

7.2 Principal Aspects of Facial Disjunctive Programs  

For the sake of completeness and convenience, let us re-introduce 

certain notations and concepts to be used in this chapter. The facial dis-

junctive program under consideration is 
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t 

	

minimize 	c x 

	

subject to 	xEX=fx: Dx = d, x > 	 (7.1) 

xCY = n [ U 	 > bn 	 (7.2) 
hEH /Oh 

Here, c is a lxn real vector, x=(x l  ..... xn) is a (nxl) vector of variables, X is 

assumed to be a non-empty and hounded polyhedral set (regularized as assumed in 

Chapter V, if necessary). Further, D is an mxn real matrix and d is an nxl real 

vector. The set Y is a conjunction of HI < 	disjunctions, with H={1 ..... h}, say. 

Observe that we have deviated in consistency as regards to notation in this chapter 

so as to make the presentation more readable. Since this chapter is written to 

be basically self contained, we hope that this will not lead to any confusion..  

Continuing, the set Y defines for each hEH, a disjunction which states that at 

least one of the constraints allx > 14_ must be setisfied for some ieQ h . Here, 

ai  is a lxn real vector and b i  is a real scalar for each i E Q h , hen. The con-

straint index sets Qh, hell may contain common elements correpsonding to common 

constraints, and are otherwise disjoint. 

	

Recall from Chapter V that the disjunction x E U 	> bill is called 

icQh 
facial with respect to X if X n 	> hl} is a face of X for each i E Q h . In 

addition, the disjunctive program FDP is said to be facial if each of the dis-

junctions htH is facial with respect to X. As before, by a face of X we imply a 

subset of X defined by the intersection of X with a hyperplane which supports it. 

Dow, with our assumption of X being a bounded polyhedral set and with Y 

as specified in (7.2), we have, 

	

F= ci cony X n Y= conv X n Y 	 (7.3) 

Further, let us inductively define 

KO  = X 

Kh  = conv[ U 	 11 ix: aix > b ill)] for h=1,...,h 	 (7.4) 

isQh 

FDP: 
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Then, Theorem 5.11 and 5.10 are respectively re—stated below as properties P1 and 

P2. 

P1: 1(11 of Equation (7.4) is equal to F of Equation (7.3) 

P2: {Extreme points of F of Equation (7.3)} 	(Extreme points of X of 

Equation (7.1)} 

We will now proceed to discuss the skeleton of a procedure for solving 

Problem FDP based on property P1 above. This discussion will also serve to lay the 

foundations for the second procedure which is treated at length in this chapter. 

7.3 Stepwise Approximation of the Convex Hull of Feasible Points  

Essentially, this scheme for solving Problem FDP is a relaxation strategy. 

To begin with, the constraints (7.2) are relaxed and the resulting linear program 

is solved. If the optimal solution R, say, satisfies REY, then this solution 

is also optimal to FDP. Otherwise, a disjunction for some htH is violated. 

Based on a violated disjunction, a cutting plane which deletes X but no point of 

X satisfying this disjunction and hence, no point of F, is now generated. This 

cutting plane is imposed as an additional constraint and the optional solution R 

is hence updated. This process is repeated till can optimal solution to some 

elaxed problem is feasible to (7.2). 

Finiteness of the scheme is based on a result which is basically a 

strengthened version of the reverse part of Theorem 2.1, namely, the fundamental 

iisjunctive cut principle. The result is stated below (without proof). 

heorem 7.1  

Let S r  = 	Arx > br , x > 0} for each r ER be non—empty sets and consider 

:he disjunctive x e U S r . Further, let 1111 = T, say, and define the set 
rcR 

E = {(A1 	xT ,a,a 
 0
): ArAr  — a = 0 	for r=1 	 

	

Arbr —cc0  > 0 	for r=1 	 

/ Af = 1 
r i 1  

Xr  > 0 for r=1 	T} 
	

(7.5) 
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where for each r=1 

 

	 the vector 	has as many columns as At  has rows, and 

 

where a is of the same dimension as x, with a o  being a scalar. Then, 

ck conv U Sr T {x: aix > aio  for each i such that 
reR 

(Ali ,...,ATi ,ai ,aio) is an extreme point of E} 	(7.6) 

In other words, if we had an enumeration of the extreme points of E of the 

form ( Ali 	 X
-a
,a,a

10
) indexed by i, then we could construct the closure of the 

convex hull of points feasible to the disjunction x C  U S r  as the intersection 
reR 

of the half-spaces a x > a io . This fact along with Property P1 may be used 

roughly as follows. 

Initially, let us solve the problem of minimizing cx over the set 

Ko E X. Assume for the sake of simplicity that the optional solution X found 

violates the disjunction corresponding to h=1. Then, R tt K 1  and one may derive 

a cut corresponding to an extreme point of E of Equation (7.5) which deletes R. 

Here, the constraint sets Arx > br , for reR correspond to K0 n {x: aix > 

for ieQi. The cut may be simply derived by maximizing a o  - ax over this set 

E. Now, during the course of the procedure, whenever the disjunction for h=1 is 

violated, this step may be repeated. Clearly, from Theorem 7.1, this can 

happen only finitely often, the entire set K 1  being constructed in the worst case. 

In a similar manner, one may inductively argue that subsequent disjunction vio-

lations considered can be repeated only a finite number of times. Again, 

assuming for the sake of simplicity that these disjunction violations occur and 

are considered in the order h=1,2,... one may note that when deriving cuts for 

the j th  disjunction, the constraints A rx > br  for reR used in the set E of 

Equation (7.5) correspond to the intersection of the set 	the the cuts generated for 

the disjunction violations 1,2 j-1 and the disjunctive constraints indexed by 

Qj. For algorithmic purposes, whenever an updated solution violates more than one 

disjunction which has been previously considered, the cut derived is based on the 

most recent one of these disjunctions. In this manner, at worse, one would con- 
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struct the sets K0 ,...,K1 in their entirety. Typically, the actual sequence of 

sets constructed may be only an approximation of these sets in the vicinity of an 

optional solution. 

7.4 Approximation of the Convex Hull of Feasible Points through an Extreme Point  
Characterization  

The second procedure (which we shall call the Extreme Point Method) for 

solving Problem FDP is basically the same type of relaxation scheme as discussed 

in the foregoing section. Hence, a series of cutting planes and updated solutions 

to the relaxed problems are generated till such time as an updated solution is 

found which satisfies the disjunction (7.2). Whereas we had to specify restrictions 

on the type of and manner in which the cutting planes were generated in the 

previous section in order to ensure finiteness, we have some flexibility in this 

respect in the present approach. Instead, in order to invoke Property P2, we 

place specific restrictions on the type of points at which the cuts are generated. 

Specifically, these points are required to be so called extreme faces of the set 

X with respect to cuts generated at any stage of the procedure. This concept of 

extreme faces is discussed in the following subsection. 

7.4.1 Extreme Faces and Their Detection  

Let us assume that at a particular stage s cuts, Gx < g, have been generated 

in the space of the x-variables. Let 

A = {x E Rn : Gx 	Ixs 	g, xs  > 0} 	 (7.7) 

be the subset of Rn feasible to these cuts. Here, x s  = (xn+1 , .... xn+s ) denotes 

the vector of slack variables (with the superscript t being used to designate 

the matrix transpose operation), and I is an identity matrix of size s. Further, 

et N = {1 	n} denote the index set of the original x-variables, which we will 

all key variables. Also, let S = {n+1,...,n+s} denote the index set of the slack 

ariables for the s cuts, which we will call as nonkey variables. For a set 

e:N, let 
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Fz ={xel(: xj  =0 for jcZ} 
	

(7.8) 

Note that all faces of X can be represented as F z  for some suitable set Z. Finally, 

for any point x6F z , let the zero components of x be denoted by 

Z(x) = {jetl: xj  = 0} 	 (7.9) 

Definition 4.1  

Let Fz  be a face of X defined by some Z= N such that Fz  11 A # cp. Then 

Fz  is an extreme face of X relative to A if for any two points x l ,x2  c Fz n A, we 

have Z(x1) = Z(x2). 

In other words, an extreme face Fz  satisfies the property that Fz  n A does 

not contain any point in a lower dimensional face of X. Examples of extreme faces 

of X relative to A are extreme points of X feasible to A, or an edge of X not 

disjoint with A but with neither of the two extreme points of X defining this edge 

being feasible to A. 

Now, observe that Property P2 essentially directs that the search for an 

optimal solution to Problem FDP may be restricted to a search among the extreme 

points of X. However, we will find it simpler to restrict our search to a larger 

set, namely, the extreme faces of X. Since extreme faces of X relative to some A 

are also faces of X, the number of such extreme faces of X (relative to all A's) 

is finite. Hence, a procedure which detects and deletes in a finite number of 

steps at least one extreme face per iteration is finitely covergent. This is 

indeed the principal thrust of the present scheme. 

Given a simplex tableau representation of an extreme point of X n A at any 

stage, a simple procedure to find an extreme face of X relative to A utilizes the 

following restricted basis entry rule: 

"Only a nonkey variable xj, jCS, is eligible to enter the basis" 	(7.10) 
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Based on this, the method outlined below either finds an extreme face or indicates 

that no such face exists. 

Step 1  

Let xr  denote the largest valued basic key variable in the current solution 

which has not yet been considered at a previous iteration. If no such variable 

exists, go to Step 3. Otherwise, proceed to Step 2. 

Step 2  

Solve the Problem P r : minimize {x r :xeX fl A} as a linear program subject 

to the restricted basis entry rule (7.10). If the solution yields x r  = 0 and 

xr  is basic, pivot it out of the basis, if possible, by exchanging it with a 

nonkey, nonbasic variable. Return to Step 1. 

Step 3  

If all key variables are basic, there is no extreme face of X relative to 

A. Otherwise, the current set Z of indices of nonbasic key variables defines, 

through Equation (7.8), an extreme face F z  of X relative to A. In particular, if 

all nonbasic variables are key variables, then Fz  represents an extreme point of 

X. 

7.4.2 Schema of the Proposed Approach  

The procedure we adopt operates as follows. At any stage, given the set A 

of Equation (7.7), we solve the relaxes problem 

P(A): 	minimize 	{ex: x e X fl 	 (7.11) 

If an optimal solution R to this problem satisfies x e Y of Equation (7.2), we 

stop wtih :I as an optimal solution to Problem FDP. Otherwise, we generate a cut 

based on a violated disjunction, and then after updating the tableau, we use the 

routine of Section 7.4.1 to find an extreme face Fz  of X relative to A. If no 

extreme faces exist, then we terminate with the current best known solution as 

optimal to FDP. Otherwise, depending on the dimension of Fz, two possible routes 

are open to us. If Fz  is of dimension greater than zero, then a disjunctive face  

cut is developed which deletes Fz  but no extreme point of X feasible to A. Details 
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of such a cut are presented in Section 7.5. On the other hand, if F z  represents 

an extreme point of X then we check if this extreme point is feasible to Y. If it 

is, then we update the current best known solution, if necessary, and again 

generate a disjunctive face cut which deletes only this particular extreme point 

of X. If the extreme point is infeasible to Y, however, a stronger disjunctive 

cut may be developed as discussed in Chapter IV and re—iterated in Section 7.5. 

In any case, after the appropriate cut has been generated and A has been updated, 

we say that an iteration has been completed. A new iteration is now commenced by 

solving Problem P(A) of Equation (7.11). 

As an additional expedient, we will also impose the cost cut 

< C t X V 

where v is the current best known objective value of Problem FDP. Hence, the 

right hand side of this cut is simply updated each time an improved solution is 

detected. Although this cut will not affect the solution of Problems P(A), it 

will assist in confining the search to improving solutions during the extreme face 

finding routine. This is essential because otherwise, the extreme face finding 

routine would simply concentrate on feasibility, regardless of objective function 

values. 

Figure 7.1 gives a flow chart of the proposed scheme. The collection of 

extreme faces of X relative to all possible sets A being finite, this method is 

clearly finitely convergent. Instead of reviewing in detail the general concepts 

involved in generating disjunctive face cuts, we discuss its generation for the 

linear complementarity problem in particular and merely allude subsequently to 

the extension of this to the general case. 



Find an optimal solution R to Problem P(A) 

of Equation (7.11). Let this solution have 

a value  

'Find an extreme face F z  of X relative to 

Replace A by 

An {x: yx<yn } 
Replace A by 

A n {.: o 

`Does an extreme face FZ  exist? 

Use a disjunc-  NO 	 

STOP; Z solves  FDP)  

tive face cut 	Does Fz  represent an extreme point of X? 

5x<5 0  to delete 

0 
Is this extreme point feasible to Y? 

Yes 

Use a disjunc-
tive cut based 
on a violated 
disjunction to 
delete Fz 

If necessary, use this extreme point to update the 

current best known solution x and its value v. Also 

update the cost cut (7.12). 

1Yes 

Yes 

Initialize with the current best solution 

x as the null solution of value 0=0.. Let 
A={x: cx<C;}=Rn  

	Yes 	  

<  REY? 	STOP; Fc solves FDP  
°  

Generate a disjunctive cut based on the most 

violated disjunction in Y and update the 

tableau, letting R be the new solution of 

value 7). 
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Figure 7.1. Flow—Chart for the Proposed Scheme 



136 

7.5 Specializations of the Extreme Point Method for the Linear Complementarity  
Problem  

In this section, we will demonstrate how the cutting planes to be used in 

the procedure depicted in Figure 7.1 may be generated for the linear complemen-

tarity problem. Alongside this discussion, we will also make remarks for the 

handling of the general case. 

7.5.1 Disjunctive Face Cut at an Extreme Face 	Which is not an Extreme Point  
of X 

Suppose that the currenttableau represents an extreme point x °=(x? , 	x0 ) 

of X fl A with x°  E FZ'  where 

Z = {jEN: xj  is currently nonbasic} 	 (7.13) 

Let us assume that the disjunction xpxcl=0 is violated by x° . 

Now, consider the solution of Problem P p  defined in Step 2 of the extreme 

face finding routine. Recall that this problem is solved subject to the 

restricted basis entry rule (7.10). At optimality, let 

Np  = {JEN: xj  is nonbasic} 	 (7.14) 

Sp  = {jcS: 7Ej  is nonbasic} 	 (7.15) 

and let the canonical representation of xp  in terms of the nonbasic variables 

xj, jENp  U Sp  be 

xp  + X apj xj  + X apixi  = by 
 jEN 	 jESp  

Since NP  Z, cZ by adding suitable zero coefficients, the above equation may be 

written as 

xp  + .X api xi  + X api xi  = by 	 (7.16) 
JEZ 	JESp 
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In a similar manner, after solving P q , we would have an equation 

xq 	y auxi 	y aux;  = bq 	 (7.17) 
jEZ 	 jeSq  

It is easy to show that 

aP.] • < 0 j ES P $  a (1.] < 0 jESq 
 , by  > 0, bq  > 0 
	

(7.18) 

Now, the requirement that at least one of x p  < 0, xq  < 0 must hold may be written 

as requiring that at least one of the following constraint sets must be satisfied 

(L1 . > 1; x. > 0 for jEZUS br ) x 
J 	J 	 Pq jEZUS Pq 

for r=p,q 	(7.19) 

where Spq = Sp Sq and again, we have suitably defined zero coefficients wherever 

necessary. From Theorem 2.1, a valid cut is 

jEZU S pq 
 (maxi -t=  , 7,2= 	> 1 

t6 1 	aai 
(7.20) 

Observe from (7.18) that (7.20) implies 

apj 	aqj  
(max17,7,--  , B--I)x 4 	1 

j cZ 	"P 	q 

and hence, (7.20) deletes F z  since any xE.Pz  satisfies xj =0 for ja. Finally, 

note that either in the general case of facial disjunctive programs or in the 

present application when x 0  EY, one may obtain an equation of the type (7.16) 

for each rCN such that xo > 0 and then derive a cut based on the disjunction that 

at least one of these variables xr  must be zero at any extreme point of x feasible 

to A, if such a point exists. 
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7.5.2 Disjunctive Cut at an Extreme Face F z   which is an Extreme Point of X  

Let x°  be the extreme point of X represented by the current tableau as the 

extreme face Fz . Again, if x°  EY, then we develop a disjunctive face cut as in 

the general case of the foregoing discussion. On the other hand, if some dis-

junction xpxq  = 0 is violated, then a deeper cut may be generated in the following 

manner. 

Let the canoical representation of the (positive) basic variables x p  and xq 

 in the current tableau be given by 

xp  + 	apjxj = by  > 0 
jeZ 

(7.21) 

xq  + 	aqixi = bq  > 0 
jeZ 

where Z is currently also the index set for nonbasic variables. Now, the 

disjunction that at least one of the variables x p , xq  equals zero may be written 

as the requirement that at least one of the constraint sets 

aoi  

1jZ 	P 
( 1;11) xj > 1, x

j 
 > 0 for jeZ I ,

)jEZ 	q 
(t=) xj  > 1, 

xj  > 0 for jeZ 	 (7.22) 

must be satisfied. Through Theorem 2.1, a valid cut based on this statement is 

:Trixj > 1 	 (7.23) 
jEZ 

where, 

ffi = max{ , 
p 
 i, -7u - 	or each jeZ 	 (7.24) up 	q l 

f 

 

which clearly deletes Fz  = xo . Now, in Chapter IV, we discussed how this cut may 



139 

further strengthened by considering nonnegativity conditions on the other basic 

variables also. Hence, if we let Bpq  be the index set of basic variables xr , 

rOp, r0q then we may.replace the disjunction (7.22) by the following disjunction, 

where we have used a canonical representation for the basic variables x r , re0 Pc1 

similar to that in (7.21). This disjunction states that at least one of the 

following constraint sets must be satisfied 

{ j 	arjxj  < br  for r Bpq, 	apiXi > bp , xj  > 0 for jai 
j eZ 	 jeZ 

(7.25) 

{ E arjxj  < br  for r CB 	ap  j xj  > bq  , xi  > 0 for jeZ) 
Ja 	 Ja 

The improvement technique proposed in Chapter IV essentially attempts to derive 

a cut in terms of the nonbasic variables x j , jeZ such that this cut is a support 

for the closure of the convex hull of the union of the two sets in (7.25). The 

method accomplishes this by commencing with the cut (7.23), say, and attempting 

to improve (decrease) as much as possible each cut coefficient one at a time, 

holding the other cut coefficients fixed. Hence, if at any stage, if (7.23) 

represents the current cut and if one is trying to reduce the coefficient of x k , 

then as in Chapter IV this coefficient is given by the larger of the optimal values 

of the two linear programs LPkp  and LPkq , where 

LPkh: 	maximize - I Tri yi  
jcz 
jot, 

subject to 	I arjxj - b rt < -ark for reB 
jeZ 

Pc1  

jOk 

bhp - E ahjyj ahk 
jeZ 
jOk 

C> 0, yj  > 0 for j C Z- {k} 

(7.26) 
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Again, as indicated in Chapter IV, both LP kp  and LPkq  need not necessarily be 
_ 	apk 

solved independently. Thus, for instance, if Equation (7.24) yields 7 k  = 	, 

say, then one may solve LP kp  first. If the optimal value 7 kp  of LPkp  equals 7k, 

then LPkq  need not be solved. Otherwise, LPkq  may be solved with the added con-

straint that its objective value exceeds rr kp . 

Of course, to reduce the effort in the generation of such cuts, one need 

not include all the constraints for rcB pq  in the sets of Equation (7.25). In-

stead, some heuristic rule made be used to select a subset of these contraints. 

For example, one may select those constraints from Bpq  which delete at least one 

of the finite intercepts which the cut (7.23) makes on some axis. Hence, one 

may select 

ark 
frcB-- >br  for some k 7

k 
i 01 

Pg . k 

7.6 Notes and References  

The term "facial disjunctive programs" was first used by Balas [5] where the 

principal result, namely Properties P1 and P2, discussed in this chapter, are 

proved. Those results have led to two finitely convergent algorithms for facial 

programs presented in this chapter. The first is due to Jeroslow [26] and makes 

use of one of the properties. The second algorithm is based on the other 

property and uses the concept of "extreme faces" first presented by Majthay and 

Uhinston [28]. 



CHAPTER VIII 

SOME SPECIFIC APPLICATIONS OF DISJUNCTIVE PROGRAMMING PROBLEMS 

8.1 Introduction  

In Chapter I we discussed in general the major applications of disjunctive 

programming problems. These included the generalized lattice point and related 

problems, the cardinality constrained problem, the extreme point programming 

problem and the binary mixed integer linear programming problem. In this chapter, 

we will present some specific applications which are subsumed under these general 

classes of problems. 

8.2 Examples of Bi-Quasiconcave Problems  

The Bi-Quasiconcave problem may be written as 

minimize {f(x,y): xESx , yeSy l 

where Sx  and Sy are polyhedral sets in variables x and y respectively and (.,.) 

is a real valued function such that f(.,y) and f(x,.) are quasiconcave for any 

fixed x and y. It is easy to see that this latter property guarantees that an 

optimal solution is obtained at an extreme point of S x  X S. Thus these problems 

are essentially extreme point optimization problems. We will now discuss some 

practical Bi-Quasiconcave problems. 

8.2.1 Orthogonal Production Scheduling - A Multiperiod Activity Analysis Model  

Let us first of all consider the class of problems known as the Multi-

period Activity Analysis problems or the multistage production problems. These 

problems have the mathematical form 

K 

	

minimize 	(ck)txk 

k=1 

	

subject to 	Axk  > bk  for k=1 	 

xk > 0 
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Here, we have, say n activities producing m commodities over K periods. Thus, x k 

 is a vector representing the activity levels at period k, k=1,...,K, for activities 

1 ..... n, say. Further, Amxn  is the matrix of input-output or technological coef-

ficients, bk is a vector which denotes the requirements for various commodities 

1 	m in period k and ck  is a vector which represents the unit cost associated 

with each activity 1,...,n in period k. 

However, certain physical considerations may require that certain orthogonal 

constraints of the form xk-1 • xk = 0, k=2 	K hold for some activities j. 

For example, this may arise in the context of machine scheduling wherein due to 

maintenance considerations, certain activities cannot be scheduled in two consecu-

tive periods. As another example, they may arise in an agricultural production 

situation wherein certain crops cannot be raised in two consecutive periods to 

preserve specific nutrients in the soil. 

This problem may be transformed into a Bi-Quasiconcave Programming 

problem as follows. Let us assume, merely for convenience, that each activity 

is restricted by the orthogonal scheduling constraint mentioned above. Then we 

may use the penalty function method to ascribe a high cost to any schedule which 

is infeasible to these orthogonal constraints. That is, letting H be a large con-

stant, we may formulate the orthogonal production problem as 

minimize k-1 t k (ck ) txk m 	(x 	) x  

k=1 	 k=2 

subject to k 	k Ax > bk, k=1,...,K 

x
k 

> 0 

For the case K=2, this problem is clearly a Bi-Quasiconcave Program; in fact, for 

K=2, it is a Bilinear Programming Problem with an optimal solution being an extreme 

X2  = point of Xi  x X2 where X1  = {xl  > 0: Axl  > b i }, 	{x2  >0: Ax2>b2}.  
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8.2.2 Application to Game Theory  

Consider a two player game where player P i  selects his strategy first as a 

vector x from the set X = {x: Aix < b, x > 0}. Depending on the strategy x 

selected by Pi, let us say that player P2 selects a strategy y from the set 

Y(x) = {y: A 2y < d + Cx, y > 0}. Here, Y(x) is assumed bounded and nonempty for 

each xcX. Further, let us say that when Pi selects strategy x and P 2  selects 

strategy y, there is an associated payoff f(x,y) = ptx + qty from P i  to P 2 , where 

p and q are given cost vectors. Thus, given x, P 2  will solve the problem 

	

maximize 	q
ty 

	

subject to 	ycY(x) 

Let y(x) denote an optimal solution to the above problem. Hence, knowing the 

technique to be adopted by P 2 , Pi will try to select a strategy xcX which minimizes 

f(x,y(x)), that is, he will solve the problem 

	

minimize 	{ptx + minimum{(d + Cx) tz: A2z > q, z > 0}1 

	

subject to 	Aix < b, x > 0 

where q ty(x) = max{q ty: A2y < d + Cx, y > 0} has been rewritten as q ty(x) = 

min{(d + Cxtz: A2 z > q, z > 0}. Hence, the above problem may equivalently be 

written as 

minimize 	dtz  ptx ztCx 

subject to 	A2z > q, z > 0 

Aiz ‹. b, x> 0 

This problem is again a Bi—Quasiconcave Programming Problem; in fact, it is a 

bilinear problem. 
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8.2.3 Multi-Stage Assignment Problem  

For the sake of simplicity, consider a two-stage assignment problem. The 

development given below may easily be generalized to the multi-stage problem. 

Hence, suppose we have N jobs and N machines with the stipulation that at each 

of the two stages, one and only one machine should be assigned to each job. The 

profit of assigning machine i to job k at the first stage is simply p ik. However, 

the profit of assigning job i to machine j at the second stage depends on the job 

k to which machine i was assigned at the first stage. This profit is accordingly 

given by pij  + qijk. Thus, the total two-stage profit is given by 

	

N N 	 N N 	 N N N 

	

YP 3c 1- 	+ YY 13.-- 	 +11Y 2 1 
qijkxij xik 

	

1=1 j=1 	 i=1 j=1 	 1=1 j=1 k=1 

where 

i1 	 TI 
xr  E Xr  = {xr : 	xr." = 1, j=1, 	N 	= 1, i=1 	N, x 	= 0, 1 

i=1 	 j=1 
ij 	 ij  

for i, jE{1,...,N} and for r=1,2 

That is X1  and X2 represent the assignment constraints at stages one and two 

respectively. Hence defining N2  vectors p = (p ip, F = (p ip and letting Q be an 

appropriate matrix made up of zeroes and coefficients q ijk , we may formulate this 

problem as 

minimize 	ptxl T tx2 	(xl)tqx 2 

subject to 	x EX1 

x 2 x2  

This is again a bilinear programming problem. 
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8.2.4 Rectilinear Distance Location-Allocation Problems  

As a final example of Bi-Quasiconcave Programming Problem, we consider this 

problem which is again a Bilinear Programming Problem. Specifically, consider a 

multifacility location-allocation problem which involves the distribution of 

several products among some new facilities to be located and between these new and 

other already existing facilities. Thus, suppose n new facilities are to be 

located. Let the variables denoting their location in a two-dimensional layout 

be (xi ,yi), 1=1 ..... n. Further, let there be m existing facilities currently 

located at (x i ,yi), i=n+1 ..... n+m. Let a ik  denote the availability of product k, 

k=1 ..... p, say, at a new facility i, for i=1,...,n and let bik  denote the require-

ment of product k at a new or existing facility i, k=1 	P. 1=1 	trim. Let 

us also assume that each unit of product k supplied from new facility i to new or 

existing facility j costs c ijk  with a corresponding transportation cost per unit 

distance of t ijk . Here, the distances are taken to be measured using the recti-

linear norm. This distance measure is appropriate in the context of movement 

along city streets or in a grid of aisles in a factory or a warehouse. 

The problem is to determine the locations (x i ,yi ) for the new facilities 

i=1 ..... n and to find feasible allocations u ijk  of product k from new facility 

i to new or existing facility j so as to minimize the total purchase (or manu-

facture) and transportation costs. Mathematically, this problem may be written as 

n n+m 

	

minimize 	2, 	X 	X {cijk + t ijk  (Ixi  - xj I 	lYi 	YjI)}uijk 
k=1 i=1 j=1 

	

subject to 	u u  = { u = (um ,  • • , un ,n,p)  

n+m 

	

uijk  < aik  for i=1 	n  k=1,...,p 
j=1 

X ui4k  = bjk  for j=1,...,n+m; k=1, 	 
i=1 

u.. > 0 131( for i=1,...,n; j=1 ..... n+m, k=1 	 p}. 
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One may now use the usual transformation on the absolute value terms in the 

objective function above to write Ixi  - xj I Yjl as (xIj  + xij  + Yij  + yli ), 

where the restrictions on these new variables may be denoted as zeZ, say, where, 

+ 
xn,n+m'xl

- 

1"'"x  n,

- 

n+mtYll ***** Yn,n+m , Y11 	7n,n

- 

+m ,  

x1 ,...,xn ,y1  ...** Y n) t  

and where, 

+ x Z = fz: xi  - xj 	i - x
+
j 	i j = 0 for 1=1 ..... n, j=1,...,n+m 

Yi - 	- Yij 	Yij 0  for i=1, 	n  j=1 ..... n+m 

- 	- 
xij , xij , yij, yij > 0 for i=1,...,n, j=1,...,n+ml 

Then, the rectilinear distance location-allocation problem may be written as the 

bilinear programming problem 

	

minimize 	ctu + z tTu 

	

subject to 	u e U 

z e Z 

where c and T are appropriate cost vectors and matrices respectively. Note that 

the orthogonality constraints of the type xIx-ij  = yIj yTj  = 0 are not explicitly 

needed since the columns of xtj  and xi) (as also of yIj  and y11 ) are linearly 

dependent in Z. 

8.3 Load Balancing Problem  

The load balancing problem is one which involves the allocation of m jobs 

of given "weights" wi  to n departments such that the total resulting work loads, 

Lj , j=1 ..... n are as equally balanced as possible. Hence, if we define 0-1 

variables x ij  as 
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1 if job 1 is assigned to department j 

xij  = 	 i=1 	m  j=1 	 

0 otherwise 

then the work load at station j is given by 

= 7 L 	w.x.. 
1=1 

The concept of an equitable balance of load between stations is subjective. One 

may choose to minimize the difference between the minimum and the maximum work 

L load at any station. Or, one may examine the average work load L = 1 L  wi and 
i=1 

choose to 

	

minimize 	 - LI} 
j=1 

Using this latter alternative one may adopt two types of formulations. 

Firstly, one may introduce an (m+l)th dummy job and stipulate the following con-

straints 

	

xeX = fx=(xij ): 	xij  = 1, i=1,...,m 
j=1 

n
C  

xm+1 j = m(n-l)  
i=1  

m+l 
xij  = m, j=1 ..... n 

i=1 

xij  > 01 	 (8.1) 

These above constraints constitute a transportation constraint set in which there 

are (m+l) supply points, m of which have a unit supply and the (m+l) st  has a 



148 

supply of m(n-1). Further, there are n demand points, each of them having a demand 

of m units. Moreover, every basic feasible solution to this problem is integer, 

and specifically, zero-one. In fact, there is a one-to-one correspondence between 

the assignment of jobs to departments and basic feasible solutions of this con-

straint set. Hence, this is now an extreme point problem wherein one searches 

for the best extreme point of X. 

In another equivalent form, we may let 

+ - +  
L j 	J 	J 

L = y. - y., 
J, 

 y. y. 	0, y.y. = 0 

and recalling that L = 2 w
i x ij' 

 we may formulate the load balancing problem as 
1=1 

	

minimize 	

• 

(y. 	Y.) - 
J j=1 

	

subject to 	

• 

w.x.. - yt + yt = L 	j=1 ..... n 
i=1 "i 	3  

+ - 
Yi 937i > 0 j=1 	 

and x is an extreme point of X of Equation (8.1). Note that the orthogonal con- 

- 
straints y i

+ 
 i yi  = 0, j=1 	n may be omitted in solution procedures which set the 

above problem up as linear programs since then the columns of 	and )7; are linearly 

dependent for each j=1 	 

8.4 The Segregated Storage Problem  

This problem considers a certain resource which is available in quantities 

S 1 	Sm  at m sources and is to be allocated to meet the demands 01,...,D n  of n 

users with the added restriction that the requirement of each of (n-1) users, 

say, 1,2 	n-1 is to be met from one and only one source. The last, or the n th , 

user can be supplied from any of the sources. In a storage context, the first 

(n-1) users correspond to private (special) storage facilities and the nth  user 
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corresponds to public (common or general) storage facility. Mathematically, we 

may let xij  denote the quantity shipped from supply point i to demand point j at 

a cost of say, cij  per unit and formulate the problem under the assumption that 

I Si  = Dj  as 
i=1 	.1=1  

m n 
minimize 	1 1 cij xij  

j i=1 =1 

subject to x e X = {x = 	
.] 

(x..
3-J): 
	x

1
.. < D., j=1 ..... n 

— i=1 

x. = S i , i=1 	 
j=1 

x. > 0) 
1J — 

1 6.. < 1, j=1 	n-1 ij 	 ' 
i=1 

where, 

0 if x.. = 0 
1] 

dij  = 	 for j=1 	n-1 

1 if xij  > 0 

This problem is also an extreme point optimization problem since it can be shown 

that there exists an optimal solution to it which is an extreme point of the set 

X of Equation (8.2). 

8.5 Production Scheduling on N-Identical Machines 

Consider a firm which manufactures K products, each of which must be pro-

cessed on the same machine. The machine has N rings of dies and is capable of 

processing N products simultaneously. Also, it is assumed that N < K. However, 

the entire machine must be shut down to change from one set of N products to another 

set. Thus, this problem may be viewed as one involving N identical machines, each 

with a single ring of dies, which are coupled by demand constraints. This demand 
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is available as a forecast of each of the K products over the next T periods, with 

the current (initial) inventory level being known. Changeovers are permitted 

only at the end of each period with the cost being proportional to the number of 

rings whose dies must be changed. The problem is to determine an optimal pro-

duction schedule for the K products over T weeks so as to minimize the total 

changeover and inventory costs while complying with the demand requirements. 

Thus, let 

xkt = the number of rings producing product k in time period t, 

k=1,...,K, t=1 ..... T. 

dkt = integral demand for product k at the end of time period t, 

k=1,...,K, t=1 ..... T. 

Ykt = inventory of product k at the end of period t, k=1,...,K, 

t=0,...,T, with t=0 yielding initial inventory. 

c = cost of changing a single ring of dies. 

ck = inventory carrying cost for a single period for product k, 

k=1,...,K. 

Now, it is clear that 

K 

l xk,t+1 	xktl 
k=1 

represents twice the number of rings changed from manufacturing one product to 

another at the end of period t, so that the total changeover cost over T periods 

is 

T-1 K 

7 	l xk t+1 xk t l 
t=1 k=1 	' 

(8.3) 

Further, the inventory of product k during the t th  period is obtaine through the 

cumulative occurance over t-1 periods as 
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t-1 	t-1 

Yk,t-1 = Yk0 	x
ki i=1 d

ki 
	 (8.4) 

The production constraints require all the N rings to be busy in each time period, 

Or, 

K 
x
kt 

= N
, 
for t=1, 	T 	 (8.5) 

k=1 

Further, to stipulate that the demands are all met with, we need the constraints 

Yk,t-1 xkt Ykt = dkt  for t=1 	T  k=1 	K 	(8.6) 

Then, the problem at hand is to 

T-1 K 	 T K 
minimize 	S.  i i 2 	xk,t+1 - xkt + 1 1 ckYk,t-1 

t=1 k=1 	 t=1 k=1 

K 
subject to N xkt 

k=1 

Yk,t-1 xk Ykt = dkt 

t=1,...,T 

t=1 ,,,,, T, k=1,...,K 

xkt ,  Ykt-1 0, and integer, k=1 ..... K, t=1 	 

To convert this problem into one with network constraints, a redundant constraint 

of the following form may be added 

KK 
 

/ YkT = total inventory at end of planning horizon 
k=1 

KK 
	 T 	K 

y
ko NT - / E dkt 

k=1 	 t=1 k=1 



152 

Utilizing the usual transformation of representing the absolute value of a variable 

as the difference between two nonnegative variables, the above problem may be con-

verted into an integer linear program. The integrality restrictions may then be 

replaced with the equivalent requirements that the solution should be an extreme 

point of the network constraints given above. Hence, this problem may be repre-

sented as an extreme point optimization problem. 

8.6 Fixed Charge Problem  

This type of problem is a mathematical programming problem which involves 

a fixed cost to be added if a variable is non-zero. More specifically, the 

problem may be stated mathematically as 

n 
minimize 	ctx 	X 6.f.: X E X 

J=1  

where X is a polyhedral set and 

0 if xj  =0 

Si  = 	 for j=1 ..... n 

1 if xj  > 0 

and where c denotes the vector of variable cost coefficients. Here f j  is the 

fixed charge incurred if xj  > 0. It can be shown that the above objective function 

is concave and hence there exists an optimal solution which is an extreme point 

of X. Thus, this too is of the class of extreme point optimization problems. 

As an example of a fixed charge problem, one may think of a transportation-

locatio- situation wherein the fixed cost is associated with the construction of 

a supply facility or a warehouse at a potential site. As another example, the 

fixed charge may arise as a fixed set-up cost in a scheduling problem if the 

decision to manufacture a certain product is adopted. Fixed charges also arise 

in passenger transportation models wherein the introduction of each additional 

transport facility involves an extra fixed cost. 
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8.7 Project Selection/Portfolio Allocation/Goal Programming  

Consider the problem 

minimize 	ctx 

subject to xe S= {x: Ax < b 1 
0 

x E extreme point of X = {x: Bx < b, x > 0} 

where B is block—angular with blocks B i 	Bp , say. 

These types of problems arise, for example, in the context of project 

selection problems wherein the extreme points of X correspond to projects being 

proposed by the p "subordinate" units. These units must be coordinated by the 

"superordinate" whose stipulations/restrictions are expressed by the set S. If 

convex combinations of projects proposed by the subordinates is not meaningful, 

one is restricted to selecting an extreme point of X, that: is, one needs to 

investigate the extreme point optimization problem given above. Similar structures 

arise in Portfolio selection and in Goal Programming. In the latter case, the 

objective is to obtain a solution as "close" as possible to the preset goals. 

8.8 Other Applications  

In several production planning problems, one is confronted with a profit 

function which is convex due to economies of scale. That is, as the level of 

production is increased, the profits increase more rapidly than in direct propor-

tion at first and then level off due to diminishing marginal returns. Hence the 

problem of maximizing a convex (often quadratic) function over linear constraints 

is essentially an extreme point optimization problem. 

In decision theory problems, a decision tree is constructed wherein each 

path through the tree represents a strategy with a utility value associated with 

it. The objective is to maximize the expected utility over a finite set of 

vectors, each vector denoting the values associated with a strategy. The problem 

may be reduced to that of maximizing a linear function over a polytope, where 



154 

the polytope is defined as the convex hull of a finite set of points. Thus this 

is a special case of an extreme point optimization problem where the extreme points 

are a subset of a known finite set of discrete points. 

Finally, we note that 0-1 linear integer programming problems can be con-

verted into problems of minimizing a concave function over a polyhedral set. 

This may be accomplished by simply incorporating a penalty term of the form 

M x (1-x.) into the objective function where M is' a suitably large constant, 
j=1 
and xj , j=1 	n are variables restricted to be zero or one in value. The 

problem is hence an extreme point optimization problem. However, due to the 

ill-conditioning effects of M, usually implicit enumeration schemes have been 

known to permit more efficient solution procedures than the implementation of the 

above transformation. 

8.9 Notes and References  

This section elaborates on some of the problems that can be represented 

as disjunctive programs. The reader may note that theoretically integer-

programming problems in general can be cast in a disjunctive programming format. 

Only some of the special practical cases, particularly with 0-1 variables, that 

seem more amenable to solution procedures using disjunctive programming principles 

are discussed in this chapter. The thought proposed and discussed by Balas [4] 

and Glover [19] of incorporating disjunctive programming/polyhedral annexation 

principles within a branch-and-bound approach is particularly significant in 

the context of developing viable solution procedures. 
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A finite algorithm is presented in this study for solving Bilinear programs. This is ac-
complished by developing a suitable cutting plane which deletes at least a face of a polyhedral 
set. At an extreme point, a polar cut using negative edge extensions is used. At other points, 
disjunctive cuts are adopted. Computational experience on test problems in the literature is 
provided. 

Key words: Bilinear Programming, Polar Cuts, Disjunctive Cuts, Cutting Plane. 

1. Introduction 

Mathematically, the Bilinear Programming Problem may be stated as 

BLP: 	minimize 4)(x, y) = c'x + d'y + x`Cy, 

subject to x E X0 = fx E R": Ex = e, x 01, 	 (1.1) 

y E Yo ={yERm: Fy= 	 (1.2) 

where X0  and Y0  are bounded polyhedral sets. 
Cutting plane procedures have been previously proposed to solve such prob-

lems [13, 22]. The one proposed by Konno [13] leads to an e optimal solution, 
that is, a solution differing in value from the global minimum value by no more 
than a prespecified positive quantity e. On the other hand, the one proposed by 
Vaish and Shetty [22] yields a global optimal solution. Both these methods are 
convergent, though not necessarily finitely convergent. In this paper, we pro-
pose a cutting plane algorithm which deletes at least one face of X 0  at each 
iteration and hence converges finitely. In order to accomplish this, we employ 
two types of cuts. 

(1) Polar cut. This is introduced at an extreme point of X0  feasible to the cuts 
generated thus far, and is based on the theory of generalized polars [2, 5]. Here 
we employ the concept of negative-edge extensions in the spirit of the work of 
Glover [7, 8]. The cuts thus derived are subsumed under the general theory of 

t This paper is based upon work supported by the National Science Foundation under Grant No. 
ENG-77-23683. 
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cutting planes proposed by Burdet [6] and Jeroslow [10]. Incidentally, in this 
study we also improve the technique proposed in [21] to solve the parametric 
problems involved in the generation of polar cuts. 

(2) Disjunctive cut. This is introduced at a suitable point which is not an 
extreme point of X0. Under certain specific conditions, a disjunctive cut will be 
used at a degenerate extreme point of X0 . The cut is based upon the principles of 
valid inequalities as discussed by Owen [16], Balas [3], Glover [7, 8], and 
Jeroslow [11]. The cuts permit coefficients of either sign, and hence, as noted by 
Balas [3], they tend to circumvent problems associated with dual degeneracy. 

A host of practical problems may be modeled as Problem BLP [12, 20, 21]. 
These include the two-stage or multi-stage assignment problems [21], the maxi-
mization of a convex function over a polytope [2, 14, 20], some game theory, 
production scheduling and decision theory problems [12,21] and the multi- 
facility, multi-product, rectilinear distance location—allocation problem [19]. 

Problem BLP is essentially a nonconvex problem and hence a local minimum 
need not be a global minimum. Several previous studies [1, 13, 21, 22, 23] have 
investigated the structural properties of Problem BLP and we refer the interested 
reader to these for such a discussion. We will, however, indicate that for either a 
fixed x E X0  or y E Yo , Problem BLP is linear in the other variable set. Hence, 
there exists an optimal solution to Problem BLP which is an extreme point of 
Xo  x yo . 

In developing a cutting plane algorothm for Problem BLP, it is clear that in 
order to preserve the separability of the variables associated with X 0  and Y0, the 
cut should be introduced in either the set X 0  or the set Yo . Further, as we will 
see later, introducing the cuts in one set will involve solving several linear 
programs over the other set. Consequently, if one of the sets, say I/ 0 , has a 
special structure, we can preserve this set and introduce the cuts in the set X o . 
As an example, in the rectilinear distance location—allocation problem [19], it is 
worth preserving the transportation problem constraints, as efficient solution 
procedures for the transportation problem are available. 

2. Extreme faces of X0  relative to the cuts 

At a particular stage, suppose that s cuts, Dx d, have been generated in the 
space of the x-variables. Let the set of points feasible to these cuts be 

Q = {x E R": Dx + Ixs  = d, xs 	 (2.1) 

where xs  denotes the vector of slack variables (x.,i, , x.+0`, and I is an 
identity matrix of size s. Following Majthay and Whinston [15], we will now 
define an extreme face of X0  relative to Q. If a point on this face is not an 
extreme point of X0 , we will develop a suitable cut in Section 3. On the other 
hand, if the extreme face is an extreme point of X0 , we will attempt to develop a 
deeper cut in Section 4, failing which, we will revert to the cut of Section 3. 
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Definition 2.1 [9]. Let X0  be a convex subset in R". A nonempty subset F of X0  is 
called a (proper) face of X0  if there exists a supporting hyperplane H of X0  such 
that F= X0  fl H. 

Now let N = {1, , n} denote the index set of the original set of variables, 
which we will call key variables. Also, let S = + 1, , n + s} denote the index 
set of the slack variables of the s cuts, which we will call nonkey variables. For a 
set Z C N, let 

Fz  = {x E X o: = 0 for j E Z}. 	 (2.2) 

Note that all the faces of X 0  can be represented as above for a suitable 
specification of the set Z. 

Definition 2.2. Let Fz  be a face of X0  such that F7  fl (2* 4, . Then Fz  is an 
extreme face of X0  relative to Q if for each k E N, x E FZJ{k} # Fz  implies x0 Q. 

In other words, an extreme face F7  satisfies the property that F7  fl Q does not 
contain any point in a lower dimensional face of X 0. Note that an extreme point 
of X0  feasible to Q qualifies for an extreme face. Likewise, an edge of X 0  whose 
defining extreme points are not in Q is also an extreme face of X0  relative to 
whereas an edge with one defining extreme point in Q will not qualify. 

Given a set Zo  C N, an extreme face of X 0  can be identified by sequentially 
adding indices to the set Z0. The simple procedure by Majthay and Whinston 
[15] which accomplishes this adopts the following restricted basis entry rule: 

"Only a nonkey variable xi, j E S, is eligible to enter the 
basis." 	 (2.3) 

In [15] it is proved that the procedure described below either finds an extreme 
face or indicates that no such face exists. 

Initialization 
Consider a standard simplex tableau representation of a basic feasible solution 

to X0  fl Q. 
Step 1: Let xr  denote the most positive basic key variable in the current 

solution not yet considered at a previous iteration. If no such variable exists, go 
to Step 3. Otherwise, proceed to Step 2. 

Step 2: Solve the Problem P r : minimize {xr : x E X0  fl Q} subject to the 
restricted basis entry rule in (2.3). If the solution yields x r  = 0 and xr  is basic, 
pivot it out of the basis, if possible, by exchanging it with a nonkey, nonbasic 
variable. Return to Step 1. 

Step 3: If all key variables are basic, there is no extreme face of X 0  relative to 
Q. Otherwise, the current set Z of indices of nonbasic key variables defines, 
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through Eq. (2.2), an extreme face Fz  of X0  relative to Q. In particular, if all 
nonbasic variables are key variables, then Fz  is an extreme point of X0 . 

The above procedure yields a simplex tableau corresponding to an extreme 
point x °  of X0 1-1 Q which lies on an extreme face Fz of X0  relation to Q, if such a 
face exists. If Fz  is of dimension greater than zero, then we will develop a 
disjunctive cut to delete the entire extreme face. On the other hand, if the 
extreme face is an extreme point of X 0, a cut better than the disjunctive can be 
developed. In order to do this, starting from the current point, we locate another 
extreme point with suitable properties and generate a polar cut with negative 
edge extensions as discussed in Section 4. If such a suitable point is not 
available, a disjunctive cut is developed. In either case, the cut generated is 
appended to the system of cuts to update the set Q. The procedure thus 

continues until the extreme faces (and hence the extreme points) of X 0  relative 
to some Q are all deleted. 

3. Development of the disjunctive face cut 

Suppose that the procedure of the foregoing section terminates with an 
extreme face Fz  of X0  relative to Q and a point x° = (4, 4) on this face 
which is not an extreme point of X0. Since we are primarily interested in 
extreme points of X0  (recall the extreme point optimality property of Problem 
BLP), we may introduce the disjunction that at least one of the basic key 
variables which is currently positive must be zero in order to yield an extreme 
point of X0  feasible to Q, if such a point exists. Accordingly, define 

BN = fr E N: x (r)  > 01. 	 (3.1) 

Further, let 

Z = {j E N: x)  is currently nonbasic}. 	 (3.2) 

Now consider an index r E BN and suppose Problem P r  is solved. At opti-
mality, let 

Nr  = {j E N: x)  is nonbasic} 
and 	 (3.3) 

Sr  = {j E S: x)  is nonbasic} 

and let the canonical representation of xr  in terms of the nonbasic variables 
E N„ U S, be 

xr  + E adx;  + E adx) = br. 
;EN, 	;Cs, 

Since Nr  C Z, by adding suitable zero coefficients, the above equation can be 
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written as 

xr  + E a r,x, + E a r,x, = br. 
fEZ 

Note that Problem P r  minimizes xr, and hence an  is the coefficient of x ;  in the 
objective function at optimality. Hence, even with the restricted basis entry rule, 
we may stipulate that 

	

0 for j E Sr. 	 (3.5) 

Also, note that if hr  = 0 and ari = 0 for some j E Sr  implies that xr  could be 
made nonbasic. Hence b. = 0 implies ani  = 0 for j E Sr. Thus, under the restricted 
basis entry rule, no pivot will ever occur in the row of x r  and moreover, at 
termination, we will have = 0, contradicting r E B N . Hence, 

	

br  > 0 for r E BN. 	 (3.6) 

Rewriting Eq. (3.4) for each r E B N , and suitably defining zero coefficients, we 
may state the disjunction x r  0 for at least one r E BN as: 

The following set of inequalities must hold for at least one r E BN 

v (a )+ 	(a 
17,'L) x I, x 	jEZU SN (3.7) 

where SN = rEB N  Sr. 
Now, for any r E BN, if ar;  < 0 for all j E Z, then the corresponding system in 

Eq. (3.7) is inconsistent and we may delte it. Let Bt,  denote the set of consistent 
systems. If Bt = WI, then clearly no extreme point of X 0  feasible to Q exists and 
we may terminate. Otherwise, according to the development of Owen [16] or 
more generally (and more rigorously), that of Balas [3] or Glover [7] or Jeroslow 
[11], the following is a valid cut 

Etmax (-)}..x + E {max ( c±4-) .}.z. 1 	 (3.8) 
b 	 h jEZ rE /3 	r 	 r 

where St = U rEBN Sr. We note that the cut (3.8) may be strengthened in the 
following manner through the use of a result due to Glover (see [7, Theorem 2]). 
Rewriting with obvious notation the consistent inequalities in (3.7) as 
EjEZUS it, ariXf 	1 for each r E 13:;:  and inequality (3.8) as E 	1, let us define 

Yr = minimum la Va ri l for each r E 
>0 

Then, using Glover's [7] results, one may easily validate the following inequality 
or cut 

(3.4) 

E [maximum fy,cr ril]x; 	1. 	 (3.9) 
jEZUS'k 
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Sherali and Shetty [17] have shown that (3.9) dominates any valid inequality 

based on the disjunctive statement (3.7) since (3.9) defines a facet of the closure 

of the convex hull of 

rEBN 
u {x: E adx, 0, x 01. 

jEZUn. 

Now, consider the following assertion. 

Lemma 3.1. The disjunctive cut of Eq. (3.9) deletes the extreme face Fz  of Xo 
relative to the set Q. 

Proof. Since the cut (3.9) uniformly dominates the cut (3.8) (see [7]), it is sufficient 

to show that (3.8) deletes the extreme face Fz  of X0  relative to Q. From Eq. (3.5), the 

cut of Eq. (3.8) implies 

fez  tmax 
rEB',;,', (Vr 

Further, by the definition of E , for each r E Bt an > 0 for some j E Z, and 

hence, the coefficients of the above cut are not all nonpositive. The proof 

follows from the fact that for any x E Fz, x, = 0 for each j E Z. It is worthwhile 

noting again that since the cut (3.9) has coefficients of both signs, problems 

associated with dual degeneracy tend to be reduced [3]. Also, the reader may 

note that Majthay and Whinston [15] have also proposed some facet cuts of the 

type E,Ez  pix;  p where the coefficients pi  :> 0, j E Z are prechosen and the cut 

generation routines attempt to make p as large as possible. However, since we 

are only interested in deleting Fz  without regard to the depth of the cut, we have 

elected to use above an efficient scheme which will simply accomplish this for us 

at a low computational cost. Finally, the reader may observe that a similar valid 

disjunctive cut may be generated in an even more straightforward manner when 

one obtains an extreme face of X 0  which is also an extreme point of X0 . Despite 

this fact, we prefer to expend more effort and generate significantly deeper cuts, 

if possible, by finding intersection points of suitable positive and negative edge 

extensions with the boundaries of the polar set, rather than with the boundaries 

of the smaller set which is the closure of the complement of the union of the 

disjunctive sets. This is the subject of the next section. 

4. Development of the negative-edge extension polar cut 

In this section, we assume that we have found an extreme point x ()  of X0 

 feasible to the set Q. In order to present the cutting plane techniques, we will 

first introduce two concepts. The first is merely an artifice in the implementation 

of the procedure. It exhibits the relationship of the procedure with convexity 
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cuts [7] and is based on the generalized reverse polar of a set [5, 6]. The second 
concept is more crucial to our development, and concerns what we call a weak 
pseudo-global minimum as opposed to the pseudo-global minimum discussed in 
[22]. 

Definition 4.1. Given a set Yo  and a scalar a, the generalized reverse polar of Vo 
relative to a is the set 

Yo(a) ={xE R": min y Ern 	y) a} 
	

(4.1) 

where as before, 

cp(x, y) = c`x + d'y + x`Cy. 

Note that Yo(a) is a polyhedral set; in fact, we may rewrite Y o(a) as 
a 

Yo(a ) = n H i'(x) = n ix R": c`x + 	+ x`Cy' a} 	(4.2) 
i=1 	i=i 

where y 1 , , y" are the u extreme points of the polytope Yo  and Ht(x), 
i = 1, , u are the corresponding u closed halfspaces. 

The basic idea behind the cutting plane method is to let a be the current best 
objective function value (CBOFV) and to define a cutting plane which will delete 
as large a subset of Yo(a) fl X0 as possible. In order to be able to develop a 
cutting plane which deletes the extreme point from which it is generated but no 
point in X0  which does not belong to Yo(a), we will find it expeditious to 
generate it from an extreme point of X 0  which is a weak pseudo-global mini-
mum. Theorem 4.1 below establishes the validity of the cut. First consider the 
following definition where A(1) represents the set of extreme points of X 0 

 adjacent to the extreme point of X of Xo. 

Definition 4.2. Let Q be the region feasible to the s cuts generated thus far. 
Further, let (1, y) be an extreme point of X0 x Y o  such that X E Q and 
min yEyo  O(X, y)= y). Consider a basis B of (1.1) representing 1. Then (X, y) 
is said to be a weak pseudo-global minimum (WPGM) relative to the basis B if 
for each / E A(X) such that 1E Q and x is obtainable from / through a single 
pivot on B, we have min y, y0  0(1, y)_. 0(1, y). Note that whenever a particular 
basis B is not of relevance to us, we will simply call (1, y) as a WPGM. 

Now, let (X, y) be a WPGM. Consider the extended simplex tableau (in Tucker 
form) corresponding to the extreme point solution 1. Identify the p (i.e., n minus 
the number of rows in E of Eq. (1.1)) edges incident at 1 corresponding to the p 

nonbasic variables xi, j E J, where J C N denotes the set of indices of the 
nonbasic variables, all of which are currently key variables. Note that X 0  is 
contained in the cone defined by these edges with vertex at X. Let e' be the 
extended column of the nonbasic variable j E J with components representing 
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the negative rate of change of the n key x-variables with x i. Denote the half-lines 
emanating from z along the above p edges by 

= 	x = z — 	A, _ 0} for j E J. 	 (4.3) 

Let a be the CBOFV and let 

J1  = {j E J: min yEyo  0(x, y) < a} for some x E 	 (4.4) 

and let 

-12 = 
	 (4.5) 

Finally, let 

= supremum{A,: 0(X — ejA 1, y) a for all y E Yo} for j E J, 	(4.6) 

A, = supremumlAi: 4)(x-  + elAi, y) a for some y E Yo} for j E 
(4.7) 

and set 

if j E J 1 , 
= 	2 	 (4.8) 

—Ai  if j E J2. 

Before proceeding, based on the above notation, let us explain the conceptual 
idea behind the cutting plane generation. Given a WPGM (g, 9) and the CBOFV 
a, we consider the polyhedral cone with vertex at I and edges 0, j E J. We then 
move a distance along each of these edges until we intersect a facet of Y o(a). 
This is so because from Eq. (4.6) and the definition of Y o(a),  

= supremumlAi : (I — eq,) E Yo(a)} for j E J. 	 (4.9) 

If 	is finite and non-zero, then we continue with the cut generation procedure. 
However, if A., = 0 for some j, then we abort the polar cut and develop a 
disjunctive cut at / by using the rows of the basic, positive-valued key variables 
in the current tableau as Eqs. (3.7), with SN = { O}. Observe that, by virtue of 

9) being a WPGM, this situation can arise only if the edge under con-
sideration leads to a degenerate pivot, the objective value of (1, 9) is equal to a 
and C' fl Yo(a) = I. Empirical results indicate that this situation rarely arises. 

Now, if A, = 00 for any I E J, i.e., if 0 C Yo(a), then we have j E J2 and we 
consider the negative extension of 0 from z. We move as far as we can (A,) 
along this negative extension, so long as we still lie in at least one half space 
H ; defining Yo(a) (Eq. (4.2)). Theorem 4.1 below establishes that if any A i  = 0 
for j E J2, then we may,  terminate with the current best solution as optimal. In 
this manner, provided A i  > 0, j E J, we identify p distinct points of intersection. 
Since in terms of the current nonbasic variables, the polytope X o  is imbedded in 
RP, these p intersection points define a unique hyperplane in RP as 

E (x,/,i;)= 1. 
jEJ 
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Theorem 4.1 below either verifies optimality or specifies a valid cut which 
deletes the point x but no point z such that min vey„ q5(1, y) < a. 

Theorem 4.1. Let Q be the region feasible to the s cuts generated thus far, let a be 
the CBOFV, and let (f, )7) be a WPGM. Further, assume that in Eq. (4.6), A, > 0 

for each j E J. 
(a) If J i = {0}, then a feasible solution yielding the objective function value a is 

optimal. 
(b) If J i * {0}, then 	0 for each j E J. 
(c) If 	{it then a valid cut is given by: 

E (x)/k,) a- 1 	 (4.10) 
;El 

where x,, j E J are the nonhasic variables. 

Proof. Under the hypothesis A, > 0 for each j E J, Ji  = {0} clearly implies that 
X0 C Yo(a). This proves part (a). 

Hence, suppose that J 1  {0} and consider any j E f2 , which implies that A, = x. 

Since {0}, there exists a q E ./ 1  and a point (xq, ya), xq E Cq and yq E Yo  such 

that 

0(xq, ya) = a and (6(1, yq) < a for some X' E 	(4.11) 

Observe that 475(X, yq) min y , y0  (Kt, y) a. Then for points of the form yxa + 
(1 — y).f, we get from Eq. (4.11), 

0(Yx 4  +(1 — 	y q ) = YO(x q, )7 ') ± (1 — Y)0(X, Y q ) = a. 

In other words, 4,(x, yq) = a for all x E 0, contradicting (4.11). Hence 
yq) > a and by continuity of cf) for a fixed y = yq, we conclude that A, > 0 

for j E J2. From (4.8) then, we have A, 0. 
Finally, part (c) follows from Glover [7, Theorem 2] by noting that the only 

use Glover makes of his assumption, in our terminology, that I E interior Yo(a), 

is to ensure A,0 0 for any j E J. This completes the proof. 

In order to complete our presentation, we need to show: 
(i) How to find a WPGM from an extreme point x °  of X 0  feasible to Q. 

(ii) How to solve for the parameters 	j E ./ of Eq. (4.8). These aspects are 
considered in the next two subsections. 

4.1. Determination of a WPGM 

Suppose Q C R" is the region feasible to the s cuts generated thus far and 
further, suppose that x °  is the extreme point of Xo  detected extreme face of Xo 
relate to Q. Recall that our need for finding a WPGM was to ensure that A, > 0 
for at least those j E J which correspond to non-degenerate pivots in the current 
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simplex tableau. Besides, this forms an improvement routine for detecting better 
quality solutions. Accordingly, given a simplex tableau representing an extreme 
point xe of X 0 , let A(xe) denote the set of extreme points of X 0  which are 
accessible from xe through single, non-degenerate pivots on this tableau. 
Observe that if xe E Q, the set A(xe) f1 Q is easily obtained from the current 
tableau as points resulting from single non-degenerate pivots which involve the 
exchange of a key-variable for another key-variable. Hence, consider the fol-
lowing procedure. 

Initialization 
Let k = 0, and go to Step 1. 
Step 1: Let z E A(x k ) fl Q be such that 

min cp(X, y) < min cg.e, y) = c1)(f, y k )• 
yE Yo 	 yE Yo 

If no such point exists, (x k , y k ) is a WPGM. Otherwise, go to Step 2. 
Step 2: Let x = x k+i , increment k by 1 and return to Step 1. 

The algorithm clearly yields a WPGM. Moreover, since the cardinality of 
A(xe) is finite for any basic representation of an extreme point xe of X 0 , and 
since every pass through Step 2 results in a strict decrease in the objective 
function value, the procedure is finitely convergent. Note that for the first 
iteration when s = 0, it is obviously advantageous, but not necessary, to let x °  be 
a local star minimum. A local star minimum can be located by solving the 
problems min yEyo  4)(x, y) and min yEyo  cp(x, y) iteratively as, for example, in [22]. 

4.2. Determination of the parameters A 1 , j E J of Eq. (4.8) 
A 

To specify a valid cut through (4.6), (4.7) and (4.8) we need to compute A, or A, 
for each j E J. These quantities may be determined by solving the following 
parametric problems. 

Problem PAR 1. 

where 

Problem PAR 2. 

where 

= supremum{A: tp,(A) a} 

tk(A ) = min o(t - 	y). 
yE V0 

'11  = supremum{A : 4//,(A) a} 

(4.12) 

(4.13) 

(4.14) 

crii(A) = max cp(i-  + e'A, y). 
y E Y0  

(4.15) 
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It is easy to show that 0(•) and —CP,(•) of Eqs. (4.13), (4.15) are piecewise 
linear and concave with breakpoints occurring whenever the extreme point 
solution optimizing tp; (•) (or tr/; (•)) changes. We will now describe an efficient 
modification of Newton's procedure to solve for i ;  and ;t,. The effectiveness of 
this scheme over the Bolzano search procedure was demonstrated for a special 
case of the bilinear program in [19], and is again evident from the computational 
experience of Section 7. 

Consider the system of Eqs. (4.12), (4.13) for obtaining 	Given an extreme 
point y' of Yo, the slope of the corresponding linear portion of iii,(•) is easily 
obtained through Eq. (4.13) as 

m, = — (ctel +(el)'Cy l ). 	 (4.16) 

Hence, we may proceed according to the following algorithm. Fig. 4.1 below 
illustrates a typical sequence of steps taken by this procedure. 

Initialization 

Set k = 1 and A t  = L, a large number. Determine (//,(L) and let y' be a 
corresponding minimizing extreme point solution. If Iii,(L) > a, then j E J2 and 

( 0 , ) 
L 

	30- 

 

(L) < 

 

Fig. 4.1 
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we need to solve the Eqs. (4.14), (4.15) for 	Else, go to Step 1. 
Step 1: Determine the slope m k  through Eq. (4.16) corresponding to y k , and 

compute 

A  k+1 = (a 
— 

ook) 4_ mkA k)/ nik. 	 (4.17) 

If  Ak+1 = 0, abort the present cut generation scheme and develop a disjunctive 
cut at x as in Section 3. Otherwise, proceed to Step 2. 

Step 2: Determine Op 1̀ +') and a corresponding minimizing extreme point 
solution y k+ E . If tlr,(A k +')= a, terminate with A, = A k +'. Else, k+1 ) < a and 
incrementing k to k +1, return to Step 1. 

Finite convergence of the above procedure is guaranteed by the fact that each 
pass through Steps 1 and 2 leads to a different linear part of ill,(•) with a strictly 

smaller slope and the number of such linear portions are finite since Y o  is a 
polytope. 

The method for solving Eqs. (4.14), (4.15) for A i, j E J2 is identical to the above 
procedure except that if if (L) a in the Initialization step, then we set A, = oo 
and also, Eq. (4.17) in Step 1 is replaced by 

A  k+1 = (a — c(ii(A k ) — mkA km_ mo. 	 (4.18) 

Finally in Step 2, iirj (A k + 1 )< a should be replaced by (fi,(A')> a. 
Before proceeding, we address briefly the special case X0  = Yo  which arises, 

for example, when minimizing a concave quadratic function subject to linear 
constraints [14]. In this situation, at Step 2 of the above scheme, one may check 
the objective value of the solution ( y k+1 9 y k+1).  If this solution is better than the 
current best, then one may update a, and the cut generation may be re-initialized 
at the new solution. As shown by Balas and Burdet [4], when a cut is finally 
obtained in this manner, the corresponding intersection points are defined with 
respect to, what they call, a reverse outer polar, and leads to a deepening of the 
cuts. Konno [13, 14] has also demonstrated how his cuts may be strengthened in 
a similar context. 

We will now state a schema for solving Problem BLP. 

5. A finitely convergent algorithm for Problem BLP 

Initialization 
Set Q = R", a = oo. 
Step 1: Determine an extreme face of X 0  relative to Q. If none exists (i.e., all 

key variables are basic), then terminate with the current best solution as optimal. 
On the other hand, if this extreme face is not an extreme point of X 0, go to Step 
2. Otherwise, go to Step 3. 

Step 2: Generate a face cut of the form in Eq. (3.7). If Bt = IC terminate with 
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the current best solution as optimal. Otherwise, augment the set Q with this cut 
and return to Step 1. 

Step 3: Starting from this extreme point of X 0, determine a WPGM and update 
the current best solution and its value, if necessary, using this WPGM. Solve the 
parametric Problems PART and PAR2 at the WPGM. If A ;  = 0 for any j E J, then 
go to Step 2. If either J1  = {0} or if J 1  MI and A;  = 0 for some j E J2 , terminate 
with the current best solution as optimal. Otherwise, generate a negative edge 
extension polar cut (4.10). Augment the set Q with this cut and return to Step 1. 

Observe that Steps 2 and 3 are finite procedures and they delete an extreme 
face of X0  determined in Step 1. Since an extreme face of X0  relative to any Q is 
also a face of X0  and since the faces of X0  are finite, the proposed scheme is 
finitely convergent. 

Before concluding this section, we point out that in some cases (for example, 
see [19]) it is possible to directly locate an extreme point of X 0  feasible to Q due 
to some special structure in the problem. Such a possibility must be first sought 
out in any application as it obviously leads to significant simplifications. 

6. Illustrative example 

Below, we illustrate our procedure by solving an example both, graphically by 
explicitly using the polar sets, and also by the scheme prescribed by the 
proposed algorithm. The example also illustrates how the cutting planes are 
deeper than those of Vaish and Shetty [22]. 

Hence, consider the problem 

minimize 0(x, 	= (2x 1  — x2)yi + (2x2  — 3x0Y2+ (8y] — 6))2), 

subject to 

— 2x, + 	5x2 	18 
— 3x, — 	2x2 	— 11 y: 	+ 	Y2 

x E Xo= 
- 	 X2 <1- 	1 

y E Yo= 3Yi + 4Y2 	—1 
3x 1 + 	2x2 . -- 62 4yi — 5Y2 < 3 
2x 1  + 12x2 	84 

XI, X2 =-= 0 

Note that here, although the key-variables are x i , x2  and the slack variables in 
the constraints of X0, for brevity we will simply write x as (x l , x2)'. Accordingly, 
c = (0, 0)% d = (8, —6)` and 

C= 2 3  -1  
L-1 	21 
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Let us start with the point x' = (1, 4)' Solving 

min .1)(x', y) = min [6y, — y2] 
yE Yo 	 v E Yo 

we obtain a value of 11 at y' = (2, 1)'. Testing the adjacent extreme points, it is 
easily verified that this represents a WPGM. Hence, currently, a = 11. 

We will now generate a cutting plane from the point 	4)`. Eq. (4.2) defines 
17°(11) through the constraints 

x, 	1, 	x2  —1 and —x, + 3x2 _ —15. 

Fig. 6.1 shows the polar set superimposed on X 0  and exhibits the intersection 
points P = ('f, - 1Y and W = (-129, —48)' for the polar cut. (Note that W is 
obtained through a negative edge extension.) The cut defined by these inter-

section points is 

141x, — 400x2 	1011. 	 (6.1) 

Observe that Vaish and Shetty [22] would have obtained intersection points at 
P = —1) and at infinity along the ray through (6, 6)'. Hence, their cut would 
have been 

W( -129,-48) 

Fig. 6.1 
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Note that (6.1), unlike (6.2), deletes the extreme point (18, 4)' of X 0 . 
We will now demonstrate how to generate the cutting plane without the 

explicit use of the polar set, i.e., without having to enumerate the extreme points 
of Yo . 

At the extreme point (1,4)T the current tableau has the basis and its inverse as 
given below, where x 3 , , x, are the slack variables in the constraints of X 0. 

The nonbasic variables for which we have to compute A, are x 3  and xal . For the 
sake of illustration, we will determine A4 for x4  since this involves a negative 
edge extension and let the reader verify that A3 for x 3  is 935  (i.e., {3} E J,). 

A4 for xa: From B - ', 

0(1—  e4A, Y)= (6 +18§A)Yi — (I + f4A)y2• 

For A' = L, 

4i4(L) = min[(6 +38§L)y, — (1 + 4L)Y2]= (37 + 11§L)> a 
yE Y0 

and hence, {4} E 

Now, 

(/)(g+ e 4A, y)= (6 —14A)y, — (1 —f4A)y 2  

along the negative-edge extension. For A' = L, 

4i4(L) = max[(6 — 4/)37 1 - ( 1 - f4L)y2] = (37 — 11§L)< a 
YE Yo 

at y' = (7, S)'. 
Step 1: m l = — 407 = 9 and A 2  = (11 — 37 + 	—31 /.,)/( —9) = 494. 
Step 2: //4(494) = max y ,4-202y, + 285y2] = 11 = a at y 2  = (7, S)'. 
Thus A 4 = 494 or A4 = —494. 
The cut is hence x3/(9i) —  x4/(494) > I or in terms of x,, x2, 

141x, — 400x 2 	1011 as in Eq. (6.1). 

Note that the polar cut of Vaish and Shetty [22] would have found A3 = A4 = c°  

and hence would have been 

x3/(95/3) 	1  

as in Eq. (6.2). 

or 6x, — 15.x2  41 
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It is interesting to note that the face cut available at the extreme point (1, 4) of 
X0  is ii§x 3 + 19x4  1 or 5x, — 3x 2  12 which is uniformly dominated by the cuts of 
both Eqs. (6.1) and (6.2). 

Now, X0 11 Q is as shown in Fig. 6.1. The extreme face finding routine easily 
leads to the extreme point x °  = (20, 1)` of X0  which also represents a WPGM of 
value 9 along with 5 = (7, 5)`. One may verify that the polar cut generated from 
this point with a = 9 exhausts the feasible region. The current best solution 
x l  = 20, x2  = 1, y, = 7, y 2 = 5 is hence optimal. 

7. Computational experience 

The proposed algorithmic scheme was coded in FORTRAN Iv. Table 7.1 gives 
our computational experience on the CDC CYBER 70 Model 74-28/CDC 6400 
computer using test problems in the literature. The first four problems are the 
illustrative examples taken from the references indicated in the first column. 
Problems 5 through 8 are the special structured test problems of Konno [14]. 
These problems have as many local minima equal to global minima as the 
number of constraints. Also, the sets X0  and Yo  are identical. Konno's method 
[13, 14] takes advantage of this structure and as discussed earlier, yields deeper 
cuts and leads to computational savings. Since our procedure was not speci-
alized to handle such situations, we did not attempt to solve larger sized 
problems of this class. Finally, problems 9, 10 and 11 are the test problems of 
Zwart [25]. As observed in [26], these problems are of medium level of difficulty. 
These problems also have X0  = Y0, and again, no advantage was taken of this 
structure. The reader may note that, in addition to the proposed scheme of 
generating both polar and disjunctive cuts, we have attempted to use only polar 
cuts whenever possible, irrespective of whether the extreme face obtained at 
any iteration is an extreme point of X 0  are not. Computational results presented 
support the contention that polar cuts are generally deeper than our disjunctive 
cuts if the former can be used. Thus the disjunctive cuts serve the purpose of 
ensuring that a cut can always be generated and that the procedure is finite. 

Finally, we have also recorded the average number of iterations required for 
the solution of the parametric Problems PAR1 and PAR2. Our experience 
clearly indicates the advantage of using the proposed search technique over, say, 

the Balzano bisection search procedure. 
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ABSTRACT 

In this paper we address the question of deriving deep cuts for nonconvex 
disjunctive programs. These problems include logical constraints which restrict 
the variables to at least one of a finite number of constraint sets. Based on the 
works of Balas, Glover, and Jeroslow, we examine the set of valid inequalities 
or cuts which one may derive in this context, and defining reasonable criteria 
to measure depth of a cut we demonstrate how one may obtain the "deepest" 
cut. The analysis covers the case where each constraint set in the logical state-
ment has only one constraint and is also extended for the case where each of 

these constraint sets may have more than one constraint. 

1. INTRODUCTION 

A Disjunctive Program is an optimization problem where the constraints represent logical 
conditions. In this study we are concerned with such conditions expressed as linear constraints. 
Several well-known problems can be posed as disjunctive programs, including the zero-one 
integer programs. The logical conditions may include conjunctive statements, disjunctive state-
ments, negation and implication as discussed in detail by Batas [1,2]. However, an implication 
can be restated as a disjunction, and conjunctions and negations lead to a polyhedral constraint 
set. Thus, this study deals with the harder problem involving disjunctive restrictions which are 
essentially nonconvex problems. 

It is interesting to note that disjunctive programming provides a powerful unifying theory 
for cutting plane methodologies. The approach taken by Balas [2] and Jeroslow [14] is to 
characterize all valid cutting planes for disjunctive programs. As such, it naturally leads to a 
statement which subsumes prior efforts at presenting an unified theory using convex sets, polar 
sets and level sets of gauge functions [1,2,5,6,8,13,14]. On the other hand, the approach taken 
by Glover [10] is to characterize all valid cutting planes through relaxations of the original dis-
junctive program. Constraints are added sequentially, and when all the constraints are con-
sidered Glover's, result is equivalent to that of Batas and Jeroslow. Glover's approach is a con-
structive procedure for generating valid cuts, and may prove useful algorithmically. 

The principal thrust of the methodologies of disjunctive programming is the generation of 
cutting planes based on the linear logical disjunctive conditions in order to solve the 
corresponding nonconvex problem. Such methods have been discussed severally by Balas 
[1,2,3], Glover [8], Glover, Klingman and Stutz [11], Jeroslow [14] and briefly by Owen [17]. 
But the most fundamental and important result of disjunctive programming has been stated by 

*This paper is based upon work supported by the National Science Foundation under Grant No. ENG-77-23683. 
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Balas [1,2] and Jeroslow [14], and in a different context by Glover [10]. It unifies and sub-
sumes several earlier statements made by other authors and is restated below. This result not 
only provides a basis for unifying cutting plane theory, but also provides a different perspective 
for examining this theory. In order to state this result, we will need to use the following nota-
tion and terminology. 

Consider the linear inequality systems S,,, h E H given by 

(1.1) 	 Sh  = {x: A hx..- b h, x ,..-0}, hEH 

where H is an appropriate index set. We may state a disjunction in terms of the sets Sh , h EH 
as a condition which asserts that a feasible point must satisfy at least one of the constraint So 

 h EH. Notationally, we imply by such a disjunction, the restriction x E U Si,. Based on this 
hEH 

disjunction, an inequality ir'x 	r e  will be considered a valid inequality or a valid disjunctive cut 
if it is satisfied for each xE U Sh . (The superscript t will throughout be taken to denote the 

hEH 
transpose operation). Finally, for a set of vectors {v h: h E H}, where v 1' = (vP, ... , v„h) for 
each hEH, we will denote by sup (v"), the pointwise supremum v = (v i , ... , v„) of the vec- 

hEH 
tors vh , h EH, such that vj  = sup {v1 for j = 1, ... , n. 

hE H 

Before proceeding, we note that a condition which asserts that a feasible point must satisfy 
at least p of some q sets, p ..<_. q, may be easily transformed into the above disjunctive statement 
by letting each Sh  denote the conjunction of the q original sets taken p at a time. Thus, H = 

{1, ... , IA in this case. Now consider that following result. 

THEOREM 1: (Basic Disjunctive Cut Principle) — Balas [1,2], Glover [10], Jeroslow 
[14] 

Suppose that we are given the linear inequality systems So  h EH of Equation (1.1), where 
1111 may or may not be finite. Further, suppose that a feasible point must satisfy at least one 
of these systems. Then, for any choice of nonnegative vectors A I', hE H, the inequality 

(1.2) 	 isup (X VA hl x > inf (X h) t b h  
hEH 	 hE H 

is a valid disjunctive cut. Furthermore, if every system 5,,, h E H is consistent, and if II-11 < 
00, then for any valid inequality 	71)x, > v e , there exist nonnegative vectors X", h E H such 

] =1 
that ro < inf (X Vb h  and for j = 1, 	, n, the j th component of sup (X /TA h  does not 

he H 
exceed 

The forward part of the above theorem was originally proved by Balas [2] and the con-
verse part by Jeroslow [14]. This theorem has also been independently proved by Glover [10] 
in a somewhat different setting. The theorem merely states that given a disjunction xE U S,,, 

I, EH 

one may generate a valid cut (1.2) by specifying any nonnegative values for the vectors A 1', 
h E H. The versatility of the latter choice is apparent from the converse which asserts that so 
long as we can identify and delete any inconsistent systems, So  h E H, then given any valid cut 
r1-'x > r e , we may generate a cut of the type (1.2) by suitably selecting values for the parame-
ters A h , hEH such that for any x belonging to the nonnegative orthant of R", if (1.2) holds 
then we must have 7T 1X > ire_ In other words, we can make a cut of the type (1.2) uniformly 
dominate any given valid inequality or cut. Thus, any valid inequality is either a special case of 
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(1.2) or may be strictly dominated by a cut of type (1.2). In this connection, we draw the 
reader's attention to the work of Balas [1] in which several convexity/intersection cuts dis-
cussed in the literature are recovered from the fundamental disjunctive cut. Note that since the 
inequality (1.2) defines a closed convex set, then for it to be valid, it must necessarily contain 
the polyhedral set 

(1.3) 	 S = convex hull of U SI,. 
hEH 

Hence, one may deduce that a desirable deep cut would be a facet of S, or at least would sup-
port it. Indeed, Balas [3] has shown how one may generate with some difficulty cuts which 
contain as a subset, the facets of S when 'HI < 00. Our approach to developing deep disjunc-
tive cuts will bear directly on Theorem 1. Specifically, we will be indicating how one may 
specify values for parameters A" to provide supports of S, and will discuss some specific criteria 
for choosing among supports. We will be devoting our attention to the following two disjunc-
tions titled DC1 and DC2. We remark that most disjunctive statements can be cast in the for-
mat of DC2. Disjunction DC1 is a special case of disjunction DC2, and is discussed first 
because it facilitates our presentation. 

DC1: 

Suppose that each systems S,, is comprised of a single linear inequality, that is, let 

(1.4) 	 S,, = 	 x 3 0 for hEH 	(1, 	, 
J= 1  

where we assume that /3 = 11/I < 00 and that each inequality in S,,, hE His stated with the ori-
gin as the current point at which the disjunctive cut is being generated. Then, the disjunctive 
statement DC1 is that at least one of the sets So  hEH must be satisfied. Since the current 
point (origin) does not satisfy this disjunction, we must have b l; > 0 for each hE H. Further, 
we will assume, without loss of generality, that for each h E H, > 0 for some 
j E 1, 	, n) or else, S,, is inconsistent and we may disregard it. 

DC2: 

Suppose each system Sh  is comprised of a set of linear inequalities, that is, let 

(1.5) 	Sh  = lx: 	kh  for each i E QI„ x 3 0 for hEH = {1, 	, /-1} 
J= 1  

where Qo  hEH are appropriate constraint index sets. Again, we assume that h = 11 -11 < 
and that the representation in (1.5) is with respect to the current point as the origin. Then, the 
disjunctive statement DC2 is that at least one of the sets S,,, hEH must be satisfied. Although 
it is not necessary here for b,h > 0 for all i E Q,, one may still state a valid disjunction by delet-
ing all constraints with b,12,..< 0, i E Qh  from each set Sh , hE H. Clearly a valid cut for the 
relaxed constraint set is valid for the original constraint set. We will thus obtain a cut which 
possibly is not as strong as may be derived from the original constraints. To aid in our develop-
ment, we will therefore assume henceforth that b,h  > 0, iE 	h E H. 

Before proceeding with our analysis, let us briefly comment on the need for deep cuts. 
Although intuitively desirable, it is not always necessary to seek a deepest cut. For example, if 
one is using cutting planes to implicitly search a feasible region of discrete points, then all cuts 
which delete the same subset of this discrete region may be equally attractive irrespective of 
their depth relative to the convex hull of this discrete region. Such a situation arises, for exam-
ple, in the work of Majthay and Whinston [16]. On the other hand, if one is confronted with 
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the problem of iteratively exhausting a feasible region which is not finite, as in [20] for exam-
ple, then indeed deep cuts are meaningful and desirable. 

2. DEFINING SUITABLE CRITERIA FOR EVALUATING THE DEPTH OF A CUT 

In this section, we will lay the foundation for the concepts we propose to use in deriving 
deep cuts. Specifically, we will explore the following two criteria for deriving a deep cut: 

(i) Maximize the euclidean distance between the origin and the nonnegative region 
feasible to the cutting plane 

(ii) Maximize the rectilinear distance between the origin and the nonnegative region 
feasible to the cutting plane. 

Let us briefly discuss the choice of these criteria. Referring to Figure 1(a) and (b), one 
may observe that simply attempting to maximize the euclidean distance from the origin to the 
cut can favor weaker over strictly stronger cuts. However, since one is only interested in the 
subset of the nonnegative orthant feasible to the cuts, the choice of criterion (i) above avoids 
such anamolies. Of course, as Figure 1(b) indicates, it is possible for this criterion to be unable 
to recognize dominance, and treat two cuts as alternative optimal cuts even through one cut 
dominates the other. 

Let us now proceed to characterize the euclidean distance from the origin to the nonnega-
tive region feasible to a cut 

(2.1) 	 zi x, 	z o , where z o  > 0, zj  > 0 for some jE [1, 	, 
j =1 

The required distance is clearly given by 

(2.2) 	B e  = minimum [I Ix I I: / z X J J 	z0, x > 01. 

Consider the following result. 

LEMMA 1: Let B e  be defined by Equations (2.1) and (2.2). Then 

(2.3) 	
°e— 

	zo 

where, 

(2.4) 
	

Y = (1) 1, • • • , 	) yi  = maximum [0, zi ), j = 1, . . . , n. 

PROOF: Note that the solution x* = 	 
IY 1 2  I z° 	

y is feasible to the problem in (2.2) with 

I Ix* I I : I 	Iy I I 	
Moreover, for any x feasible to (2.2), we have, z o 	zj x, 	y, xj  

j =1 	i=1 
z o  

I IY I I I IxII, or that, I Ix I I   This completes the proof. 

Now, let us consider the second criterion. The motivation for this criterion is similar to 
that for the first criterion and moreover, as we shall see below, the use of this criterion has 
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intuitive appeal. First of all, given a cut (2.1), let us characterize the rectilinear distance from 
the origin to the nonnegative region feasible to this cut. This distance is given by 

(2.5) 	 0, = minimum {IxI: 	?.. z 0 , x 	01, when IxI 
i=t 	 t- 

Consider the following result. 

FIGURE 1. Recognition of dominance 

LEMMA 2: Let 0, be defined by Equations (2.1) and (2.5). Then, 

zo 
(2.6) 	 0 , = — where zm  = maximum 

Zm   

	

j=1 	n 

z o  

	

PROOF: Note that the solution x* = (0, 	, 	0), with the m th component 
Zm  

Zrz) 
being non-zero, is feasible to the problem in (2.5) with Ix*I = — . Moreover, for any x feasi- 

zm 

ble to (2.5), we have, 

Zo 	n Z 
—
z

XI <EX = IXI. 
m 	1=1 in 	l=1 

This completes the proof. 

Note from Equation (2.6) that the objective of maximizing 0, is equivalent to finding a 
cut which maximizes the smallest positive intercept made on any axis. Hence, the intuitive 
appeal of this criterion. 

3. DERIVING DEEP CUTS FOR DC! 

It is very encouraging to note that for the disjunction DC1 we are able to derive a cut 
which not only simultaneously satisfies both the criterion of Section 2, but which is also a facet 
of the set S of Equation (1.3). This is a powerful statement since all valid inequalities are given 
through (1.2) and none of these can strictly dominate a facet of S. 
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We will find it more convenient to state our results if we normalize the linear inequalities 
(1.4) by dividing through by their respective, positive, right-hand-sides. Hence, let us assume 
without loss of generality that 

(3.1) 	 S,, = x: 	a{'f x1 1, x > 0 for hE H= {1, 	, 1;}. 
1=1 

Then the application of Theorem 1 to the disjunction DC1 yields valid cuts of the form: 
n 

(3.2) 	 I, max X tail, 	min {4} 
hEH 	 hEH 

where X (', h E H are nonnegative scalars. Again, there is no loss of generality in assuming that 

(3.3) 	 I xt= 1, xp 3 0, h E H=  {1, 	, 
/1 E H 

since we will not allow all X 	h E H to be zero. This is equivalent to normalizing (3.2) by 
dividing through by 	X P. 

h E H 

Theorem 2 below derives two cuts of the type (3.2), both of which simultaneously 
achieve the two criteria of the foregoing section. However, the second cut uniformly dominates 
the first cut. In fact, no cut can strictly dominate the second cut since it is shown to be a facet 
of S defined by (1.3). 

THEOREM 2: Consider the disjunctive statement DC1 where S,, is defined by (3.1) and is 
assumed to be consistent for each h E H. Then the following results hold: 

(a) Both the criteria of Section 2 are satisfied by letting X 1 ,  = x where 

(3.4) 	X(' ' = 1/ h 	for h E H 

in inequality (3.2) to obtain the cut 

(3.5) t a u  xi  3 1, where 	max 4, for j = 1, 	, n. 
1=

1 
	

hEH 

(b) Further, defining 

(3.6) 	 y j' = minimum la 	> 0, h E H 
j:4>0 

and letting X.P = X r, where 

(3.7) 	X r = ylVE y r for h E H 
pE 

in inequality (3.2), we obtain a cut of the form 

" 	•• 
(3.8) 	 x, 	1, where a l;  = max a il', 	for j = 1, 	, n 

=1 	
hE H 

i 

which again satisfies both the criteria of Section 2. 

(c) The cut (3.8) uniformly dominates the cut (3.5); in fact, 

if a l , > 0 
(3.9) 	 if • 0  , j = 1, . . , n. 
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(d) The cut (3.8) is a facet of the set S of Equation (1.3). 

PROOF: 

(a) Clearly, X 1 = 1/k, hEH leads to the cut (3.5) from (3.2). 
euclidean distance criterion of maximizing 0 e (or 0,?) of Equation (2.3). 
value of 0, is given by 

(3.10) 	 (0:) 2  = > 0 where y; = max{0,4), j = 1, 
j=i 

Now, for any choice A t, hEH, 

Now consider 
For cut (3.5), 

, n. 

the 
the 

(3.11) 	 q = [min°. 01 / yi
2 
 = (X f) 2  /, .Y1 2,  say, 

LhEH I

/  17 

l=1 	 j=1 

where yj  = max(0,max X t a{',) . If X r = 0, then O r  = 0 and noting (3.10), such 
hEH  

parameters Ap, hEH is suboptimal. Hence, Ar> 0, 
But since (A 1/A p) > 1 for each hEH, we get 

A h  
= max 0, max — a 1j  > ma+, max 41 = y.17 . 

hEH AP 	 hEH 

Thus 0,2  < (0,7) 2  so that the first criterion is satisfied. 

Now consider the maximization of 0, of Equation (2.5), or equivalently Equation (2.6). 
For the choice (3.4), the value of 0, is given by 

(3.12) 	 0:— 	
1  > 0. 

max a u  

Now, for any choice X I% hEH, from Equations (2.6), (3.2) we get 

0, = (min AlVimax max X. at) = ymax max X L' at, say. 
hEH 	 j hEH 	 j hEH 

As before, X 10=  0 implies a value of 
X p V max max — 	But (X IA 

j 	hEH 	/3 
only in those jE 11, 	, n) for which 

O r  inferior to 9j. Thus, assume X(' > 0. Then, 0,— 

1 for each hEH and in evaluating 0„ we are interested 

at > 0 for some h EH. Thus, 0, < 1/max max at = 
J 	ItEH 

07, so that the second criterion is also satisfied. This proves part (a). 

(b) and (c). First of all, let us consider the values taken by yt, hE IT Note from the 
assumption of consistency that y 1, hEH are well defined. From (3.5), (3.6), we must have 
y 	1 for each h E H. Moreover, if we define from (3.5) 

(3.13) 	H* = (hEH: alk = aik > 0 for some kE {1, 	, n}} 

then clearly H* {0} and for hEH*, Equation (3.6) implies .yLi < 1. Thus, 

a =choii  /ce of 

whence (3.11) becomes 
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= 1 for hEH* 
(3. 14) 
	

Y P> 1 for hq H*. 

min yt = 1 
hEH 

or that, using (3.7) in (3.2) yields a cut of the type (3.8), where, 

a i , = max 4,y 1", I  =1, 	, n. (3.16) 	
•• 

hE 

Now, let us establish relationship (3.9). Note from (3.5) that if a l., < 0, then all, < 0 

for each hEHand hence, using (3.14), (3.16), we get that (3.9) holds. Next, consider 4> 0 
for some jE {1, , n}. From (3.13), (3.14), (3.16), we get 

(3.17) a l , = max{maxa ^ 1 , max 	y 
hEH 	hEH' 

at> 0 

where we have not considered hqH* with a;', < 0 since a l.; > 0. But for hqH* with al', > 0, 
we get from (3.5), (3.6) 

(3.18) h 	h 	h — al, 

max arik  
rEH  

min „h 
k:at,>0 	alk 

 

max 
h 	rEH 

al, 	 = max 
all 	rEH 

     

Using (3.18) in (3.17) yields a17 = ar,, which establishes (3.9). 

Finally, we show that (3.8) satisfies both the criteria of Section 2. This part follows 
immediately from (3.9) by noting that the cut (3.5) yields 0, = 0: of (3.10) and O r = 0: of 
(3.12). This completes the proofs of parts (b) and (c). 

(d) Note that since (3.8) is valid, any xES satisfies (3.8). Hence, in order to show that 
(3.8) defines a facet of S, it is sufficient to identify n affinely independent points of S which 
satisfy (3.8) as an equality, since clearly, dim S = n. Define 

	

(3.19) 	 J 1  = {jE(1, 	, n}: aT7 > 0) and let J2= {1, 	, n} — J i . 

Consider any pEf i , and let 

	

(3.20) 	 ep  = (0, 	, 	
1. , 	, 0), pEJ I  

a lp  

have the non-zero term in the p th  position. Now, since pE J i , (3.9) yields 
h •• 

Cli p = alp  = max al p  = a1 Pp , say, 
hEH 

Hence, ep E Shp  and so, ep ES and moreover, ep  satisfies (3.8) as an equality. Thus, ep , p EJ I 

 qualify as IJ1 I of the n affinely independent points we are seeking. 

Now consider a q E J2 . Let us show that there exists an Sh q  satisfying 

h
l a 

h 
y ii gp  = a l.; for some pEJI 

Hence, 

(3.15) 
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and 
.. 

(3.21) 	 y l qa i
h 
 := a lq . 

.. 
From Equation (3.16), we get a I , = max a 17 q  y l" = al 

h 
: y 1

h 
 q, say. Then for this h, E H, Equation 

hEH 

(3.6) yields y 1
h 

 q = minimum {a l-J(2 111 '1,1 = a i
. 

 p /a i
h 
 :, say. Or, using (3.9), y i

h 
 q a t l,= a; = alp  > 

1 a hr° 
0. Thus (3.21) holds. For convenience, let us rewrite the set Sh q  below as 

(3.22) 	 S1,,  = (x: a i :
h_ 

 xn  + a l :
h_ 
 x, + I (JO x, ?.- 1, x 	0}. 

i,o,q 

Now, consider the direction 

(0, 	
1 

, 	 — 	, 	, 0) if a;q.  < 0 

	

alp, 	a ig  
(3.23) 	dq 	(0, 	, 0, 	, 	A, 	, 0) 	if ai.q.  = 0 

where A > 0. Let us show that dq  is a direction for S i, a . Clearly, if a l.; = 0, then from (3.21) 

a l : = 0 and thus (3.22) establishes (3.23). Further, if a 1.; < 0 then one may easily verify 
from (3.21), (3.22), (3.23) that 

en  = (0, 	, (0....... ..........0)  , 	, 0) E Sh q  and en  + 8[y ihqdq ] E Shq  for each 8 2. 0 
h 

where ep has the non-zero term at position p. Thus, dq  is a direction for S" 
u

. It can be easily 

shown that this implies dq  is a direction for S. Since e„= (0, 	,  	, 0) of Equation 
a lp  

(3.20) belongs to S, then so does (en  + dq ). But (en  + dq ) clearly satisfies (3.8) as an equality. 
Hence, we have identified n points of S, which satisfy the cut (3.8) as an equality, of the type 

en  = (0, 	, 	
1
.. , 	, 0) for pEJ I  

a lp  

eq = d, + ep  for some p E J 1 , for each q E.,f 2  

where dq  is given by (3.23). Since these n points are clearly affinely independent, this com-
pletes the proof. 

It is interesting to note that the cut (3.5) has been derived by Balas [2] and by Glover [9, 
Theorem 1]. Further, the cut (3.8) is precisely the strengthened negative edge extension cut of 
Glover [9, Theorem 2]. The effect of replacing X r defined in (3.4) by X r defined in (3.7) is 
equivalent to the translation of certain hyperplanes in Glover's theorem. We have hence 
shown through Theorem 2 how the latter cut may be derived in the context of disjunctive pro-
gramming, and be shown to be a facet of the convex hull of feasible points. Further, both 
(3.5) and (3.8) have been shown to be alternative optima to the two criteria of Section 2. 

In generalizing this to disjunction DC2, we find that such an ideal situation no longer 
exists. Nevertheless, we are able to obtain some useful results. But before proceeding to DC2, 
let us illustrate the above concepts through an example. 

(3.24) 
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EXAMPLE: Let H = {1,2}, n = 3 and let DC1 be formulated through the sets 

XI 	X2 
S 1  = 	x l  + 2x 2  — 4x 3 	1, x 	0),S 2 = {x: 2 + 	— 2x 3  > 1, x 	0}. 

The cut (3.5), i.e., Ic4,x, 	1, is x 1  

= min{
T 

 1 
' 2 

2 

	

+ 2x2  — 2x 3 	1. From 

— 	
2 	 I 1 and y i  = min 

(3.6), 

1 	2 
= 2. 

12 1/ 3 

Thus, through (3.7), or more directly, from (3.16), the cut (3.8), i.e., I a 1.7x, 	1 is 
x 1  + 2x2  — 4x 3 	1. This cut strictly dominates the cut (3.5) in this example, though both 
have the same values 1/N/3 and 1/2 respectively for 0, and 0,. of Equations (2.2) and (2.5). 

4. DERIVING DEEP CUTS FOR DC2 

To begin with, let us make the following interesting observation. Suppose that for con-
venience, we assume without loss of generality as before, that b,h  = 1, iE Qh, h E H in Equation 
(1.4). Thus, for each h EH, we have the constraint set 

(4.1) 	 Sh = jx: E a,x, i 1, iE Qh, X i  0 . 

Now for each hE H, let us multiply the constraints of Sh by corresponding scalars 8, h  ?; 0, iE Q,, 
and add them up to obtain the surrogate constraint 

(4.2) 	 E E spay; x ; 	E 	hEH.  
.1=1 iE Q h 	 iE Qh  

Further, assuming that not all 8 ih  are zero for iE Qh, (4.2) may be re-written as 

h 

(4.3) 	
S , 
	 ajli x i 	1, h E H. 

I I 81 
pE Q h  

Finally, denoting 8 y 	8", by X for iE Qh, hEH, we may write (4.3) as 
pEQh  

(4.4) 
	 x 	1 for each hEH 

j- 1 iEQ h  

E A ih  = 1 for each hEH, X,h 	0 for i E Qh , h E H. 
/EQ, 

Observe that by surrogating the constraints of (4.1) using parameters X , h, iE Qh , h E H satisfying 
(4.5), we have essentially represented DC2 as DC1 through (4.4). In other words, since x E Sh 

implies x satisfies (4.4) for each h EH, then given X.,h, iE Qh , h EH, DC2 implies that at least 
one of (4.4) must be satisfied. Now, whereas Theorem 1 would directly employ (4.2) to derive 
a cut, since we have normalized (4.2) to obtain (4.4), we know from the previous section that 
the optimal strategy is to derive a cut (3.8) using inequalities (4.4). 

Now let us consider in turn the two criteria of Section 2. 

where, 

(4.5) 
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4.1. Euclidean Distance-Based Criterion 

Consider any selection of values for the parameters X, h, iE 	h E H satisfying (4.5) and 
let the corresponding disjunction DC1 derived from DC2 Ibe that at least one of (4.4) must 
hold. Then, Theorem 2 tells us through Equations (3.5), (3.10) that the euclidean distance cri-
terion value for the resulting cut (3.8) is 

(4.6) 	B e la)  = 	),12 

.1= 1  

where, 

(4.7) 
	

yj  = max{0, zj I, j = 1, 	, n 

and 

(4.8) 	 z1  = max 	X P aO , j = 1, 	, n. 
hEH iEQh 

Thus, the criterion of Section 2 seeks to 

(4.9) 	 maximize {0,(X): A = (A//') satisfies (4.5)) 

or equivalently, to 

(4.10) 	minimize (E x?: (4.5), (4.7), (4.8) are satisfied). 

It may be easily verified that the problem of (4.10) may be written as 

(4.11) 	PD 2 : 	minimize 	yl 
j=i 

(4.12) 	 subject to yj 	X t all for each hEH for each j = 1, 	, n 
E Qh  

(4.13) 	 1 	= 1 for each h E H 
iE Qh  

(4.14) 	A/' 	0 i E Qi„ hEH 

Note that we have deleted the constraints y j  ?, 0, j = 1, 	, n since for any feasible X,h , 
iE 	h E H, there exists a dominant solution with nonnegative y i  = j = 1, 	, n. This relax- 
ation is simply a matter of convenience in our solution strategy. 

Before proposing a solution procedure for Problem PD 2 , let us make some pertinent 
remarks. Note that Problem PD 2  has the purpose of generating parameters XP, i E Qh , h E H 
which are to be used to obtain the surrogate constraints (4.4). Thereafter, the cut that we 
derive for the disjunction DC2 is the cut (3.8) obtained from the statement that at least one of 
(4.4) must hold. Hence, Problem PD 2  attempts to find values for AP, i E Q1„ h E H, such that 
this resulting cut achieves the euclidean distance criterion. 

Problem PD 2  is a convex quadratic program for which the Kuhn-Tucker conditions are 
both necessary and sufficient. Several efficient simplex-based quadratic programming pro-
cedures are available to solve such a problem. However, these procedures require explicit han-
dling of the potentially large number of constraints in Problem PD 2 . On the other hand, the 
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subgradient optimization procedure discussed below takes full advantage of the problem struc-
ture. We are first able to write out an almost complete solution to the Kuhn-Tucker system. 
We will refer to this as a partial solution. In case we are unable to either actually construct a 
complete solution or to assert that a feasible completion exists, then through the construction 
procedure itself, we have a subgradient direction available. Moreover, this latter direction is 
very likely to be a direction of ascent. We therefore propose to move in the negative of this 
direction and if necessary, project back onto the feasible region. These iterative steps are now 
repeated at this new point. 

4.1.1 Kuhn-Tucker Systems for PD 2  and Its Implications 

	

Letting u,h , hE H, j = 1, 	, n denote the lagrangian multipliers for constraints (4.12), 
th , h EH those for constraints (4.13), and w ik , I E Qh, h EH those for constraints (4.14), we may 
write the Kuhn-Tucker optimality conditions as 

(4.15) 	 = 2y, 	j = 1, 	, n 
IrEH 

(4.16) 	 74'4 + th  — vv, h  = 0 for each i E Qh, and for each hEH 
J-1 

iE(11, 
(4.17) 	ui2 	Xi? auh — 	= 0 for each j = 1, 	, n and each /7 E H 

(4.18) 	 A,' w,!'= 0 for i E a„ hEH  

(4.19) 	 w/' > 0 	iEQh, hEH 

(4.20) 	 uj'> 0 j = 1, 	. . . , 	n, hEH.  

F inally, Equations (4.12), (4.13), (4.14) must also hold. We will now consider the implications 
of the above conditions. This will enable us to construct at least a partial solution to these con-
ditions, given particular values of Ai', i E Q,,, hE H. First of all, note that Equations (4.7), 
(4.10) and (4.20) imply that 

(4.21) 	 yi  > 0 for each j = 1, 	, n 

(4.22) 	yj  = maxi 0, 	P 	hE Hl for j = 1, 	, n. 
E Qh  

Now, having determined values for y ; , j = 1, 	, n, let us define the sets 

(0) if y i  = 0 

for j = 1, ..., n. 

( h E H: y, = I X, h > 0) 
IEQh  

Now, consider the determination of 4, hEH, j = 1, 	, n. Clearly, Equations (4.15), (4.17) 
and (4.20) along with the definition (4.23) imply that for each j = 1, 	, n 

(4.24) 	 ujh  = 0 for /7E H/Iff  and that 	ti.11 = 2y,, 	0 for each /7E Hi . 

Thus, for any j E (1, 	, n}, if H, is either empty or a singleton, the corresponding values for 
u h , h E H are uniquely determined. Hence, we have a choice in selecting values for uih, h E 

(4.23) 
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only when 141 ?- 2 for any j E { 1, 	, n} . Next, multiplying (4.16) by All and using (4.18), 
we obtain 

(4.25) 	 uh 	{XI' 	+ th 	AP = 0 for each h E H. 
J=1 	1EQh 	 E Qh  

Using Equations (4.13), (4.17), this gives us 

(4.26) 	 t i  = — 	ufh  yf  for each h E H. 
J=1 

Finally, Equations (4.16), (4.26) yield 

(4.27) 	w,h  = 	ur [a/1— yj ] for each i E Qh , h E H. 

Notice that once the variables ujh, hEH, j = 1, 	, n are fixed to satisfy (4.24), all the vari- 
ables are uniquely determined. We now show that if the variables w,h, i E Q,„ h EH so deter-
mined are nonnegative, we then have a Kuhn-Tucker solution. Since the objective function of 
PD 2  is convex and the constraints are linear, this solution is also optimal. 

LEMMA 2: Let a primal feasible set of A17, iE Q,„ h EH be given. Determine values for 
all variables yj , U], t11 , W/ using Equations (4.22) through (4.27), selecting an arbitrary solution 
in the case described in Equation (4.24) if 11 -li  I > 2. If w/1  ?- 0, iE Qh, h EH, then jE Qh, 
h E H solves Problem PD 2 . 

PROOF: By construction Equations (4.12), through (4.17), and (4.20) clearly hold. 
Thus, noting that in our problem the Kuhn-Tucker conditions are sufficient for optimality, all 
we need to show is that if w = ( W,h) 0 then (4.18) holds. But from (4.17) and (4.27) for 
any h EH, we have, 

X 1 14 ,P = 	X/ J 	14,P [ 	y1] = 	 XP all — yj  =0 
IE Qh 	 iE Qh 	j=1 	 j=1 	iEQh  

for each h E H. Thus, A/ 	w/ 	0 iE Qh , hE H imply that (4.18) holds and the proof is 
complete. 

The reader may note that in Section 4.1.4 we will propose another stronger sufficient con-
dition for a set of variables xp, i E Q,„ h E H to be optimal. The development of this condition 
is based on a subgradient optimization procedure discussed below. 

4.1.2 Subgradient Optimization Scheme for Problem PD 

For the purpose of this development, let us use (4.22) to rewrite Problem PD 2  as follows. 
First of all define 

(4.28) 	A ={A. = (A/): constraints (4.13) and (4.14) are satisfied 1 

and let f: A — R be defined by 
n 	 2 

(4.29) 	 f (X) = 	maximum 0, 	X 	h E 

	

j=1 	 iE Qh  
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Then, Problem PD 2  may be written as 

minimize If (X): A E Al. 

Note that for each j = 1, . . n, g1  (A) = max (0, 	X Pat, /7 E IA is convex and nonnegative. 
E Qh  

Thus, [gi  (X)] 2  is convex and so f(A) = 	[gi  (x)] 2  is also convex. 
i= 1 

The main thrust of the proposed algorithm is as follows. Having a solution A at any stage, 
we will attempt to construct a solution to the Kuhn-Tucker system using Equations (4.15) 
through (4.20). If we obtain nonnegative values 	for the corresponding variables wh, i E 
h E H, then by Lemma 2 above, we terminate. Later in Section 4.1.7, we will also use another 
sufficient condition to check for termination. If we obtain no indication of optimality, we con-
tinue. Theorem 3 below established that in any case, the vector w = W -  constitutes a subgra-
dient of f(•) at the current point X. Following Poljak [18,19], we hence take a suitable step in 
the negative subgradient direction and project back onto the feasible region A of Equation 
(4.28). This completes one iteration. Before presenting Theorem 3, consider the following 
definition. 

DEFINITION 1: Let f: A —  R be a convex function and let A E AC Rm. Then E Rm 
is a subgradient of f (•) at A if 

	

f (x) ?- f (TO + (A. - 	for each A E A. 

THEOREM 3: Let )%. be a given point in A defined by (4.28) and let w be obtained from 
Equations (4.22) through (4.27), with an arbitrary selection of a solution to (4.24). 

Then, T4-) is a subgradient of f (•) at A, where f :A 	R is defined in Equation (4.29). 

PROOF. Let y and be be obtained through Equation (4.22) from A E A and A E A respec-
tively. Hence, 

f (X) = 	yi2  and f (70 = 
1= t 

Thus, from Definition 1, we need to show that 

(4.30) 	 — A h) 	y. I  2 	V .  
hEH iEQh 	 j=1 	j= 1 

Noting from Equations (4.17), (4.27) that 	 = 0, we have, 
hE H i _Qh  

E 	„T/ (x 	ih) = E E  )7,,,. /7 x /7 = 	E To. /7 [a  _ ) /] 

hEH iEQh 	 hEH iEQh 	 hEH iEQh  7=1 

n  = 	E U/1.7  E X ih 	— E E 	 At 
h E H j=1 	I iEQh 	1 	11E11 i= 1 	 E Qh  

Using (4.13) and (4.15), this yields 

E E w7 (A/7 _ x/7) 	E E ll ' E Ain ce; — 2 I .Ti2 .  
hEH iEQh 	 hEH i=1 	EQ„ 	1 	1=1 
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Combining this with (4.30), we need to show that 

	

(4.31) 	 I En  Fil' 1 xihall < En  Y12 + En  j12 ' 
%E111-1 	iEQh 	 1=1 	1=1 

But Equations (4.15), (4.20), (4.22) imply that 

I En  uih E  x,ha,/ 	I E= 2 En  yi .T.; 	 1 ly 11 2  + 11.1)11 2  
,E(2,7 	 j=I 

so that Equation (4.31) holds. This completes the proof. 

Although, given A E A, any solution to Equations (4.22) through (4.27) will yield a 
subgradient of l(•) at the current point A, we would like to generate, without expending much 
effort, a subgradient which is hopefully a direction of ascent. Hence, this would accelerate the 
cut generation process. Later in Section 4.1.6 we describe one such scheme to determine a 
suitable subgradient direction. For the present moment, let us assume that we have generated 
a subgradient tiv and have taken a suitable step size 0 in the direction —Tv as prescribed by the 
subgradient optimization scheme of Held, Wolfe, and Crowder [12]. Let 

= _ _ 

	

(4.32) 	X = X — 0 iT 

be the new point thus obtained. To complete the iteration, we must now project A into A, that 
is, we must determine a new A according to 

	

(4.33) 	 A new, = PA (A)= minimum I IA — A I 	E A}. 

The method of accomplishing this efficiently is presented in the next subsection. 

4.1.3 Projection Scheme 

For convenience, let us define the following linear manifold 

	

(4.34) 	 M,, = X7, i E Qh : E A;' = 1, hEH 
Qh  

and let M,, be the intersection of M,, with the nonnegative orthant, that is, 

	

(4.35) 	 Mb = {AP, i E Qh : E A.,.h= 1, Ap?... 0, i E Qh } . 
Qh  

Note from Equation (4.28) that 

	

(4.36) 	A = M I  x 	x 

Now, given X, we want to project it onto A, that is, determine Anew  from Equation (4.33). 
Towards this end, for any vector a = ((x i , iEl), where / is a suitable index set for the I/I com-
ponents of a, let P (a,1) denote the following problem: 

	

(4.37) 	P(a,1): 	minimize —11 E (A, — a,) 2  : I 	= 1, A, ..>„. 0, 
iEl 	 ,EI 

Then to determine T. new , we need to find the solutions (X, 7",,,)„ iE Qh as projections onto Mb of 
= h 	= 	. X = (A ;h , , / E Qh ) through each of the I HI separable Problems P(X

1, 
 , Qh ). Thus, henceforth in 

this section, we will consider only one such hE1/);  Theorem 4 below is the basis of a finitely 
convergent iterative scheme to solve Problem P (X , Qh). 
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THEOREM 4: Consider the solution of Problem P(Pk , 1k), where f3 k  = WI% /E /k ), with 
141 ?- 1. Define 

(4.38) 
	

P k = 
l 
l- L akl 1 1k1 

and let 

(4.39) 
	73 k =  ok 	k) 

ik 

where /k  denotes a vector of 141 elements, each equal to unity. Further, define 

(4.40) 	 4+1 = ti E 4: ,5((> 0). 

Finally, let 0 1' 1  defined below be a subvector of ij k , 

(4.41) 	 13k+1 = (/.i ik+1 , iE 4+1) 

where, 13k+ 1  = r3k iEik±i • Now suppose that j3 k+1  solves P(Pk+1 , -Ik+i) 

(a) If 13 k  j 0, then )3 k  solves PO(3 k , 4). 

(b) If 13k  1> 0, then /3 solves P (i3 k, 1k ), where /3 has components given by 

if i E 4+1 for each /Elk . 
(4.42) 	 13 ' 	0 otherwise 

PROOF: For the sake of convenience, let RP(a,I) denote the problem obtained by 
relaxing the nonnegativity restrictions in P(a,1). That is, let 

RP(a,1): 	minimize —1 	(X, — a,) 2 : 	X, = 1 j . 
2 1E  I 

First of all, note from Equations (4.38), (4.39) that T3 k  solves RP (;3 k , 1k ) since ,IT` is the projec-
tion of P k  onto the linear manifold 

(4.43) 	 IX = (X,, iE/k ): I X =1 
iE 

which is the feasible region of RP(13 k , /k ). Thus, i3 k  > 0 implies that (3 k  also solves P(i3k , 4 ) . 
This proves part (a). 

Next, suppose that 13 k  1%0. Observe that /3 is feasible to P(3 k , /k ) since from (4.42), we 
get /3 	0 and 	/3, = = 1 as f3 k+1  solves P(/3 k+1 , / -k+1 )  

1E lk 	1E Ik+i  

Now, consider any X = (X„ iE /k ) feasible to P(13", 4). Then, by the Pythagorem 
Theorem, since /3 k  is the projection of ok onto (4.43), we get 

11X — P k 11 2  = 11x — fi k 11 2  + 	ski F .  

Hence, the optimal solution to P(/3-k, 1k) is also optimal to P(p k, /k ). Now, suppose that we 
can show that the optimal solution to Problem P (El k , 1k ) must satisfy 

(4.44) 	X, = 0 for V/k+1 . 

Then, noting (4.41), (4.42), and using the hypothesis that - 1§ k+1  solves P(f3k+1 k+1,  we will /) 
have established part (b). Hence, let us prove that (4.44) must hold. Towards this end, con-
sider the following Kuhn-Tucker equations for Problem PO3k , 4) with t and w„ iE Ik  as the 
appropriate lagrangian multipliers: 
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(4.46) 
	

I, X • = 1, A, > 0 for each /Elk  
;Elk  

(4.47) 
	 — T3/9 + t — IV; = 0 and w, > 0 for each iE Ik  

(4.48) 
	

X i W i  = 0 for each iEik• 

Now, since 
	

T31` = 1, we get from (4.45), (4.46) that 
iEtk  

I = 	w, /141 > 0. 
/Elk 	f 

But from (4.46), (4.47), and (4.48) we get for each i E 

0 =w; A ; =A ; (A ; + t — /3 ;k) 

which implies that for each iE 4, we must have, 

either A. = 0, whence from (4.46), w, = t — Tit' must be nonnegative 

or X, = 	— t, whence from (4.46), w, = 0. 

In either case above, noting (4.45), if 737 < 0, that is, if i7/k+1 , we must have X, = 0. This 
completes the proof. 

Using Theorem 4, one may easily validate the following procedure for finding Anew  of 

Equation (4.33), given 	This procedure has to be repeated separately for each h E H. 

Initialization 

Set k = 0,13 °  = 	/0 = Qh . Go to Step 1. 

Step 1 

_ 	Given I3 k , .1k, determine p k  and T3k  from (4.38), (4.39). If fi k  j 0, then terminate with 

Anbew having components given by 

137 if iE/k  

"hew)  = {0 otherwise. 

Otherwise, proceed to Step 2. 

Step 2 

Define 4. +1 , /3 k+1  as in Equations (4.40), (4.41), increment k by one and return to Step 1. 

Note that this procedure is finitely convergent as it results in a strictly decreasing, finite 
sequence 1/k 1 satisfying 1/k 1 	1 for each k, since 	13 k  = 1 for each k. 

lEtk  

EXAMPLE: Suppose we want to project A h  = (-2,3,1,2) on to A C R 4. Then the above 
procedure yields the following results. 

Initialization 

k = (), 0° = (- 2, 3,1, 2), /0  = {1, 2, 3, 4}. 
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Step 1 

Step 2 

k= 1, 11
= 

{2,3,4}, g1 = 1 	51 
4 ' 4 ' 4 

Step 1 

_ 	11 —p   
PI 	12 '

i 	I 
3 ' 	3 ' 3 

Step 2 

k = 2, 12= {2, 4}, j32= 
43 
3'  3

1i 

Step 1 

P2= —+, /3 2 = (1,0) > 0 

Thus, T./7'e ,, = (0, 1, 0, 0). 

4.1.4 A Second Su fficient Condition for Termination 

_ As indicated earlier in Section 4.1.2, we will now derive a second sufficient condition on Tv 
for A to solve PD 2 . For this purpose, consider the following lemma: 

LEMMA 3: Let A E A be given and suppose we obtain Tv using Equations (4.22) through 
(4.27). Let W solve the problem. 

I PR,,: minimize .., 1 (Tvik  — wP) 2 : 1 w,!' = 0, w,!' < 0 for iEJh for each hEH 
L iE  Qii 	 i E Qh  

where, 

(4.49) 	 J1, = 	= 0}, h E H. 

Then, if ;v.  = 0, A solves Problem PD2. 

PROOF. Since 3,3) = 0 solves PR,,, h E H, we have for each h E H, 

(4.50) 	 ( 17)/7)2 < 	(win 	wip)2 

iE(21, ( E Q1  

for all 4, iE Qh  satisfying I w,h = 0, 	< 0 for iE Jh . Given any A E A and given any 
iE Qh  

> 0 define, 

(4.51) 
	 wii, = 	— /1)/A, i E QI„ hE H.  
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Then, I w/' = 0 for each hEH and since 7, ;h= 0 for i E ./h , h E H, we get wP < 0 for iEJI„ 
iE Qh  

hE H. Thus, for any A E A, by substituting (4.51) into (4.50), we have, 

	

(4.52) 	 11 2 I  (w!') 2 ,...‹... ,r,  i, (x / - 7,7 , + Ativ-19 2  for each h E H. 
iE Q h 	 i EQh  

But Equation (4.52) implies that for each hEH, A. "  =K h  solves the problem 

minimize 1 [x/ - 01;7- '2i4)77w: 1 xp= 1, xp ?... 0 tE Qh  for each hEH.  { 

iE Q„ 	 iE (2,, 

In other words, the projection PACi. - )7,A) of (. — ITA) onto A is equal to X for any A = 0. 

In view of Poljak's result [18,19], since IT) is a subgradient of f (•) at Ti, then A solves PD2. 
This completes the proof. 

Note that Lemma 3 above states that if the "closest" feasible direction —w to —w is a zero 
vector, then A solves PD 2 . Based on this result, we derive through Lemma 4 below a second 
sufficient condition for A to solve PD2. 

LEMMA 4: Suppose w = 0 solves Problems PR,,, h E H as in Lemma 3. Then for each 
h E H, we must have 

	

(4.53) 	 (a) )7)//' = ti„ a constant, for each /VA 

(b) 17),?' < ti, for each iEfh  

where Jh is given by Equation (4.49). 

PROOF: Let us write the Kuhn-Tucker conditions for Problem PR,,, for any h EH. We 
obtain 

(w/ , - 37,p) + th  = 0 for i 

(wP — Ti3j 7) + th  — al' = 0 for i 

u/I > 0, i E 	ail w/I = 0 iE./h, th  unrestricted 

= 0, w,'> 0 for IE./h . 
iE Qh  

If w = 0 solves PR,,, ItEH, then since PR/7  has a convex objective function and linear con-
straints, then there must exist a solution to 

= th  for each i Q'J,, 

and 
= (th  — )7)/I) > 0 for each i E./h . 

This completes the proof. 

Thus Equation (4.53) gives us another sufficient condition for A to solve PD 2 . We illus-
trate the use of this condition through an example in Section 4.1.7. 

4.1.5 Schema of an Algorithm to Solve Problem PD 2  

The procedure is depicted schematically below. In block 1, an arbitrary or preferably, a 
good heuristic solution A E A is sought. For example, one may use AP = 1/1Q h 1 for each 

E Qh , for h EH. For blocks 4 and 6, we recommend the procedural steps proposed by Held, 
Wolfe and Crowder [12] for the subgradient optimization scheme. 



For j = 1, 	, n 
determine Ty,, 

h E H, using 

Equations (4.22), 
(4.24). Hence, 
determine Tv from 
Equation (4.27) 

•-•-••■• 

4 
5 

Is a suitable 

subgradient Select 0 Replace_ 

and let 

7 = 	- 

A by P(A) 
of Equations 
(4.33) 

optimization 
termination 
criterion 
satisfied? 

0 

Yes 

Terminate with 
as an estimate of an 
optimal solution to 
PD 2  

3 

Is 	0 or 

does V./satisfy 
Equation (4.53)? 

Yes 

No 

Terminate with A 
as an optimal solution 
to PD 2  

< 	 > 

Select 
A E .1 
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4.1.6 Derivation of a Good Subgradient Direction 

In our discussion in Section 4.1.1, we saw that given a X E A of Equation (4.28), we were 
able to uniquely determine y,, j = 1, . . . , n through Equation (4.22). Thereafter, once we 
fixed values ri" for ti", j = 1, . . . , n, h E H satisfying Equation (4.24), we were able to uniquely 
determine values for the other variables in the Kuhn-Tucker System using Equations (4.26), 
(4.27). Moreover, the only choice in determining rill, j = 1, , n, h E H arose in case I H,1 
2 for some j E (1, 	, n) in Equation (4.25). We also established that no matter what feasible 
values we selected for till, j E {1, 	, n}, hE H, the corresponding vector w obtained was a 
subgradient direction. In order to select the best such subgradient direction, we are interested 
in finding a vector Tv-  which has the smallest euclidean norm among all possible vectors 
corresponding to the given solution E A. However, this problem is not easy to solve. More-
over, since this step will merely be a subroutine at each iteration of the proposed scheme to 
solve PD 2 , we will present a heuristic approach to this problem. 

Towards this end, let us define for convenience, mutually exclusive but not uniquely 
determined sets N,,, h E Has follows: 

(4.54) 	 N,, C (jE(1, 	, n): h E HI  of Equation (4.23)) 

(4.55) 	 N, fl Nj  = {0} for any i, j E H and U N,, = 0'E (1, 	, n): yj  > 0). 
hEH 

In other words, we take each jE (1, 	, n) which has yj  > 0, and assign it to some hE 
that is, assign it to a set No  where h E H.. Having done this, we let 

Zi)i  if j E 
(4.56) 	 = 0 otherwise for each j E (1, 	, n }, h E H. 

Note that Equation (4.56) yields values Till for till, jE {1, 	, n}, hE H which are feasible to 
(4.24). Hence, having defined sets N,,, h E H as in Equations (4.54), (4.55), we determine TIP, 

jEtl, 	, n), h E H through (4.56) and hence Tv through (4.27). 

Thus, the proposed heuristic scheme commences with a vector w obtained through an 
arbitrary selection of sets N1„ hE H satisfying Equations (4.54), (4.55). Thereafter, we attempt 
to improve (decrease) the value of w'w in the following manner. We consider in turn each 
jE (1, , n) which satisfies IHJ  2 and move it from its current set say, to another set 
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N,, with h E 	h 	hp if this results in a decrease w'w. If no such single movements result in 
a decrease in wtw, we terminate with the incumbent solution w as the sought subgradient direc-
tion. This procedure is illustrated in the example given below. 

4.1.7 Illustrative Example 

The intention of this subsection is to illustrate the scheme of the foregoing section for 
determining a good subgradient direction as well as the termination criterion of Section 4.1.4. 

Thus, let H = (1,2), n = 3,101 = IQ2 I = 3 and consider the constraint sets 

Si  = 1 x: 	2x 1  — 3x2  + x3  ?-.- 

— x l  + 2x 2  + 3x3 

 3x, — x2  — x3 

X1, X2, X3 > 

1 

1 
1  

0 

and S2 = 1 
 x: 3x 1  — x2  — x3  .....- 1 

2x 1  + x2  — 2x3  ,?.. 1 

+ 3x2  + 3x3  1 
X1, X2, X3 > 0 

Further, suppose we are currently located at a point Ti with 

= 0, 7%j = 5/12, a3= 7/12; x? = 7/12, 

Then the associated surrogate constraints are 

-4—x 1  + —1 x 2  + —2 x3  ,>) 1 for h = 1 
3 	4 	3 

(4.57) 

n 
= = 5/12. 

4 	2
x 2  + 2 + -j- 	—3-x3 	1 for h = 2. 

Using Equations (4.22), (4.25), we find 

Yt 	
4 	 2 	 2 

= 	with H1 = (1, 2), Y2 = -3- with H2 = (2) and Y3 = —
3 

with H3 = (1, 2). 

Note that the possible combinations of N 1  and N2 are as follows: 

(i) N1 = (11, N2 = {2,3), 

(ii) N1 = 101, N2 = 0, 2, 3), 

(iii) N 1  = {1, 3}, N2 = (2), and 

(iv) N1  = {3), N2 = (1, 2). 

A total enumeration of the values of u obtained for these sets through (4.56) and the 
corresponding values for w are shown below. 

	

N 	N 

	

1 	2 

14, jE(1,..., 	n) w,h, IEQh , hEH 
w ' w r W  U i 1  U3 U2 3 i WI ,,,i 

ry 2 „,1 
ry 3 

,,,, 2 w?  1 
w 2 
ry 2 2 W3 

t li 	(2,3) 8/3 

L O
 
O

 O
 O

 

0 0 4/3 4/3 16/9 --56/9 40/9 —40/9 —28/9 56/9 129.78 
(43} 	(1,2,3) 0 0 8/3 4/3 4/3 0 0 0 0 —4/3 0 1.78 
{1,3) 	(2) 8/3 4/3 0 4/3 0 20/9 —28/9' 20/9 —20/9 4/9 28/9 34.37 
(3) 	(1,2) 0 4/3 8/3 4/3 0 —4/9 28/9 —20/9 20/9 20/9 —28/9 34.37 

Thus, according to the proposed scheme, if we commence with N 1  = Ili, N2 = (2,3), then 
picking j = 1 which has 141= 2, we can move j = 1 into N2 since 2E H i . This leads to an 
improvement. As one can see from above, no further improvement is possible. In fact, the 
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best solution shown above is accessible by the proposed scheme by all except the third case 
which is a "local optimal". 

We now illustrate the sufficient termination condition of Section 4.1.4. The vector IT 
h= 1 _ 	h= 1 	 h=2 

obtained above is (0,0,010, —4/3, 0). Further the vector X is ( 0, 5/12, 7/1217/12, 0, 5/12). 
Thus, even though iT,  1> 0, we see that the conditions (4.53) of Lemma 6 are satisfied for each 
hEH = (1,2) and thus the given X solves PD2. 

The disjunctive cut (3.8) derived with this optimal solution T. is obtained through (4.57) 
as 

4 	2 	2 
(4.58) 	 —3-x i  + —3-x 2  + -i-x 3  ?.. 1. 

It is interesting to compare this cut with that obtained through the parameter values X/' = 
1/1Q1,1 for each i E Q1, as recommended by Balas [1,2]. This latter cut is 

(4.59) 	 —
4

x i  + x2  + x3  ?:- 1. 
3 

Observe that (4.58) uniformly dominates (4.59). 

4.2 Maximizing the Rectilinear Distance Between the Origin and the Disjunctive Cut 

In this section, we will briefly consider the case where one desires to use rectilinear 
instead of euclidean distances. Extending the developments of Sections 2, 3 and 4.1, one may 
easily see that the relevant problem is 

minimize (maxi
li

mum yi : constraints (4.12), (4.13), (4.14) are satisfied). 
j E 	n) 

The reason why we consider this formulation is its intuitive appeal. To see this, note that the 
above problem is separable in h E Hand may be rewritten as 

{ e: 	?.. PD I : minimize 	e 	1, X, l'a,l; for each j = 1, ... , n, 1 X,Ii = 1, X, I' > 0 
tEQ,, 	 1E Qh  

for iE Q,,, en  ?-- 0} for each h E H. 

Thus, for each h E H, P13 1  seeks X,1', i E Q1, such that the largest of the surrogate constraint 
coefficients is minimized. Once such surrogate constraints are obtained, the disjunctive cut 
(3.8) is derived using the principles of Section 3. 

As far as the solution of Problem PD 1  is concerned, we merely remark that one may 
either solve it as a linear program or rewrite it as the minimization of a piecewise linear convex 
function subject to linear constraints and use a subgradient optimization technique. 
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A Finitely Convergent Procedure for Facial 

Disjunctive Programs 

1. Introduction  

A linear disjunctive programming problem is concerned with the 

minimization of a linear objective function subject to a set of linear 

constraints with the added restriction that a given number of logical 

disjunctive statements must be satisfied. Each of these logical conditions 

is usually stated in terms of linear constraints. Mathematically, one 

may formulate such a problem as 

DP: 	 minimize 	cx 

subject to 

X E X = {x: Ax = b, x > 0} 

 

x E D= 

n Lu 
S. 

hEH  icQh  1  
(1.2) 

where 

Si  = {x: D x > d
i
, x> 0}, i E Qh , h c H (1.3) 

Here, c is a (lxn) real vector, x = (x 1 ,...,xn) is an (nxl) vector of 

variables, X is assumed to be a non-empty and bounded polyhedral set and 

both H and Q
h' 

h c H are assumed to be index sets of finite cardinality. 

The disjunction (1.2), written above in the so-called conjunctive normal 

form [1,2], requires that for each h c H, a feasible point x must belong 

toatleastoneofthesetsS.for i E Q
h. 

The basic thrust of solution procedures which have been proposed for 

Problem DP has been one of relaxation, wherein one relaxes the constraints 



2 

(1.2) initially, and then generates inequalities implied by (1.2) whenever 

the optimal solution to the relaxed problem (which is a linear program over 

that subset of X which is feasible to previously generated inequalities) 

is infeasible to (1.2). The inequalities implied by (1.2) are generated 

through the result stated below. 

Theorem 1:  Let the sets S i ,i E Q
h 

be as defined in Equation (1.3), and 

consider the disjunction 

X E U Si  

ieQh 

(1.4) 

Then, for any choice of non-negative (row) vectors A
i
, i e Q

h' 
the 

inequality 

(iD ) 
	 i i 

max X 	x > min X d 
i ieQ,

A 	
eQ

h 

(1.5) 

is implied by (1.4), where max A
i
p
i denotes the point-wise (or component-wise) 

ii6Qh 
maximum of the vectors A D for i e Q

11 ' 

Conversely, if each S i , i e Qh 

is consistent, then given any inequality X
31 

 7.x. > 7 implied by (1.4), 
J J — v 

there exist non-negative vectors A ' , i e Q
h 
such that 7, < min A

i
d
i
, and 

	

. 	
ieQh 

th 

	

for each j = 1,...,n, the 3 	component of max A
i
D
i does not exceed 7.. 

ieQ 

The forward part of Theorem 1 is due to Balas [1,2] and the converse 

is due to Jeroslow [8]. However, this result has also been independently 

established by Glover [5,6] in a somewhat different problem setting. In-

cidentally, Blair and Jeroslow [4] also discuss the conditions under which 

Proof:  See [8]. 	
ti 



3 

(1.5) yields all valid inequalities. Essentially, Theorem 1 asserts that 

based on the disjunction (1.4), an implied inequality, also called a valid 

inequality or a (valid) disjunctive cut, may be obtained by simply surro-

gating the rows of each S i 
using non-negative multipliers and then per- 

forming the operation of (1.5) on the resulting 'p h ' surrogate constraints. 

The converse points out that there always exist non-negative surrogate 

multiplier vectors Al  such that the inequality (1.5) uniformly dominates 

on the non-negative orthant any given valid inequality. 

We will now proceed to introduce a special class of disjunctive 

programs which is of interest to us, namely, facial disjunctive programs 

[3]. Thereafter, we will propose a finitely covergent algorithm 

for such problems, and finally, we will present an illustrative example. 

2. Facial Disjunctive Programs (FDP)  

A facial disjunctive program [3] (denoted FDP) is a Special class 

of disjunctive programs (DP) in which each set S i  is comprised of a single 

constraint, viz, 

S = {x: d ix > d. I icQh' h c H 
— 10  

(2.1) 

where d
i 
 is a lxn real vector and d

1_0 
is a scalar, such that X n S. 

1 

is a face of X for each i c Qh' 
h c H. (Recall that for any convex set 

X, a non-empty subset F of X is called a (proper) face of X provided there 

exists a supporting hyperplane H of X such that F = X (1 H [7]). Important 

cases of facial disjunctive programs include the zero-one linear integer 

programming problem and the linear complementarity problem. For the sake 

of illustration, consider a linear complementarity problem which involves 
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orthogonality or complementarity constraints of the type x
P  xq 

 = 0, 

p, q e {1,...,n}. Each such constraint constitutes a disjunction hcH 

with the corresponding set Q
h 
= {p,q}, and the constraints dPx

pO, 

dqx > d being respectively -x > 0 and -x > 0. Note that we do not CIO P 	 q 

	

necessarily require that Qi 
	j 

 n Q = (1) for i,j0-1, iAj. 

Several procedures can readily be developed for solving Problem FDP. 

Some of these may in fact be viable approaches , in special instances. 

The first alternative would be to rank the extreme points of the set X 

with respect to the objective function cx till such time as a ranked 

extreme point satisfies the disjunction (1.2). Theorem 2 below validates 

this approach. A second alternative would be to write Problem FDP in a 

disjunctive normal form [1,2] and then solve the linear programs of mini- 

mizing cx subject to xsX and each of the resulting disjunctions. Trivially, 

the best solution to these linear programs would be optimal to FDP. Note 

that for the linear complementarity problem for example, this implies that 

each of the linear programs would enforce one of every pair of complementary 

variables equal to zero. Hence, this approach is viable, in general, only 

if there are very few disjunctive constraints in the disjunctive normal 

form. 

Several other approaches are also available by noting that Problem DP 

in general, and Problem FDP in particular, is equivalent to the linear 

program [3] 

	

minimize 	{cx: x e X 	conv[X fl 
	

(2.2) 

where cony [S] denotes the closure of the convex hull of a set S. 

Now consider a relaxation strategy wherein constraints (1.2) are 
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relaxed. Let x solve the resulting linear program. If x e D, then 

clearly x solves Problem DP. Otherwise, a cutting plane which is a 

facet of the set Y could theoretically be developed and the procedure 

repeated. Balas [3] discusses how one may perform this rather difficult 

task. Noting the equivalence of Problem DP and (2.2), the procedure is 

clearly finite. 

Now in the case of Problem FDP some specializations are possible 

based on two important results established by Balas [3] concerning 

the set Y. The first provides a means for inductively constructing 

the set Y. Jeroslow's precedure [10] uses this result and at a point 

x 4 D, specific conditions are laid on thy: type of cutting planes used 

and the manner of generating them. Essentially, finiteness is ensured 

since any given disjunction can be violated only finitely often. 

The procedure we propose is also a relaxation strategy and uses 
- _ 

the second result of Balas [3] stated as Theorem 2 below. It deals with 

the extreme points of the set Y. 

Theorem 2:  Let the set X be defined by Equation (1.1), and let Y be the 

convex hull of X fl D, where the set D is given by Equations (1.2) and 

(2.1) such that the disjunctive program. DP is facial. Then, 

vert y c: vert X 	 (2.3) 

where vert Y denotes the set of extreme points of the polyhedral set Y. 

Proof:  (Balas [3]). 

The advantage of using property (2.3) along with the fact that Problem 

DP (and hence Problem FDP) is equivalent to Problem (2.2) is that, unlike 
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Jeroslow's procedure, our scheme places no restrictions on the type of cuts 

which are permissible. The reason being that we secure finiteness by relying 

instead on the type of points at which cuts are generated. Specifically, 

these points are required to be extreme faces [11] of the set X with respect 

to the set of cuts generated at any stage of the procedure. For the sake 

of completeness, we summarize below Majthay and Whinston's [11] discussion 

on extreme faces and their detection. 

3. Extreme Faces and Their Detection  

Let us assume that at a particular stage s cuts, Gx < g, have been 

generated in the space of the x-variables. Let 

A = IxER
n

: Gx 	Ix = g, xs > 

	
(3.1) 

be the subset of R
n 
feasible to these cuts. Here, x = (x

n+1''
x
n+s

) 

denotes the vector of slack variables, and I is an identity matrix of 

size s. Further, let N = {l,...,n} denote the index set of the original 

x-variables, which we will call key variables.  Also, let K = {n+1,...n+s} 

denote the index set of the slack variables for the s cuts, which we will 

call nonkey variables.  For a set Z c: N, let 

Fz ....{c6x:x.=-0 for jcZ} 
	

(3.2) 

Note that all faces of X can be represented as F for some suitable set Z. 

Finally, for any point xeF z , let the zero components of x be denoted by 

Z(x) 	{jEN : x. = 0} 
	

(3.3) 



Definition [11]  

Let F be a face of X defined by some Z c N such that F fl A 	4. 

Then F is an extreme face  of X relative to A if for any two points 

x
l
, x

2 	
F fl A, we have Z(x1

) = Z(x
2
). 

In other words, an extreme face F satisfies the property that F n A 

does not contain any point in a lower dimensional face of X. Examples 

of extreme faces of X relative to A are extreme points of X feasible to 

A, or an edge of X not disjoint with A but with neither of the two extreme 

points of X defining this edge being feasible to A. 

Given a simplex tabular representation of an extreme point of X fl A 

at any stage, Majthay and Whinston [11] propose a simple procedure to find 

an extreme face of X relative to A. This procedure utilizes the following 

restricted basis entry rule: 

"Only a nonkey variable x., jcK, is eligible to enter:the basis" (3.4) 

Based on this, the method outlined below either finds an extreme face or 

indicates that no such face exists. 

Step 1:  Let x denote the largest valued basic key variable in the current 

solution which has not yet been considered at a previous iteration. If 

no such variable exists, go to Step 3. Otherwise, proceed to Step 2. 

Step 2:  Solve the Problem P : minimize Ix : xEXIl A} as a linear program 

subject to the restricted basis entry rule (3.4). If the solution yields 

x = 0 and x is basic, pivot it out of the basis, if possible, by exchanging 

it with a nonkey, non-basic variable. Return to Step 1. 

Step 3:  If all key variables are basic, there is no extreme face of X 

relative to A. (That is, X fl A is contained in the interior of X). Other- 



wise, the current set Z of indices of nonbasic key variables defines, 

through Equation (3.2), an extreme face F of X relative to A. In par-

ticular, if all nonbasic variables are key variables, then F z  represents 

an extreme point of X. 

Now, observe that from Theorem 2 the relaxation procedure for Problem 

FDP can be made finite if each cutting plane introduced deletes an extreme 

point of X. However, we will find it simpler to restrict our search to 

a larger set, namely, the extreme faces of X. Since extreme faces of X 

relative to some A are also faces of X, the number of such extreme faces 

of X (relative to all A's) is finite. Hence, a procedure which detects 

and deletes in a finite number of steps at least one extreme face per 

iteration is finitely convergent [11]. This is indeed the principal 

thrust of our scheme. 

4. Proposed Algorithm for Facial Disjunctive Programs  

The procedure we advocate is summarized in the flowchart of Figure 1 

and is clearly finitely convergent. 	The flowchart uses two types of 

cuts to delete an extreme face depending upon whether F is an extreme 

point x t D or not. The specific means of obtaining these cuts are 

developed in Sections 4.2 and 4,1 respectively. The flow chart also 

incorporates an objective function cut cx < v based on the current best 

value v of the objective function. The purpose of this cut is discussed 

later in this section. 

The proposed procedure proceeds as follows. At any stage, given the 

set A of Equation (3.1), we solve the relaxed problem 

P (A)  : minimize { cx : xe x n A} 	 (4.1) 



	:IP] Let X solve P(A) 

STOP; x or x solves FDP 

1 	  

Generate a disjunctive cut ax < a 0 (see Section 4.2) 

Update A and let x solve the resulting_P(A). 

Replace A by 

A n {x: ax < a 
0 

e- 	  

(, STOP; x or x solves FDP 
yes 

Replace A by 

A n { x:  sx < s 

yes 

no 

Generate a disjunctive 
yes 

s F feasible to D? 

cut ax < a0  
 

no 	(see Section 4.2) 

yes 

Update the current best known solution x and 

1 	

... 
Initialize with v = co. Let A = {x: cx < v} E R

n 

no 

Find an extreme face F of X relative to A 

V 	 

Does an F exist?S>-no --)0(STOP; x solves FDP 

Figure 1. Flowchart for the Proposed Scheme 
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If an optimal solution x to this problem satisfies ;cc]) of Eqs. (1.2) 

and (2.1), then x clearly solves the problem of minimizing cx over the 

set X fl A fl D. However, since the set of cuts A we generate may also have 

been used to validly delete extreme points of X which have been accounted 

for, we terminate the solution procedure by picking the better of the two 

solutions, namely, x and the known incumbent solution x, say. Otherwise, 

x violates at least one disjunction hell, and we generate an inequality or 

disjunctive cut implied by the most violated disjunction. The set A of 

Equation (3.1) is updated using this cut and P(A) is resolved. Let x 

represent the new optimal solution. Again, if xeD, then either x or x 

solves Problem FDP. Now, if XtD, then instead of generating another disjunc-

tive cut, in order to ensure finiteness, we use the routine of Section 3 to 

find an extreme face F of X relative to A. If no extreme face exists, 

then we terminate with the current best known solution as optimal to FDP 

since then, x fl A is contained in the interior of X. Otherwise, depending 

on the dimension of Fz, we adopt one of: the following two alternative routes. 

If F is of dimension greater than zero, then a disjunctive face cut is 

developed (see 4.1) which deletes F but no extreme point of X feasible 

to A. On the other hand, if F represents an extreme point of X then we 

check if this extreme point is feasible to D. If it is, then we update 

the current best known solution, if necessary, and generate a disjunctive 

face cut which deletes only this particular extreme point of X. If 

the extreme point is infeasible to D, however, the usual disjunctive cut 

may be generated, which is typically stronger than the disjunctive face 

cut. In any case, after the appropriate cut has been generated and A has 

been updated, we say that an iteration has been completed. A new iteration 



1 1 

is now commenced by solving Problem P(A) of Equation (4.1). 

Now, if the procedure does not terminate with the solution 

x to a relaxation P(A) satisfying the disjunction (1.2), (2.1), then it 

is possible that a significant effort may be expended in detecting and 

cutting away extreme points of X feasible to D. To avoid this, we adopt 

an additional expedient of imposing the cut 

cx < V 
	

(4.2) 

based on the objective function, where v is the current best known 

objective value of Problem FDP. Hence, the right hand side of this cut 

is simply updated each time an improved solUtion is detected. Although 

this cut will not (locally) affect the solution of Problems P(A), it will 

assist in confining the search to improving solutions during the extreme 

face finding routine. Again, this is essential because otherwise, the 

extreme face finding routine would simply concentrate on feasibility, 

regardless of objective function values. Hence, two main advantages accrue 

from the use of (4.2). One, we are able to use (4.2) to delete non-improving 

extreme points of X feasible to D, which hence need not be explicitly 

enumerated. Second, it is likely that we will detect an optimal solution 

to FDP early on in the process since the extreme face finding routine 

attempts to trace extreme points of Y in the neighborhood of the relaxed 

problem solution. This is important if the procedure is prematurely 

terminated for large problems. 

To complete the details on the implementation of the proposed algorithm, 

in the following subsection we will discuss the manner in which one may 
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generate a disjunctive face cut ax < a
0 
 in case F is either of dimension 

greater than zero, or F is of dimension zero and is contained in D. Sec-

tion 4.2 will deal with the generation of disjunctive cuts ax < a
0 
 in the 

other cases. 

4.1. Disjunctive face cuts al< < S O  [13]. 

Suppose we are at a stage where we have solved Problem P(A) for some A 

and have obtained an optimal solution x D. Now, to find an extreme face 

of X relative to A we will be attempting to minimize each basic key variable 

subject to the current constraints and the restricted basis entry rule (3.4). 

Thus, suppose we have currently minimized a key variable x
r 

through Problem 

P
r of Step 2 of this routine and it has turned out that x r 

is positive 

at optimality. Define 

Nr =fjeN:x.is non-basic at optimality of P 	(4.3) 

Kr  = j EK: x is non-basic at optimality of P
r

} 	(4.4) 

where N and K are the index sets of key and nOnkey variables respectively. 

Let the canonical representation of x r  in terms of the non-basic variables 

x.,,jEN
r  UKr 

 be 

xr  + 	a 
rj 
 x. + y a 

rj 
 x. = b

r j 	j 
j eN

r 	
j EK

r 

(4.5) 

Hence, by assumption, b r  > O. But observe that since the coefficients 

arj jeN
r 

U K
r 
are reduced cost coefficients at the optimality of P

r
, 

we must have 
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a 
rj
. < 0 for jet(

r 
	 (4.6) 

since otherwise, x. is a candidate to enter the basis. Of course, the 

restricted basis entry rule could result in the coefficients a 
r 
 ., jcN

r 

being of either sign. 

In this manner, when the routine of Section 3 finally terminates 

with an extreme face F of X (assuming one exists) relative to A, let 

0 
the tableau represent an extreme point x

0 
 = (x

1
0 

 ,
...,x

n
) of X n A, with 

0 
x c F

Z 
where 

Z = LjeN: x. is nonbasic in the tableau representing x ° 1 (4.7) 

Now, define 

and 

R = {r: x
o 

> 0} 

= u Kr  
reR 

(4.8) 

(4.9) 

Note that N e= Z for each reR, and that the canonical equation 
r- 

(4.5) is available for each reR. Hence, adding zero coefficients as re-

quired, we get 

x
r 
+ y 	a x. = b

r 
for each reR 

jag rj  
(4.10) 

We want to develop a cut which deletes the extreme face F , but does 

not cut away any other extreme point of X feasible to A. This is accomplished 

by insuring that for any such point at least one of the x
r
, reR must be 

zero. That is, at least one of the inequalities x r  < 0, r e R must hold 

(in the presence of non-negativity restrictions). Using (4.10), this 
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condition may be restated as requiring that at least one of the following 

constraint sets must be satisfied 

il X at..

3 
x. > 1 , x. > 0 forjeZUR for reR (4.11) 

j eZ u R. 1; -I - i - 

From Theorem 1, a valid cut is 

[max (al lx4  > 1 
j EZ u R. reR br  

(4.12) 

Observe from (4.6) that the inequality (4.12) implies over the non-negative 

orthant that 

rmaex(brj) x
i  1 

j eZ R  

ortila"1"12"eleteaFaincea"xcFaaliafiaax.:=0 for each jeZ. 

The cut (4.12) is hence called a disjunctive face cut. Observe that when 

F
Z 
 is an extreme point of X then each equation of the type (4.10) is ob- 

tained from the same tableau representing the solution x0 , and furthermore 

Nr  E Z, and Kr = 0 for each reR. 

4.2 Disjunctive Cuts ax < a 
0 

We will now discuss the generation of a disjunctive cut at a point 

infeasible to D. This point mai either be x, an optimal solution to some 

P(A), or it may be an extreme face F 7  E x0  of dimension zero. In either 

case, letting 2 represent X or x cl  as the case may be, we have 
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F d.x. < d
i0 
 for each 

ieQh' 
for some heH. 

jeN 3 J  

Let heH be the most violated disjunction, that is, 

	

min d - y d ;
x. = max, min d - d i; 	> 0 i0 	j j 	 i0 	' • ieQ" 	jeN 	heH

h 	
jeN 3 3  

According to the current tableau representing x, let us partition (x 	
'xn

) 

as (xi ,...,xn) E (xB ,xz) where xB  and 	are respectively the key variables 

which are currently basic and non-basic. Accordingly, partition d 1  as 

d
i 

= (dB ,dzi). Finally, let xj  represent the vector of slack variables 

(a subvector of x ) which are currently non-basic. Of course, if x E x0 , 

then x E 4). Then the current tableau representing x expresses x B in 

terms of x and x as 

x
B 

= f + Ex
z 
+ Fx 
	

(4.13) 

where f, E and F are appropriate vector and matrices. Using (4.13), we 

may write d'x > d.,
iu, ieWl  as 

di (f+Ex +Fx ) + d ix > d. , ieQ ^  
Z J 	Z Z — 10 	h 

or (d E+d )x + diFx > d 	' dif icQ ^  BzZ 	BJ 	i0 	B 	h 

Since the disjunction xe U S i  is violated (with S i  defined by (2.1)), and 
icQ1"1.  

since xz  = 0, xj  = 0, it follows that d io  - dBf > 0 for each ieQ,1̂ . Thus 

one may invoke the disjunction that at least one of the following constraint 

sets must be satisfied 



1 

S i  = 1X:(1.  _d i l) {dBiE+diZ}x 	B z + d iF xj  >1, x > 
10 B 

(4.14) 

16 

From this, Theorem 1 yields the disjunctive cut 

x  (max h 

	

1 . )[{dE-1-d i
Z
}, d i

B
d 

x
)(l > 1 

B 	 — di0 -dlBf 
(4.15) 

which clearly deletes x. 

Now, reference [14] suggests a means for strengthening the disjunctive 

cut (4.15). To see how this is achieved, let us denote the non-basic variables 

x U x by xT and accordingly re-write (4.14) as 

S = {x: X a..x. > 1, x > 0} 
	

(4.16) 
jeT 

icQ" 
also satisfy the constraint set Wx

T 
 <- w corresponding to the current tableau. 

Hence, one may invoke instead a disjunction x c u S. where 
icQ" 

Si  = Si  n {x: Wx
T 

< w} 
	

icQh 
	

(4.17) 

The improvement technique proposed in [14] essentially attempts to derive 

acut,intermsofthenon-basicvariablesx.,ja, which is a support for 

icQ - 
h 

commencing with the cut (4.15), say, and attempting to improve (decrease) 

as much as possible each cut coefficient one at a time, holding the other 

cut coefficients fixed. Theorem 1 essentially lays the foundation for 

improving a given cut in this manner. One need only formulate an appropriate 

NotethatinadditiontothedisjunctionxcUS.1
,a feasible x must 

theclosureoftheconvexhullofUS.. 1 This is accomplished by 
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linear program to determine non-negative surrogate multipliers for the 

constraints of each set S i , iciy so that a given cut coefficient is 

minimized in the resulting disjunctive cut, without worsening the other 

coefficients. Instead of formally restating this strategy, we illustrate 

it in the following section. 

5. Illustrative Example  

Consider the facial disjunctive program 

FDP:  maximize 	2x
1 
 + 3x

2 

 

 

subject to 	x
2 
+ x

3 	
= 5 

x1 	 + x4 	= 8 

x/  + x2 	 + x5  = 10 

x > 0 

(5.1) 

and x
1 	

0 or x
2 	

0 
	

(5.2) 

where (5.1) represents xcX and (5.2) represents xeD. With A E Rn , the 

solution to P(A) is summarized in the following simplex tableau 

x3 	x5 	I 	RHS  

objective row 1 2 25 

x2 
	 5 

x4 
	1 	-1 

	
3 

xl 	-1 
	

5 
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This solution violates (5.2). The cut (4.15) may be generated from 

the disjunctive statement 

f  x c x: x,
5 	

-x
3  x

5 
 -- > 1, x > 0 or x: 	1- -- 	> 1 ' 

 x > 0 
 5 	5   

(5.3) 

whence, (4.15) is 

(x l  x 
+ 	1) or (x3  + x5  -- x6  = 5, x6  > 0) 	(5.4) 

Later, we will generate a stronger cut using the strategy outlined at 

the end of Section 4.2. Appending (5.4) to the above tableau and updating 

it, one obtains the following tableau. 

x 	x
6 	

RHS. 

objective row 
I 

1/2 3/2 19 

x2  -1/2 1/2 1 

x5  -1/2 -1/2 1 

xl  1 0 8 

x3  1/2 -1/2 4 

This solution is still infeasible to (5.2) and we hence need to find an 

extreme face F. Using the routine of Section 3 and commencing by minimizing 

x2 above, subject to (3.4), we obtain the following tableau 



19 

x4  x2  RHS 

objective row t 	2 -3 16 

x6  -1 2 2 

x5  -1 1 2 

xl  1 0 8 

x3  0 1 5 

This tableau represents an extreme face F of X of dimension zero, and 

moreover F is contained in D. Thus, we need to generate a disjunctive 

face cut as in Section (4.1). Here, R = {1,3,5}, Z = {2,4}, K = 4). The 

cut (4.12) is 

 
max f- , 	xit  + max 	

1
fi 	x2  > 1 

or 

(X4
8 	2 

X2 > 1 	(X
1
-4x

2
) 
—
< 0 	 (5.7) 

 — 

Furthermore, we update our incumbent solution x as (x i ,x2 ) E (8,0) with 

v = 16. The objective cut (4.2) is 

2x
1 + 3x 2 1. 16 
	

(5.8) 

Now, (5.7) and (5.8) are appended to either tableau (5.5) and (5.6) and 

one iteration is completed. Figure 2 below illustrates the current situation. 

The shaded area represents the remaining feasible region. The point 

H is an optimal solution to the current problem P(A). The next disjunctive 

cut is easily seen to be x
1 
<0 which renders Problem P(A) infeasible. 
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Figure 2. Illustrative Example 



21 

Thus (xl ,x2) E (8,0) solves FDP. Note also that the region shaded in Figure 

2 is contained in the interior of X and hence no extreme face of X exists. 

Furthermore, note that' the cost cut (5.8) deletes the extreme points (0,5) 

and (0,0) of X which are feasible to (5.2), and hence saves the effort of 

having to explicitly enumerate these points. 

Finally, let us illustrate how the disjunctive cut (5.4) may be 

strenthened using the ideas outlined in Section 4.2. Toward this end, note 

that Wx
T 
 < w may be taken to be the inequality x

3 
- x

5 
 < 3 from the row x

4 

of the first tableau, so that g i  and g 2  of Equation (4.17) are 

r 	x3  x5  
gi  = x: - --5- + 	1, x3 -x5  < 3, x > 0 

S
2 
= X- 	> 

• 5 	
1, 
 3 5  

1 x -x < 3, x > 0 

Now, it is easily verified that the coefficient of x 5  in (5.4) 

cannot be improved. Hence, let us attempt to decrease the coefficient of 

x
3 
without worsening that of x 5. 

Letting (Xl'
X 2

) and (1
1
,1

2
) be respectively 

the surrogate multipliers for the sets S tand g
2 
yields the general disjunctive 

cut 

l 

Al 	il 	 1 x 
max - — + A

2' 5 
— - y

2  x3 
 + max 4  - -1-  + X

2L 

 ,y, x 5  
5 
	5  

> min {X -3X , -3 1(2 } 

	

(5.9) 

Since this cut must dominate —
3 
+ —

5 > 1 while minimizing the coefficient 
5 	5  

of x
3
, it is easily seen that the following linear program appropriately 

and 



determines A l , A 2 , y l , and y 2 

minimize 8 

subject to 

(

A 

a ' — 15 4- A 2 

Y1  
• —§ - 12 

( Al 

	

- 	+ A2 1 

1 
Y2 :1. 5- 

I))  

A1-3A2 > 1 

 (y
1  -3y2 - 

> 1 
- 

> 

	

 A 2, 	2 -- 
0. 

 

5 
An optimal solution to this problem is A l  = 1, A 2  = 0, y

i 
 _ =

40 
Y 25' '2 = 25' 

8 = 3  so that the cut (5,9) is 

x 

25  x
3  + 5 1 1 	 (5.10) 

In terms of (xl ,x 2), the cut (5.10) is 

5x
1 
+ 8x 2 40 

It is easily verified that when the cut (5.10) is appended to the first 

tableau, the resulting optimal solution yields x l  = 8, x 2  = 0 and hence 

yields an optimal solution to Problem FDP. 

22 
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Disjunctive Programming, Polyhedral Annexation Techniques 
and Nondominated Disjunctive Cutting Planes 

I. Introduction 

The term disjunctive program is used to characterize problems 

which contain logical conditions stated as linear constraints. These 

logical conditions may in general be conjunctions, disjunctions, nega- 

tions and implications. However, as discussed by Balas [1,2], an impli-

cation can be restated as a disjunction, and conjunctions and negations 

lead to (convex) polyhedral constraint sets. Problems with logical con-

ditions which contain disjunctive statements are inherently much more 

difficult to solve. It is specifically this class of nonconvex problems 

which is referred to as disjunctive programs. Mathematically, the problem 

addressed may be stated as 

DP: minimize 	f (x) 

	

subject to xeX 	 (1.1) 

xE U S
h 

hEH 
(1.2) 

where f: R
n 

R is lower semicontinuous, X is a closed subset , of R
n
, and 

where 

Sh 	 — 
= {x: A

h
x > b

h 
' x > 01 	for each hell, 1 11 1 < 	(1 . 3 ) 

Several well known problems including the generalized lattice point 

problem, the cardinality constrained problem, the extreme point optimiza-

tion problem, the complimentarity problem and the mixed integer programming 
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problem may be cast in the framework of Problem DP. One possible solution 

strategy for Problem DP evolves from the following straightforward result. 

Theorem 1.1 Consider Problem DP stated above and define problems 

DPh : minimize { f (x) 	xcXf s
it

} 
	

for each heH 	 (1.4) 

Let x
h 

solve DP
h
. Then x

h* 
solves DP, where 

f(xh*) = minimum {f(xh)) 
	

(1.5) 
heH 

Proof: By contradiction, suppose x* solves DP with f(x*) < f(x
h*

), and 

assume that x*eS' for some heH. Since x* is feasible to DP" and x
h 

solves 

	

' 	 ■ 	/ 	■ 
fix\ 	f(x , , 

	

DPh, 	must have f(x*) 	
h 	h* 

) a contradiction. This completes 

the proof. 

Essentially, Theorem 1.1 involves the solution of 1111 problems in 

order to recover an optimal solution to Problem DP. This may be a viable 

approach for some special problems for which the cardinality of H is not 

too large. For example, one may be considering a production planning pro-

blem in which each set S it may be representing the restrictions on the 

process accruing from the implementation of production method hen. On the 

other hand, for zero-one linear integer programs for example, the applica-

tion of Theorem 1.1 is tantamount to total enumeration and for a complemen-

tarity problem which requires, say, u.
3
v. = 0 for j = 1,...,m, one would 

need to solve 2
m problems to obtain an optimal solution. For such problems, 

one may adopt a relaxation strategy in which the constraints (1.2) are 

relaxed (except perhaps for the nonnegativity restrictions) and inequalities 

implied by (1.2) are iteratively generated as and when needed until Problem 

DP is solved through an equivalent representation of it in the neighborhood 
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of an optimal solution. This paper specifically addressed itself to the 

technique of deriving suitable implied inequalities based on the constraint 

(1.2) for use in such a solution strategy for Problem DP. 

The organization of this paper is as follows. First, we briefly dis-

cuss some well known and useful results on the derivation of inequalities 

implied by (1.2). Next, we demonstrate how the formulation of the disjunc-

tive constraints (1.2) can effect the quality of such implied inequalities. 

Thereafter, we consider a special case in which X is polyhedral and each 

set Sh , heii is comprised of only a single constraint. For this situation, 

we establish connections between disjunctive programming methods and poly-

hedral annexation techniques [5] by discussing how the latter approach 

derives implied inequalities for the system (1.2). Finally, we present 

a scheme which may be easily implemented to obtain stronger implied 

inequalities than those available through a specific sequential polyhedral 

annexation technique of Glover [5]. This scheme may be easily extended to 

a broader class of problems in which each set Sh , hell contains more than 

one constraint. 

2. Set of Implied Inequalities  

Let us begin our discussion by presenting a fundamental result of dis-

junctive programming. The forward part of this result is due to Balas 

[1,2] and the 'converse due to Jeroslow [6]. This result has also been 

independently established by Glover in a somewhat different problem setting, 

the forward part appearing in the context of negative edge extension cutting 

planes [4, Theorem 1] and the converse appearing in the context of polyhedral 

annexation methods [5, Theorem 4.2]. Based on the disjunction (1.2), this 

result characterizes all implied inequalities which must be satisfied by 

any point feasible to (1.2). Such implied inequalities are also referred to 
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as valid inequalities or valid disjunctive cuts or simply valid cuts. 

Notationally, for a set of vectors {v
h
: hell}, where v

h 
= {v1 ,...,v

h} for 

each hEH, we will denote by sup, h, hell tv  j' 
the pointwise supremum v = (v1 ,...,vn) 

of the vectors vh , hell, such that v. = h
suP{vh} for j = 1,...,n. Similarly, 

3 	ell 

we define inf{vh }. Further, throughout this paper, a superscript t will 
hell 

denote the matrix transpose operation. Now, consider the following well 

known result. 

Theorem 2.1 (Basic Dis'unctive Cut Principle) - Balas [1,2 ], Glover [4,5],  
Jeroslow [6] 

 

Suppose that we are given 	linear inequality systems S h , hell of 

Equation (1.3), where !Hi may or may not be finite. Consider the disjunc-

tive statement (1.2). Then, for any choice of nonnegative vectors X h , hell, 

the inequality 

sup (h
h

)
t
A
h x > inf (X

h
)
t
bh\ 

	

(2.1) 

`hell 	 hell 

is a valid disjunctive cut. Furthermore, if every system S h , hell is con-

sistent, and if 1111 < =, then for any valid inequality 	7,x. > 7 , there 
j=1 3 3  — 

exist nonnegative vectors X
h , hEH such that 7

0 
 < inf (0)tbh and for 

hell 

This theorem essentially asserts that for each hell, one may surrogate 

the constraints of h 
through the use of nonnegative multipliers which form 

the components of a vector X
h in order to reduce (1.2) into the weaker 

statement 

j = 1,...,n, the jth component of sup (X
h) tAh does not exceed TT . 

(Ah ) tAhx > (Ah) tb
h
, x > 0) (2.2) XE: US h' 

where Sh 
= {x: 

heH 



It is easy to see then that (2.2) implies (2.1). The strength of this 

Theorem lies in its (partial) converse which states that any valid inequal-

ity
t
x

0 
 can be uniformly dominated over the nonnegative orthant by 
 

an inequality.of the type (2.1) obtained through some suitable surrogate 

multipliers. Of particular interest, therefore, is the choice of the 

nonnegative parameters X h , heH. Batas [1] and Glover [5] have shown how diff-

erent choices of X
h
, hEH )recover different cuts available in the litera- 

ture. Further, note that the inequality (2.1) defines a closed 

convex set which contains U S
h
. Thus, this set must also contain the set 

heH 

Sc = closure of the convex hull of U S h heH 
(2.3) 

Moreover, if Ill < co, then Sc  is polyhedral and hence, a desirable or deep 

valid inequality would be one which supports S c  and preferably, is a facet 

of S
c
. Indeed, Balas [3] has shown how one may generate with some difficulty 

cuts which contain as a Subset the facets of S
c
. On the other hand, through 

polyhedral annexation methods, Glover [5] has described a linear programming 

technique which generates supports of S c . Recently, Sherali and Shetty [8] 

have shown how one may derive surrogate multipliers X h , heH to recover cuts 

which are the deepest according to some suitably defined criteria. These 

cuts always support S e , and are facets of S c 
in case each Sh , heH is com-

prised of only a single constraint. Since this latter special case is 

relevant to the present paper, we state below the prescribed choice of the 

parameters Xh , heH. It is interesting to note that this choice precisely 

generates the strengthened version of Glover's negative edge extension cut 

[see 5, Theorem 2]. 

Theorem 2.2  Consider a disjunction xe U S
h
, where each S

h'  heH, is given by 
heH 



h 

a* . = maximum —a- 	= 1 h  
hcH 	b 

(2.6) 

7 h 
J 

S
h 

= {x: 	L a.x. > bh , x > 01, hcH 
j=1 

(2.4) 

Further, assume that these sets S , hcH are all consistent and are stated 

with respect to a point infeasible to the disjunction. as the origin. That 

is,assumetnalbil >0,11Ellandthatforeaca  > 0 for some 
3 

jc11,...,n1. Define 

where 

* h Ah = minimum {bh  a./a.} for each hell 
J 3 

j: ah  > 0 

(2.5) 

Then the valid inequality 

n 	
xh h 

max 	x. > 1 
j=1 hcH b

h 	3 — (2.7) 

is a facet of the closure of the convex hull of U S
h 

hell 

Proof: See Sherali and Shetty [8] 

We will now proceed to discuss how the formulation of a disjunction 

affects the depth of a cut which one may derive from it. 

3. Formulating a Disjunction to Derive Deeper Cuts  

In order to illustrate the concept involved in this issue, we will 

find it more expeditious to use a numerical example first, and then gen-

eralize the situation to the case which is of interest to us.. For this 

purpose, we use the following example from a paper by Owen [7] 



maximize 	= 2x 	• + 3x 	x + x < 10, x < 5, x < 8, x x > 0 1 2 . 	1 	2 	2— 	1 -- 	l' 2— 

x
1  x2 

 = 01 
' 

Following the relaxation strategy, if one disregards the 

constraint x
1x2 = 0 and solves the resulting linear program, then one 

will obtain the following optimal simplex tableau. Here, s i , s2 , 53  are 

respectively the slack variables for the three constraints given above. 

RHS 

z 2 1 25 

-1 1 3 

xl 1 -1 5 

x
2 

0 1 5 

Now the condition xix2  = 0 is violated and therefore, one may impose 

the disjunction that at least one of the following constraint sets must 

be satisfied 

S1 = {x: x
1 
 < 0

' 
 x > 0} 	 fx: x

2 
 < 0, x > 01. 

To invoke Theorem 2.2, we may rewrite these sets in terms of the nonbasic 

variables as 

S1  = {(81 ,82): s l-s2  > 5, s i ,s 2 > 0} and S2 : {(s1 ,s 2): s 2  > 5, s l ,s2  > 0} (3.1) 

The cut (2.7) is easily seen to be 

(3.2) 
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Let us now investigate whether the cut (3.2) can be improved. Figure 3.1(a) 

shows the region S
1 S 2 as the cross hatched area and depicts the cut 

(3.2). As Theorem 2.2 indicates, this cut is a facet of S c  (Equation (2.3)). 

However, the region feasible to the original problem is shown as darkened 

lines in Figure 3.1 (b). Clearly the cut 5s1  + 3s . > 25 is valid and domi-

nates the cut (3.2). In order to use the basic disjunctive cut principle 

to derive this inequiality, one has to reformulate the disjunction by imposing 

the nonnegativity restriction s
3 

= s
1 

- s2 + 3 > 0 on each of the sets S 1 

and S2 given in (3.1). In other words one has to stipulate that s 3  > 0 as 

well as at least one of the sets S
1, S

2 
must be satisfied. This leads to 

the following two sets, at least one of which must be satisfied. 

S1  = {(s1 ,s 2): si 	s2  > 5 	and 	S2 = f(s1,
s
2
): 	s2 1 5 

sl s 2 	 Sr S 2 -3  

s i , s 2  > 01 	 s
l' s2 	01 

Using surrogate multipliers X = (5,0) and X
2 
= (8,5) one may obtain the 

cut (2.1) as 5s 1  + 3s 3  > 25. In Section 5, we will demonstrate how this 

cut can be derived through (3.3) without explicitly resorting to the 

determination of the parameters 	hcH. 

(3.3) 

Insert Figure 3.1 here 

'Let us now generalize this concept to the situation of Interest to us, 

namely the case where the objective function f is quasiconcave, and the set 

X of Equation (1.1) is polyhedral. In order to esti,blish connections 

between disjunctive programming techniques and ":lover's polyhedral annexa-

tion scheme [51, and to simplify the presentation, we will initially assume 
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that each of the sets Sh , hell is comprised of only a single constraint. 

Again, we will assume that a relaxation strategy is being adopted to 

solve Problem DP, so that currently, we have an extreme point optimal 

solution to the problem minimize {f(x): xcX, x > 0, which violates the 

disjunction xe U Sh . Here, we are assuming that the set X is comprised 
heH 

of the original linear constraints along with any valid inequalities 

which may have been generated over previous iterations. Accordingly, in 

terms of the current nonbasic variables, let the sets X and S h , hEH be 

given by 

X = {x: Gx < g) E {X: 	g .x. < g. for i = 1,...,m} (3.4) 
jeJ 

r S
h 

= (x: 	Lah 	 , x >1 x> 01 	 hell 	 (3.5) 
jeJ 

where J is the index set of the nonbasic variables, so that IJ! = n. For 
each set Sh, hell, we have normalized the single constraint by its respective 

right-hand-side which must be positive since the origin violates each such 

constraint. Now, in order to derive a valid inequality which deletes the 

origin, one may invoke the disjunction 

xe U Sh 
heH 

(3.6) 

However, we propose to derive stronger cuts by invoking the alternate dis-

junction 

xe U XS
h heH 

(3.7) 

where, 

h XS
h 
= {x: Gx < g, L a.x 4  > 1, x > 01 	X n S

h jeJ 3  
(3.8) 
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Note that one may invoke other valid disjunctions between the extremes 

(3.6) and (3.7) by adding on a subset of the constraints of X to each of 

the sets Sh , heH. As one may guess, in the formulation of the disjunction, 

there is a tradeoff involved between the strength of the inequalities 

derived and the effort expended in generating these inequalities. Now, 

one viable approach is to commence with the disjunction (3.6) to obtain an 

initial cut, and then to sequentially add on constraints of X, attempting 

at each step to improve the current cut. This is basically the central 

point of the discussion of the following section. 

4. Application of Glover's [51 Sequential Polyhedral Annexation Technique  

In this section, we will first briefly discuss Glover's polyhedral 

annexation technique [5] as is relevant to the present exposition. We 

will then demonstrate how an algorithmic scheme called sequential poly-

hedral annexation by Glover [5], may be implemented to use the set X 

defined by (3.4) in order to improve the fundamental cut (2.7) available 

from the disjunction (3.6). We will also indicate some drawbacks of this 

method which lead us to proposing a variation of the scheme. 

Let us begin our discussion by making the observation that a disjunc-

tion which stipulates that at least one of the sets Sh  of Equation (3.5) 

must be satisfied is equivalent to the statement that the interior of the 

polyhedron 

L h 
S
H 

= {x: 	L a.x. < 1, for each hell, x > 0) 
jeJ 

(4.1) 

contains no feasible points. Henceforth, for the sake of convenience, we will 

call a polyhedron NFIP  if its interior contains no feasible points. Thus, 

Glover's polyhedral annexation procedure essentially does the following. 



and 

S = {x: X alx < bq  for each geQ x > 0} 
3  

(4.3) 

Given several NFIP polyhedra, the technique suitably annexes them to each 

other in order to derive a new NFIP polyhedron of the type (4.1). Then, 

based on the constraints of this polyhedron, a cut of the type (2.7) is 

generated. The annexation scheme is based on the following main result 

Theorem 4.1  Let the polyhedra 

S = {x: X aPx. < by  for each pcP, x > 01 
3 3 

(4.2) 

be NFIP. Then, for any keP, and for any nonnegative parameters p ke  Pq , 

qcQ, the following polyhedron is NFIP: 

S
R 
 = fx: 	arx. < br  for each rcR, x > 01 
 3 — 

j 

E {x: F.  aPx. < by  for each pa•{k} j  3 3 

(Vkg a
k 

+ p q  aq)x. < (pkqb
k 
+ p bq) for each geQ j 

x > 01 

Proof:  See Glover [5] 

In terms of the traditional disjunctive programming methods, Theorem 

4.1 has the following interpretation. The condition that at least one of 

the constraint sets 

Sp  = 	X aPx. > b
p 

11 x > 0), peP 
J J 

(4.5) 
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and at least one of the constraint sets 

S = {x: 	aqx. > bq , x > 0 }, qcQ 	 (4.6) 
q 	j  J J 

must be satisfied, implies the weaker condition that at least one of the 

following constraint sets must be satisfied for some kcP 

S for pcP-{k}, 

(4.7) 
k 	r q 

' 
S
k,q = {x: L a.xk  > b

k 
 , L a:x. > bq  x > 0} for qcQ 

	

j 	J 

Given any set of nonnegative surrogate multipliers p ke  pq  for the two con-

straints in each of the sets S k,q , qcQ, this in turn implies that at least 

one of the constraint sets 

S for peP4k}, 

Skq  = {x: X(p,
KC'  a

k  + p 
q 3 
al)x. > (pkq  bk  + p b q), x > 0} for qcQ 3 -  

(4 .8) 

must be satisfied, or that S R  of Equation (4.4) must be NFIP. 

Clearly, the choice of kcP for the purpose of annexation is crucial 

with regard to the strength of the inequality which may be derived from the 

disjunction (4.8). We will now discuss this choice in the context of the 

sequential polyhedral annexation scheme of Glover as applied to the concepts 

introduced in Section 3. 

Thus, suppose one has derived the following cut (2.7) from the disjunc-

tion that at least one of the sets S h, hcH of Equation (3.5) must be 

satisfied 

;.x. > 1 
	

(4.9) 
jcJ 3 3  
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The question addressed at this point is whether or not a given cut coeffi-

cient
k' 

keJ can be improved (decreased) without worsening (increasing) 

the other coefficients. (In the discussion below, the reader may note 

that the sets X, S H , Sp  and SQ  are defined by (3.4), (4.1), (4.2) and 

(4.3) respectively), The manner in which the sequential method proposes 

to accomplish this is to commence with the NFIP polyhedron SH  and annex 

constraints of X one at a time. During this annexation process, that con-

straint is chosen to be surrogated with the newly added constraints which 

is a "blocking hyperplane", i.e., forms a "block", for the k th  edge extension. 

That is the cut coefficient irk is determined by that particular constraint 

through (2.7). In other words, the surrogation serves the purpose of attempt-

ing to rotate this blocking hyperplane so as to permit an improved edge 

intercept. Of course, if more than one constraint form a block for the 

k
th edge extension, then this process will have to be repeated for each 

of the blocking hyperplanes. Thus, starting with Sp  equal to Sir  a set 

S
Q 
with IQ' = 1 is chosen to contain a single constraint of X. Let us 

assume that a constraint kEP of S forms a block for the k
th edge exten-

sion. Then, S p  and SQ  are annexed through nonnegative parameters p kq 

and p as follows. 

Note that since the origin is infeasible to each S p , peP of Equation 

(4.5), we may assume as before without loss of generality that by  = 1, 

peP. To maintain consistency, we may also stipulate without loss of gen-

erality that the surrogation makes the right hand side of the constraint 

in Skq 
of Equation (4.8) equal to unity, i.e., v kq  + p bq  = 1. Thus, under 

the restriction that the cut derived from the disjunction (4.8) improves 

kth  the LC edge intercept without worsening the other edge intercepts, we are 

searching for parameters p kq
, p

q 
satisfying 
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> 0, II
lut 

= 1 - p bq  > 0 q 	 q   

- 	k n. > p a. + p  
j — kg j 	q

a 
 j 

(4.10) 

for, each jeJ 	 (4.11) 

One may easily deduce from this that the appropriate choice reduces to 

finding the largest p q  > 0 satisfying 

k n 4  - a. 
p < minimum 	J 	 ; (a(! - al!b q) > 0 q 	 q 	kbq 	J 	J jeJ 	(al 	) 

and 	 p qbq  < 1 

(4.12) 

Then p
kg 

is given through (4.10) and thus, the resulting NFIP polyhedron 

SR 
of Equation (4.4) becomes the new polyhedron of the type (4.2). The 

cut (2.7) is updated, if necessary, with this new NFIP polyhedron (or dis-

junction) and the process is similarly repeated until the improvement of 

all edge intercepts have been attempted using all the constraints of X one 

at a time. Note that at each annexation, if the corresponding parameter 

p q  obtained through (4.12) turns out to be zero, then this implies that 

S
R 

= S
P 

so that no improvement is possible with the current annexation. 

Now, there is one principal drawback of this technique and that is, 

the final cut derived is dependent on the order in which one considers 

the constraints of X of Equation (3.4) to be used as sets S Q  of Equation 

(4.3). We illustrate this fact below through an example and then proceed 

to propose an alternative method. 

Illustrative Example: 

Let us modify the example of Section 3 by adding an additional con-

straint to the set X of Equation (3.4). Hence, let the sets of Equation 

(3.5) or (4.5) be 



p < minimum { 	
1 - (0)(-3) ' q  • }, -3p < 1, p > 0 q  _ 	q   

1 5- - 0 
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sl 
 s

1 
= {(s 1  8): 	 > — 	1, 	s 	0} s = {( s 	). 	> 1 	0} ( 	) , 2 	5 	5  _ 	 > _ 	2 	A. ,_ 2  • 5 	, si ,s 2 	,4.13, 

and suppose X is given by 

- 51+52<3, 	
s
1 
+ 3s

2 	
12} (4.14) 

The sets XS
1 

and XS 2 of Equation (3.8) as well as the best cut available 

from the disjunction (3.7) are depicted in Figure 4.1. 

Insert Figure 4.1 here 

Now, the cut (2.7) available from the disjunction 	,s2)eS1 U S 2 
is 

5
--I + :- 	

5
2 > 1. This cut passes through the points T and W of Figure 4.1. 

One can see that the extension corresponding to edge s l  cannot be improved. 

Hence, let us attempt to improve the edge intercept corresponding to s 2 

 using Glover's sequential polyhedral annexation scheme. Towards this end, 

note that the constraint of S
2 
represents the blocking hyperplane. Using 

the first constraint of X in the initial set S
Q 

of Equation (4.3), (with 

the inequality reversed) the relationships (4.12) yield 

The largest p q  satisfying this is pq 	5 
= 
1
-' 	 5 whence (4.10) gives p 	= 1 - (-1  )(-3) = 

8 	
Thus, the disjunction (4.8) is ( ,s

2
)ES

1 
U S

2q 
where, 

S2q 	
3 1 

= {(si ,s 2 ): -5- s l  + 	8 2  > 1, si ,s 2  >0) E New S 2 , say (4.15) 

The cut (2.7) from this disjunction is 

(4.16) 
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which passes through points U and W in Figure 4.1, and is also shown in 

Figure 3.1(b). Now let us repeat this by taking S 1  as in (4.13), S 2  as 

given by (4.15), the second constraint of X forming the set S Q , and the 

constraint of S
2 

representing the blocking hyperplane for the edge s 2 
in 

the cut (4.16). The relationships (4.12) yield 

u< minimum q  _ 

1
- 
 1 

- (5) (-12) 
, -12u < 1, p > 0 q 	q  

whiCh implies, that p = 0 or that no further improvement is possible. 

In this example, if one had considered the constraints of X' in the 

reverse order then one would have obtained the deepest cut as shown in 

Figure 4.1. However, the appropriate ordering of the constraints of X 

is a combinatorial problem. Furthermore, conceivably it may be possible 

in some instances that the best cut is not recoverable no matter in which 

order the constraints of X are considered- 

The method we propose to employ in the next section considers all the 

constraints of X simultaneously, that is, examines the disjunction (3.7) 

itself in an attempt to improve edge intercepts one at a time, holding 

other edge intercepts fixed at each stage. This technique is easy to 

Implement and directly yields the best cut coefficients, the corresponding 

appropriate surrogate multipliers being available, if required, as a set 

of optimal dual variables. 

5. A  Supporting Hypesplane Scheme  for Improving Edge Extensions  

Suppose as before that we are given sets S h , hcH defined by Equation 

(3.5) with the stipulation that at least one of these sets must be satis-

fied. We reemphasize here that we continue to assume that each set S b. 
has 

only one constraint merely for convenience. In addition, we are given a 

constraint set X (Equation (3.4)) which must also he satisfied by any feasible 



point. The disjunction under consideration is that xe U XS
h 

(Equation. (3.7)) 
heH 

where, as in Equation (3.8), XSh  = X fl Sh , heH. 

Thus, assume that currently, we have a cut of the form 

Tr.x, > 1 
jeJ 3 3  

(5.1) 

which is valid for the disjunction (3.7). Note that initially, (5.1) may 

be taken as the cut (2.7) derived from the disjunction xe U S h . 
heH 

Now, consider a keJ and suppose that we are presently trying to im-

prove the kth edge intercept, that is, decrease 	Towards this end, let 

us assume that we are able to solve for each hell 

kh: minimize Trkh 

subject to 

7
kb 

X
k j y

eJjj 
;. > 1 for each xeXS

h -- 

jk 

and 7Tkhxk 
+ 

.
1 r

i
x
i 

= 1 supports XS h  
jeJ 	- 
jk 

Let 

7 = maximum 
k. 

hcli 

where kh is the solution to problem P kh . Now consider the cut 

x + X '717 .x > 1 k k 	icj  j j 

j k 

(5.3) 

(5.4) 

Clearly, (5.4) is satisfied by each xe U XSh, that is, (5.4) is a valid cut 
heH 

for the disjunction (3.7). Moreover, any inequality y r,x. > 1 with ir, = n.  
jeJ 	.3  — 	i 	i 

-* 	 3 	., 
for jeJ - fkl and 1T

k 
< 7

k 
is not valid because it deletes a point x of XSh 

at which the corresponding hyperplane
kh

x
k + X ;,J h' 

x = 1 supports XS -  where 
jeJ 
jk 

heH is an index for which equality holds in (5.3). To see this, it is suffi- 
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cient to show that if ;
kh 

> 	in (5.2), then a point of support referred 

to in (5.2) occurs at an x 

- 

satisfying x
k- 
 > O. This is clearly so, for if 

not, then 
nkh 

can be reduced still further. Thus, (5.4) gives the best 

intercept possible for the k
th 

edge when all other intercepts are held 

fixed. Hence, replacing ir k  of (5.1) by nk , we would obtain a (possibly) 

new valid cut (5.1). This process may now be repeated for each edge in 

turn till no further improvement is possible. Of course, different cuts 

may be obtained by considering the edges in different orders, but each of 

these cuts cannot be uniformly dominated by any other cut. 

We will now proceed to discuss the determination of n kh , the coeffi-

cient of xk  in the cutting plane under consideration, given through (5.2). 

The problem we formulate below to accomplish this, has the following moti-

vation. Observe that the cut hyperplane is constrained to pass through 
1 

(n-1) linearly independent points of the form (0,..., .Ty...,0) for jtJ-{k}. 

In order to uniquely define the cutting plane, we need to identify a suit-

able point x which has x
k 

> 0. Now, according to Equation (5.2), this 

cutting plane will need to support the set XS
h 
with each point of XS

h 
being 

feasible to it. Hence, in order to determine n
kh' 

we may hold the inter- 

cepts on the axes jeJ-{k} 	fixed and decrease the intercept on the k
th 

axis 

(increase n
kh

) until the hyperplane merely supports XS
h 

at some point x with 

x
k 

> O. This problem is mathematically stated below. Theorem 5.1 later 

establishes that an optimal solution to this problem yields n
k 

= n
kh 

15
kh 

 

maximize 
 

L  subject to n
k  xk 	L 	= 1 

jik 

(5.5) 

xeXSh 
	 (5.6) 

xk  > 0 	 (5.7) 



Note that 7
k 

is unrestricted, in sign. Now using Equations (3.4), (3.5), 

(3.8) and solving for u k  through Equation (5.5), we may rewrite the above 

problem as 

x. 
maximize —

1 - L u.(-1) 
xk jeJ 3 xk 

j#k 

	

x. 	g 
subject to 1 g i . (-1) < 	for i = 1,...,m 

	

jeJ j x
k 	xi k  

X a()> 1- 

	

jeJ xk 	xk 

x, 
(-1  ) > 0, xk  > 0 
xk 

Finally, letting 

x. 

	

and 	y. = 
xk 
	for each jeJ 	 (5.8) 

we obtain the following linear programming problem in .3. 1 = n variables 

LP maximize 	= - / ; i Y i  

	

jeJ 	- 
j#k 

subject to X g..y, - 
Jej  ij 

j#k 

L  E 	L a.y •  < ah  

jeJ j j 	k 

j#k 

for i = 1,...,m < - g ik 

> 0, y. > 0 for jeJ - fk} 
J - 

Consider the following result 

Theorem 5.1 If Problem LPkh 
is feasible, then it has an optimal solution 

7 -  s, Y 	jEJ-{k} 	with 	< 00 . Moreover, the optimal solution values of 

Problems LP
kh 

and Problem P
kh 

(defined by (5.2)) are equal. 
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Proof:  Note that the constraints of Problem LP kh 
 may be rewritten as 

h 

j

X g
ijj 

 .y 	g.E < 0 for i = 1,...,m; 	a.y. + 	< 0 and yk  = 1, with 
EJ 	

r

3 
C, y > 0. Letting p i , i= 1,...,m, y and 5 be the respective dual 

variables associated with these constraints, the dual to Problem LP kh 

may be written as 

DLP
kh
: minimize 5k 

sudecttoal
3
ly - 1X  g..p. 	7. for jEJ - fkl 	 (5.9) 

=1 13  1 < — 

akY 	/ gikP i 
i=1 

Y - 	gp. > 1 i=1  g1 1 — 

(5.10) 

(5.11) 

Letting 5k 
denote the minimum value of 5 k' 

we will show that 5 k = nkh. 

We have from (5.2) 

Trk

- 

hxk 
+ X Tr.x. > 1 

jEJ ^  
j#k  

for each xEXSh 
(5.12) 

(5.13) nk
h

- 

x
k 
+ 	7.X. = 1 	for some xEXS

h 
" 

jOk 

Hence (5.12) is a valid cut for H = {Il} in (1.2), and Theorem 2.1 asserts 

the existence of i > 0, p. > 0 satisfying (5.9) through (5.11) for B 
— 	 k = %h .  

That is y, p. and ; kh 
is feasible to DLPkh

.  Thus LPkh is bounded. Hence, 

Bk 	Trkh

- 

	
< 	Now let Y,  11 i 

and 5k 
solve 

DLPkh. 
Then, xEXSh 

implies 

h- 
 m. 

X La.y - 	X g.. 11.

- 

1x. 
jEJ 	1=1 1J 1  

> 	- 	X g . 11 . 1 
1=1 



Then noting r.9) through (5.11), we get 

k xk 
 + 7 irj  x j  = 1 	for each xeXS

h 
jeJ 
j#k 

(5.14) 

We have shown that 5k- <Trk- h. 
Now if

k 
< n

kh 

- 	

:From (5.13) 

H
k
x
k 
+ 	n.x. < 1 

jeJ J 3  
jOk 

contradicting (5.14). Hence s k = 

Finally, since LP kh  is bounded, there exists an optimal extreme point 

solution (e,y) with 	finite. This completes the proof. 

Corollary Let Z,Yj , jeJ - (k}  solve LPkh 
with 	< oce and with Tk as the YA 

corresponding objective function. value. Then, Tr k = k' xk 
 = land xej = 

for jeJ-{k} solves P
kh

. 

It is easy to show that the following expedient for determining n
k 

of 

Equation (5.3) through the solutions of Problems LP kh , hell for a given keJ, 

is a valid scheme. 

Step 1  Consider the cut (2.7) derived for the disjunction. xe U S. Let 
hell 

hell be a "blocl.ing hyperplane" for the k
th 

edge as defined in 

Section 4. 

Solve LPkh. If LP
kh is infeasible, then elect any hell not con- 

sieered thus far and repeat Step 2. if LP kh  is infeasible for 

each hell, then xk 
= 0 for each xc U XS

h and the variable xk 
may 

hell 
be disregarded from the problem. Otherwise, obtain an optimal 

* 
solution value 7 	If Tr

kh 
=

k' terminate with Irk = 7
k* 

Otherv:.se, select another hell and repeat with the additional 

Step 2 

 

restTLetion that the objective value be greater than or equal to 
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that of the largest Trkh value found thus far. Tf all 116H 

have been considered, then 7
k 

is given through Equation (5.3). 

We remark at this point that the development of the present section 

may be easily extended to a broader class of problems in which each of the 

sets Sh , heH may contain more than one constraint. This is accomplished 

by simply writing the second constraint of LP
kh for each of the constraints 

in Sh . Further, step 1 of the scheme discussed above may be started from an 

arbitrary h or from one determined heuristically. 

We also draw the reader's attention to a "linear programming approach" of 

Glover [5] which may be used to determine a valid cut for the disjunction 

xe J  XSh . This formulation is similar in thrust to Problem DLP kh . However, its 
heH 

motivation is to determine surrogate multipliers for simultaneously for each of 

the constraint sets XSh, hEH so that the resulting disjunctive cut derived 

according to Theorem 2.1 supports the closure of the convex hull of the 

set {x: xE U XS
h
}. Further, the objective function used tc, accomplish 

heH 
thisminimizes jeJ are the disjunctive cut coefficients 

jEJ 
and a., jcJ are any suitable choice of positive weights. 

Finally, we would like to mention that a forthcoming paper Will -

deal with the specialization and the computational aspects of applying 

the techniques developed in this paper to a general class of linear com-

plementarity. problems. 

6. 	Illustrative Examples 

Suppose that we are given 

S
1 
= ix: -x

1 
+ x

2 
 > 1, x > 0) and S 2 = {x: x1 

	1, > / x > 01 

Consider the following three examples of the set X. (i) X = {x: 2x1-2x2  < 1) 
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(ii) X = {x: 2x 1 -x2  < 1} and (iii) X = fx: 6x 1 -2x2  < 3). 

These three cases are depicted in Figure 6.1. Also shown in this figure 

are the respective best cuts available. 

Insert Figure 6.1 here 

Now, the cut (2.7) from the disjunction xe U S
h 

is x1  + x, > 1 

Using the development of the previous section to improve the extension 

corresponding to the variable xl  holding the other extensions fixed yields 

the following problems. Note that h = 2 is selected at Step 1 in each case. 

Example (i) Example (ii) 	Example (iii) 

Problems 
LP

kh 
with 

k=1, h=2 

maximize C - y2  

subject to 

2y 2  + 	> 2 

< 1 

F,Y9 	0 

maximize -Y 2 

subject to 

y 2 + 

< 1 

0 

maximize C - y2  

subject to 

2 2y2  + 3C > 6 

< 1 

> 0 

Solution; 

value 	 1/2 
	

0 	 -1/2 

Y2 
	 1/2 	 1 	 3/2 

It may be easily seen that 7
11 
<7

12 
in each instance. Further 

17
2 cannot be improved in eacn case. The corresponding best cuts are 

Example (1) -;.5x 1  + x, > 1  _ -- 
Example (ii) 	 x

2 
 > 1 

•x.imi -,1.- 	Hi) 	Ax, + x 	9 1 ) 	..... 
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Progress Report on NSF Grant No. ENG 77-23683 on 

"SOLUTION TO GENERALIZED LATTICE POINT 
AND RELATED PROBLEMS BY DISJUNCTIVE PROGRAMMING" 

July 1979 

The following is the annual progress report covering the period May 15, 
1978 to May 14, 1979 for Grant No. ENG-77-23683. The research deals with 
Disjunctive programs, and the objective of the research is, 

1. Study of deep cuts in Disjunctive Programming 

2. Development of suitable cuts and solution procedures for GLP and 
related problems, and their computational testing. 

3. Development of finitely convergent algorithms. 

1. PARTICIPANTS  

In addition to the principal investigator, two Ph.D. students namely 
Mr. Hanif D. Sherali and Mr. Chung-Chi Liu have worked on the project for 
the past year. While Mr. Sherali was a major participant, Mr. Liu was being 
initiated to the subject area. The major results thus far as listed below. 

2. SUMMARY OF PROGRESS  

Bilinear Programming  

The principal investigator had worked on this area during the past 3-4 
years, and had developed a convergent solution procedure which had earlier 
been published. However, this procedure was not finite. Using the results 
of Disjuncture Programming, a finite procedure has been developed, and is 
contained in a paper titled, "A Finitely Convergent Algorithm for Bilinear 
Programming Problems using the Polar Cut and Disjunctive Face Cuts." The 
paper has been accepted for publication with revisions in Mathematical Pro-
gramming(see Appendix A). 

Generation of Deep Cuts  

The question of a definition of deep cuts was addressed first. It was 
proved that when each set in the disjunctive program consists of a single 
constraint, one can specify the deepest-cut (under any criterion). Using 
this powerful result, a subgradient optimization procedure was developed for 
the general problem. A paper summarizing these results, and titled, "On the 
Generation of Deep Disjunctive Cutting Planes" has been submitted to Naval  
Research Logistics Quarterly and is being reviewed. A paper on the same 
subject was also presented at the Joint ORSA-TIMS conference at New Orleans 
in May-June 1979. 



Lecture Notes  

To initiate new Ph.D. students a set of comprehensive notes were pre-
pared. The notes synthesized several different approaches, and as such has 
appeal to researchers in this area. Among the publishers contacted, 
Springer-Verlag has expressed interest in its publication. The permission of 
NSF has been sought under our letter of June 28, 1979. (See Appendix B) 

3. SUMMARY OF PROPOSED WORK  

In our work thus far we attempted to develop deep cuts under suitable 
criteria. During the coming year, we would like to address the question of 
how to specify nondominated  cuts. This is likely to yield simpler subpro-
blems and, therefore, more efficient algorithms. The procedure will be tested 
on a subclass of Generalized Lattice Point Problems, namely the Complementarity 
Problem. At least two more papers are expected to be submitted to the refereed 
Journals. In addition, during the coming year, the two papers and the mono-
graph already submitted for publication will also be revised and updated. We 
hope these will be in print in 1980. We also expect to present two papers 
at national technical conferences. 

4. OTHER COMMENTS  

Even though at the end of the second year, we expect at least 4 papers 
and a monograph to be published, much need to be achieved in this area. Two 
of the. papers are strongly theory oriented and addresses the general problem. 
These can be specialized to various problems. A proposal for the renewal of 
the grant on this basis will be submitted soon. The monograph that is under 
revision should help significantly in bringing,Ph.D. students to speed in 
this area as there are no other formal texts or courses being offered at the 
moment. 





Associate Editor's Recomendation 

on the paper 

C.M. Shetty and H.D. Sherali: A Finitely Convergent 
Algorithm for Bilinear Programming Problems Using 
Polar Cuts and Disjunctive Face Cuts 

The paper seems to make a considerable contribution of high 
technicality to the theory of bilinear programming, as the referees 
write in their reports, so that it deserves publication in Mathematical 
Programming. 

However, before publication, the manuscript should be substantially 
revised and improved, with the comments from the referees, especially 
those from Referee #2, seriously considered. 
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APPENDIX B 

SCHOOL OF INDUSTRIAL AND SYSTEMS ENGINEERING 

(404) E;94-2300 Atlanta, C3: -.:orgi:i 30332 

June 28, 1979 

Ns. Charlotte Raymond 
Head, Section II 
NPE/STIA Branch 
Division of Grants and Contracts 
National Science Foundation 
Washington, D.C. 20550 

Subject: NSF Grant No. ENG77-23683 

Dear Ns. Raymond: 

The area of research of the subject grant, Disjunctive Programming, is 
a rather broad subject area, and related publications have appeared in 
literature dealing with discrete programming and nonconvex programming. 
To motivate Ph.D. students in this area, and also to consolidate results 
published thus far and to record some new fundamental results, a set of 
attached notes coauthored with Mr. E. Sherali were prepared. 

It seems to us that the monograph will be of interest to the operations 
researchers, - aild we note from GPM 752 that the NSF Act "authorizes the 
foundation to publish or to arrange for the publication of scientific 
and technical information so as to further the full dissemination of 
information of scientific value consistent with the national interest". 
The principal investigator has identified the following three publishers 
who have a record of low cost and quick publication of research monographs. 

1. Springer Verlag, New York, under the Lecture Notes in Economics and 
Mathematical Systems series. Publication under this series is on the 
basis of no royalty. Appendix A gives their publication Policy. 

2. Addison Wesley author Advanced Book Program. Appendix B gives some 
background on publications in this series. • 

3. Wiley Interscience monographs. 

Springer-Verlag have verbally indicated interest after a preliminary 
review. All three publishers have sent the manuscript for a formal review. 

The purpose of this letter is to seek NSF approval of publication of the 
notes (in revised updated form) since it overlaps with research results 
coder the NSF grant. No doubt an acknowledgement as in GPM 752.4 will be 
given. 









Attachment to Form 98A 
ENG-77-23683 

Publications  

1. Optimization With Disjunctive Constraints,  Lecture Notes in Economics 
and Mathematical Systems, No. 181, Springer-Verlag, 1980. 

2. "On the Generation of Deep Disjunctive Cutting Planes," Naval Research  
Logistics Quarterly,  22, pp. 453-475, 1980. 

3. "A Finitely Convergent Algorithm for Bilinear Programming Problems 
Using Polar Cuts and Disjunctive Face Cuts," Mathematical Programming, 
19, pp. 14-31, 1980. 

4. "Nondominated Cuts for Disjunctive Programs and Polyhedral Annexation 
Methods," submitted to Discrete Applied Mathematics  (see also report 
J-79-28, School of Industrial and Systems Engineering, Georgia 
Institute of Technology). 

5. "A Finitely Convergent Procedure for Facial Disjunctive Programs," 
submitted to Discrete Applied Mathematics,  (see also report J-80-19, 
School of Industrial and Systems Engineering, Georgia Institute of 
Technology). 

List of Collaborators  

1. Mr. H. D. Sherali, Ph. D. student, currently Assistant Professor at 
the Virginia Polytechnic Institute and State University. 



SOLUTION TO THE GENERALIZED LATTICE POINT 
AND RELATED PROBLEMS BY DISJUNCTIVE PROGRAMMING 

C. M. Shetty 
Principal Investigator 

NSF Research. Grant No. ENG-77-23683 

Final Technical Report covering the period May 15, 1978 to 
October 31, 1980. 



1. Introduction  

The research covered by, this final report deals with Disjunctive 

Programming. This is a broad subject area and related publications 

have appeared in literature dealing with discrete programming and non-

convex programming, The specific objectives of the research are 

1. Specification and development of deep cuts for disjunctive 

programs. 

2. Development of suitable cuts and solution procedures for 

certain disjunctive programs, and their computational testing. 

3. Development of finitely convergent algorithms. 

The research has resulted in the publications listed below. 

a. Optimization with Disjunctive Constraints, Lecture Notes in  

Economics and Mathematical Systems,  No. 181, Springer-Verlag, 

New York, September 1980. 

These notes were originally intended to summarize 

published results strongly related to the research 

topic to aid Ph.D. students interested in working on 

the research topic. In its final published form, 

it is a self contained document going far beyond 

the original objective. It brings together several 

apparently dissimilar approaches for handling programs 

with logical constraints. It also covers the research 

results obtained under the NSF Grant No. Eng-77-23683. 

b. On the Generation of Deep Disjunctive Cutting Planes, Naval  

Research Logistics Quarterly,  27, 453-475, September 1980. 

This paper addresses the question of deriving deep cuts 

for general disjunctive programs. Based on the works 

of Balas, Glover, and Jeroslow it examines the set of 
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valid inequalities or cuts which one may derive in this 

context, and defining reasonable criteria to measure 

depth of a cut we demonstrate how one may obtain the 

"deepest" cut. The analysis covers the case where each 

constraint set in the logical statement has only one 

constraint and is also extended for the case where 

each of these constraint sets may have more than one 

constraint. 

c. "A Finitely Convergent Algorithm for Bilinear Programming 

Problems Using Polar Cuts and Disjunctive Face Cuts," 

Mathematical Programming, 19, 14-31, 1980. 

This paper considers the bilinear program the application 

of which are well known and discussed elsewhere. Using 

the results of publication citied immediately above, 

an improved cutting plane procedure is developed. Com-

putational results are presented which supports the use 

of disjunctive cuts. An interesting thought pursued 

in this study is that of developing finite schemes using 

the notion of "extreme faces" introduced by Majthay and 

Whinston [9]. 

d. Nondominated Cuts for Disjunctive Programs and Polyhedral 

Annexation Methods, Research Report J-79-28, School of 

Industrial and Systems Engineering, Georgia Institute of 

Technology, Atlanta, Georgia, 1979 (submitted to Discrete 

Applied Mathematics). 

In this paper, we consider the generation of nondominated 

cutting planes for linear disjunctive programs. We demon-

strate how the formulation of a disjunction affects the 
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strength of a cut derived from it, and show how one may 

generate a nondominated cut and the point at which it 

supports the convex hull of points feasible to the dis-

junction. A simpler computational variation is also 

suggested for a special case. In discussing this, 

we provide some insights into Glover's polyhedral annexa-

tion technique by demonstrating its relationships to 

disjunctive programming methods. 

e. A Finitely Convergent Procedure for Facial Disjunctive 

Programs, Report J-80-19, School of Industrial and Systems 

Engineering, Georgia Institute of Technology, Atlanta, Georgia, 

1980 (submitted to Discrete Applied Mathematics) 

This paper addresses an important special clsss of 

disjunctive programs called facial disjunctive programs, 

examples of which include the zero-one linear integer 

programming problem and the linear complementarity 

problem. Balas has characterized some fundamental 

properties of such problems, one of which has been used 

by Jeroslow to obtain a finitely convergent procedure. 

This paper exploits another basic property of facial 

disjunctive programs in order to develop an alternative 

finitely convergent algorithm. 

Reprints/copieg of the first three publications and copies of the 

last two papers cited above have been sent with the final project report 

(Ford 98A). 

Papers based on the research under this contract have been presented 

at 
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1. Joint ORSA/TIMS Conference, New Orleans, May 1979 

2. Joint ORSA/TINS Conference, Washington, D. C., November 1979 

3. Joint ORSA/TIMS Conference, Denver, May 1980 

The research results have been discussed in detail in the research 

monograph Optimization with Disjunctive Constraints  published by Springer-

Verlag under Lecture Notes in Economics and Mathematical Systems, No. 181, 

1980, Hence, in this report we will focus only on some important results 

and their relevancy. 

2. Deep Cuts and Their Generation  

Consider a disjuctive program of the form 

DP: minimize' 	f(x) 	 (1) 

subject to x e X 	 (2) 

x c U Sh 	 (3) 
hcH 

when X is a closed subset of the nonnegative orthant of En
, and each 

S
h' 

hcH is of the form 

S
h 

= 	A
hx > b

h
, x > 0}, hcH 
	

(4) 

for some finite index set H = 

The basic disjunctive principle due to Balas [1,2], Glover [5] 

and Jeroslow [6] states that for any X
h > 0, the inequality 

[

-s_  up (X
h
)
tAl inf (X

h
)
t
b
h 

 heH 
x

-hcH (5) 
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is a valid cut.  Furthermore, if each S h 
is nonempty then for any valid 

cut 7X > n
0' 
 there exists X

h 
> 0 such that (5) uniformly dominates 

7X >'7n . 
V 

The questions that arises are 

a. Can we select A
h 

so that the resultant cut is in some sense 

strongest? 

b. How can we characterize the strength of the cut so that the 

deepest cut coincides with the intuitive notions of a desirable 

cut? 

The above questions are explored in references [10, 11]. From 

among the alternatives, the distance from the current point to the non-

negative region feasible to the cut  is shown to be preferable. Further-

more, if each Sh 
consists of a single inequality, then the deepest cut 

is provided by the following Theorem. 

Theorem 1.  Let 

n 
S
h 

= fx; 2, all  xj  > 1)1 , x > 01 	for heH 
j=1 

a. Then the euclidean as well as the rectilinear distance is 

maximized by letting Al 
= 1/h for each heH to yield the cut 

n 	*, F a 	x. > 1 where a
*
. = max ah. for j = 1,...,n 	(6) 

j-=1 	
lj 	heH 13 

b. Define 

minimum 	* 
j; a

lj 
> 0 

{alj heH 
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Then both the distance measures are maximized by letting 

h 	h 
A = Y / / YP  1 	1 	1 

p cH 
for hcH 

to yield the cut 

	

** 	 ** 	max 
a
h
1. y

h
1 for j = 1,...,n (7) X a . 	. 	 . = l x > 1 where a 

	

j 	j 	 hcH 	3  j=1 

c. Cut (7) uniformly dominates cut (6). 

d. Cut (7) is a facet of 	U 	Sh  so that it cannot be dominated. 
hcH 

Proof. See [11] 

In the case where S
h consists of more than one constraint for 

some hcH, a clear procedure for finding the multipliers is not available. 

In [11] a subgradient optimization procedure is suggested. But further 

research is needed to answer the question satisfactorily. 

3. Deep Cuts and Model Formulation  

Now consider a disjunctive program where the constraints (2) and (3) 

are explicitely stated in the form 

X = fx: y g .x. < g 	for i = 1„. ml 
j=1 iJ 
	 (8 ) 

h 
Sh = {x: 	L aij xj  > b. for i = 1,..„rh  , hcH 	(9) 

j=1 

In section 2 we discussed how one may attempt to get a support to 

the set U S
h 

in order to obtain a deep valid cut. However, since a feasible 
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point in X must also be contained in at least one of the set S h, hEH, 

we must have 

xe U XSh  where XSh  = X n Sh . 	 (10) 
hcH 

It can easily be shown [10,13] that cuts generated by using the disjunction 

(10) can be potentially much deeper than that available through the dis- 

juction xc U S
. 

Such a cut is available by Theorem 2 below and the sub-
hEH 

sequent discussion. 

Theorem 2  

Consider the disjunction xe.  U XSh  = U 	FISh l where 
xcH 	xcH 

,-. 

1 

 - 
J  X and Sh  are as defined in (8) and (9). The 2, n.x. > 1 is a nondominated 

3 3 - = 
cut deleting the current point i and supporting the set xe u XSh  if and 

only if there exists (n,... ' nn) such that nk solves LPk  below for k = 1;.,.,n. 

LP.: 	minimize 

> 

r
h 

y. a. - m p. 

	

r 	h h 	r. 	h 

	

L 	g. 	for each hcH 

	

n
k 

 _.
- . 	] lk 	 1 lk 
1=1 - 	i=1 

r h 

	

n. > L
h 

y.
h 
 a.

h 
 - L p.g. 	for each jOk and each hell 

i=1 	 i=1 
j - 	 ij 	 ij 

r
h 

L X 	b
i 	L - 	p

h
.g. > 1 for each heH 

	

i=1 	i=1 

y
h 

> 0 i = 1„..,r
h' 

helT, and p
h 

> 0 i = 1,...,m hEH i - 	 i - 

Proof.  See [13] 

LP
k 

can be decomposed into several problem LP kh, hell, defined below. 

subject to 
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max - 
It is shown in [13] that nk will then be given by T

.
k 

= 
hcHkh where 

n
kh is obtained by solving the following: 

LP
kh

: 	minimize n
kh 	rh 

	

h h 	r h subject to nkh 	r yi2aik  - 	p igik  
i=1 	

i l l 
 

r 
m 

h 
> L

h 
 Y.

h 
 a.

h 
 - X p.g 	for each jik j 	

i=1   1 	ij 	i=1 
 i ij 

r
h 

- 	P.g. > 1 
3. 3. 	I. 	3. 	— 

1=1 	i=1 

y
h
, p

h 
 > 0 

Computationally, in order to generate a nondominated cut through 

F  the use of Theorem 2, one may begin with a valid cut / n x. > 1 ob- 
j=1  

tained through some judicious choice of surrogate multipliers, Then, 

holding (n-1) of the coefficients fixed in turn, one may attempt to 

improve (decrease) the remaining coefficient, Ir
k 

say, through Problem 

LPk . Thus, essentially, one would solve LP kh  for hsH and thereby compute 

the new T.k' Of course, if for some Problem LP 	one obtains T.  equal 

to the current Irk' then clearly no further decrease in Tr k is possible, 

and so no additional problems LP kh  need be solved. 

It turns out that in the process of generating a cut in this fashion, 

one also obtains thd point at which the cut supports the set U XS h . In-

tuitively, if one considers the final cut obtained and holds (n-1) inter-

cepts fixed while varying the last intercept, then the linear program 

LPkh seeks to increase the intercept on this axis such that at least 

one point in XS
h 

remains feasible to the cut. This concept is formalized 

kh' 	 kh 
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as Theorem 2.2 in [13]. The utility of such a point is that it is 

likely to be a good quality feasible solution to DP and hence may yield 

a strong upper bound on the problem. The likelihood of feasibility 

comes from the fact that it is a point in the closure of the convex hull 

of points feasible to the disjunction xe U XS h, whereas the likelihood 
hell 

of it being a good quality solution stems from the fact that it is in 

the vicinity of the current super-optimal relaxation solution x. 

It turns out that a computational variation of the above approach 

for the special case where Sh  consists of only a single constraint is 

precisely the sequential polyhedral annexation approch of Glover [5]. 

This is discussed in detail in [10] and [13]. 

4. Finitely Convergent Algorithms  

In earlier sections we have discussed how one may generate valid 

cutting planes for disjunctive programs. However, in common with other,  

cutting plane algorithms, the implementation of this scheme is likely 

to exhibit slow convergence. However,'under certain special cases we 

can generate finitely convergent algorithms. 

Consider the disjunctive program 

Minimize 	cx 

subject to 	xeX = {x: Ax = b, x > 0} 

xED = fl 	u Si 
heH iE 

where 

Si  = {x: d.1
x > d. 

}h' 
hEH 

 — 10 

Thus, we require that for each hell a feasible point must belong to one 

of the half-spaces S
i 

for 
ieQh. 

If xn i is a face of X for each 1.0h' 
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hell, then the disjunctive program is called a facial disjunctive program. 

A linear complementary problem, for example, can be posed as a facial 

disjunctive program. Note that the problem under consideration can be 

rewritten as 

minimize cx subject to xcY = conv [xnD]. 

Let us inductively define 

k
0 
 = X 

[ 

kh  = cony U 	kk
h-11 

 FIN: dix > did 	for h = 1,2,...,h 

cQh 

where h = 'HI Then, Bales [3] has shown that 

Property 1: kh = Y 

Property 2: Extreme points of Y is a subset of the extreme points of X. 

Jeroslow [7] uses the first property to develop a finitely convergent 

algorithm for facial disjunctive programs. The method specifies conditions 

on the cutting planes Used. On the other hand, a finitely convergent 

scheme can be specified using propery 2 [12], In this case instead of 

conditions on the cutting planes, we generate cutting planes only at 

extreme faces of X relative to the cuts generated thus far. This concept 

is due to Majthay and Whinston [9]. We have implemented this scheme on bi- 

linear programs where the requirement that the optimum is at - an extreme point 

leads to a disjunctive statement. Computational results [12] indicate 

that convergence is improved by the use of such disjunctive face cuts. 
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