1,110 research outputs found

    Recognizing Partially Occluded Objects Using Information Extracted From Polygonal Approximation.

    Get PDF
    This thesis addresses the problem of recognizing partially occluded two dimensional objects. The goal is to develop a system which is able to identify and locate several overlapping objects in the scene. To achieve this goal, the system must perform the following specific tasks: (1) storing useful information about objects in some format, which is often referred to as the process of object representation or model formation (2) matching procedure based on the object representation, and (3) efficient search of the best matching. This thesis presents a new approach to accomplish these tasks. Polygonal approximation is used to represent an object in this research. The accumulated lengths of line segments, s, and the accumulated sizes of turning angles, θ\theta, along the boundary from some starting point are extracted. The boundary of an object is then described as an equation θ\theta = f(s). As algorithm shows, matching objects under s-θ\theta space will be simple and effective. To avoid exhaustive matching in the recognition process, index diagrams of the features characterizing the boundary are established. Once the features of some unknown object are detected, the possible objects which might produce the best matching can be efficiently retrieved from this scheme

    Recognition of 2-D occluded objects and their manipulation by PUMA 560 robot

    Get PDF
    Journal ArticleA new method based on a cluster-structure paradigm is presented for the recognition of 2-D partially occluded objects. This method uses the line segments which comprise the boundary of an object in the recognition process. The length of each of these segments as well as the angle between successive segments comprise the only information needed by the program to find an object's position. The technique is applied in several steps which include segment clustering, finding all sequences in one pass over the data, and final clustering of sequences so as to obtain the desired rotational and translational information. The amount of computational effort decreases as the recognition algorithm progresses. As compared to earlier methods, which identify an object based on only one sequence of matched segments, the new technique allows the identification of all parts of the model which match with the apparent image. These parts need not be adjacent to each other. Also the method is able to tolerate a moderate change in scale and a significant amount of shape distortion arising as a result of segmentation or the polygonal approximation of the boundary of the object. The method has been evaluated with respect to a large number of examples where several objects partially occlude one another. A summary of the results is presented

    Shape Recognition: A Landmark-Based Approach

    Get PDF
    Shape recognition has applications in computer vision tasks such as industrial automated inspection and automatic target recognition. When objects are occluded, many recognition methods that use global information will fail. To recognize partially occluded objects, we represent each object by a Set of landmarks. The landmarks of an object are points of interest which have important shape attributes and are usually obtained from the object boundary. In this study, we use high curvature points along an object boundary as the landmarks of the object. Given a scene consisting of partially occluded objects, the hypothesis of a model object in the scene is verified by matching the landmarks of an object with those in the scene. A measure of similarity between two landmarks, one from a model and the other from a scene, is needed to perform this matching. One such local shape measure is the sphericity of a triangular transformation mapping the model landmark and its two neighboring landmarks to the scene landmark and its two neighboring landmarks. Sphericity is in general defined for a diffeomorphism. Its invariant properties under a group of transformation, namely, translation, rotation, and scaling are derived. The sphericity of a triangular transformation is shown to be a robust local shape measure in the sense that minor distortion in the landmarks does not significantly alter its value. To match landmarks between a model and a scene, a table of compatibility, where each entry of the table is the sphericity value derived from the mapping of a model landmark to a scene landmark, is constructed. A hopping dynamic programming procedure which switches between a forward and a backward dynamic programming procedure is applied to guide the landmark matching through the compatibility table. The location of the model in the scene is estimated with a least squares fit among the matched landmarks. A heuristic measure is then computed to decide if the model is in the scene

    Partial shape matching using CCP map and weighted graph transformation matching

    Get PDF
    La détection de la similarité ou de la différence entre les images et leur mise en correspondance sont des problèmes fondamentaux dans le traitement de l'image. Pour résoudre ces problèmes, on utilise, dans la littérature, différents algorithmes d'appariement. Malgré leur nouveauté, ces algorithmes sont pour la plupart inefficaces et ne peuvent pas fonctionner correctement dans les situations d’images bruitées. Dans ce mémoire, nous résolvons la plupart des problèmes de ces méthodes en utilisant un algorithme fiable pour segmenter la carte des contours image, appelée carte des CCPs, et une nouvelle méthode d'appariement. Dans notre algorithme, nous utilisons un descripteur local qui est rapide à calculer, est invariant aux transformations affines et est fiable pour des objets non rigides et des situations d’occultation. Après avoir trouvé le meilleur appariement pour chaque contour, nous devons vérifier si ces derniers sont correctement appariés. Pour ce faire, nous utilisons l'approche « Weighted Graph Transformation Matching » (WGTM), qui est capable d'éliminer les appariements aberrants en fonction de leur proximité et de leurs relations géométriques. WGTM fonctionne correctement pour les objets à la fois rigides et non rigides et est robuste aux distorsions importantes. Pour évaluer notre méthode, le jeu de données ETHZ comportant cinq classes différentes d'objets (bouteilles, cygnes, tasses, girafes, logos Apple) est utilisé. Enfin, notre méthode est comparée à plusieurs méthodes célèbres proposées par d'autres chercheurs dans la littérature. Bien que notre méthode donne un résultat comparable à celui des méthodes de référence en termes du rappel et de la précision de localisation des frontières, elle améliore significativement la précision moyenne pour toutes les catégories du jeu de données ETHZ.Matching and detecting similarity or dissimilarity between images is a fundamental problem in image processing. Different matching algorithms are used in literature to solve this fundamental problem. Despite their novelty, these algorithms are mostly inefficient and cannot perform properly in noisy situations. In this thesis, we solve most of the problems of previous methods by using a reliable algorithm for segmenting image contour map, called CCP Map, and a new matching method. In our algorithm, we use a local shape descriptor that is very fast, invariant to affine transform, and robust for dealing with non-rigid objects and occlusion. After finding the best match for the contours, we need to verify if they are correctly matched. For this matter, we use the Weighted Graph Transformation Matching (WGTM) approach, which is capable of removing outliers based on their adjacency and geometrical relationships. WGTM works properly for both rigid and non-rigid objects and is robust to high order distortions. For evaluating our method, the ETHZ dataset including five diverse classes of objects (bottles, swans, mugs, giraffes, apple-logos) is used. Finally, our method is compared to several famous methods proposed by other researchers in the literature. While our method shows a comparable result to other benchmarks in terms of recall and the precision of boundary localization, it significantly improves the average precision for all of the categories in the ETHZ dataset

    Tracking of secondary and temporary objects in structural concrete work

    Get PDF
    Previous research has shown that “Scan-vs-BIM ” object recognition systems, that fuse 3D point clouds from Terrestrial Laser Scanning (TLS) or digital photogrammetry with 4D project BIM, provide valuable information for tracking structural works. However, until now, the potential of these systems has been demonstrated for tracking progress of permanent structures only; no work has been reported yet on tracking secondary or temporary structures. For structural concrete work, temporary structures include formwork, scaffolding and shoring, while secondary components include rebar. Together, they constitute most of the earned value in concrete work. The impact of tracking such elements would thus be added veracity and detail to earned value calculations, and subsequently better project control and performance. This paper presents three different techniques for recognizing concrete construction secondary and temporary objects in TLS point clouds. Two of the techniques are tested using real-life data collected from a reinforced concrete building construction site. The preliminary experimental results show that it is feasible to recognize secondary and temporary objects in TLS point clouds with good accuracy; but it is envisaged that superior results could be achieved by using additional cues such colour and 3D edge information

    Automated retrieval of 3D CAD model objects in construction range images

    Get PDF

    Edge Potential Functions (EPF) and Genetic Algorithms (GA) for Edge-Based Matching of Visual Objects

    Get PDF
    Edges are known to be a semantically rich representation of the contents of a digital image. Nevertheless, their use in practical applications is sometimes limited by computation and complexity constraints. In this paper, a new approach is presented that addresses the problem of matching visual objects in digital images by combining the concept of Edge Potential Functions (EPF) with a powerful matching tool based on Genetic Algorithms (GA). EPFs can be easily calculated starting from an edge map and provide a kind of attractive pattern for a matching contour, which is conveniently exploited by GAs. Several tests were performed in the framework of different image matching applications. The results achieved clearly outline the potential of the proposed method as compared to state of the art methodologies. (c) 2007 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works
    corecore