345 research outputs found

    VoroCrust: Voronoi Meshing Without Clipping

    Full text link
    Polyhedral meshes are increasingly becoming an attractive option with particular advantages over traditional meshes for certain applications. What has been missing is a robust polyhedral meshing algorithm that can handle broad classes of domains exhibiting arbitrarily curved boundaries and sharp features. In addition, the power of primal-dual mesh pairs, exemplified by Voronoi-Delaunay meshes, has been recognized as an important ingredient in numerous formulations. The VoroCrust algorithm is the first provably-correct algorithm for conforming polyhedral Voronoi meshing for non-convex and non-manifold domains with guarantees on the quality of both surface and volume elements. A robust refinement process estimates a suitable sizing field that enables the careful placement of Voronoi seeds across the surface circumventing the need for clipping and avoiding its many drawbacks. The algorithm has the flexibility of filling the interior by either structured or random samples, while preserving all sharp features in the output mesh. We demonstrate the capabilities of the algorithm on a variety of models and compare against state-of-the-art polyhedral meshing methods based on clipped Voronoi cells establishing the clear advantage of VoroCrust output.Comment: 18 pages (including appendix), 18 figures. Version without compressed images available on https://www.dropbox.com/s/qc6sot1gaujundy/VoroCrust.pdf. Supplemental materials available on https://www.dropbox.com/s/6p72h1e2ivw6kj3/VoroCrust_supplemental_materials.pd

    A curvature-adapted anisotropic surface remeshing method

    Get PDF
    We present a new method for remeshing surfaces that respect the intrinsic anisotropy of the surfaces. In particular, we use the normal informations of the surfaces, and embed the surfaces into a higher dimensional space (here we use 6d). This allow us to form an isotropic mesh optimization problem in this embedded space. Starting from an initial mesh of a surface, we optimize the mesh by improving the mesh quality measured in the embedded space. The mesh is optimized by combining common local modifications operations, i.e., edge flip, edge contraction, vertex smoothing, and vertex insertion. All operations are applied directly on the 3d surface mesh. This method results a curvature-adapted mesh of the surface. This method can be easily adapted to mesh multi-patches surfaces, i.e., containing corner singularities and sharp features. We present examples of remeshed surfaces from implicit functions and CAD models

    Guaranteed quality isotropic surface remeshing based on uniformization

    Get PDF
    Surface remeshing plays a significant role in computer graphics and visualization. Numerous surface remeshing methods have been developed to produce high quality meshes. Generally, the mesh quality is improved in terms of vertex sampling, regularity, triangle size and triangle shape. Many of such surface remeshing methods are based on Delaunay refinement. In particular, some surface remeshing methods generate high quality meshes by performing the planar Delaunay refinement on the conformal uniformization domain. However, most of these methods can only handle topological disks. Even though some methods can cope with high-genus surfaces, they require partitioning a high-genus surface into multiple simply connected segments, and remesh each segment in the parameterized domain. In this work, we propose a novel surface remeshing method based on uniformization theorem using dynamic discrete Yamabe flow and Delaunay refinement, which is capable of handling surfaces with complicated topologies, without the need of partitioning. The proposed method has the following merits: Dimension deduction, it converts all 3D surface remeshing to 2D planar meshing; Theoretic rigor, the existence of the constant curvature measures and the lower bound of the corner angles of the generated meshes can be proven. Experimental results demonstrate the efficiency and efficacy of our proposed method

    Lp Centroidal Voronoi Tesselation and its applications

    Get PDF
    International audienceThis paper introduces Lp -Centroidal Voronoi Tessellation (Lp -CVT), a generalization of CVT that minimizes a higher-order moment of the coordinates on the Voronoi cells. This generalization allows for aligning the axes of the Voronoi cells with a predefined background tensor field (anisotropy). Lp -CVT is computed by a quasi-Newton optimization framework, based on closed-form derivations of the objective function and its gradient. The derivations are given for both surface meshing (Ω is a triangulated mesh with per-facet anisotropy) and volume meshing (Ω is the interior of a closed triangulated mesh with a 3D anisotropy field). Applications to anisotropic, quad-dominant surface remeshing and to hex-dominant volume meshing are presented. Unlike previous work, Lp -CVT captures sharp features and intersections without requiring any pre-tagging
    corecore