4 research outputs found

    Resolving Citation Links With Neural Networks

    Get PDF
    This work demonstrates how neural network models (NNs) can be exploited toward resolving citation links in the scientific literature, which involves locating passages in the source paper the author had intended when citing the paper. We look at two kinds of models: triplet and binary. The triplet network model works by ranking potential candidates, using what is generally known as the triplet loss, while the binary model tackles the issue by turning it into a binary decision problem, i.e., by labeling a candidate as true or false, depending on how likely a target it is. Experiments are conducted using three datasets developed by the CL-SciSumm project from a large repository of scientific papers in the Association for Computational Linguistics (ACL) repository. The results find that NNs are extremely susceptible to how the input is represented: they perform better on inputs expressed in binary format than on those encoded using the TFIDF metric or neural embeddings of specific kinds. Furthermore, in response to a difficulty NNs and baselines faced in predicting the exact location of a target, we introduce the idea of approximately correct targets (ACTs) where the goal is to find a region which likely contains a true target rather than its exact location. We show that with the ACTs, NNs consistently outperform Ranking SVM and TFIDF on the aforementioned datasets

    A decade of in-text citation analysis based on natural language processing and machine learning techniques: an overview of empirical studies

    Get PDF
    In-text citation analysis is one of the most frequently used methods in research evaluation. We are seeing significant growth in citation analysis through bibliometric metadata, primarily due to the availability of citation databases such as the Web of Science, Scopus, Google Scholar, Microsoft Academic, and Dimensions. Due to better access to full-text publication corpora in recent years, information scientists have gone far beyond traditional bibliometrics by tapping into advancements in full-text data processing techniques to measure the impact of scientific publications in contextual terms. This has led to technical developments in citation classifications, citation sentiment analysis, citation summarisation, and citation-based recommendation. This article aims to narratively review the studies on these developments. Its primary focus is on publications that have used natural language processing and machine learning techniques to analyse citations
    corecore