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This work demonstrates how neural network models (NNs) can be exploited toward

resolving citation links in the scientific literature, which involves locating passages in

the source paper the author had intended when citing the paper. We look at two

kinds of models: triplet and binary. The triplet network model works by ranking potential

candidates, using what is generally known as the triplet loss, while the binary model

tackles the issue by turning it into a binary decision problem, i.e., by labeling a candidate

as true or false, depending on how likely a target it is. Experiments are conducted using

three datasets developed by the CL-SciSumm project from a large repository of scientific

papers in the Association for Computational Linguistics (ACL) repository. The results find

that NNs are extremely susceptible to how the input is represented: they perform better

on inputs expressed in binary format than on those encoded using the TFIDF metric

or neural embeddings of specific kinds. Furthermore, in response to a difficulty NNs

and baselines faced in predicting the exact location of a target, we introduce the idea

of approximately correct targets (ACTs) where the goal is to find a region which likely

contains a true target rather than its exact location. We show that with the ACTs, NNs

consistently outperform Ranking SVM and TFIDF on the aforementioned datasets.

Keywords: neural network model, citation resolution, text similarity, ACL anthology, machine learning, natural

language processing

1. INTRODUCTION

The work described in this paper owes its birth to recent efforts at CL-SciSumm Shared Task Project
(Jaidka et al., 2016) to develop a systematic approach to relating citing snippets to their sources in
the paper they refer to. The CL-SciSumm started in 2014 as a part of the NIST sponsored Text
Analysis Conference to encourage the development of techniques to facilitate a computer aided
understanding of the scholarly documents. The CL-SciSumm in the current format included three
related tasks: (1) the citation linkage, where one is asked to find a way to locate passages in another
paper which the citation refers to; (2) the facet classification, whose goal is to identify a discourse
function of a referred-to passage; and (3) the summarization, which aims at creating a summary
using parts that serve as a source of citations. We will explain somewhat in detail what the task (1)
is about, as it will be the topic of the current work.

Consider an excerpt in Figure 1.

https://www.frontiersin.org/journals/research-metrics-and-analytics
https://www.frontiersin.org/journals/research-metrics-and-analytics#editorial-board
https://www.frontiersin.org/journals/research-metrics-and-analytics#editorial-board
https://www.frontiersin.org/journals/research-metrics-and-analytics#editorial-board
https://www.frontiersin.org/journals/research-metrics-and-analytics#editorial-board
https://doi.org/10.3389/frma.2018.00031
http://crossmark.crossref.org/dialog/?doi=10.3389/frma.2018.00031&domain=pdf&date_stamp=2018-10-25
https://www.frontiersin.org/journals/research-metrics-and-analytics
https://www.frontiersin.org
https://www.frontiersin.org/journals/research-metrics-and-analytics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:nomoto@acm.org
https://doi.org/10.3389/frma.2018.00031
https://www.frontiersin.org/articles/10.3389/frma.2018.00031/full
http://loop.frontiersin.org/people/505448/overview


Nomoto Resolving Citation Links

FIGURE 1 | An example of citation in a scientific publication. Note that the examples are all fictitious.

Figure 1 has a segment that reads:

Some scholars argue that unless restrained in some way, it will

inevitably lead to the collapse of society, as it allows wealth to

concentrate on a few people while leaving the rest without ameans

to earn enough for a living. [12,13,14]

The goal of (1) is to find out exactly which part of the referred-to
papers the author had in mind when putting down the passage.
As a further example, consider Figure 2, which has a citing
instance,

This is something we call a citing instance or citance (Pocus et al.,

1980).

How do we get to its target, marked by the red box in Figure 2?
This is a problem the task (1) challenges us to solve.

The results from the task (1) at CL-SciSumm give an
overwhelming sense that supervised approaches, in particular,
SVMs, are failing to a degree that is almost indistinguishable
in performance from a method as simple as TFIDF. In light
of this, we turn our attention to neural networks (NNs), which
made a huge stride in recent years, to see whether they have
any relevance to solving the problem. One particular (much
publicized) feature of NNs is that they are an end-to-end system,
meaning that they are designed to learn whatever features they
need by themselves, freeing humans of the drudgery of making
them up. This is something that has not been explored in the
previous CL-SciSumm literature, with an exception of Nomoto
(2016), who presented a preliminary attempt to leverage neural
network to address resolving citation links, from which the
current work descends1. One important difference between the
earlier and present approach is that the latter takesmore seriously
how the input is represented, which as we show below, has a huge
impact on how well models perform.

Our contribution mainly consists of presenting a novel way to
tackle the citation resolution through the application of NNs and
identifying some of the operational factors that influence their
behavior.

In section 2, we discuss some of the past efforts to capture
semantic relatedness among articles, and how they expanded
to make use of information that reside outside the text such

1Some of the NNs we develop here are an adaptation of the embedding models

proposed by Weston et al. (2010, 2013) and Bordes et al. (2013, 2014).

as citation counts, social relations. Section 3 introduces neural
network models. We explain in detail how they actually work
to spot potential targets for citations. Sections 5 and 6 will
discuss how our approach compares against more conventional
baselines, including Ranking-SVM and TFIDF.

2. RELATED WORK

Much of prior work on semantic relatedness among articles
focused on exploiting features internal to the text itself such as
term frequency, named entity, topical structure, collocation, and
burstiness (Lavrenko et al., 2001; Brown, 2002; Chen and Chen,
2002; Chen et al., 2003; Nallapati, 2003; Larkey et al., 2004; Lee
and Kageura, 2006; Zhang et al., 2008). Despite a large effort put
into research through a project like TDT (Topic Detection and
Tracking) (Allen, 2002), a general consensus that emerged out of
the experience was that cosine similarity based on TFIDF, simple
as it may seem, is the best option, which as it turned out, rivaled
or even beat technically more informed approaches. Lavrenko
et al. (2001) and Larkey et al. (2004) stand out as an interesting
exception with their emphasis on the use of relevance feedback in
link detection.

There is another growing trend in the literature, in which
people are more concerned about how articles are connected to
one another, and try to explain similarity among them through
the hyperlink structure (Milne and Witten, 2008; West et al.,
2009). Milne and Witten (2008) propose to make use of what
they call context terms, or terms in a Wikipedia page likely to
serve as an outgoing link, as a part of mechanism to disambiguate
word senses. West et al. (2009), meanwhile, seek to enrich the
hyperlink structure of Wikipedia by automatically adding links
that are useful but left out by humans. A basic idea is to encode
a given Wikipedia page in terms of connections it has to the rest
of Wikipedia and use the principal component analysis to predict
links that are missing from the original structure. Compared to
Milne and Witten (2008), which mostly relies on the number of
shared links to determine the relatedness of terms, an approach
by West et al. (2009) achieves a level of sophistication far beyond
that of Milne and Witten (2008).

Bethard and Jurafsky (2010) aim at identifying potential
papers that an author may cite in his or her work. Besides
textual similarity between citing and cited papers, they look at
features such as whether authors are citing papers they have

Frontiers in Research Metrics and Analytics | www.frontiersin.org 2 October 2018 | Volume 3 | Article 31

https://www.frontiersin.org/journals/research-metrics-and-analytics
https://www.frontiersin.org
https://www.frontiersin.org/journals/research-metrics-and-analytics#articles


Nomoto Resolving Citation Links

FIGURE 2 | A citance and its target. A sentence boxed in red represents a true target for the citance (one in green box) and one underlined in blue a false target. Note

that the examples are all fictitious.

cited in the past, whether they are citing works done by their
past co-authors, and how many times papers are cited by other
authors. The significance of Bethard and Jurafsky (2010) lies in
their finding that much of identifying potential papers is actually
driven by factors extraneous to the content of a paper, such
as recency, authorship and citation counts. The finding is also
consonant with an observation by Meij and de Rijke (2007) that
contextual information such as the number of citations has a
visible impact on the effectiveness of document retrieval in the
scientific literature.

Among the systems that participated in the 2016 CL-SciSumm
conference, those from Cao et al. (2016), Li et al. (2016), and
Moraes et al. (2016) are most notable. Cao et al. (2016) split the
text into n-sentence long segments and used the SVMRanking to
find a stretch of text likely to be a source of the citation. Moraes
et al. (2016) found that an approach using TFIDF together with
some preprocessing options (stemming, cutting off sentences that
exceed a certain limit) outperformed that based on a tree-kernel.
Meanwhile, Li et al. (2016) turned to a rule based model, where
they combined diverse similarity metrics (Jaccard, word2vec, idf-
based similarity, etc.), each weighted with some hand-picked
coefficient, to arrive at a prediction. The approach is manually
demanding because how much contribution each feature makes
to the final outcome has to be decided by humans, and its ability
to generalize is unknown because it was tested only on one
particular dataset provided by the CL-SciSumm in 2016.

Despite differences in ways people tackled the problem, a
curious commonality emerged from the studies: that a simple
similarity metric such as TFIDF or Jaccard works better than
those that rely on supervision (Li et al., 2016 even found that

Word2Vec fell behind Jaccard). Later in the paper, we will
examine whether what they found holds true for the current
setup, while looking at how NNs fare against Jaccard and TFIDF.

3. RESOLVING CITATION LINKS WITH
NEURAL NETWORKS

In this work, we explore two approaches to modeling citation
resolution, both based on neural networks: one is what we might
call a “triplet model” which aims to rank sentences in terms
of how similar they are to the source sentence (citance); and
the other is a binary classification model which labels a given
sentence as “true” or “false,” depending on how likely a target it
is.

3.1. Triplet Model
We start with the triplet model. Its objective is to provide a
scoring function h that favors a true target2 over a false one, or
more precisely, to build a function that ensures that h(s, t+) >
h(s, t−), where s denotes a citing snippet, t+ denotes a true target
(a sentence humans judged as a target) and t− a false target
(i.e., a sentence not selected as target). Here and throughout, we
assume that both s and t consist of exactly one sentence. If we take
Figure 2 as an example, the green box corresponds to s, the red
to t+ and the blue to t−

2 By target, we mean one or more sentence in the referred-to paper (RP) that serve

as a source for a snippet or text citing the RP: for example, a sentence boxed in

red in Figure 2; and those not boxed are said to be false targets with respect to the

citance.
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FIGURE 3 | Citation resolution models. ψ is a function to transform the input, mapping it into a matrix of real numbers. f denotes an arithmetic operation on outputs of

ψ , L1,2 hidden layers. A star marked with an “O” represents an output layer. The number of hidden units in L1 in the binary model is 100, and that in L2 is 2. L1 in the

triplet model consists of 60 hidden units. E1 is an embedding layer containing 10 units.

We define h by:

h(s, t) = V(s)⊤V(t), (1)

where V(s) denotes a vector derived from s through the
application of some neural network and similariy for V(t). One
way to ensure that s’s similarity with its true target (t+) ranks
higher than that with a false target (t−) is to require the following
constraint to hold for h (Weston et al., 2010; Bordes et al., 2014):

∀i,j h(s, t
+) > h(s, t−). (2)

Noting that we need to ensure that h(s, t−) − h(s, t+) < −C
for some constant C ( 6= 0), the above formula turns into a loss
function:

L1 = max(0,C − h(s, t+)+ h(s, t−)). (3)

One way to think about t+ and t− is to take the former as a
sentence labeled by humans as a true target and the latter as one
of those sentences that are similar to t+ (we call it target-centric
supervision as opposed to citance-centric supervision, which we
later explain).

Figure 3 gives a general picture of how we move through a
neural architecture to C − h(s, t+) + h(s, t−). ψ(·) denotes a
representation function that maps a sentence into a discrete or
continuous multi-dimensional space. While there are a number

of ways to define ψ , we focus on the following three. Note that N
is the size of the vocabulary.

ψe(s) =









v11 v12 v13 . . . v1N
v21 v22 v23 . . . v2N
...................................
vI1 vI2 vI3 . . . vIN









(4)

ψb(s) = {0, 1}N (5)

ψt(s) =
(

w1 w2 w3 . . . wN

)

(6)

(4) represents what is generally known as “word embedding,”
where each word in a sentence is assigned to a vector of randomly
generated real numbers, whose length I is also arbitrarily chosen
(we set I to 10 in the experiments later described). (5) produces a
representation that consists of binary values, with 0 indicating the
absence and 1 the presence of a particular word in the sentence.
(6) works like (5), except that it associates each word with its tfidf
value.

We project ψ(s) and ψ(t) into a hidden layer l via a matrix
W (∈ R

N×K)3. K represents the number of neural units in l.

3Note that the shape of W will become I times N by K, when working with word

embedding. As a further note, ψb(s) is of shape S × N, where S is the length of

sentence s (the number of words) and N the size of the vocabulary, with each word

represented as a “one-hot” vector, meaning it consists of a single vector of size N,

with all cells set to 0, except for one that corresponds to the relevant word, which

is set to 1. ψt(s) works the same way, except that each word vector has a tfidf value

where ψb(s) has 1.
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Intuitively, one could think of an element of W as indicating
the strength of relationship between a word and a corresponding
hidden unit. How to determine it is a primary concern of the
neural model.

Now we define a layer G1 by

G1(s) = g(ψ(s)W1 + b1) (7)

b1 is a parameter for the bias and g an activation function
which we take to be a rectifier: i.e., g(x) = max(0, x). For each
(si, t

+
i , t

−
i ) ∈ D, we run the stochastic gradient descent (SGD) to

minimize:

max(0,C − G1(s)G1(t
+)⊤ + G1(s)G1(t

−)⊤).

It is important to note that minimizing has the effect of increasing
the chance that the similarity of the citance to its true target is
larger than that to a false target. For SGD, we use an optimizer
known as ADAM, which makes use of bias corrected moments to
adaptively change learning rates (Kingma and Ba, 2015; Ruder,
2016). We set C to 1.0 in the experiments below, following
Weston et al. (2013).

3.2. Binary Classification Model
The binary model takes as input a vector of features of the
from (f (si1, ti1), . . . , f (siN , tiN))

4, which we feed into the layerG1,
whose output is further fed to the following:

G2(u) = m(G1(s)W2 + b2). (8)

The loss function is given by:

L2 = −y∗ log(G2(u)). (9)

where W2 is of the shape K × 2, y is a true label for a given
sentence, m is a softmax function. y is assigned to (1, 0) if t is a
true target of s and (0, 1), otherwise. We define x · y as an inner
product of x and y. We assume f to be either an element-wise
multiplication or a squared distance.

4. DATA SETS

We created training data from three sources: (1) the
“Development-Set-Apr8” dataset (henceforth, DSA2016)
(Jaidka et al., 2016); (2) a pilot study corpus which was created
as a part of the Text Analysis Conference (TAC2014), prior to
DSA2016, and (3) the data made available for the shared task
conference at BIRNDL2016 (hereafter, SRD2016). Regardless of
where it originates, each dataset contains a number of folders
representing a topic, which is composed of one reference paper
(RP) and a number of papers that make reference to it (or CPs) 5.

4sij denotes the j-th word in the vocabulary that appears in si. The same applies to

tij.
5Figure 4 shows one such cluster: what appears under Citance_XML is a group

of papers that contain passages (citances) that refer to paper C90-2039, which is

placed in a directory called Reference_XML. The former corresponds to CPs and

the latter to RP. Associated with each topic cluster is a file that contains human

TABLE 1 | Corpus profiles.

RP |RP| #CPs |T| #Citances

TAC2014

C90-2039 211 10 33 16

C94-2154 118 5 12 5

E03-1020 99 9 19 15

H05-1115 190 8 19 12

H89-2014 152 8 19 11

J00-3003 586 9 24 10

J98-2005 105 9 26 21

N01-1011 195 8 16 8

P98-1081 164 9 60 25

X96-1048 363 9 21 12

DSA2016

C02-1025 205 18 31 23

C08-1098 226 22 37 29

C10-1045 321 13 42 33

D10-1083 248 11 21 18

E09-2008 63 10 8 8

N04-1038 258 20 44 24

P06-2124 247 12 38 18

W04-0213 161 13 28 18

W08-2222 165 9 13 9

W95-0104 338 25 68 39

SRD2016

C00-2123 204 16 24 20

C04-1089 177 16 19 17

I05-5011 213 19 33 23

J96-3004 473 47 109 69

N06-2049 156 16 35 22

P05-1004 235 12 14 14

P05-1053 219 34 90 71

P98-1046 177 26 34 31

P98-2143 157 43 93 59

W03-0410 275 10 29 24

Table 1 give some statistical profiles of TAC2014, DSA2016,
and SRD2016. |T| is the number of sentences in RP which CPs’
citations are pointing to (target sentences). |RP| represents the
number of sentences that comprise the RP, #CPs the number of
citing papers, and #Citances the number of citing instances (or
citances) in CPs that make reference to RP. |T| tends to be greater
than #Citances, as most of target sentences appear in more than
one citance.

In what follows, we mean by CP a set of sentences that
comprise a citing paper and by RP those that comprise its
reference paper. We build a training set by creating a set D of

created annotations (e.g., C90-2039-annv3.txt in Figure 4) that indicate which part

of the RP a given citing passage relates to, an example of which is found in Figure 5:

the area shaded in green contains information on a citing passage and the one in

yellow indicates a target sentence.
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FIGURE 4 | Directory plot of topic cluster C90-2039.

triplets such that: for a given s ∈ CP and t ∈ RP,

D = {(s, t, u)}, ∃u ∈ R, u 6= t, (10)

where R ⊂ RP. Thus, if we have a reference paper with four
sentences {a, b, c, d} a citing instance s from CP, and a target
sentence b, we will have {(s, b, a), (s, b, c), (s, b, d)} as the training
data. The size of the training data for topic clusterC roughly sums
to:

∑

v∈I(C)

r(v)|R ∩ T|, (11)

where r(v) the number of target sentences associated with a citing
instance v, and |R| the size of R. I(C) stands for a set of citing
instances in C, T a complement of T (a set of target sentences).
We set |R| to 10 in the experiments described below.

5. EVALUATION

To evaluate, we followed a cross validation style setup where we
set aside one cluster for testing, using the rest for training, and
report an average performance we get from the validation test on
each of the clusters contained in a dataset.

TAC2014, DSA2016, and SRD2016 each came with ten topic
clusters, consisting of one reference paper and a number of
papers which cite that paper.We gauged performance by ametric
known as MRR (mean reciprocal rank), which produces the
average of the inverted ranks of first true targets retrieved by the

models. The closer an MRR is to 1, the better the performance is.
Formally, MRR is defined as

R(C,M) =
1

|C|

∑

t[i] : i∈C

1

rankM(t[i])
(12)

C is a set of citances (see Figure 5 for an example) and M a
model6. In case a citance or a target involves multiple sentences,
we split them into pairs of sentences in such a way that each pair
will consist of exactly one sentence from s and one from t. This
makes it easier for NNs to handle inputs, as they require that the
length of input to stay fixed. rankM(t[i]) represents the rank of the
first true target returned byM for the i-th citance. Note that MRR
is meant to measure performance not in terms of how similar the
output is to target sentences as was done in the past SciSumm
events, but in terms of how accurately we locate a true target. We
believe this is more in line with the goal of the CL-SciSumm7, 8.

To find how neural models compare to some of the more
conventional methods, we also included Ranking SVM (SVR,
henceforth) (Joachims, 2006)9 in a roster of models we put to the
test. As mentioned earlier, given the relative paucity of positive
instances available, it may be hard to get a meaningful insight by
running a discriminatory version of SVM, as it requires a sizable
amount of training data for each of the labels we are interested
in. Since we have on the average, positive instances accounting
for only about 10% of the corpus amenable to use in training, the
discrete classificationwith SVM is a non starter. This is the reason
we turn to SVR.

Preliminary tests we ran on NNs found that NNs trained on
triplets created with the target-centric supervision (section 3.1)
were not able to produce performance on a par with baselines.
Which promoted us to come up with an alternative setup, where
we regard sentences inRP that are most similar to those inCP as
targets, entirely dismissing the annotations supplied by humans
(which we call citance-centric supervision or CCS)10. As it turned
out, the adoption of CCS brought a clear gain to NNs, propelling
them over baselines by a comfortable margin.

Under the new setup, we have a triplet of the form:

D1 = {(s, t, u)}n, (13)

where t is a sentence in RP that ranks between the 1st and 10th
in terms of the similarity to s (∈ CP) and u (∈ RP) is a sentence

6It is safe to assume that a ground truth citance consists of two types of

information: the site of a citing instance in CP and that of its target in RP.
7We were told that they abandoned an accuracy based metric because it was not

able to distinguish participating systems, with their performance crawling around

0.
8While a particular way we set up the evaluationmakes it infeasible tomake a direct

comparison to the systems at the CL-SciSumm, we included in the evaluation, our

analogs of baselines that were noted at the conference for their strong performance

over other competing methods, in particular, TFIDF, Jaccard, and SVM-Ranking,

which would provide some sense of how the current setup compares to the

previous approaches.
9We used the sklearn library to implement the SVR (http://scikit-learn.org/stable/

modules/generated/sklearn.svm.SVR.html).
10This is equivalent to what is generally known as distant supervision in the

machine learning literature, where training labels are created artificially with

heuristics or rules (cf. Mintz et al., 2009).
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FIGURE 5 | Citation and target. A 65th sentence in C10-2167 is seen as referring to a fourth sentence in C02-1025.

FIGURE 6 | Strict vs. extended target span.

that ranks between the 11th and 20th (the similarity was given in
the dot-product). n is the number of training instances. We also
applied the idea to the binary classification model: we treated top
10 most similar sentences as true targets and those that did not
make it to the top 10 but ranked above 21 as corrupt or false. The
training and test data for the binary classifier look like:

D2 = {(f (ψ(s),ψ(t)), y)}n. (14)

ψ is either ψb or ψt . f is an element-wise multiplication or a
squared distance. y ∈ {1, 0}. s ∈ CP and t ∈ RP. SVR was trained
on D2 with f set to the element-wise multiplication.

In addition to SVR, we consider two other baselines, TFIDF
and BDOT Both make use of the inner product to determine
whether t is a target for s. They differ only in what they take as
input: TFIDF operates on vectors of values expressed in TFIDF,
while BDOT on those that consist of binary values. Formally, they
will come to:

TFIDF(s, t) = ψt(s)ψt(t)
⊤ (15)

BDOT(s, t) = ψb(s)ψb(t)
⊤ (16)

Notice that BDOT is in practice equivalent to a familiar Jaccard
coefficient:

ψb(s)ψb(t)
⊤ ≈

|s ∩ t|

|s ∪ t|
, (17)

which the previous literature found to be singularly effective for
identifying the target passage (Li et al., 2016). In BDOT, we can
safely ignore the denominator as it remains invariant: |ψb(s) ∪
ψb(t)| = N (the size of the vocabulary, i.e., the number of unique
tokens that comprise the dataset).

Finding MRR involves ranking for a given s ∈ CP,
a sentence t in RP in accordance to how similar s is to
t. For SVR, TFIDF, and BDOT, this is straightforward. For
NNs, however, things get somewhat tricky, as their outputs
represent the loss, not the similarity. So we use G1 instead
[see (7)] as an indicator of the strength of the relationship
between s and t: in other words, we quantify the similarity by
G1(s)G1(t)

⊤.

Frontiers in Research Metrics and Analytics | www.frontiersin.org 7 October 2018 | Volume 3 | Article 31

https://www.frontiersin.org/journals/research-metrics-and-analytics
https://www.frontiersin.org
https://www.frontiersin.org/journals/research-metrics-and-analytics#articles


Nomoto Resolving Citation Links

TABLE 2 | Results in MRR for CCS.

Model ±0 ±1 ±2 ±3 ±4 ±5

TAC2014

NN: in = binary,loss = entropy 0.0940 0.1742 0.2151 0.2404 0.2993 0.3151

NN: in = binary, loss = triplet 0.0900 0.1601 0.2600 0.2476 0.2620 0.3198

NN: in = tfidf, loss = triplet 0.0710 0.1546 0.2212 0.1998 0.2305 0.2101

NN: in = embedding, loss = triplet 0.0720 0.1308 0.1793 0.2175 0.2465 0.2621

NN: in = word2vec_1, loss = triplet 0.0028 0.0215 0.0340 0.0468 0.0715 0.0785

NN: in = word2vec_2, loss = triplet 0.0054 0.0249 0.0430 0.0472 0.0575 0.0776

SVR 0.0694 0.1351 0.1652 0.2182 0.2618 0.2983

TFIDF 0.0711 0.1297 0.1677 0.2060 0.2387 0.2552

BDOT 0.0777 0.1440 0.1865 0.2291 0.2556 0.2852

DSA2016

NN: in = binary, loss = entropy 0.0864 0.1724 0.2166 0.2533 0.3020 0.3340

NN: in = binary, loss = triplet 0.0918 0.1400 0.2198 0.1871 0.2026 0.3439

NN: in = tfidf, loss = triplet 0.0643 0.1627 0.2107 0.2363 0.2721 0.3016

NN: in = embedding, loss = triplet 0.0799 0.1492 0.2013 0.2414 0.2696 0.3082

NN: in = word2vec_1, loss = triplet 0.0025 0.0255 0.0348 0.0401 0.0486 0.0613

NN: in = word2vec_2, loss = triplet 0.0104 0.0196 0.0290 0.0484 0.0591 0.0678

SVR 0.0687 0.1500 0.1847 0.2290 0.2725 0.3060

TFIDF 0.0828 0.1383 0.1804 0.2068 0.2425 0.2758

BDOT 0.0909 0.1557 0.2003 0.2317 0.2685 0.3009

SRD2016

NN: in = binary, loss = entropy 0.0771 0.1373 0.1781 0.2137 0.2287 0.2476

NN: in = binary, loss = triplet 0.0942 0.1435 0.1642 0.1641 0.1922 0.2535

NN: in = tfidf, loss = triplet 0.0746 0.1144 0.1438 0.1724 0.1882 0.2039

NN: in = embedding, loss = triplet 0.0808 0.1134 0.1379 0.1533 0.1723 0.1853

NN: in = word2vec_1, loss = triplet 0.0043 0.0174 0.0342 0.0545 0.0643 0.0728

NN: in = word2vec_2, loss = triplet 0.0067 0.0083 0.0138 0.0801 0.0806 0.0951

SVR 0.0747 0.1183 0.1534 0.1729 0.1932 0.2238

TFIDF 0.0688 0.1081 0.1428 0.1828 0.2061 0.2315

BDOT 0.0819 0.1196 0.1604 0.1969 0.2319 0.2560

The highest mark achieved for each span radius is highlighted in bold.

Moreover, to get a broad picture of how the models perform,
we introduce an idea we call approximately correct targets
(ACTs), where we are not only interested in finding out whether
they pick up exact sentences humans labeled as true targets,
but also finding out how close predictions are to the true
targets.

Consider Figure 6. A target sentence of interest is one circled
in red. Wemean by approximately correct targets, those sentences
that appear n sentences away (both forward and backward)
from the target, where n is arbitrarily chosen (which is set at
3 in the example) and take any sentence that occurs within
the region to be as correct as the true target. In Figure 6,
ACTs are found in the area shaded in light blue. A motivation
for this idea comes from our curiosity to find out whether
it is possible to achieve meaningful performance by making
the citation resolution less hard (the preliminary experiments
suggest it will not happen if we stick to the strict target
span).

6. RESULTS AND DISCUSSION

Tables 2, 3 show the outcome of running NNs in four different
setups, along with baselines11. “NN: in = binary,loss = entropy”
refers to a binary classification model using ψb for the input
transformation, and the L2 loss function. “NN: in = binary, loss
= triplet” denotes a triplet model with ψb for the input and the
loss measured in L1. “NN: in = tfidf, loss = triplet” and “NN: in
= embedding, loss = triplet” are like the previous model except
that the former uses ψt and the latter, ψe in place of ψb. The
top row indicates the length of the target span. For instance,
n = ±3 means that any of the three sentences that either precede
or follow the target sentence is considered ACTs; and n = ±0
means that there is no ACT other than the target sentence itself.

11We performed stemming and removed stop words, using the NLTK package

(Bird et al., 2009). All the NNs described here were created using the tensorflow

package (https://www.tensorflow.org).
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TABLE 3 | Results in MRR for TCS.

Model ±0 ±1 ±2 ±3 ±4 ±5

TAC2014

NN: in = binary, loss = entropy 0.0557 0.1131 0.1484 0.1700 0.1946 0.2240

NN: in = binary, loss = triplet 0.0552 0.1485 0.2020 0.2394 0.2760 0.3024

NN: in = tfidf, loss = triplet 0.0537 0.1382 0.1804 0.2008 0.2301 0.2412

NN: in = embedding, loss = triplet 0.0784 0.1324 0.1551 0.1922 0.2178 0.2335

NN: in = word2vec_1, loss = triplet 0.0041 0.0204 0.0389 0.0555 0.0842 0.0906

NN: in = word2vec_2, loss = triplet 0.0109 0.0282 0.0446 0.0502 0.0587 0.0775

SVR 0.0542 0.1121 0.1483 0.1890 0.2293 0.2559

TFIDF 0.0711 0.1297 0.1677 0.2060 0.2387 0.2552

BDOT 0.0777 0.1440 0.1865 0.2291 0.2556 0.2852

DSA2016

NN: in = binary, loss = entropy 0.0870 0.1700 0.2124 0.2542 0.2898 0.3204

NN: in = binary, loss = triplet 0.0699 0.1273 0.1951 0.2126 0.2571 0.2892

NN: in = tfidf, loss = triplet 0.0781 0.1450 0.1813 0.2054 0.2317 0.2713

NN: in = embedding, loss = triplet 0.0781 0.1306 0.1788 0.2276 0.2399 0.2585

NN: in = word2vec_1, loss = triplet 0.0171 0.0457 0.0590 0.0650 0.0724 0.0792

NN: in = word2vec_2, loss = triplet 0.0126 0.0220 0.0325 0.0515 0.0634 0.0714

SVR 0.0872 0.1512 0.1866 0.2119 0.2559 0.2811

TFIDF 0.0828 0.1383 0.1804 0.2068 0.2425 0.2758

BDOT 0.0909 0.1557 0.2003 0.2317 0.2685 0.3009

SRD2016

NN: in = binary, loss = entropy 0.0728 0.1352 0.1706 0.2014 0.2189 0.2322

NN: in = binary, loss = triplet 0.0714 0.1291 0.1685 0.1993 0.2168 0.2362

NN: in = tfidf, loss = triplet 0.0682 0.1161 0.1488 0.1668 0.1995 0.2100

NN: in = embedding, loss = triplet 0.0794 0.1137 0.1303 0.1437 0.1600 0.1733

NN: in = word2vec_1, loss = triplet 0.0054 0.0142 0.0316 0.0536 0.0623 0.0689

NN: in = word2vec_2, loss = triplet 0.0139 0.0188 0.0254 0.0858 0.0926 0.1054

SVR 0.0593 0.1092 0.1382 0.1696 0.1883 0.2200

TFIDF 0.0688 0.1081 0.1428 0.1828 0.2061 0.2315

BDOT 0.0819 0.1196 0.1604 0.1969 0.2319 0.2560

The highest mark achieved for each span radius is highlighted in bold.

TABLE 4 | Effects of multiplication vs. squared distance on performance.

Model ±0 ±1 ±2 ±3 ±4 ±5

TAC2014

NN: in = binary/mul, loss = entropy 0.0940 0.1742 0.2151 0.2404 0.2993 0.3151

NN: in = tfidf/mul, loss = entropy 0.0741 0.1425 0.1866 0.2334 0.2644 0.2817

NN: in = binary/sqrd, loss = entropy 0.0622 0.1764 0.2225 0.2443 0.2784 0.2457

NN: in = tfidf/sqrd, loss = entropy 0.0471 0.0854 0.1403 0.1739 0.2080 0.2558

DSA2016

NN: in = binary/mul, loss = entropy 0.0864 0.1724 0.2166 0.2533 0.3020 0.3340

NN: in = tfidf/mul, loss = entropy 0.0790 0.1581 0.2048 0.2416 0.3045 0.3412

NN: in = binary/sqrd, loss = entropy 0.0462 0.1032 0.1621 0.1774 0.2015 0.2293

NN: in = tfidf/sqrd, loss = entropy 0.0392 0.0929 0.1374 0.1675 0.1946 0.2132

SRD2016

NN: in = binary/mul, loss = entropy 0.0771 0.1373 0.1781 0.2137 0.2287 0.2476

NN: in = tfidf/mul, loss = entropy 0.0998 0.1470 0.1819 0.2174 0.2401 0.2596

NN: in = binary/sqrd, loss = entropy 0.0338 0.0671 0.0835 0.0978 0.1215 0.1414

NN: in = tfidf/sqrd, loss = entropy 0.0505 0.0744 0.0991 0.1249 0.1499 0.1677
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The numbers in the tables show MRRs averaged over 10 topic
clusters (An MRR for each cluster was produced via a by-topic
cross validation, where we set aside one topic cluster for testing
and use the rest for training).

6.1. CCS vs. TCS
The results in CCS or citance-centric supervision (Table 2) show
a clear tendency for the NNs to score higher than the baselines,
which include SVR, TFIDF, and BDOT, across varying lengths
of the span. Of a particular note is the performance of models
which take the input in binary format, against those that employ
TFIDF or the embedding12. We see the former consistently
outperforming the latter. It is safe to say that representing the
input in binary format led to the superior performance, which
parallels BDOT outperforming TFIDF across the datasets.

By contrast, in TCS (target-centric supervision), NNs suffer an
across-the-board decline in performance, with some of the top
performers under CCS dipping below baselines. It is interesting
that they seem to suffer more in TAC than in DSA and SRD,
which could be attributable to the fact that TAC contains less
citing papers than the other two (cf. Table 1). Yet the triplet
model still performs better on inputs represented in binary
format than on those in tfidf, which echoes what we found in
CCS.

The finding that CCS yields a better performance happen than
TCS regardless of models we choose, is signficant. Because what it
implies is that hand created annotations are no better than those
created automatically by using a simple similarity metric (or L1-
norm in our case), in terms of quality they permit as training
data. To further investigate the matter, we examined whether the
performance we see under CCS is significantly different from that
we have under TCS. The results are shown in Table 5. We see
“NN: in = binary, loss = entropy” having 0.0006⋆ for p-value,
meaning that the performance it had in CCS was significantly
different from results it produced in TCS. So there appear to
be some grounds for arguing that whether one works with CCS
or TCS does have consequences for neural models, though how
much the choice affects them varies from model to model. “NN:
in = binary, loss = entropy” tends to be more sensitive to the
choice. The same appears to be the case with models involving an
embedding of one sort or another. In constrast, “NN: in = binary,
loss = triplet” is totally blind to whatever differences there might
be between the two modes of annotation. Yet the fact that CCS
in general leads to better results, some of which we found to be
statistically different from those under TCS, does cast some doubt
over the rationale of using human created annotations as gold
standards. Whether this is due to a particular way the datasets
were created or to difficulties inherent to annotating papers for
citation links, remains to be seen.

6.2. Word2Vec Models
Meanwhile, being somewhat struck by a unremarkable
performance of the embedding model, we decided to explore
the use of a pre-trained embedding model based on Word2Vec,

12The statement here is not meant to suggest that any form of embedding will meet

the same fate.

TABLE 5 | Significance Test of CCS against TCS (with paired t-test).

Model p-value

TAC2014

NN: in = binary, loss = entropy 0.0006*

NN: in = binary, loss = triplet 0.1125

NN: in = tfidf, loss = triplet 0.5003

NN: in = embedding, loss = triplet 0.0533

NN: in = word2vec_1, loss = triplet 0.0394**

NN: in = word2vec_2, loss = triplet 0.0292**

DSA2016

NN: in = binary, loss = entropy 0.1021

NN: in = binary, loss = triplet 0.7375

NN: in = tfidf, loss = triplet 0.0350**

NN: in = embedding, loss = triplet 0.0186**

NN: in = word2vec_1, loss = triplet 0.0001*

NN: in = word2vec_2, loss = triplet 0.0002*

SRD2016

NN: in = binary, loss = entropy 0.0082*

NN: in = binary, loss = triplet 0.8765

NN: in = tfidf, loss = triplet 0.5083

NN: in = embedding, loss = triplet 0.0232**

NN: in = word2vec_1, loss = triplet 0.0477**

NN: in = word2vec_2, loss = triplet 0.0002*

Single-starred and double starred numbers break 1 and 5% significance levels,

respectively.

which recently has proven its utility across a wide range of
NLP tasks. Word2Vec is a single layer neural network whose
primary goal is to predict a given word using its left and right
contexts (CBOW) or words that occur closely to what is given
as an input (Skip-Gram). Its importance lies not in its ability to
predict missing words per se, but in the implication that a hidden
structure built while training the model can be used as a latent
“semantic” representation of word. To determine its utility in
the current context, we did experiments with two versions of
Word2Vec, one based on the Google News corpus (word2vec_1)
13, and the other built from the training data (word2vec_2). In
either case, we made use of the Skip-Gram variant of Word2Vec
(the latter model was trained with GENSIM14). We set the length
of a hidden layer to 300, both for the version that employs the
Google News and the one we created locally. The results are
found in Tables 2, 3.

Faced with the way they turned out, which was as
underwhelming as the non-Word2Vec embedding model we saw
previously, we came to a conclusion that the semantics may have
little relevance to predicting target passages. The unimpressive
performance of the embedding models stands in sharp contrast
to the binary models, which rely only on the superficial overlap
between source and target sentences to produce a more decent
performance. The fact that BDOT—which looks at the amount of

13GoogleNews-vectors-negative300.bin.gz (https://github.com/mmihaltz/

word2vec-GoogleNews-vectors.git).
14https://radimrehurek.com/gensim/models/word2vec.html

Frontiers in Research Metrics and Analytics | www.frontiersin.org 10 October 2018 | Volume 3 | Article 31

https://github.com/mmihaltz/word2vec-GoogleNews-vectors.git
https://github.com/mmihaltz/word2vec-GoogleNews-vectors.git
https://radimrehurek.com/gensim/models/word2vec.html
https://www.frontiersin.org/journals/research-metrics-and-analytics
https://www.frontiersin.org
https://www.frontiersin.org/journals/research-metrics-and-analytics#articles


Nomoto Resolving Citation Links

tokens shared among the source and target to determine where
the citation comes from—is closing in on the binary models
lends a further support for the idea that a superficial match is
a more reliable indicator of the target than the semantics served
by the embedding models. Remarkably, the finding is consonant
with what Li et al. (2016) found in their ablation study, who
observed that Jaccard coefficient was by far the most effective
feature among those they considered, including Word2Vec.

6.3. Factors Influencing MRRs
In light of the discussion so far, it would be interesting to ask
whether there is any feature of the dataset that affects the models’
performance. Table 6 gives some insights, which lists the result of
regressing MRR on features that we used previously to describe
each dataset, namely, |RP|, CP, |T|, and |C|, where statistically
significant features are noted with usual markings. It shows
clearly that |RP|, the length of the reference paper is a single most
significant predictor of the model’s performance. In other words,
the shorter the reference, the better the outcome. It turns out
that neither the number of CPs nor that of targets is nearly as
predictive as the length of RP.

In the meantime, Table 4 looks at whether the choice for
f has any effect on performance of the binary model. “mul”
indicates the element-wise multiplication and “sqrd” the squared
distance. The results clearly indicate that “mul” is a better choice,
regardless of how the input is represented. Why this is so, is a
curious question. One hypothesis is that the multiplication over
binary inputs has the effect of eliminating all the words which
occur only in s or t, which somehow caused some useful patterns
to emerge, which NNs exploited. Though it is not clear at this
time where the truth lies, a general lesson one might draw from
the experiments is that how the inputs are encoded is at least as
important as how the models are configured and some careful
thinking must go into designing how to express what one feeds
into NNs.

6.4. Summary of Findings
We conclude the section by highlighting some of the key findings
from the experiments.

• Semantic representation: the token-wise overlap
(BDOT/Jaccard) is a stronger indicator of a target than
the implicit semantic representation induced via the
embedding or Word2Vec (Note that by the embedding,
we mean a random projection of a word into a continuous
space, which obviously is distinct from a Word2Vec induced
representation, as the latter is constructed using weights
(associated with a particular layer) that Word2Vec learned
during the training).

• CCS (automatic annotation) vs. TCS (manual annotation):
we found statistically significant differences between CCS and
TCS in terms of how they impact the performance, though
how much susceptible models are to the differences varies
from one model to another. “NN: in = binary, loss = triplet”
benefitted more from a shift from TCS to CCS, compared to
other models.

TABLE 6 | An analysis on how much individual cluster features affect the task

performance, based on a multiple linear regression (where MRR is regressed on

|RP|, CP, |T| and |C| at each span radius).

Predictor Estimate Std. error t-statistic p-value

±0

|RP| −2.157e-04 8.763e-05 −2.461 0.0211**

CP 1.033e-04 2.183e-03 0.047 0.9626

|T| −1.073e-03 1.156e-03 −0.928 0.3622

|C| 1.005e-03 2.071e-03 0.485 0.6317

±1

|RP| −0.0002979 0.0001267 −2.351 0.0269**

CP −0.0022792 0.0031563 −0.722 0.4769

|T| −0.0013701 0.0016719 −0.820 0.4202

|C| 0.0022852 0.0029942 0.763 0.4525

±2

|RP| −0.0004514 0.0001430 −3.157 0.00413*

CP −0.0008764 0.0035613 −0.246 0.80763

|T| −0.0017530 0.0018864 −0.929 0.36163

|C| 0.0021410 0.0033784 0.634 0.53201

±3

|RP| −0.0005469 0.0001642 −3.330 0.0027*

CP −0.0007249 0.0040910 −0.177 0.8608

|T| −0.0015880 0.0021670 −0.733 0.4705

|C| 0.0019830 0.0038810 0.511 0.6139

±4

|RP| −0.0006571 0.0002097 −3.133 0.00437*

CP −0.0004621 0.0052238 −0.088 0.93022

|T| −0.0018476 0.0027670 −0.668 0.51044

|C| 0.0015511 0.0049556 0.313 0.75688

±5

|RP| −0.0007519 0.0002249 −3.344 0.00261*

CP −0.0008374 0.0056014 −0.149 0.88237

|T| −0.0007575 0.0029670 −0.255 0.80057

|C| 0.0006840 0.0053138 0.129 0.89860

* and ** indicate 1 and 5% significance levels, respectively.

• Cross-entropy vs. triplet loss: there is a tendency for the former
to result in a superior performance over the latter.

Before leaving the section, as a way to assist the reader with an
intuitive understanding of what differences and similarities lie
among the topic clusters, we provide in Figure 7 plots of by-topic
performance (in CCS) of “NN: in = binary, loss = entropy” on
each of the relevant datasets.

7. CONCLUSIONS

We have presented approaches to linking citation and reference
that draw upon neural networks (NNs), and described in detail
what machinery is involved and what we found in experiments
with the three datasets, TAC2014, DSA2016, and SRD2016.
We introduced the notion of approximately correct targets, an
idea that we should treat sentences that occur in the vicinity
of true targets as equally correct, whereby we try to identify
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FIGURE 7 | Plot of by-topic performance of NN:binary+entropy.

an area which is likely to include a true target, instead of
finding its exact location. The experiments found that expanding
the target region by 5 sentences in radius led to a four fold
increase in MRR across the models. Another curious fact the
experiments brought to light was the significance of the way
the input is expressed: it turned out that NNs worked visibly
better with the binary representation than with either TFIDF
or embeddings of the sort we considered in this paper. Also
worthy of some attention is a finding that dispensing human
created labels altogether led to an improvement (recall discussion
on target- vs. citance-centric labeling). How it is so is an
interesting question we have yet to answer. The paucity of

human annotations, and the lack of consistent patterns in human
labelings are some of the possible causes that immediately come
to mind. To fully answer the question, however, may require
finding out how well humans agree on their judgments as
well as collecting additional data, topics we will leave to the
future research.

AUTHOR CONTRIBUTIONS

The author confirms that he is the sole contributor of the present
work and responsible for any error and misrepresentation
thereof.

REFERENCES

Allen, J. (ed.) .(2002). Topic Detection and Tracking: Event-Based Information

Organization. Dordrecht: Kluwer Academic Publishers.

Bethard, S., and Jurafsky, D. (2010). “Who should i cite: learning

literature search models from citation behavior,” in Proceedings of the

19th ACM International Conference on Information and Knowledge

Management (New York, NY: ACM), 609–618. doi: 10.1145/1871437.18

71517

Bird, S., Klein, E., and Loper, E. (2009). Natural Language Processing with Python.

Sebastopol, CA: O’Reilly Media Inc.

Bordes, A., Usunier, N., Weston, J., and Yakhnenko, O. (2013). “Translating

embeddings for modeling multi-relational data,” in Advances in Neural

Information Processing Systems (Lake Tahoe, CA), 1–9.

Frontiers in Research Metrics and Analytics | www.frontiersin.org 12 October 2018 | Volume 3 | Article 31

https://doi.org/10.1145/1871437.18\penalty -\@M {}71517
https://www.frontiersin.org/journals/research-metrics-and-analytics
https://www.frontiersin.org
https://www.frontiersin.org/journals/research-metrics-and-analytics#articles


Nomoto Resolving Citation Links

Bordes, A., Weston, J., and Usunier, N. (2014). “Open question answering with

weakly supervised embedding models,” in ECML PKDD 2014 (Nancy).

Brown, R. (2002). “Dynamic stopwording for story link detection,” in Proceedings

of HLT 2002: Second International Conference on Human Language Technology

(San Diego, CA), 190–193.

Cao, Z., Li, W., and Wu, D. (2016). “Polyu at cl-scisumm 2016,” in BIRNDL 2016

Joint Workshop on Bibliometric-enhanced Information Retrieval and NLP for

Digital Libraries (Newark, NJ), 132–138.

Chen, F., Farahat, A., and Brants, T. (2003). “Story link detection and new event

detection are asymmetric,” in Proceedings of HLT-NACCL 2003 (Edmonton),

13–15.

Chen, Y.-J., and Chen, H.-H. (2002). “NLP and IR approaches to monolingual and

multilingual link dectection,” in The 19th International Conference on

Computational Linguistics (COLING-2002) (Taipei).

Jaidka, K., Chandrasekaran, M. K., Rustagi, S., and Kan, M.-Y. (2016). “Overview

of the 2nd computational linguistics scientific document summarization

shared task (cl-scisumm 2016),” in The Proceedings of the Joint Workshop on

Bibliometric-enhanced Information Retrieval and Natural Language Processing

for Digital Libraries (BIRNDL 2016) (Newark, NJ).

Joachims, T. (2006). “Training linear SVMs in linear time,” in Proceedings

of the ACM Conference on Knowledge Discovery and Data Mining (KDD)

(Philadelphia, PA).

Kingma, D., and Ba, J. L. (2015). “Adam: a method for stochastic optimization,”

in Proceedings of the International Conference on Learning Representation (San

Diego, CA), 1–13.

Larkey, L. S., Feng, F., Connell, M., and Lavrenko, V. (2004). “Language-specific

models in multilingual topic tracking,” in SIGIR ’04: Proceedings of the 27th

Annual International ACM SIGIR Conference on Research and Development in

Information Retrieval (New York, NY: ACM), 402–409.

Lavrenko, V., DeGuzman, J. A. E., LaFallme, D., Pollard, V., and Thomas, S.

(2001). “Relevance models for topic detection and tracking,” in Proceedings of

the Conference on Human Language Technology (Stroudsburg, PA), 102–110.

Lee, K.-S., and Kageura, K. (2006). Korean-Japanese story link detection based

on distributional and contrastive properties of event terms. Inform. Process.

Manage. 42, 538–550. doi: 10.1016/j.ipm.2005.02.005

Li, L., Mao, L., Zhang, Y., Chi, J., Huang, T., and Heng Peng, X. C. (2016). “Cist

system for cl-scisumm 2016 shared task,” in BIRNDL 2016 Joint Workshop

on Bibliometric-Enhanced Information Retrieval and NLP for Digital Libraries

(Newark, NJ), 156–166.

Meij, E., and de Rijke, M. (2007). “Using prior information from citataions in

literature search,” in Proceedings of RIAO2007 (Pittsburgh, PA).

Milne, D., and Witten, I. H. (2008). “Learning to link with wikipedia,” in

Proceedings of the 17th ACM Conference on Information and Knowledge

Management (New York, NY: ACM), 509–518. doi: 10.1145/1458082.1458150

Mintz, M., Bills, S., Snow, R., and Jurafsky, D. (2009). “Distant supervision

for relation extraction without labeled data,” in Proceedings of the Joint

Conference of the 47th Annual Meeting of the ACL and the 4th International

Joint Conference on Natural Language Processing of the AFNLP: Volume 2

- Volume 2 (Stroudsburg, PA: Association for Computational Linguistics),

1003–1011.

Moraes, L., Baki, S., Verma, R., and Lee, D. (2016). “University of houston at cl-

scisumm2016: Svmswith tree kernels and sentence similarity,” in BIRNDL 2016

Joint Workshop on Bibliometric-Enhanced Information Retrieval and NLP for

Digital Libraries (Newark, NJ), 113–121.

Nallapati, R. (2003). “Semantic language models for topic detection and

tracking,” in Proceedings of the HLT-NAACL 2003 Student Research Workshop

(Edmonton), 1–6.

Nomoto, T. (2016). “NEAL:a neurally enhanced approach to linking citation and

reference,” in The Proceedings of the Joint Workshop on Bibliometric-enhanced

Information Retrieval and Natural Language Processing for Digital Libraries

(Newark, NJ).

Ruder, S. (2016). An overview of gradient descent optimisation algorithms. arxiv

preprint arxiv:1609.04747.

West, R., Precup, D., and Pineau, J. (2009). “Completing wikipedia’s hyperlink

structure through dimensionality reduction,” in Proceedings of the 18th ACM

Conference on Information and Knowledge Management (New York, NY:

ACM), 1097–1106. doi: 10.1145/1645953.1646093

Weston, J., Bengio, S., and Usunier, N. (2010). Large scale image annotation:

Learning to rank with joint word-image embeddings. Mach. Learn. 81, 21–35.

doi: 10.1007/s10994-010-5198-3

Weston, J., Bordes, A., Yakhnenko, O., and Usunier, N. (2013). “Connecting

language and knowledge bases with embedding models for relation extraction,”

in Empirical Methods in Natural Language Processing (Seattle, WA),

1366–1371.

Zhang, X., Wang, T., and Chen, H. (2008). “Story link detection based on

dynamic information extending,” in Proceedings of the Third International Join

Conference on Natural Language Processing (Hyderabad), 40–47.

Conflict of Interest Statement: The author declares that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2018 Nomoto. This is an open-access article distributed under the terms

of the Creative Commons Attribution License (CC BY). The use, distribution or

reproduction in other forums is permitted, provided the original author(s) and the

copyright owner(s) are credited and that the original publication in this journal

is cited, in accordance with accepted academic practice. No use, distribution or

reproduction is permitted which does not comply with these terms.

Frontiers in Research Metrics and Analytics | www.frontiersin.org 13 October 2018 | Volume 3 | Article 31

https://doi.org/10.1016/j.ipm.2005.02.005
https://doi.org/10.1145/1458082.1458150
https://doi.org/10.1145/1645953.1646093
https://doi.org/10.1007/s10994-010-5198-3
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/research-metrics-and-analytics
https://www.frontiersin.org
https://www.frontiersin.org/journals/research-metrics-and-analytics#articles

	Resolving Citation Links With Neural Networks
	1. Introduction
	2. Related Work
	3. Resolving Citation Links With Neural Networks
	3.1. Triplet Model
	3.2. Binary Classification Model

	4. Data Sets
	5. Evaluation
	6. Results and Discussion
	6.1. CCS vs. TCS
	6.2. Word2Vec Models
	6.3. Factors Influencing MRRs
	6.4. Summary of Findings

	7. Conclusions
	Author Contributions
	References


