3 research outputs found

    Experimental study on the impact of antenna characteristics on non-stationary V2I channel parameters in tunnels

    Get PDF
    This paper analyses the experimentally-assessed dual-polarized (DP) mobile channel in a tunnel environment at 1.35 GHz under traffic conditions. We investigate the impact of antenna polarization and radiation pattern on the non-stationary vehicle-to-infrastructure (V2I) channel. Basic channel evaluation metrics are examined including path gain, co-polarization ratio (CPR), and cross-polarization discrimination (XPD). In addition, the stationarity region is estimated using the channel correlation function approach, and used to calculate the time-varying delay and Doppler power profiles. Statistical models are presented for parameters like CPR, XPD, RMS delay and Doppler spreads, where the lognormal distribution provides the best fit. The polarization and the opening angle of the antennas into the propagation channel are found to strongly influence the observed non-stationarity of the channel. They impact the degree of multipath richness that is captured, thus providing different path gain, delay and Doppler spreads. Based on our analysis, the directional antenna with vertical polarization provides the longest stationarity time of 400 ms at 90 km/h, as well as the highest path gain and lowest dispersion. Furthermore, the DP channel capacity is calculated and its dependence on different normalization approaches is investigated. We propose a more accurate normalization for the DP channels that takes the conservation of energy into account. Moreover, the subchannels correlation coefficients are determined. While the condition number is found to be low on average, the correlation results show high correlation among the DP subchannels. As conclusion, we show how the CPR and XPD play the main role in providing multiplexing gain for DP tunnel channels

    Wireless secrecy under multivariate correlated Nakagami-m fading

    Get PDF
    Current wireless secrecy research in the literature has mainly been performed for one wiretapper under correlated fading. In this paper, a new wireless secrecy framework for multiple wiretappers under multivariate exponentially-correlated (exp.c.) Nakagami-m fading is proposed. Using the distribution of multivariate exp.c. Nakagami-m fading, new, exact, and compact expressions for the ergodic secrecy capacity, and secrecy outage probability (SOP) under multiple wiretappers are obtained for an integer fading parameter m. A secrecy analysis is also performed for the first time in this paper using an adaptive on/off transmission encoder under multivariate exp.c. Nakagami-m fading. A secrecy analysis with three wiretappers under quadrivariate exp.c. Nakagami-m fading is also given, which shows the effectiveness of the new framework. Simulation results are shown to exactly match theoretical predictions

    Polarization in wireless communications

    No full text
    Guest editorial of Physical Communication, 5(4):287:288, December 2012International audienc
    corecore