23,336 research outputs found

    Polar codes for the two-user multiple-access channel

    Full text link
    Arikan's polar coding method is extended to two-user multiple-access channels. It is shown that if the two users of the channel use the Arikan construction, the resulting channels will polarize to one of five possible extremals, on each of which uncoded transmission is optimal. The sum rate achieved by this coding technique is the one that correponds to uniform input distributions. The encoding and decoding complexities and the error performance of these codes are as in the single-user case: O(nlog⁥n)O(n\log n) for encoding and decoding, and o(exp⁥(−n1/2−ϔ))o(\exp(-n^{1/2-\epsilon})) for block error probability, where nn is the block length.Comment: 12 pages. Submitted to the IEEE Transactions on Information Theor

    Polar codes for distributed source coding

    Get PDF
    Ankara : The Department of Electrical and Electronics Engineering and The Graduate School of Engineering and Science of Bilkent Univesity, 2014.Thesis (Ph. D.) -- Bilkent University, 2014.Includes bibliographical references leaves 164-170.Polar codes were invented by Arıkan as the first “capacity achieving” codes for binary-input discrete memoryless symmetric channels with low encoding and decoding complexity. The “polarization phenomenon”, which is the underlying principle of polar codes, can be applied to different source and channel coding problems both in single-user and multi-user settings. In this work, polar coding methods for multi-user distributed source coding problems are investigated. First, a restricted version of lossless distributed source coding problem, which is also referred to as the Slepian-Wolf problem, is considered. The restriction is on the distribution of correlated sources. It is shown that if the sources are “binary symmetric” then single-user polar codes can be used to achieve full capacity region without time sharing. Then, a method for two-user polar coding is considered which is used to solve the Slepian-Wolf problem with arbitrary source distributions. This method is also extended to cover multiple-access channel problem which is the dual of Slepian-Wolf problem. Next, two lossy source coding problems in distributed settings are investigated. The first problem is the distributed lossy source coding which is the lossy version of the Slepian-Wolf problem. Although the capacity region of this problem is not known in general, there is a good inner bound called the Berger-Tung inner bound. A polar coding method that can achieve the whole dominant face of the Berger-Tung region is devised. The second problem considered is the multiple description coding problem. The capacity region for this problem is also not known in general. El Gamal-Cover inner bound is the best known bound for this problem. A polar coding method that can achieve any point on the dominant face of El Gamal-Cover region is devised.Önay, SaygunPh.D

    Achieving the Uniform Rate Region of General Multiple Access Channels by Polar Coding

    Full text link
    We consider the problem of polar coding for transmission over mm-user multiple access channels. In the proposed scheme, all users encode their messages using a polar encoder, while a multi-user successive cancellation decoder is deployed at the receiver. The encoding is done separately across the users and is independent of the target achievable rate. For the code construction, the positions of information bits and frozen bits for each of the users are decided jointly. This is done by treating the polar transformations across all the mm users as a single polar transformation with a certain \emph{polarization base}. We characterize the resolution of achievable rates on the dominant face of the uniform rate region in terms of the number of users mm and the length of the polarization base LL. In particular, we prove that for any target rate on the dominant face, there exists an achievable rate, also on the dominant face, within the distance at most (m−1)mL\frac{(m-1)\sqrt{m}}{L} from the target rate. We then prove that the proposed MAC polar coding scheme achieves the whole uniform rate region with fine enough resolution by changing the decoding order in the multi-user successive cancellation decoder, as LL and the code block length NN grow large. The encoding and decoding complexities are O(Nlog⁥N)O(N \log N) and the asymptotic block error probability of O(2−N0.5−ϔ)O(2^{-N^{0.5 - \epsilon}}) is guaranteed. Examples of achievable rates for the 33-user multiple access channel are provided

    Polar codes in network quantum information theory

    Get PDF
    Polar coding is a method for communication over noisy classical channels which is provably capacity-achieving and has an efficient encoding and decoding. Recently, this method has been generalized to the realm of quantum information processing, for tasks such as classical communication, private classical communication, and quantum communication. In the present work, we apply the polar coding method to network quantum information theory, by making use of recent advances for related classical tasks. In particular, we consider problems such as the compound multiple access channel and the quantum interference channel. The main result of our work is that it is possible to achieve the best known inner bounds on the achievable rate regions for these tasks, without requiring a so-called quantum simultaneous decoder. Thus, our work paves the way for developing network quantum information theory further without requiring a quantum simultaneous decoder.Comment: 18 pages, 2 figures, v2: 10 pages, double column, version accepted for publicatio

    A Survey of Physical Layer Security Techniques for 5G Wireless Networks and Challenges Ahead

    Get PDF
    Physical layer security which safeguards data confidentiality based on the information-theoretic approaches has received significant research interest recently. The key idea behind physical layer security is to utilize the intrinsic randomness of the transmission channel to guarantee the security in physical layer. The evolution towards 5G wireless communications poses new challenges for physical layer security research. This paper provides a latest survey of the physical layer security research on various promising 5G technologies, including physical layer security coding, massive multiple-input multiple-output, millimeter wave communications, heterogeneous networks, non-orthogonal multiple access, full duplex technology, etc. Technical challenges which remain unresolved at the time of writing are summarized and the future trends of physical layer security in 5G and beyond are discussed.Comment: To appear in IEEE Journal on Selected Areas in Communication

    Design and optimization of joint iterative detection and decoding receiver for uplink polar coded SCMA system

    Get PDF
    SCMA and polar coding are possible candidates for 5G systems. In this paper, we firstly propose the joint iterative detection and decoding (JIDD) receiver for the uplink polar coded sparse code multiple access (PC-SCMA) system. Then, the EXIT chart is used to investigate the performance of the JIDD receiver. Additionally, we optimize the system design and polar code construction based on the EXIT chart analysis. The proposed receiver integrates the factor graph of SCMA detector and polar soft-output decoder into a joint factor graph, which enables the exchange of messages between SCMA detector and polar decoder iteratively. Simulation results demonstrate that the JIDD receiver has better BER performance and lower complexity than the separate scheme. Specifically, when polar code length N=256 and code rate R=1/2 , JIDD outperforms the separate scheme 4.8 and 6 dB over AWGN channel and Rayleigh fading channel, respectively. It also shows that, under 150% system loading, the JIDD receiver only has 0.3 dB performance loss compared to the single user uplink PC-SCMA over AWGN channel and 0.6 dB performance loss over Rayleigh fading channel
    • 

    corecore