1,206 research outputs found

    A Survey of Physical Layer Security Techniques for 5G Wireless Networks and Challenges Ahead

    Get PDF
    Physical layer security which safeguards data confidentiality based on the information-theoretic approaches has received significant research interest recently. The key idea behind physical layer security is to utilize the intrinsic randomness of the transmission channel to guarantee the security in physical layer. The evolution towards 5G wireless communications poses new challenges for physical layer security research. This paper provides a latest survey of the physical layer security research on various promising 5G technologies, including physical layer security coding, massive multiple-input multiple-output, millimeter wave communications, heterogeneous networks, non-orthogonal multiple access, full duplex technology, etc. Technical challenges which remain unresolved at the time of writing are summarized and the future trends of physical layer security in 5G and beyond are discussed.Comment: To appear in IEEE Journal on Selected Areas in Communication

    Principles of Physical Layer Security in Multiuser Wireless Networks: A Survey

    Full text link
    This paper provides a comprehensive review of the domain of physical layer security in multiuser wireless networks. The essential premise of physical-layer security is to enable the exchange of confidential messages over a wireless medium in the presence of unauthorized eavesdroppers without relying on higher-layer encryption. This can be achieved primarily in two ways: without the need for a secret key by intelligently designing transmit coding strategies, or by exploiting the wireless communication medium to develop secret keys over public channels. The survey begins with an overview of the foundations dating back to the pioneering work of Shannon and Wyner on information-theoretic security. We then describe the evolution of secure transmission strategies from point-to-point channels to multiple-antenna systems, followed by generalizations to multiuser broadcast, multiple-access, interference, and relay networks. Secret-key generation and establishment protocols based on physical layer mechanisms are subsequently covered. Approaches for secrecy based on channel coding design are then examined, along with a description of inter-disciplinary approaches based on game theory and stochastic geometry. The associated problem of physical-layer message authentication is also introduced briefly. The survey concludes with observations on potential research directions in this area.Comment: 23 pages, 10 figures, 303 refs. arXiv admin note: text overlap with arXiv:1303.1609 by other authors. IEEE Communications Surveys and Tutorials, 201

    Polar Coding Schemes for Cooperative Transmission Systems

    Get PDF
    : In this thesis, a serially-concatenated coding scheme with a polar code as the outer code and a low density generator matrix (LDGM) code as the inner code is firstly proposed. It is shown that that the proposed scheme provides a method to improve significantly the low convergence of polar codes and the high error floor of LDGM codes while keeping the advantages of both such as the low encoding and decoding complexity. The bit error rate results show that the proposed scheme by reasonable design have the potential to approach a performance close to the capacity limit and avoid error floor effectively. Secondly, a novel transmission protocol based on polar coding is proposed for the degraded half-duplex relay channel. In the proposed protocol, the relay only needs to forward a part of the decoded source message that the destination needs according to the exquisite nested structure of polar codes. It is proved that the scheme can achieve the capacity of the half-duplex relay channel while enjoying low encoding/decoding complexity. By modeling the practical system, we verify that the proposed scheme outperforms the conventional scheme designed by low-density parity-check codes by simulations. Finally, a generalized partial information relaying protocol is proposed for degraded multiple-relay networks with orthogonal receiver components (MRN-ORCs). In such a protocol, each relay node decodes the received source message with the help of partial information from previous nodes and re-encodes part of the decoded message for transmission to satisfy the decoding requirements for the following relay node or the destination node. For the design of polar codes, the nested structures are constructed based on this protocol and the information sets corresponding to the partial messages forwarded are also calculated. It is proved that the proposed scheme achieves the theoretical capacity of the degraded MRN-ORCs while still retains the low-complexity feature of polar codes

    On the Construction of Polar Codes for Achieving the Capacity of Marginal Channels

    Full text link
    Achieving security against adversaries with unlimited computational power is of great interest in a communication scenario. Since polar codes are capacity achieving codes with low encoding-decoding complexity and they can approach perfect secrecy rates for binary-input degraded wiretap channels in symmetric settings, they are investigated extensively in the literature recently. In this paper, a polar coding scheme to achieve secrecy capacity in non-symmetric binary input channels is proposed. The proposed scheme satisfies security and reliability conditions. The wiretap channel is assumed to be stochastically degraded with respect to the legitimate channel and message distribution is uniform. The information set is sent over channels that are good for Bob and bad for Eve. Random bits are sent over channels that are good for both Bob and Eve. A frozen vector is chosen randomly and is sent over channels bad for both. We prove that there exists a frozen vector for which the coding scheme satisfies reliability and security conditions and approaches the secrecy capacity. We further empirically show that in the proposed scheme for non-symmetric binary-input discrete memoryless channels, the equivocation rate achieves its upper bound in the whole capacity-equivocation region

    Spatially Coupled LDPC Codes for Decode-and-Forward in Erasure Relay Channel

    Full text link
    We consider spatially-coupled protograph-based LDPC codes for the three terminal erasure relay channel. It is observed that BP threshold value, the maximal erasure probability of the channel for which decoding error probability converges to zero, of spatially-coupled codes, in particular spatially-coupled MacKay-Neal code, is close to the theoretical limit for the relay channel. Empirical results suggest that spatially-coupled protograph-based LDPC codes have great potential to achieve theoretical limit of a general relay channel.Comment: 7 pages, extended version of ISIT201

    A New Coding Paradigm for the Primitive Relay Channel

    Get PDF
    We consider the primitive relay channel, where the source sends a message to the relay and to the destination, and the relay helps the communication by transmitting an additional message to the destination via a separate channel. Two well-known coding techniques have been introduced for this setting: decode-and-forward and compress-and-forward. In decode-and-forward, the relay completely decodes the message and sends some information to the destination; in compress-and-forward, the relay does not decode, and it sends a compressed version of the received signal to the destination using Wyner-Ziv coding. In this paper, we present a novel coding paradigm that provides an improved achievable rate for the primitive relay channel. The idea is to combine compress-and-forward and decode-and-forward via a chaining construction. We transmit over pairs of blocks: in the first block, we use compress-and-forward; and in the second block, we use decode-and-forward. More specifically, in the first block, the relay does not decode, it compresses the received signal via Wyner-Ziv, and it sends only part of the compression to the destination. In the second block, the relay completely decodes the message, it sends some information to the destination, and it also sends the remaining part of the compression coming from the first block. By doing so, we are able to strictly outperform both compress-and-forward and decode-and-forward. Note that the proposed coding scheme can be implemented with polar codes. As such, it has the typical attractive properties of polar coding schemes, namely, quasi-linear encoding and decoding complexity, and error probability that decays at super-polynomial speed. As a running example, we take into account the special case of the erasure relay channel, and we provide a comparison between the rates achievable by our proposed scheme and the existing upper and lower bounds.Comment: 10 pages, 4 figures, in Proc. of ISIT'18 (short version) and in Algorithms (full version

    Polar Coding for Achieving the Capacity of Marginal Channels in Nonbinary-Input Setting

    Full text link
    Achieving information-theoretic security using explicit coding scheme in which unlimited computational power for eavesdropper is assumed, is one of the main topics is security consideration. It is shown that polar codes are capacity achieving codes and have a low complexity in encoding and decoding. It has been proven that polar codes reach to secrecy capacity in the binary-input wiretap channels in symmetric settings for which the wiretapper's channel is degraded with respect to the main channel. The first task of this paper is to propose a coding scheme to achieve secrecy capacity in asymmetric nonbinary-input channels while keeping reliability and security conditions satisfied. Our assumption is that the wiretap channel is stochastically degraded with respect to the main channel and message distribution is unspecified. The main idea is to send information set over good channels for Bob and bad channels for Eve and send random symbols for channels that are good for both. In this scheme the frozen vector is defined over all possible choices using polar codes ensemble concept. We proved that there exists a frozen vector for which the coding scheme satisfies reliability and security conditions. It is further shown that uniform distribution of the message is the necessary condition for achieving secrecy capacity.Comment: Accepted to be published in "51th Conference on Information Sciences and Systems", Baltimore, Marylan
    • …
    corecore