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摘要 

随着无线通信技术的快速发展，人们对高速无线数据传输服务的需求也越

来越大。但是由于无线频谱资源的日趋紧张，无线通信系统想要支持高速数据

传输就必须充分而高效地利用有限的频谱资源，这是未来无线通信技术亟待解

决的关键问题。近年来的研究表明，协作通信已经成为解决高速数据传输和大

范围网络覆盖的关键技术。协作传输无线数据不仅能够获得空间分集增益，同

时还能提高频谱利用率以及系统容量。而中继信道模型作为协作通信网络的重

要组成部分更是得到了广泛的研究。分布式信道编码技术是为适应协作通信技

术要求而产生的信道编译码技术。好的分布式信道编码方案不仅实现简单，而

且可以在充分利用空间分集增益的基础上获得额外的编码增益，还能够进一步

提升系统的可靠性能。由此可见，具有性能优异、实现复杂度低的分布式信道

编码技术是协作通信系统中需要深入研究的一个核心问题。 

基于信道极化现象，Polar 码(Polar Codes)被证明是一种可以达到端到端二

元输入离散无记忆信道(Binary-input Discrete Memoryless Channel, B-DMC)对称

信道容量的信道编码方案。Polar码作为一种结构化的信道编码技术，具有编码

复杂度和译码复杂度都较低，且译码性能不存在错误平层的优异特性。因此，

研究协作中继系统中具有低复杂度的 Polar 码编译码方法以及基于 Polar 码的高

效协作传输协议以达到中继系统容量具有重要的理论和实用价值。 

本文将 Polar 码作为一种强有力的信道编码技术，不仅分析了级联 Polar 码

的实际性能，还分别从理论和实际应用两个方面深入对在中继系统中应用Polar

码的关键技术进行了研究。论文的主要贡献如下： 

第一，针对 Polar 码比特错误率(Bit Error Rate, BER)性能收敛速度较慢以及

低密度生成矩阵(Low-Density Generator Matrix, LDGM)码存在高错误平层的问

题，本文利用级联编码的思想，提出了一种将 Polar 码作为外码，LDGM 码作

为内码的串行级联 Polar-LDGM (Serially-Concatenated Polar-LDGM, SCPL)码方

案。首先通过对 Polar 码和 LDGM 码错误平层性能的理论分析，得出了将高码

率的 Polar码作为外码不仅可以保证 SCPL码性能的收敛速度，同时由于其优异

的错误平层特性，通过合理地设计也可使 SCPL 码不存在错误平层的重要结论。

然后给出 SCPL 码的编码方法以及基于 Tanner 图的消息迭代译码算法。最后通
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过合理地选择 SCPL码编码设计参数（即内外码速率组合以及内码码重），验证

了不同参数下 BER 性能的差异。与低密度奇偶校验(Low-Density Parity-Check, 

LDPC)码和级联 Polar-LDPC码相比，外码码长为 N1、内码码长为 N的 SCPL码

编码复杂度仅为 O(N1logN1)+O(N)。仿真结果表明，SCPL 码具有逼近香农限的

性能，并且直到 BER 降到 10-10也没有出现错误平层。 

第二，针对退化半双工单中继信道模型，根据信道极化现象，提出了一种

基于 Polar 码的协作部分消息中继转发(Cooperative Partial Message Relaying, 

CPMR)传输协议。理论分析表明，在该模型中采用 CPMR方案可以获得渐进达

到中继信道容量限的性能，并且推导出在连续取消(Successive Cancellation, SC)

译码算法下平均分组错误概率的上界。针对 CPMR 方案在退化半双工单中继系

统中的实际应用，首先分析了中继系统容量限，阐释了影响系统容量限的关键

参数——时隙分配因子和中继节点与信源节点之间的距离。然后设计了一种基

于Polar码的联合软信息并行迭代干扰消除(Joint Iterative Soft Parallel Interference 

Cancellation, JISPIC)接收器。最后对有限码长 CPMR 方案的可行性进行了仿真

验证。与单中继系统中传统LDPC码方案相比，本文提出的方案继承了Polar码

所具有的更低编译码复杂度的优点，并且获得了可以与 LDPC 码相媲美的性能。 

第三，针对多中继系统中非构造性的随机编码方法编译码复杂度较高的问

题，本文将单中继系统中基于低复杂度 Polar 码的 CPMR 传输协议扩展到多中

继系统中，中继节点可以根据下一个中继节点或信宿节点需要的可靠消息灵活

地转发译码后的部分消息。根据中继节点需要转发的部分消息与部分消息信息

比特索引集合之间的对应关系，围绕两种具有正交接收部件的退化多中继网络

(Multiple-relay Network with Orthogonal Receiver Components, MRN-ORCs)系统

模型，给出了求解相应中继节点待转发部分消息信息比特索引集合的算法，分

析了构造性 Polar 码编译码方法，证明了 Polar 码的码长 N→∞且 1
2(0, )  时，

CPMR方案可以渐进达到这两类退化MRN-ORCs的系统容量，同时推导出平均

分组错误概率上界仅受限于 (2 )NO
 。最后仿真验证了有限码长 CPMR 方案实

际应用的可行性。 

 

关键词：协作通信；中继传输系统；分布式信道编码；级联码；Polar 码 



viii 
 

Table of Contents 

Acknowledgements ..................................................................................................... ii 

Statement of Originality ............................................................................................ v 

Abstract (in Chinese) ................................................................................................ vi 

Table of Contents ..................................................................................................... viii 

List of Figures ............................................................................................................ xi 

List of Tables ............................................................................................................ xiii 

List of Acronyms ..................................................................................................... xiv 

Chapter 1  Introduction ........................................................................................... 1 

1.1  Purpose and Significance of the Research .............................................. 1 

1.2  Overview of Channel Coding Theory ..................................................... 5 

1.2.1  Algebraic Codes ...................................................................................... 8 

1.2.2  Iterative Codes ...................................................................................... 11 

1.2.3  Polar Codes ........................................................................................... 14 

1.3  Research Status of Distributed Channel Coding ................................... 17 

1.3.1  Capacities of Relay Systems ................................................................. 17 

1.3.2  Distributed Channel Coding Technologies for Relay Systems ............. 20 

1.4  Main Research Contents of This Doctoral Thesis ................................. 22 

Chapter 2  Channel Polarization and Polar Codes ............................................. 27 

2.1  Introduction ........................................................................................... 27 

2.2  Information Entropy .............................................................................. 28 

2.3  Channel Capacity and the Shannon Limit ............................................. 29 

2.4  Channel Polarization and Polar Codes .................................................. 36 

2.4.1  Channel Polarization Theory ................................................................. 37 

2.4.2  Encoding of Polar Codes ....................................................................... 46 

2.4.3  Decoding of Polar Codes ...................................................................... 47 

2.4.4  Encoding and Decoding Complexity and Advantages and Disadvantages



ix 
 

  ............................................................................................................... 52 

2.5  Summary ............................................................................................... 54 

Chapter 3  Encoding and Decoding Algorithms for SCPL codes ....................... 56 

3.1  Introduction ........................................................................................... 56 

3.2  Principles of Concatenated Codes ......................................................... 59 

3.3  LDGM Codes and the Analysis of Their Error Floors .......................... 62 

3.3.1  LDGM Codes ........................................................................................ 62 

3.3.2  Error Floor Analysis of LDGM Codes .................................................. 65 

3.4  BP Decoding and Error Floor Analysis of Polar Codes ........................ 66 

3.4.1  BP Decoding Algorithm of Polar Codes ............................................... 66 

3.4.2  Error Floor Analysis of Polar Codes ..................................................... 70 

3.5  Encoding and Decoding Schemes for SCPL Codes .............................. 72 

3.6  Simulation Design for SCPL Codes ...................................................... 78 

3.6.1  Construction Procedure of SCPL Codes ............................................... 79 

3.6.2  Simulation Results and Performance Comparison ................................ 81 

3.7  Summary ............................................................................................... 83 

Chapter 4  Polar Coding Schemes for Single-Relay Transmission Systems ..... 84 

4.1  Introduction ........................................................................................... 84 

4.2  Half-duplex Single-relay Channel ......................................................... 86 

4.2.1  Channel Model ...................................................................................... 86 

4.2.2  Capacity of Half-duplex Single-relay Channels ................................... 89 

4.3  CPMR Transmission Strategy of Infinite Block Lengths ..................... 91 

4.3.1  CPMR Transmission Strategy in BC Phase .......................................... 91 

4.3.2  CPMR Transmission Strategy in MAC Phase ...................................... 94 

4.3.3  Analysis of the Asymptotic Performance ............................................ 100 

4.4  CPMR Transmission Scheme of Finite Block Lengths ...................... 103 

4.4.1  System Model ..................................................................................... 104 



x 
 

4.4.2  Analysis of Time Fraction ................................................................... 106 

4.4.3  Construction of Polar Codes in the BI-AWGN Channel..................... 108 

4.4.4  Receiver Structure ............................................................................... 110 

4.4.5  Simulation Results and Analysis ......................................................... 114 

4.5  Summary ............................................................................................. 117 

Chapter 5  Polar Coding Schemes for Multiple-Relay Transmission Systems 118 

5.1  Introduction ......................................................................................... 118 

5.2  Model of Multiple-relay Networks ..................................................... 123 

5.3  Model of Degraded MRN-ORCs ........................................................ 125 

5.4  CPMR Scheme for Degraded TRN-ORCs .......................................... 129 

5.4.1  CPMR Transmission Strategy for Degraded TRN-ORCs ................... 131 

5.4.2  Polar Encoding and Decoding Process for the Degraded TRN-ORCs ..... 

  ............................................................................................................. 137 

5.4.3  Asymptotic Performance of the Block Error Probability .................... 141 

5.5  CPMR Scheme for Degraded MRN-ORCs ........................................ 143 

5.5.1  CPMR Transmission Strategy for the Degraded MRN-ORCs ............ 143 

5.5.2  Polar Encoding and Decoding Process for the Degraded MRN-ORCs .... 

  ............................................................................................................. 147 

5.5.3  Asymptotic Performance of the Block Error Probability .................... 150 

5.6  Simulation Results and Analysis ......................................................... 152 

5.7  Summary ............................................................................................. 155 

Conclusion ............................................................................................................... 156 

References ............................................................................................................... 160 

List of Publications ................................................................................................. 175 

  



xi 
 

List of Figures 

Fig. 1-1    A model of three-terminal cooperative relaying system .............................. 2 

Fig. 1-2    Block diagram of the history and evolution of channel coding theory ....... 8 

Fig. 1-3    The theoretical model of channel polarization for polar codes ................. 16 

Fig. 2-1    Block diagram of a communication system .............................................. 30 

Fig. 2-2    Diagram of a Gaussian channel ................................................................. 31 

Fig. 2-3    Capacities of the AWGN channel and the BI-AWGN channel ................. 34 

Fig. 2-4    Capacity lower bounds on BER as a function of SNR .............................. 35 

Fig. 2-5    Channel combining of two channels to the synthesized channel 2W  ........ 39 

Fig. 2-6    The channel 4W  and its relation to 2W  and W .......................................... 41 

Fig. 2-7    Recursive construction of NW  from two copies of /2NW  .......................... 42 

Fig. 2-8    The progress of channel polarization for a BEC with erasure probability 0.5

 .................................................................................................................... 45 

Fig. 2-9    An example of encoding and decoding for a polar code of length 16 with 

rate 9/16 .................................................................................................... 51 

Fig. 2-10 Bounds on block error probability for polar codes with different block 

lengths ...................................................................................................... 52 

Fig. 3-1     A simple communication system using concatenated codes .................... 60 

Fig. 3-2     A Tanner graph representation for parity-check matrix of LDGM codes 64 

Fig. 3-3     A graph representation for the transformation of 2
nG  ............................ 68 

Fig. 3-4     A factor graph representation for the transformation of 2
nG  .................. 68 

Fig. 3-5     The basic computational block of the BP decoder ................................... 70 

Fig. 3-6     Different types of cycles in the Tanner graph for polar codes with N = 8 71 

Fig. 3-7     The encoding and decoding block diagram for the proposed SCPL codes

 .................................................................................................................. 73 

Fig. 3-8     Graph based representation of SCPL codes ............................................. 74 

Fig. 3-9  The BER comparison of the SCPL coding scheme with different rate  

allocations ................................................................................................ 80 

Fig. 3-10   BER comparison of the SCPL coding scheme with different w ............... 80 

Fig. 3-11   The BER comparison for different coding schemes ................................. 82 

Fig. 3-12 The BER performance of the SCPL coding scheme for different block 

lengths. ..................................................................................................... 82 



xii 
 

Fig. 4-1     The general model of the single-relay channel......................................... 86 

Fig. 4-2     The time-division half-duplex single-relay channel model ...................... 88 

Fig. 4-3     The polar coding construction for BC phase ............................................ 92 

Fig. 4-4     The diagram of the half-duplex relay channel with CPMR protocol ....... 95 

Fig. 4-5     Five limiting regions for T-MAC after polarizing .................................... 97 

Fig. 4-6     A half-duplex single-relay system model ............................................... 104 

Fig. 4-7     The simplified model of the half-duplex single-relay system ................ 105 

Fig. 4-8     Information rates vs. SNR for different relay positions on an AWGN relay 

channel with BPSK modulation ............................................................. 107 

Fig. 4-9     Block diagram of the receiver design for polar coded relay system ...... 110 

Fig. 4-10   The performance evaluations of the JISPIC receiver for decoding x1 ... 115 

Fig. 4-11   The BER comparison for different coding schemes ............................... 116 

Fig. 5-1     The mathematical model of the general one-relay network ................... 118 

Fig. 5-2     The single-relay network with orthogonal receiver components ........... 120 

Fig. 5-3     The mathematical model of the general multiple relay network ............ 123 

Fig. 5-4     The system model of SDMRN-ORCs .................................................... 126 

Fig. 5-5     The system model of DDMRN-ORCs ................................................... 128 

Fig. 5-6     The model of SDTRN-ORCs ................................................................. 130 

Fig. 5-7     The model of DDTRN-ORCs ................................................................. 130 

Fig. 5-8     The CPMR-A protocol for the SDTRN-ORCs model ............................ 133 

Fig. 5-9     The CPMR-B protocol for DDTRN-ORCs model ................................. 134 

Fig. 5-10   Performance of the CPMR scheme for DDTRN-ORCs: 2,3W  is an error-free  

channel ................................................................................................... 154 

Fig. 5-11  Performance of the CPMR scheme for DDTRN-ORCs: 2,3W   is a BSC 

channel ................................................................................................... 154 

  



xiii 
 

List of Tables 

Table 3-1  Comparison of the complexity between Polar-LDPC codes and SCPL codes

 .................................................................................................................. 74 

Table 4-1  Simulation parameters ............................................................................ 114 

Table 5-1  The algorithm of computing the erasure probability for a given channel 

model ...................................................................................................... 136 

Table 5-2  The algorithm of computing Bhattacharyya parameters for the source node

 ................................................................................................................ 136 

Table 5-3  The algorithm of computing the partial message sets for Protocol CPMR-A

 ................................................................................................................ 137 

Table 5-4  The encoding and decoding process for the SDTRN-ORCs using CPMR-A 

protocol .................................................................................................. 137 

  



xiv 
 

List of Acronyms 

AF Amplify-and-Forward 

AWGN Additive White Gaussian Noise 

B-DMC Binary-Input Discrete Memoryless Channel 

BC Broadcast Channel 

BEC Binary Erasure Channel 

BER Bit Error Rate 

BI-AWGN Binary-Input Additive White Gaussian Noise 

BP Belief Propagation 

BPSK Binary Phase Shift Keying 

BSC Binary Symmetric Channel 

CF Compress-and-Forward 

CPMR Cooperative Partial Message Relaying 

DF Decode-and-Forward 

DDMRN-ORCs 
Doubly-Degraded Multiple-Relay Network with Orthogonal 

Receiver Components 

DDTRN-ORCs 
Doubly-Degraded Two-Relay Network with Orthogonal 

Receiver Components 

EF Estimate-and-Forward 

EXIT Extrinsic Information Transfer 

JISPIC Joint Iterative Soft Parallel Interference Cancellation 

LDGM Low-Density Generator Matrix 

LDPC Low-Density Parity-Check 

LLR Log-Likelihood Ratio 

LR Likelihood Ratio 

MAC Multiple Access Channel 

MAC-GF Multi Access Channel with Generalized Feedback 

MAP Maximum a posteriori Probability 

MIMO Multiple-Input Multiple-Output 

ML Maximum Likelihood 

MRN-ORCs Multiple-relay Network with Orthogonal Receiver Components

OTNs Optical Transport Networks 



xv 
 

PEG Progressive Edge Growth 

PF Parity Forwarding 

QF Quantize-and-Forward 

SC Successive Cancellation 

SCLD Successive-Cancellation List Decoding 

SCLDGM Serially Concatenated Low-Density Generator Matrix 

SCPL Serially Concatenated Polar and Low-Density Generator Matrix

SDMRN-ORCs 
Serially-Degraded Multiple-Relay Network with Orthogonal 

Receiver Components 

SDTRN-ORCs 
Serially-Degraded Two-Relay Network with Orthogonal 

Receiver Components 

SISO Soft-Input Soft-Output 

SNR Signal to Noise Ratio 

SPIC Soft Parallel Interference Cancellation 

SRN-ORCs Single-Relay Network with Orthogonal Receiver Components 

SU-LLRC Single-User Log-Likelihood Ratio Calculation 

T-MAC Two-User Multiple Access Channel 

TU-MACD Two-User Multiple Access Channel Detector 



Chapter 1 Introduction 

1 

Chapter 1 Introduction 

1.1 Purpose and Significance of the Research 

For the past decades, from the original research on end-to-end wireless 

communication systems to the present study on multi-terminal wireless network 

communications, wireless communication technologies have been developing at a 

rapid pace. At the same time, the demands for wireless communication services are 

also growing and so are the demands on wireless data transmission rates and 

communication quality. At present, wireless communications are developing in the 

direction of achieving bigger bandwidth, higher rate, better reliability and lower 

realization complexity. To effectively address the fading and interference existing in 

wireless communications, it has always been a key issue requiring urgent solutions to 

design communication systems with high reliability, high utilization of spectrum and 

power, and the ability to increase the channel capacity. As we all know, by using the 

Multiple-Input Multiple-Output (MIMO) technology [1-3], diversity gain can be 

obtained through the configuration of multiple antennas at the transmitting terminal. 

However, due to the limitations imposed by the size and hardware computing power 

of most wireless terminal equipment, it is usually difficult to apply the MIMO 

technology directly on such equipment. In order for a single-antenna terminal to also 

obtain the space diversity gain, Sendonaris et al., employing the concept of cooperative 

communications [4-10], enabled single-antenna terminals in a wireless network to 

share each other’s antennas through time, frequency or space, which created a virtual 

MIMO system and eventually obtained the diversity gain (as shown in Fig. 1-1). As a 

whole new field of research, the cooperative communication technology has prospects 
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of wide-ranging applications. For example, it can be applied in cellular mobile 

communication networks, wireless sensor networks, wireless Ad Hoc networks, 

wireless local area networks and other scenarios. The core idea of cooperative 

communications is that by taking advantage of the broadcasting properties inherent in 

a wireless channel, multiple terminals can transmit their own data or help forward data 

to destinations through different cooperative modes and their corresponding methods 

of signal processing. Compared with traditional end-to-end wireless communications, 

the cooperative communication technology not only enables effective sharing of 

spectrum resources between multiple terminals, but also offers higher data throughput, 

enhancement of information transmission rates, and improvement in data transmission 

reliability. Therefore, it has become a central topic in research on next-generation 

wireless communication systems [11, 12].  

 

Fig. 1-1 A model of three-terminal cooperative relaying system 

To analyze and solve the key issues of the cooperative communication technology, 

it is firstly essential to establish a controllable mathematical model. The relay channel 

model as an important component of cooperative communication networks has been 

extensively studied. In a three-node relay channel, the source node can transmit 

information reliably to the destination node with the assistance of the relay node [13]. 

From the perspective of practical applications, it has always been the aspiration of 
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researchers to design an optimal cooperative communication strategy for relay nodes, 

and apply it to relay systems. When the relay node and the source node are close in 

distance, the decode-and-forward (DF) protocol, as a classic cooperative transmission 

strategy, not only is relatively simple in concept, but also can obtain a near-optimal 

performance. It can also take advantage of the channel coding technology to play out 

the strengths of the DF protocol in cooperative communications [14-20]. 

The distributed channel coding technology is the result of seamlessly combining the 

cooperative communication technology and the channel coding technology. Based on 

cooperative communications, by using advanced modern channel codes, the relay node 

decodes and re-encodes information coming from the source node, after which it 

cooperates with and complements the coding method of the source node. As a result, 

it not only achieves additional coding gain on the basis of fully utilizing the 

cooperative space diversity gain, but also effectively guarantees the reliability of 

information transmission in cooperative communications. Although the distributed 

channel coding technology has been a very active area of research in recent years, it 

still has a lot of theoretical and pragmatic problems which need to be further studied: 

Firstly, the present cooperative communication model is still one-dimensional and thus 

it is necessary to investigate the distributed channel coding technology under various 

channel models. Secondly, it still lacks systematic research results on how to adjust 

the coding schemes and cooperative transmission strategies applied for the cooperative 

nodes according to the variation in the network model. Finally, it still calls for an in-

depth study on how to design a highly effective distributed channel coding scheme 

based on a more practical multiple-relay system model. 

Despite some modern coding schemes, e.g., the highly mature Turbo codes and 

Low-Density Parity-Check (LDPC) codes which are able to achieve excellent 
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performances extremely approaching the Shannon capacity limit, there is still a lack 

of sufficient yet strict proof for the achievability of the limit. Therefore, it is of great 

theoretical and practical significance to find a channel coding method, which can be 

proven to achieve the Shannon capacity limit and has low encoding and decoding 

complexity simultaneously. The application of distributed Turbo codes and distributed 

LDPC codes in relay systems has been proven to be able to approach the capacity limit. 

However, the two codes have high decoding and encoding complexity, respectively. 

That is why, without a doubt, one key issue to be considered in the practical application 

of distributed channel coding technologies is regarding how to lower the realization 

complexity while ensuring an excellent performance. Therefore, to work out a channel 

coding technology with a simple encoding structure, low decoding complexity and an 

excellent performance, to apply it to relay systems, and to meet the demands of 

cooperative communications have together constituted a major motivation to have 

written this thesis and they have also formed the background of the research. 

If this new channel coding method were to be applied in a cooperative 

communication system, the following challenges need to be met in realizing its 

distributed coding schemes. 

(1) Achievability of capacity  

Although distributed Turbo codes and distributed LDPC codes have been verified 

to have performances capable of approaching the capacity limit of a relay system, they 

are not yet theoretically perfect as they cannot be proven capable of achieving the 

capacity limit. Therefore, research on such a channel coding scheme with the ability 

to reach the capacity limit of a relay system is significant in that it perfects the theory. 

(2) Complexity in realization 

If a wireless communication network were to achieve high-rate transmission in a 
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wide area, it should be configured with relatively intensive base stations and repeaters 

in the network, which would require the wireless terminal equipment to be low in 

complexity and cheap in price. Distributed Turbo codes and distributed LDPC codes 

are relatively complex to realize and hence to research on such channel coding 

technologies of low complexity for wireless networks has value in practical 

applications. 

(3) Design of cooperative transmission protocols 

Despite large numbers of research findings on the application of distributed Turbo 

codes and distributed LDPC codes in relay systems, study on how to utilize the 

achievability of this channel coding method to design a cooperative transmission 

protocol suitable for such codes will be of great value as references to relevant research 

on such codes in relay systems. 

(4) Performance in practical applications 

In a wireless communication network, how to overcome the channel noise and 

achieve the maximum transmission rate is a key problem for system design. Therefore, 

research on the influence of realizing such codes in wireless relay systems on the 

system performance may serve as valuable references for the application of such codes 

in a relay system. 

1.2 Overview of Channel Coding Theory 

In 1948, Shannon published his landmark paper “A Mathematical Theory of 

Communication”, and ushered in this brand new discipline called information theory, 

which laid a solid theoretical foundation for the realization of highly efficient and 

reliable information transmission in communication systems [21]. Shannon pointed 

out that the basic problem for a communication system to solve is how to efficiently 
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and reliably transmit information from the source to the destination. However, noise 

existing in the communication channel will inevitably generate a certain degree of 

interference on the information being transmitted, and consequently will eventually 

reduce the reliability of information transmission. Without loss of generality, 

increasing the redundancy of the information transmitted (this operation is realized by 

the channel encoder) can make the communication transmission more reliable but it 

not only decreases the efficiency but also wastes the system transmission bandwidth. 

Therefore, the key issue for a communication system is the treatment of conflicts 

between the efficiency and the reliability of a system, i.e., how to overcome the 

interference in a channel generated by random noise, and reduce the error occurring in 

the transmission process without lowering the efficiency in information transmission 

[22-24]. 

By adopting the random coding technology, Shannon solved the problem regarding 

the existence of channel codes. This technology is the basic tool for research on 

information theory. However, due to its high complexity and substantial time delay, 

completely random block codes do not have any value in practical applications. It was 

also pointed out by Shannon that there may exist reliable communication at a rate 

lower than the channel capacity. When the rate is lower than the channel capacity, 

almost all channel coding schemes will have excellent decoding performance as long 

as the receiver uses the optimal decoder. However, the complexity of optimal decoding 

- maximum likelihood (ML) decoding will increase exponentially with the growth of 

the block length. Hence, due to such difficulties, it is almost impossible to realize 

optimal decoding in practical applications. That is why researchers in the field of 

information theory have been committed to designing a channel coding method 

applicable in practical situations, which can transmit information reliably at a rate 
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arbitrarily approaching the channel capacity. Their research focuses on the following 

areas: 

 Deriving basic theoretical capacity limits correspondingly based on different 

communication system models; 

 Abstracting different channel coding methods into mathematical models, and 

using the coding method to support various communication channel models 

with the expectation of reaching their basic theoretical capacity limits; 

 Studying and analyzing the low-complexity algorithms of these channel coding 

methods. 

According to their performances, channel codes can be divided into good codes and 

bad codes [25]. Good codes can be further divided into very good codes (i.e., codes 

with arbitrarily small decoding error probabilities when the coding rate is arbitrarily 

close to the Shannon capacity limit) and sub-good codes (i.e., codes with arbitrarily 

small decoding error probabilities when the coding rate reaches the non-zero 

maximum, and is smaller than the theoretical channel capacity). The so-called bad 

codes refer to the coding methods which will have arbitrarily small decoding error 

probabilities only when the coding rate decreases to zero. Shannon channel coding 

theorem shows that although the random codes generated through the random 

encoding technology are very good codes, they are not practical codes [21]. 

Since the proposition of Shannon channel coding theorem, many scholars have been 

dedicated to the study on how to construct a practical very good code capable of 

approaching Shannon capacity limit. Over time an important branch of information 

theory came into being, which is the channel coding theory. Through making joint 

efforts for over sixty years, researchers have found a variety of channel coding 

methods, which can be applied in practice and can approach the Shannon limit, and 
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have made significant achievements [26, 27], most of which can be divided into two 

major categories: algebraic coding and iterative coding. Fig. 1-2 shows the block 

diagram of the history and evolution of channel coding theory. 

 

Fig. 1-2 Block diagram of the history and evolution of channel coding theory 

1.2.1 Algebraic Codes 

Linear block codes have always been a focal point to study in the field of channel 

coding. Although linear block codes have various algebraic structures, they still have 

the potential to realize reliable communication at a rate arbitrarily approaching the 

theoretical channel capacity limit [28-30]. Linear block codes can be expressed 

through generator matrices, the rows of which constitute the basic vectors of the linear 

block codes. Meanwhile, linear block codes can also be defined by parity-check 

matrices, the rows of which constitute the basic vector space orthogonal to such codes. 

This algebraic structure of linear block codes is beneficial to designing practical 

encoding and decoding algorithms. 

The main method of searching for good block codes is to maximize the minimum 

distance between their codewords (the minimum distance to a large degree determines 

the performance of block codes) and at the same time maintain the decoding 
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complexity at a controllable level. Therefore, the search for good codes was initially 

regarded as a problem that should be solved through algebraic methods. The best 

known linear block codes at the early stage include the Golay code [31], Hamming 

code [32] and Reed-Muller code (i.e. the RM code) [33, 34]. In order to execute 

decoding, they employ different algorithms to search in code sets for codes which have 

the minimum Hamming distance to the received codeword sequence (as can be 

obtained through the hard decision on the observed values received from the channel). 

By taking advantage of the characteristics of the sub-vector space generated by block 

codes, such algorithms manage to avoid a brute-force search through all possible 

codewords, resulting in relatively low complexity. However, the performance of such 

block codes is quite far away from the Shannon limit. One of the reasons leading to 

such performances is the method used to search for the minimum Hamming distance, 

which can only be regarded as the optimal decoding principle for the binary symmetric 

channel (BSC) and a few others. When information is transmitted in the additive white 

Gaussian noise (AWGN) channel, the optimal decoding algorithm will be searching in 

code sets for codewords with the shortest Euclidean distance to the received codewords. 

On the other hand, to directly make hard decisions on the observed values received 

from the channel could cause information to be missing, which is another reason for 

loss in system performances. In addition to the above codes, there are some other very 

important linear block codes, namely the BCH (Bose-Chaudhuri-Hocquenghem) code, 

RS (Reed-Solomon) code and General RS (Generalized Reed-Solomon) code [27], [35, 

36]. These codes are all composed of elegant but yet complex algebraic structures, so 

they are also known as algebraic codes in the channel coding field. Many research 

findings from theoretical studies on algebraic coding played a vital role in the early 

development of the channel coding theory. Algebraic coding is also an integral part in 
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practical applications, not only for communication systems, but also for storage 

systems. 

In 1955, Elias invented Convolutional Codes, which was one of the key components 

of communication systems at that time [37]. Convolutional codes have a somewhat 

linear structure, and they can be described as a discrete-time finite-state machine. 

There are several encoding methods for convolutional codes. If encoding is done using 

the tree structure of convolutional codes, the decoding can be done with the successive 

decoding algorithm [38, 39]. With the introduction of the threshold decoding algorithm 

and its successors [40], the decoding performance of convolutional codes has been 

improved, further advancing its use in applications. Convolutional codes have a good 

encoding structure property, known as the trellis structure [41], the use of which can 

facilitate the design of a practical and optimal decoding algorithm [27, 42]. In 1967, 

Viterbi invented the Viterbi decoding algorithm [43, 44], which has so far already been 

applied in a range of areas, including channel coding and signal processing. By 

utilizing linear complexity, the Viterbi algorithm provides a simple method to find the 

maximum likelihood estimation of transmitted sequences. Meanwhile, as the Viterbi 

algorithm employs a soft-decision algorithm, resulting in a performance superior to 

that of a hard-decision decoding algorithm by at least 2dB, this method has been 

widely recognized as one of the best decoding methods in the AWGN channel. In 1974, 

Bahl et al. proposed the BCJR decoding algorithm [45], which uses the soft 

information output from convolutional codes to compute the a posteriori probabilities 

of the code bits so as to minimize the error probability. Compared with the Viterbi 

decoding algorithm, the BCJR algorithm has not significantly improved the decoding 

performance, and it is also very complex. Hence, the Viterbi algorithm has been the 

standard decoding method of convolutional codes for the following decades. In 1966, 
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Forney introduced the concept of concatenated codes [46]. Concatenated codes, as a 

kind of channel coding technology, connect two relatively short codes to form an 

effective and reliable (relatively long) code. The optimal decoding for concatenated 

codes adopts an overall coding design, which treats two short codes as one 

concatenated code, but by merely decoding each code respectively during decoding, a 

very good performance can be achieved. For the decoding of concatenated codes, the 

outer codes are usually decoded using hard decisions while the inner codes are usually 

decoded using soft decisions. Forney's study shows that, while ensuring no significant 

increase in the complexity of decoding, concatenated codes can also guarantee marked 

improvement in the decoding performance. Initially, the concatenated coding scheme 

was only about concatenating two simple block codes but it soon was extended to 

concatenating convolutional codes. Before the advent of Turbo codes, a serially-

concatenated coding scheme, which treats convolutional codes as the inner codes and 

RS codes as the outer codes, is the best coding method for the AWGN channel [26, 

27]. The performance of such concatenated codes is within less than 3dB distance of 

the Shannon limit of the AWGN channel [47]. 

1.2.2 Iterative Codes 

In 1993, based on the encoding and decoding concepts of convolutional codes and 

concatenated codes, Berrou et al. proposed a new channel coding scheme, i.e. the 

Turbo code [48]. As the first instance of a channel coding scheme to demonstrate that 

reliable communication is achievable in the AWGN channel, the Turbo code boasts 

the performance within less than 1dB distance of Shannon theoretical capacity limit. 

Turbo codes are the practical very good codes which academics in the field of channel 

coding had been longing for; its advent marked the study on channel coding theory 

entering a groundbreaking era. The basic structure of Turbo codes contains parallel 
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concatenated convolutional encoders, where one convolutional code is the interleaving 

form of another. Codewords generated through this constructing method will to a 

certain degree be both structural and pseudo-random. The Turbo decoding algorithm 

is iterative soft information decoding based on every convolutional code. Each 

component decoder decodes based on the BJCR algorithm. During the iterative process, 

such component decoders exchange their soft output information, and utilize the output 

probabilities of their counterparts as their own a priori information. The fundamental 

reason why the Turbo code enjoys a performance approaching the Shannon channel 

capacity limit is that it realizes the idea of random coding put forward in Shannon 

theory through the pseudo-random permutation of information sequences by a random 

interleaver, and obtains a kind of pseudo-random long codes. This lays the foundation 

for the application of Shannon random coding theory. In the meantime, due to the use 

of an iterative decoding structure, the decoding performance is improved through the 

iterative exchanging and constant revising of soft information transmitted between two 

component decoders [49, 50]. Such an iterative decoding method of Turbo codes is 

also called the “Turbo principle”. At present, the idea embodied in the “Turbo principle” 

has permeated almost all the fields of advanced signal processing technologies for 

physical layers. It dramatically drives the progress and development of communication 

technologies through the combination with technologies such as equalization, 

modulation, space-time coding, orthogonal frequency division multiplexing, and so on. 

Just as the advent of the Turbo code and the introduction of the ideas on iterative 

decoding opened a new chapter for modern coding theory, the LDPC code [28, 29] 

rediscovered by Mackay et al. established a new milestone for the modern 

development of channel coding theory [51]. LDPC codes are a type of linear block 

codes with sparse matrix structures, which not only can directly apply Shannon’s idea 



Chapter 1 Introduction 

13 

of constructing random linear block codes of sufficient block lengths, but also can use 

iterative decoding algorithms of low complexity. Due to the use of the belief 

propagation (BP) algorithm, the decoding performance of LDPC codes with linear 

decoding complexity can approach the Shannon channel capacity limit [52-55]. For 

medium to long block lengths, the performance of LDPC codes has already surpassed 

that of Turbo codes. Also LDPC codes enjoy lower decoding complexity and can 

simultaneously carry out parallel decoding and detect decoding errors. Therefore, 

LDPC codes have become a central research topic in the field of channel coding. Up 

until now, these codes have been regarded as very good codes for their performance in 

applications [49, 50]. LDGM codes, as a special form of LDPC codes, have attracted 

attention for their relatively low complexity. LDGM codes, which are linear systematic 

codes, boast much lower encoding complexity than that of LDPC codes and at the 

same time, their parity-check matrices still have some level of sparsity, which is why 

the decoding of LDGM codes can also employ the BP decoding algorithm [56]. 

However, as there exist identity matrices in the parity-check matrices of LDGM codes, 

there are conspicuous error floor problems when decoding LDGM codes [51]. In order 

to effectively lower the error floors, Ref. [56] proposed a serially-concatenated LDGM 

coding scheme, which not only maintains relatively low decoding complexity of 

LDGM codes, but also obtains an excellent performance approaching the Shannon 

channel capacity limit [56]. Hence, in recent years, much attention has been devoted 

to research on serially-concatenated LDGM codes [57-60]. 

Turbo codes and LDPC codes represent two kinds of channel coding schemes 

approaching the Shannon limit in the field of channel coding. As long as the block 

length is ensured to be sufficiently long, the performances of such codes can closely 

approach the Shannon channel capacity limit. However, in practical applications, the 
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complexity in encoding and decoding is a key issue that must be taken into 

consideration. In general, although the encoding complexity of Turbo codes is 

relatively low, but their decoding complexity is relatively high [61]. In comparison, 

LDPC codes have relatively low decoding complexity but relatively high encoding 

complexity [62]. Therefore, to identify a channel coding scheme which integrates both 

good performance and low complexity has become a critical research topic. 

During the past decades, the development of algebraic coding and iterative coding 

has made significant progress, especially in the in-depth study on modern encoding 

and decoding methods with excellent performance, such as Turbo codes and LDPC 

codes. Latest achievements in this field have extremely approached the final goal of 

the AWGN channel - the Shannon limit. However, it still remains an ultimate target for 

researchers to succeed in identifying practical very good codes with the following 

characteristics: 

 Capable of transmitting information at a rate that arbitrarily approaches the 

channel capacity; 

 Enjoying low encoding and decoding complexity; 

 Guaranteeing reliable communication through such codes, which can be 

theoretically proven. 

1.2.3 Polar Codes 

In 2009, based on the phenomenon of channel polarization, Arikan proposed a 

brand-new type of channel coding technology - the polar code [63]. Polar codes 

combine the encoding concept underlying algebraic coding and the decoding concept 

underlying iterative coding, and meet all the requirements of practical very good codes 

as mentioned above: 

 Arikan proved that polar codes can achieve the symmetric capacity of binary-
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input discrete memoryless channels (B-DMC), where symmetric channels 

include the binary erasure channel (BEC), the BSC channel and the binary-input 

additive white Gaussian noise (BI-AWGN) channel. 

 As a coding method with low encoding and decoding complexity, polar codes 

have prospects for being put into practical application. Arikan proved that when 

the block length is N, the time and space complexities of the encoding and 

decoding algorithms are both ( log )O N N , where, ( )O N  is the big O notation 

(Landau notation), describing the asymptotic performance of the function. 

 Arikan inferred that, under the successive cancellation (SC) algorithm, the 

average block error probability of polar codes is upper bounded by (2 )NO
  

[64], where 0 1/ 2  . 

Fig. 1-3 depicts the system model of channel polarization. The polarization of a B-

DMC results in two types of polarized bit channels: the “good” bit channel (i.e., binary 

channel with channel capacity close to 1 bit/channel use) and the “bad” bit channel 

(i.e., binary channel with channel capacity close to 0). The capacity of those “good” 

bit channels equals the mutual information with equal probability input (that is, equal 

to the symmetric capacity of discrete memoryless channels). The encoding of polar 

codes is to let the information bits to be encoded pass through the bit channels 

approaching the channel capacity (here channel polarization can be regarded as one 

kind of precoding or coding preprocessing). At the same time, those frozen and pre-

determined bits are transmitted to bit channels whose channel capacity is close to 0. 

Because the predetermined bits are the key component of the SC decoding process for 

polar codes, these frozen and pre-determined bits cannot be ignored. Therefore, 

information bits to be encoded and the frozen bits make up the input bit sequence 

1 2( , , , )NU U U  , which, through channel polarization transformation, produces the 
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coding sequence 1 2( , , , )NX X X  . After being passed through the channel, the 

received sequence 1 2( , , , )NY Y Y  is decoded by the receiver to get the information bits. 

Additionally, Korada also pointed out that in a physically degraded model, those bit 

channels which are “good” for degraded channels must be “good” bit channels for 

non-degraded channels as well [65]. 

 

Fig. 1-3 The theoretical model of channel polarization for polar codes 

Presently, the theoretical study and practical application of polar codes are still in 

the early stage, but channel polarization and related technologies have been used to 

solve some important issues in relation to information theory. For example: Arikan et 

al. extended the channel polarization in the B-DMCs to arbitrary discrete memoryless 

channels, and proved that similar to the case of the B-DMCs, polar codes can also 

achieve the capacity of arbitrary discrete memoryless channels [66]. Hassani [67] and 

Tanaka et al. [68, 69] further investigated the rate of channel polarization and derived 

the upper bound on the optimal achievable block error probability of polar codes under 

the SC decoding algorithm. Based on this research finding, Korada et al. analyzed and 

summarized the general construction standards for polar codes and the algorithms for 

the bounds on channel polarization exponents [65, 70]. Tal and Vardy [71, 72] 

respectively studied the encoding and decoding methods for polar codes. The findings 
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show that the polar codes constructed by Tal and Vardy only have time complexity of 

( )O N  and space complexity of (log )O N . Meanwhile, the successive-cancellation list 

decoding (SCLD) algorithm proposed by Tal and Vardy, improved the original SC 

decoding algorithm, and achieved an excellent performance comparable to that of 

LDPC codes. Hassani et al., who applied the polar codes to compound channels, 

proved that in general, under the SC decoding algorithm, the compound channel 

capacity based on polar codes is strictly less than the capacity of the compound channel 

[73]. Goela et al. analyzed and constructed a polar coding scheme for the deterministic 

broadcast channel (DBC). Their research results show that the proposed scheme not 

only inherits the block error probability of end-to-end polar codes, but also maintains 

the decoding complexity of ( log )O N N  [74]. Regarding the dual channel of the DBC 

channel, i.e., the multiple access channel (MAC), research conducted by Abbeand 

Telatar et al. [75, 76] shows that the channel polarization phenomenon still exists when 

polar codes are applied in the arbitrary multi-user MAC channel. They not only 

designed a polar code construction scheme in the MAC channel, but also proved that 

the constructed polar codes maintain the properties of end-to-end polar codes (i.e., 

complexity and the upper bound on the block error probability). Such a scheme serves 

as important theoretical basis for research undertaken in this thesis. 

1.3 Research Status of Distributed Channel Coding 

Research on the basic theory of distributed channel coding includes the capacity of 

relay systems and corresponding channel coding methods. 

1.3.1 Capacities of Relay Systems 

If a source node transmits information to a destination node without the assistance 

of any other communication terminals, such communication is referred to as direct 
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communication, single-user communication or end-to-end communication. For 

cooperative communications, there is at least one extra communication terminal in the 

communication network, which can help forward the source information. Meulen 

brought in the classic three-terminal relay channel [13], and derived the upper and 

lower bounds on the relay channel capacity. Although up until now the closed-loop 

expression of the capacity of general relay channels remains unknown, Cover and 

Gamal [77] significantly improved the upper and lower bounds derived by Meulen 

through extensive research. Without a doubt, Cover and Gamal’s findings played a 

decisive role in the development of relay channel capacity. Many of their important 

conclusions still remain irreplaceable so far. Cover and Gamal designed a classic relay 

cooperative transmission strategy - the DF protocol [11], [78, 79], and proved that by 

using this protocol, the achievable rate of relay systems can be attained [77]. There are 

mainly three different encoding and decoding methods for the DF protocol, which are: 

 Method 1: irregular encoding/successive decoding; 

 Method 2: regular encoding/sliding-window decoding; 

 Method 3: regular encoding/backward decoding. 

With Method 1, Cover and Gamal separately used the block Markov superposition 

encoding, random binning and successive decoding, and used codebooks with different 

block lengths. Therefore this method is called irregular encoding. King [80] researched 

on the multi-access channel with generalized feedback (MAC-GF), derived the 

achievable rate region of the channel, and summarized the research findings of Slepian 

and Wolf [81], Gaarder and Wolf [82], and Cover and Leung [83]. Utilizing the 

encoding and decoding methods of Method 2 (i.e., the source and the relay codebook 

share the same length, and the destination employs the sliding-window decoding 

algorithm), Carleial [84] further expanded King’s research results, not only deriving 



Chapter 1 Introduction 

19 

17 bounds regarding the achievable rate region, but also obtaining the same achievable 

rate as that of Cover and Gamal’s through properly choosing some random variables. 

Based on the MAC-GF model, Willems [85] introduced the backward decoding 

technology, i.e., Method 3, which even outperforms the sliding-window decoding 

algorithm [86-88]. He also pointed out that, for relay channels, using Method 3 can 

obtain the same achievable rate as can be obtained by using Method 1 and Method 2. 

Extensive research has also been carried out on the expansion of the above DF 

single-relay cooperative strategies into multiple-relay systems, and the design of 

corresponding encoding and decoding methods. Aref [89] was the first to have applied 

Method 1 in degraded relay networks [90], and he designed “binning” strategies 

capable of achieving the capacity of deterministic broadcast relay networks and 

deterministic interference-free relay networks. The achievability of capacity was 

proved using the concept of cut-set theoretical limits [77, 89], which have become a 

standard tool in defining channel capacity regions [91]. Similar to what Aref did, Gupta 

and Kumar [92] applied Method 1 to DF multiple-relay networks. What the two 

methods have in common is that they both consider the relaying process as a multi-

hop strategy, which means that before the source information arrives at the destination 

node, the relay node has already performed successive decoding on the received source 

information. Following that, Xie and Kumar [93, 94] designed Method 2, the encoding 

and decoding methods for DF multiple-relay networks, and demonstrated that their 

method can obtain an achievable rate higher than Aref’s and Gupta’s. Kramer et al. 

[95] further probed into Method 3, and pointed out that the two types of coding 

strategies have the same achievable rate, but sliding-window decoding has shorter 

coding delay than backward decoding, so Method 2 became the then most simple 

strategy which could reach the optimal achievable rate. The above multi-hop strategies 
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require all the relay nodes to decode the received source messages, so the source rate 

is limited by the decoding abilities of those relatively poor source-relay links. If the 

relay nodes can flexibly select appropriate message subsets to decode (these decoding 

sets not only include source messages, but may also include messages forwarded from 

other relay nodes), then multi-hop DF rates will be further increased. Stemming from 

this idea, Razaghi and Yu [96] proposed a new DF cooperative strategy - the parity 

forwarding (PF) protocol, based on which they also designed the irregular 

encoding/joint decoding method, referred to as Method 4 in this paper. By using this 

method, Razaghi and Yu proved that the PF protocol is capable of achieving the 

capacity of degraded relay networks. 

As we can see, so far research on multiple-relay systems has been fruitful, but most 

of the work reached their main conclusions based on non-constructive random coding 

methods. These conclusions indicate that there are channel codes capable of achieving 

the capacity of relay systems, but how to design practical coding schemes with low 

encoding and decoding complexity as well as the ability of achieving the capacity 

remains a challenge. 

1.3.2 Distributed Channel Coding Technologies for Relay Systems 

As an important breakthrough for modern wireless communications [10], 

cooperative communication technologies, taking advantage of the broadcast properties 

of wireless channels, establish spatial parallel communication channels, enable 

multiple single-antenna terminals to obtain space diversity gain through sharing, and 

realize virtual MIMO systems, which can improve wireless communication reliability, 

data transmission rates, utilization of spectrum resources and system capacity without 

increasing the transmitting power and system bandwidth. The application of 

distributed channel coding technologies brought further development to cooperative 



Chapter 1 Introduction 

21 

communications, and based on cooperative diversity, distributed channel coding 

technologies further enhanced the communication performance of systems. 

With the development of network information theory, distributed channel coding 

technologies of multifarious types sprang up in an endless fashion while relevant 

research on the application schemes for the classic relay channel model has also been 

active and dynamic. Hunter and Nosratinia [97] firstly proposed the concept of “coding 

cooperation” based on convolutional codes, and then this concept was extended into 

space-time coding [98, 99]. However, these distributed coding schemes are still quite 

far away from the capacity limit of the relay channel, which triggered research on 

applying Turbo codes to relay channels [15], [100, 101]. All these distributed Turbo 

coding schemes have considered an orthogonal receiving channel, which simplifies 

the structure of the receiver at the expense of spectrum effectiveness. In order to 

achieve higher system capacity, Zhang and Duman [16, 17] separately proposed 

distributed Turbo encoding and decoding methods for the full-duplex and the time-

division half-duplex relay channel models, and they, through analyzing destination 

nodes, properly designed a MAC channel detector and an iterative decoding algorithm. 

Their proposed scheme is capable of approaching the capacity limit of the relay 

channel. Meanwhile, in order to effectively address the unwanted impact on systems 

caused by relay decoding errors, Li et al. [102] proposed a distributed Turbo coding 

and decoding scheme based on soft information relay cooperation. As LDPC codes are 

very good codes extremely approaching the Shannon limit, research on applying 

LDPC codes in relay channels has attracted wide attention. Studies on various 

distributed LDPC coding schemes have led to excellent performances approaching the 

capacity limit in the full-duplex and/or time-division half-duplex relay channel model 

[18-20], [103-106]. As previously mentioned, polar codes have the advantages of low 
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complexity and being capable of achieving the capacities of B-DMCs, which Turbo 

codes and LDPC codes lack. Therefore, it has been a new direction to apply polar 

codes in wireless relay networks, and explore distributed polar encoding and decoding 

schemes which meet the needs of cooperative communications. Andersson et al. [107] 

were the first to have applied polar codes in the DF single-relay channel, and proved 

that polar codes with a nested structure can achieve the capacity of binary-input 

physically degraded relay channel with orthogonal receiver components. Then, 

Serrano et al. [108] extended Andersson's findings into relay channels with arbitrary 

inputs, and proved the achievability of the capacity. Through the implementation of 

block Markov coding, it was proven that polar codes can achieve the capacity of 

general physically degraded relay channels (i.e., without assuming orthogonal 

reception) [109]. All the above work was based on the full-duplex mode (i.e., relay 

nodes can send and receive data at the same time or within the same frequency band) 

and/or the assumption that destination nodes have orthogonal receiving components. 

Such an assumption bypasses the need to consider interference existing in received 

signals at the expense of spectrum width. In practical applications, in order to simplify 

the system design, people tend to make relay nodes work in half-duplex mode, and in 

order to make full use of system resources, the source and relay nodes often transmit 

signals within the same frequency band. So far, there has been no research regarding 

the application of polar codes in actual half-duplex relay systems and multiple-relay 

systems. 

1.4 Main Research Contents of This Doctoral Thesis 

This research topic originates from “Cooperative Communications for Future 

Wireless Networks”, a doctoral training program co-supported by Harbin Institute of 
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Technology and the University of Sydney. Because of the natural properties of 

distributed broadcasting innate in wireless communication networks, cooperative and 

distributed signal processing technologies can be used to markedly reduce system 

power consumption and enhance system performance. The relay protocol, distributed 

channel coding and cooperative signal processing are key technologies for designing 

cooperative wireless networks, where there are still many research topics demanding 

immediate solutions. The main objective of this project is to research on relevant 

cooperative communication technologies for multiple-relay networks, including 

optimization of distributed channel coding, design of joint channel and network coding, 

study on new relay protocols, configuration of cooperative transmission schemes, 

allocation of resources and power, and design of cross-layer optimization. 

Polar codes are among the first category of channel coding methods to have been 

proven capable of approaching the capacities of B-DMCs. The introduction of the 

polar code is of great theoretical significance. That is to say, not only did its advent 

verify the existence of channel coding schemes approaching Shannon channel capacity 

limit, but also it enjoys relatively low encoding and decoding complexity. However, 

despite the perfect theoretical proof of the polar code, in practice, the decoding 

performance of polar codes with finite block lengths needs to be further improved [110, 

111]. In order for polar codes to acquire better performances in practical applications, 

much literature has been written on the study of polar decoding algorithms, and notable 

progress has been made in improving the performance of polar codes [71, 72], [112-

121]. Therefore it is of great practical importance to utilize the advantages of polar 

codes, and apply them in real-world communication environment, which can 

transform polar codes eventually into practical very good codes. With the polar code 

as its focus, this thesis firstly, based on the analysis of advantages and disadvantages 
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of polar codes and LDGM codes, discusses the feasibility of serially-concatenated 

polar-LDGM (SCPL) codes and studies the SCPL coding scheme. Then building upon 

the analysis of the relay systems and the corresponding channel capacities, this thesis 

proposes a new DF relay cooperative transmission strategy, which this thesis calls the 

cooperative partial message relaying (CPMR) protocol, and studies practical decoding 

methods for polar codes under such a protocol. 

This thesis is composed of five chapters. Apart from this chapter, which serves as 

Introduction, the contents of the remaining chapters are arranged as follows: 

Chapter 2: Channel Polarization and Polar Codes 

This chapter, based on Shannon information theory, presents the basic definitions of 

channel capacity and the Shannon limit, which are of relevance to channel coding 

technologies. Then it analyzes the phenomenon of channel polarization in details, with 

emphasis on the coding methods for polar codes, summarizes the advantages and 

disadvantages of polar codes in theory and in practical applications, and fully 

quantifies the encoding and decoding complexity of polar codes. 

Chapter 3: Encoding and Decoding Algorithms for SCPL codes 

This chapter mainly investigates the methods for realizing the SCPL coding and 

their performance. Based on the analysis of the reasons why LDGM codes generate 

high error floors, the chapter, incorporating polar codes’ advantage of no error floors 

and utilizing the idea of concatenated codes, proposes a SCPL coding scheme, which 

uses polar codes with high coding rates as the outer codes and LDGM codes as the 

inner codes. Then, the chapter studies the concatenated coding method for SCPL codes 

and derives the message iterative decoding algorithm based on the Tanner graph. By 

properly selecting design parameters for SCPL coding, its performance is evaluated 

by simulations. The performance and encoding complexity of SCPL codes are 
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compared with those of LDPC codes and the serially-concatenated Polar-LDPC 

coding scheme under the same conditions. 

Chapter 4: Polar Coding Schemes for Single-Relay Transmission Systems 

This chapter mainly discusses the encoding and decoding methods for polar codes 

in degraded half-duplex relay systems. Firstly, the chapter analyzes the channel 

capacity of degraded half duplex single relay channels, based on which, incorporating 

the coding structure of polar codes, the chapter proposes a CPMR protocol with low 

complexity, and designs the corresponding encoding and decoding methods for polar 

codes. The findings of theoretical research show that to apply a polar coding scheme 

based on the CPMR protocol in such a system can obtain a performance asymptotically 

approaching the capacity of the relay channel. The study also derives the upper bound 

on block error probability under the SC decoding algorithm. Then, to verify the 

feasibility of the CPMR protocol, an actual system model is built and a joint iterative 

soft parallel interference cancellation (JISPIC) receiver structure based on polar codes 

is designed. Through the setting up of a simulation platform, some key parameters 

impacting the channel capacity limit are analyzed, such as time allocation factor, 

power allocation and the distance between relay and source. Finally, the CPMR 

scheme with finite block lengths is compared and analyzed through simulations. 

Chapter 5: Polar Coding Schemes for Multiple-Relay Transmission Systems 

In response to the relatively high encoding and decoding complexity of the non-

constructive random coding method for multiple-relay systems, this chapter is mainly 

concerned with extending the CPMR protocol with low complexity proposed in 

Chapter 4 into multiple-relay networks, and designing encoding and decoding methods 

for polar codes based on the characteristics of the system model. Firstly, the system 

capacity of the general multiple-relay networks is given, based on which, the system 
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capacities of two types of multiple-relay network with orthogonal receiver components 

(MRN-ORCs) are derived. Then, regarding these two types of system model, the 

chapter respectively describes the correlations between the partial messages and the 

information sets of the partial messages for corresponding CPMR protocols, analyzes 

the constructive encoding and decoding process of polar codes, derives the upper 

bound on the average block error probability under the SC encoding algorithm, and 

proves that in these two systems, the CPMR protocols based on polar codes can 

completely replace the traditional DF protocol based on highly complex random 

encoding methods and can approach the system capacity with arbitrarily small error 

probabilities. Lastly, the feasibility of applying the CPMR schemes to multiple-relay 

systems is verified through simulations.
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Chapter 2 Channel Polarization and Polar Codes 

2.1 Introduction 

Shannon channel coding theorem proved the existence of a coding method capable 

of achieving the channel capacity, but it did not provide any specific code construction 

method. Although the theorem has been around for more than half a century, it was not 

until the last twenty years that some modern channel coding methods have been 

verified to be able to approach or even proven to be capable of achieving the Shannon 

limit. Based on Shannon information theory, this chapter begins by presenting the basic 

concepts related to channel coding technologies, such as information entropy, etc. 

Then on the basis of mutual information, the chapter gives the important definitions of 

channel capacity and the Shannon limit, with emphasis on channel capacity limit, 

which is the final goal to be achieved for channel coding technologies in 

communication systems. Then the chapter studies in detail the basic principles of 

channel polarization and the encoding and the decoding algorithms of polar codes, 

derives the encoding and decoding complexity of polar codes and analyzes the 

advantages and disadvantages of polar codes in theory and in practical applications. 

The invention of polar codes serves as strong evidence for the existence of a coding 

method capable of achieving the channel capacity proposed in Shannon channel 

coding theorem. Polar codes not only can achieve the symmetric capacities of the B-

DMCs, but also boast relatively low encoding and decoding complexity. Therefore, 

the study on polar codes has great theoretical and practical significance. 
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2.2 Information Entropy 

Information entropy is a measure of information [21]. For an arbitrary probability 

distribution, the entropy measures the uncertainty of random distribution of such 

information. 

The entropy H(X) of a discrete random variable X is defined as  

( ) [ log ( )] ( ) log ( )
x

H X E p X p x p x


   


,                    (2-1) 

where E[.] evaluates the mathematical expectations of random variables,    is the 

alphabets where X takes value for x�  and p(x) denotes the probability mass 

function of X. 

The unit of entropy is related to the numeric value of the logarithmic base in 

Equation (2-1). Most commonly, the logarithmic base is 2 and the unit of entropy is 

bit. For theoretical derivation, e is often used as the base while nat is used as the unit. 

Other bases and units can also be adopted, and they are all interconvertible. 

Similarly, according to the joint probability distribution and conditional probability 

distribution of multiple random variables, the definition of entropy can be extended to 

the joint entropy and the conditional entropy of multiple random variables. 

If the joint probability mass function of binary discrete random variables ( , )X Y  is 

( , )p x y , the joint entropy ( , )H X Y  can be defined as 

( , ) [ log ( , )] ( , ) log ( , )
x y

H X Y E p X Y p x y p x y
 

   
 

.         (2-2) 

If the joint probability mass function of binary discrete random variables ( , )X Y  is 

( , )p x y , the conditional entropy ( | )H Y X  can be defined as 

    ( | ) [ log ( | )] ( , ) log ( | )
x y

H Y X E p Y X p x y p y x
 

   
 

.       (2-3) 

According to the definition of conditional entropy, for two random variables X and 
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Y, their conditional entropy ( | )H Y X  denotes the remaining uncertainty of Y when the 

entropy of X is known, and the entropy with decreased uncertainty is the mutual 

information. 

If the joint probability mass function of binary discrete random variables ( , )X Y  is 

( , )p x y  , and theirs marginal probability mass functions are ( )p x   and ( )p y  

respectively, then the mutual information ( ; )I X Y  is 

( ; ) ( ) ( | )I X Y H X H X Y    

   
( , )

( , ) log
( ) ( )x y

p x y
p x y

p x p y 

 
 

.                                       (2-4) 

Based on the definitions of joint entropy, conditional entropy and mutual 

information of binary random variables, the chain rule of mutual information of 

multiple random variable can be deduced as follows: The joint probability mass 

function of random variable 1 2, , , NX X X  is 1 2( , , , )Np x x x , and hence [91] 

1 2 1 2 1
1

( , , , ; ) ( ; | , , , )
N

N i i i
i

I X X X Y I X Y X X X 


   .            (2-5) 

Similarly, the entropy, joint entropy, conditional entropy and mutual information of 

continuous random variables can also be defined. 

2.3 Channel Capacity and the Shannon Limit 

Speaking in general terms, channels are signal paths with transmission medium as 

the basis, such as telephone lines, air, and the Internet. For communication systems, 

the main role of channels is to transmit information. Fig. 2-1 shows the diagram of a 

basic end-to-end communication system. Usually two symbols are used to represent 

the input and output of a channel while the characteristics of a channel are usually 

denoted by transition probabilities. That is to say, if a particular signal is used as a 
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channel input, each pair of input and output signals, together with the transition 

probabilities, could characterize the physical channel. To characterize a channel with 

this probability mapping not only simplifies the channel model but also describes its 

most important physical properties. 

 

Fig. 2-1 Block diagram of a communication system 

A discrete channel is a system composed of input alphabets  , output alphabets   

and a transition probability matrix ( | )p y x  , where ( | )p y x   is the probability of 

receiving an output symbol y when a transmission symbol x is known. If the probability 

distribution of an output is only dependent on its corresponding input, and is 

independent of the channel’s previous input and output, the channel is called a 

memoryless channel. 

A discrete memoryless channel’s channel capacity C is 

( )
max ( ; )

p x
C I X Y ,                                             (2-6) 

which has the following characteristics [21]: For an arbitrary given 0  , if the 

information transmission rate R C , there must exist a channel coding method, which 

makes the maximum decoding error probability arbitrarily less than or equal to   with 

the increase of block lengths. The proof of the existence of such a channel coding 

method should meet the following three conditions: 

1) a random coding construction method is adopted; 

2) the block length is sufficiently long; 

3) an optimum ML decoding algorithm is used for decoding. 

Fulfilling the above three necessary conditions, Shannon proved in theory that error-

free transmission with rates arbitrarily approaching the channel capacity is achievable. 
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On the contrary, if the information transmission rate R C , there would not be such a 

channel coding method to ensure the reliability of information transmission. 

The above discussion indicates that channel capacity is the maximized mutual 

information. Channel capacity can also be defined as the maximum rate at which a 

channel transmits information with an arbitrarily low error probability, with the unit 

being bit/channel use. To take one step further, the situation with discrete channels can 

also be extended to that with continuous random channels. 

 

Fig. 2-2 Diagram of a Gaussian channel 

Fig. 2-2 shows the model of the AWGN continuous channel. The channel input is a 

continuous signal X, the output is a continuous signal Y and the noise is Z, where Z is 

the Gaussian distribution subject to variance 2
0 / 2N   , i.e. Y X Z  ，

2~ (0, )Z �  , and hence there is ( ) log( 2 )H Z e   . Assume that Z and X are 

independent of each other. When the input average power is limited by P and the 

continuous entropy of normal distribution is maximum [91], from this we can get 

2( ) log( 2 ( ))H Y e P   .                                (2-7) 

Therefore, the capacity of the Gaussian channel is 

2( ): ( )
max ( ; )

p x E X P
C I X Y


              

2( ): ( )
max ( ( ) ( ))

p x E X P
H Y H Z


                                 

2log( 2 ( )) log( 2 )e P e                                 

2 2

1
log (1 )

2

P


  ,                                                (2-8) 
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where the equality holds when ~ (0, )X P� . 

In the domain of channel coding theory, 0/bE N  is often the preferred method to 

characterize channel capacity, where bE  is the average energy of each information bit 

(information bit before encoding). Define signal-to-noise Ratio (SNR) 0SNR /bE N . 

Suppose a coding rate is given as R, and each symbol delivers 2 bits, then 

2
s

b

E
E

R
 ,                                                     (2-9) 

where sE  denotes the average energy of transmitted symbol (modulation symbol after 

encoding). 

Then, Equation (2-8) can be further rewritten as 

2
0

1
log (1 2 )

2
bE

C R
N

  .                                       (2-10) 

In Equation (2-10), the upper bound on the coding rate R is given by the channel 

capacity C of the AWGN channel with continuous input and continuous output, i.e. 

R C . Therefore, the coding rate R and 0/bE N  have the following relations: 

2
0

1
log (1 2 )

2
bE

R R
N

                                          (2-11) 

 
2

0

2 1

2

R
bE

N R


                                                 (2-12) 

2

0
0

2 1
lim ln 2 1.59dB

2

R
b

R

E

N R


     .            (2-13) 

Equation (2-13) indicates, with a given coding rate R, the minimum SNR threshold for 

realizing error-free transmission in an AWGN channel with continuous input and 

continuous output, i.e., the Shannon limit. With the increase of the coding rate R, the 

Shannon limit also increases. As R approaches 0, the Shannon limit can obtain the 

minimum value. 
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If the input X of the above AWGN channel is a binary discrete random variable with 

equal probability distribution, the AWGN channel is called a BI-AWGN channel. If X 

takes value from alphabets {a,-a}, meaning that a binary phase-shift keying (BPSK) 

of amplitude a is used for modulation, then it satisfies [122] 

2 2 2
2 2

1
( ; ) ( , , ) log ( , , ) log 2

2b bI X Y y E y E dy e     



   ,       (2-14) 

where (.)  is defined as 

2 2 2 22 ( ) /2 ( ) /2

2

1
( , , )

8

y a y ay a e e  


       .                  (2-15) 

Fig. 2-3 compares the curves of channel capacities of the AWGN channel and BI-

AWGN channel versus SNR. Take the AWGN channel for example. When SNR is 1dB, 

as derived from the conclusion of Shannon coding theorem, as long as the information 

transmission rate is lower than 0.5 bit/channel use, a coding method can be found to 

realize error-free information transmission in the AWGN channel. On the other hand, 

when the information transmission rate is 0.5 bit/channel use, as long as SNR 1 dB, 

error-free information transmission can be guaranteed. However, when SNR 1 dB, 

provided that channel coding methods are not considered, error-free information 

transmission cannot be guaranteed. It can also be seen from Fig. 2-3 that, as SNR 

increases, the channel capacity of the AWGN channel will gradually exceed 1 

bit/channel use, and the maximum channel capacity of the BI-AWGN channel is 1 

bit/channel use. That is to say, when binary information is input into an AWGN channel, 

the channel can only obtain 1 bit of useful information. Therefore, there could always 

be a relation between the AWGN channel capacity and the BI-AWGN channel capacity 

as follows: 

AWGN BI-AWGNC C .                                          (2-16) 

However, at a very low SNR, AWGNC  and BI-AWGNC  are almost equal. 
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Fig. 2-3 Capacities of the AWGN channel and the BI-AWGN channel 

As pointed out by Shannon channel coding theorem, if the information transmission 

rate is smaller than the channel capacity, information can be transmitted without error. 

Based on this theorem, making full use of separation theorem and rate distortion theory, 

Cover studied methods to determine the maximum information transmission rate under 

conditions where error-free transmission cannot be guaranteed, or to put it differently, 

methods to compute the minimum SNR for reaching a transmission rate when such a 

transmission rate and the error probability are given [91, 122]. 

Suppose the coding rate is R and the error probability of information transmission 

is bp  . Then based on rate distortion theory, we can know that the quantity of 

information carried by each transmission symbol is (1 ( ))bR H p . To make sure that 

information is transmitted from source with arbitrarily small error probabilities, 

(1 ( ))R H p  should be smaller than the channel capacity C. Therefore, the maximum 

achievable rate ( )pC   with average distortion (i.e., bit error probability) bp   can be 

expressed as 
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( )

1 ( )
p C

C
H p




.                                            (2-17) 

Fig. 2-4 demonstrates the SNR 0/bE N  required to transmit information at various 

transmission rates in the AWGN channel and BI-AWGN channel. For any curve made 

in this figure, the area to its right is achievable. Thus, these curves are the ultimate 

goals to be achieved by the design of very good codes, meaning that when the 

performance curve of such very good codes coincides with a curve in this figure, we 

can say that such very good codes transmit information at a rate equal to the channel 

capacity. For Fig. 2-4, attention needs to be paid to the following: 

1) when SNR is very low, the performance of the BI-AWGN channel and that of the 

AWGN channel are quite similar, which is in line with the curves shown in Fig. 2-3; 

2) a higher coding rate demands higher SNR; 

3) the vertical asymptotic line (i.e., BER 0 ) is precisely the channel capacity C. 

 

Fig. 2-4 Capacity lower bounds on BER as a function of SNR 
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2.4 Channel Polarization and Polar Codes 

Channel coding technologies are designed to solve the problem regarding how to 

transmit information reliably through channels from source to destination. Shannon 

studied this problem from the perspective of mathematical theory, and quantified the 

maximum amount of information that source can reliably transmit to destination [21], 

i.e., source transmits information to destination with an arbitrarily low error probability. 

If an arbitrary channel code of information length M and block length N in a discrete 

memoryless channel ( , , ( | ))p y x    - a ( , )M N   code consists of the following 

components: 

1) information set {1, , }M   with cardinality M; 

2) encoder : Nf   ; 

3) decoder : Ng   . 

Then, the coding rate of such a code is defined as 

log M
R

N
 .                                                  (2-18) 

The average decoding error probability is defined as 

1

1
Pr{ ( ) | ( )}

M
N N N

e
i

P g Y i
M

X f i


   ,                     (2-19) 

where NX   denotes the vector 1( , )N
NX X X    and NY   is the vector NY 

1( , )NY Y  . Equation (2-19) indicates the probability of the decoder making error 

decisions when all possible values in   are uniformly selected. 

If the code rate R is considered achievable, then there would exist a codeword 

sequence ( 2 , )NNR N   , which for any arbitrary 0  satisfies 

lim inf N
N

R R


   ,                                           (2-20) 
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lim N
e

N
P


  .                                               (2-21) 

Shannon channel coding theorem proved the existence of very good codes, but it 

did not provide any specific construction method. The proof of the theorem shows that 

a lower error probability demands longer random coding, which will increase the 

probability of getting very good codes, but the complexity of the ML decoding of 

random codes will also be higher, which could even make decoding impossible. 

Therefore, one of the main research objectives for channel coding theory has long been 

to find a practical very good code (a coding method with relatively low encoding and 

decoding complexity and very good error correction performance), making it feasible 

to approach the Shannon limit as close as possible with arbitrarily small error 

probabilities. 

2.4.1 Channel Polarization Theory 

Consider a B-DMC ( , ( |, ))W y x    while    and    represent the input and the 

output alphabets of the channel, respectively. ( | )W y x   represents the transition 

probability of the channel, where x  , y ，and the input alphabets    take 

value from the set {0,1} while the output alphabets and the transition probability have 

arbitrary values. For this channel, let NW  denote the N uses of the channel W, and then 

the channel : NN NW    has the following relations: 

1 1
1

( | ) ( | )
N

N N N
i i

i

W y x W y x


 ,                                   (2-22) 

where 1
Nx  denotes the vector 11 ( , )N

Nx x x   and 1
Ny  is the vector 11 ( , )N

Ny y y  . 

For a B-DMC, if there is a permutation relation :   , then all y  meet the 

criteria 1    and ( | 0) ( ( ) |1)W y W y , and the B-DMC is said to be symmetric. 

Definition 2-1 (Symmetric Capacity of the B-DMC): 
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1 ( | )
( | ) log

1 12 ( | 0) ( |1)
2 2

( )
y x

W y x
W y x

W y y
I W

W 





  ,              (2-23) 

where I(W) denotes the mutual information between input and output symbols of W, 

in which input symbols are uniformly distributed, and ( ) (0.1)I W  . 

As can be derived from Shannon coding theorem, when the error rate is arbitrarily 

small, any information transmission rate smaller than the channel capacity is 

achievable, but how to obtain the closed-loop expression of BER remains unknown. 

However, for the end-to-end transmission in a B-DMC, it is relatively easy to 

determine the upper bound on error probabilities when, e.g. the ML decoding method 

is adopted for decoding. Therefore, we utilizes Bhattacharyya parameters to determine 

the upper bound on error probabilities [63]. 

Definition 2-2 (Bhattacharyya Parameters): Bhattacharyya parameters can be 

expressed as 

( ) ( | 0) ( |1)
y

Z W W y W y


 


,                                 (2-24) 

where Z(W) denotes the upper bound on error probabilities of ML decoding when 0 or 

1 is sent through the channel W, where ( ) (0,1)Z W  . 

Judging from the two parameters defined in Definition 2-1 and Definition 2-2, when 

and only when Z(W) approaches 1, I(W) approaches 0, and vice versa. For an arbitrary 

B-DMC W, the relational expression between I(W) and Z(W) is strictly as follows [63]: 

( ) ( ) 1I W Z W  ,                                             (2-25) 

2 2( ) ( ) 1I W Z W  .                                          (2-26) 

Although these two parameters are simple in form, they play a very important role 

in the proving of channel coding theory, e.g., proving the existence of channel capacity 

and the achievability of coding rates [123]. 
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Channel polarization is an outstanding characteristic for constructing coding 

sequences which can achieve the symmetric capacity of the B-DMC. The concept of 

channel polarization was later extended to be applied to B-DMCs with arbitrary inputs 

[66]. The channel codes constructed based on this characteristic is called the polar code. 

Suppose the channel :W    is a B-DMC, where {0,1} . Consider a random 

vector 2
1U  uniformly distributed in the field {0,1} , as shown in Fig. 2-5 [63]. Let 

the input of two independent channels W be 

2 2
1 1 2X U G ,                                                  (2-27) 

where 

2

1 0

1 1
G

 
  
 

                                                 (2-28) 

is the kernel matrix for constructing polar codes [70]. Correspondingly, 2
1Y   is the 

channel output. The channel between 2
1U   and 2

1Y   is defined by the transition 

probability as follows: 

2 2
2 2 2

2 1 1 1 2
1 1

( | ) ( | ) ( | ( ) )i i i i
i i

W y u W y x W y u G
 

   .           (2-29) 

 

Fig. 2-5 Channel combining of two channels to the synthesized channel 2
W  

The equation above illustrates the concept of channel combining proposed by 

Arikan. Its physical significance shows that two independent channels W can be 

combined, and result in a new synthesized channel 2
2

2:W   . It should be noted 

that there exists a bijection linear conversion between 2
1U  and 2

1X , and all inputs of 
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the channel W are independent and uniformly distributed and hence we get  

 2 2 2 2
1 1 1 1 1 1 2 2( ; ) ( ; ) ( ; ) ( ; ) 2 ( )I U Y I X Y I X Y I X Y I W    .         (2-30) 

In addition, by using the chain rule of mutual information expressed by Equation 

(2-5), 2 2
1 1( ; )I U Y  in the above equation can be separated into 

2 2 2 2
1 1 1 1 2 1 1( ; ) ( ; ) ( ; | )I U Y I U Y I U Y U                       

2 2
1 1 2 1 1( ; ) ( ; , )I U Y I U Y U  ,                          (2-31) 

where 2
1 1( ; )I U Y  denotes the mutual information between 1U  and 2

1Y , in which 2U  is 

regarded as noise, 2
2 1 1( ; , )I U Y U  is the mutual information between 2U  and 2

1Y , with 

1U  in the decoder given. 

It should be noted that since 1U   and 2U   are independent, the second equality in 

Equation (2-31) holds. In addition, the two terms in the equation accurately describe 

the symmetric capacities of the split channels, i.e. (1) 2
2 1 1( ) ( ; )I W I U Y  and (2)

2( )I W 

2
2 1 1( ; , )I U Y U . These two types of channels have the following transition probabilities 

respectively: 

1

2 2

(1) 2 2 2
2 1 1 2 1 1 1 2 2 2

1 1
( | ) ( | ) ( | ) ( | )

2 2u u

W y u W y u W y u u W y u    ,    (2-32) 

 
1

(2) 2 2 2
2 1 1 2 2 1 1 1 2 2 2

1 1
( , | ) ( | ) ( | ) ( | )

2 2
W y u u W y u W y u u W y u   ,       (2-33) 

where (1)
2W   denotes the transition probability 2(1)

2 :W     and (2)
2W   denotes the 

transition probability (2)
2

2:W     . 

Equation (2-32) and Equation (2-33) illustrate the concept of channel splitting 

proposed by Arikan. Its physical significance shows that a synthesized channel can be 

separated into two split channels (1)
2W   and (2)

2W  . The mutual information and 
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Bhattacharyya parameters of split channels (1)
2W   and (2)

2W   have the following 

properties [63]: 

(1) (2)
2 2( ) ( ) 2 ( )I W I W I W  ,                                  (2-34) 

(1) (2)
2 2( ) ( ) ( )I W I W I W  ,                                    (2-35) 

(1) 2
2( ) 2 ( ) ( )Z W Z W Z W  ,                                  (2-36) 

(2) 2
2( ) ( )Z W Z W .                                                (2-37) 

As can be seen from Equation (2-35), after being split, the channel (1)
2W  has poorer 

performance than the channel W while the channel (2)
2W  has better performance than 

the channel W, which is the most typical example of channel polarization. 

Likewise, a similar method can be used to combine two independent channels 2W  

so as to generate a new channel 4
4

4:W    , as shown in Fig. 2-6 [63]. Two 

independent channels 4W  can also generate 8
8

8:W   , and so on. In Fig. 2-6, 4R  

is the permutation operation which maps the input symbol 1 2 3 4( , , , )s s s s   into 

4
1 1 3 2 4( , , , )v s s s s . 

 

Fig. 2-6 The channel 4
W  and its relation to 2

W  and W 
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In general, this kind of channel combining operation can be expressed as a recursive 

transformation. For an arbitrary 2nN  , define the channel : N
N

NW    as follows: 

/2 1
1 1 /2 1 1, 1, /2 /2 1,( | ) ( | ) ( | )N N N N N N N

N N e o N N oW y u W y u u W y u  ,           (2-38) 

where 1,
N
eu  denotes the even index of the vector 1

Nu  and 1,
N
ou  is the odd index of the 

vector 1
Nu  . Then, the channel /2NW   can also be defined through the channel /4NW  . 

Repeat this operation until the expression of the channel 2W  is as shown in Equation 

(2-29), where 1W W . 

Fig. 2-7 [63] illustrates the recursive construction of the channel NW   from two 

independent channels /2NW . Firstly, convert the vector input 1
Nu  of the channel NW  

into 1
Ns   and then when 1 / 2i N   , relations 2 1 2 1 2i i is u u     and 2 2i is u   can be 

obtained. In Fig. 2-7, the operation NR   is a kind of permutation operation called 

“reverse shuffle”. The operation permutes the input 1
Ns  into a sequence with an output 

of 1 1 3 1 2 4( , , , , , , , )N
N Nv s s s s s s     and then feeds them respectively into two 

corresponding channels /2NW . 

 

Fig. 2-7 Recursive construction of N
W  from two copies of / 2N

W  

It can be seen from Fig. 2-7 that 1 1
N Nu v  is a linear mapping based on a binary 
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field. Then it can be deduced that the overall mapping relation 1 1
N Nu x   from the 

input of the synthesized channel NW  to the input of the channel NW  is also a linear 

mapping based on a binary field, and can be represented by the generator matrix NG , 

and then 

1 1 1 2
N N N n

N NX U G U B G ,                                    (2-39) 

where NB   denotes the bit-reversal permutation matrix and n   is the nth order 

Kronecker product [63]. 

For all 1
NNy   and 1

NNu  , the transition probability between the channel NW

and the channel NW  can be expressed as 

1 1 1 1 1
1

( | ) ( | ) ))( | ( i

N
N N N N N N

N N i N
i

GW y u W y u W y u G


  ,          (2-40) 

where the second equality shows that the channel W is memoryless, i.e.,  

1 1
1

( | ) ( | )
N

N N N
i i

i

W y x W y x


 .                                (2-41) 

Similar to those in Equation (2-32) and Equation (2-33), the split channels of the 

channel NW  can also be defined. The splitting operation is computed from the chain 

rule hereinbefore, as follows: 

1
1 1 1 1

1

( ; ) ( ; , )
N

N N N i
i

i

I U Y I U Y U 



  ,                            (2-42) 

where 1
1 1( ; , )N i

iI U Y U   denotes the mutual information between iU  and 1
1 1( , )N iY U  . 

Define the channel ) 1( :i i
N

NW      as a split channel, and then its transition 

probability is 

1

( ) 1
1 1 1 11

1
( , | ) ( | )

2N N i
i

i N i N N
N i NN

u

W y u u W y u









 


.                  (2-43) 

Based on the construction characteristics of Equation (2-40) for channel combining 
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and Equation (2-43) for channel splitting, the recursive relation between the channel 

sets ( ){ }i
NW  and ( )

/2{ }i
NW  can be obtained. For an arbitrary 0n  , 2nN   and 1 i N  , 

( )i
NW  and ( )

/2
i

NW  satisfy the relations [63]: 

2

(2 1) 2 2 2 ( ) 2 2 2 2 ( ) 2 2 2
2 1 1 2 1 1 1, 1, 2 1 2 1 1, 2

1
( , | ) ( , | ) ( , | )

2
i

i N i i N i i i N i
N i N o e i i N N e i

u

W y u u W y u u u u W y u u    
     , 

(2-44) 

(2 ) 2 2 1 ( ) 2 2 2 2 ( ) 2 2 2
2 1 1 2 1 1, 1, 2 1 2 1 1, 2

1
( , | ) ( , | ) ( , | )

2
i N i i N i i i N i

N i N o e i i N N e iW y u u W y u u u u W y u u   
    .  (2-45) 

Meanwhile, ( )( )i
NI W  and ( )( )i

NZ W  have the following relations [63]:  

(2 ) (2 1) ( )
/2( ) ( ) 2 ( )i i i

N N NI W I W I W  ,                            (2-46) 

(2 ) ( ) (2 1)
/2( ) ( ) ( )i i i

N N NI W I W I W   ,                              (2-47) 

(2 ) ( ) ( ) 2
/2 /2( ) 2 ( ) ( )i i i

N N NZ W Z W Z W  ,                           (2-48) 

(2 1) ( ) 2
/2( ) ( )i i

N NZ W Z W  .                                            (2-49) 

Based on the above analysis, Arikan continually repeated channel combining and 

channel splitting in order to polarize channels, and arrived at the channel polarization 

theorem [63-66]. 

For an arbitrary B-DMC W, arbitrary 0   , and 2nN   , ( ){ }i
NW   is polarized 

through the following methods: 

( )| { {1, 2, , }: ( ) (1 ,1]} |
lim ( )

i
N

N

i N I W
I W

N




  



,                (2-50) 

( )|{ {1, 2, , }: ( ) [0, )} |
lim 1 ( )

i
N

N

i N I W
I W

N




 
 


,                (2-51) 

where ( )( )i
NI W  denotes the mutual information of the bit channel ( ){ }i

NW  and ( )I W  is 

the symmetric capacity of W . 

The theorem shows that, as the block length increases, almost all channels ( ){ }i
NW  
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will be polarized into the corresponding noise-free channels (the mutual information 

of the channel ( ){ }i
NW  close to 1, or the Bhattacharyya parameters close to 0) or noisy 

channels (the mutual information of channel ( ){ }i
NW  close to 0, or the Bhattacharyya 

parameters close to 1). Therefore, in this thesis those channels with mutual information 

close to 1 are called “good” bit channels while the remaining channels are called “bad” 

bit channels. 

Fig. 2-8 illustrates the effects of channel polarization as n increases. The horizontal 

axis represents the index i of the bit channel after polarization and the vertical axis 

represents the Bhattacharyya parameter ( )( )i
NZ W  of the bit channel. As the diagram 

shows, values ( )( )i
NZ W   of most bit channels are approaching 0 or 1 while values 

( )( )i
NZ W  of a small number of bit channels are between 0 and 1. In fact, the diagram 

has demonstrated the tendency for about half of the channel sets to center around 0 

and the other half to center around 1. 

 

Fig. 2-8 The progress of channel polarization for a BEC with erasure probability 0.5 

Of course, there also exist other iterative construction methods which show similar 
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phenomenon of channel polarization, but even if they can achieve better polarization 

rates, it is done at the cost of increased encoding complexity [65, 70, 110]. 

2.4.2 Encoding of Polar Codes 

The channel polarization phenomenon illustrates how to construct a polarizable 

channel and naturally it gives rise to such a channel coding method: information bits 

are transmitted through the “good” bit channels while frozen and known bit sequences 

are input into the remaining “bad” bit channels, and are made visible to the decoder in 

advance. Because the “good” bit channels tends to I(W), it can transmit information 

reliably at a rate arbitrarily approaching the symmetric capacity. Let   be a subset of 

set [ ] {1, , }N N   , and let u   be a binary vector of length | |  . Then    can be 

defined as an information set (i.e., a position index set of the “good” bit channels), and 

[ ] \N   can be defined as a frozen set (i.e., a position index set of the remaining 

“bad” bit channels apart from that of the “good” bit channels). Accordingly, u  and 

u   can be called information bits and frozen bits respectively. Thus, the encoding 

method constructed through this channel polarization phenomenon is the polar code. 

Definition 2-3 (Polar Codes): For an arbitrary information set [ ] {1, , }N N  � , 

frozen set [ ] \N    and | |u  
   , let G be the generator matrix NG   defined in 

Equation (2-39), and let G  be a submatrix containing partial column vectors of G 

(the column vector index belongs to the set  ), and then the polar code ( , )NC u  is 

a linear code, whose codeword set has the following form: 

|
1 1

|( , ) { : }N N
N NC u x u G u G u G u     

       .           (2-52) 

Its coding rate is 

| | | |

| | | |
R

N
 


 

 
.                                       (2-53) 
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As can be seen from the definition of polar codes, the encoding of polar codes firstly 

fixes the inputs of the bit channels ( ) : }{ i
NW i   and then sends information bits 

through the bit channels ( ) : }{ i
NW i  . This definition shows that for polar codes 

constructed by channel polarization, the vector 1
Nu  contains information bits u  and 

frozen bits u  at the same time. Therefore, to design polar codes for a given channel 

W to reach a certain error probability, we should determine the coding block length 

firstly, and then specify the information set and the frozen set respectively. Before a 

detailed discussion on how to determine the ranges of the sets   and  , the decoding 

method for polar codes should be introduced first. 

2.4.3 Decoding of Polar Codes 

The mutual information 1
1 1( ; , )N i

iI U Y U    shows that only when both 1
1
iU    and 

channel outputs 1
NY  are known can the decoder perform decoding. However, by just 

knowing those frozen bits, although the decoding of iU  can be carried out, its accuracy 

cannot be guaranteed. Therefore, Arikan invented the SC decoding algorithm [63]. 

This algorithm performs decoding in the order of 1 2, , , NU U U , which ensures that 

the decoder at least has the estimate of 1
1
iU   when carrying out the decoding of iU . 

The decision rules of the SC decoding algorithm for polar codes are as follows [63]: 

 If i , then set ˆi iu u ; 

 If i , then 

( ) 1
1 1̂0, ( ,

otherwise

) 1
ˆ

1,

i N i
N

i

L y u
u

 
 


,                                    (2-54) 

where ( ) 1
1 1̂( , )i N i

NL y u   denotes the likelihood ratio (LR) of iu  when the outputs 1
Ny  and 

1
1̂
iu   are known, and 
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( ) 1
( ) 1 1 1

1 1 ( ) 1
1 1

ˆ( , | 0)
ˆ( , )

ˆ( , |1)

i N i
i N i N

N i N i
N

W y u
L y u

W y u




 .                              (2-55) 

Based on the ideas of channel combining and channel splitting, the results shown in 

Equation (2-44) and Equation (2-45) can be used to derive the following recursive 

iterative formula of the SC decoding algorithm [63]: 

( ) /2 2 2 2 2 ( ) 2 2
/2 1 1, 1, /2 /2 1 1,(2 1) 2 2

1 1 ( ) /2 2 2 2 2 ( ) 2 2
/2 1 1, 1, /2 /2 1 1,

ˆ ˆ ˆ( , ) ( , ) 1
ˆ( , )

ˆ ˆ ˆ( , ) ( , )

i N i i i N i
N o e N N ei N i

N i N i i i N i
N o e N N e

L y u u L y u
L y u

L y u u L y u

  
 

  


 


 
,         (2-56) 

2 1ˆ1 2(2 ) 2 1 ( ) /2 2 2 2 2 ( ) 2 2
1 1 /2 1 1, 1, /2 /2 1 1,ˆ ˆ ˆ ˆ( , ) ( , ) ( , )

iui N i i N i i i N i
N N o e N N eL y u L y u u L y u

   
    .    (2-57) 

When / 2 1N  , the recursive formula ends. At this point, there is 

(1)
1

( | 0)
( )

( |1)
i

i
i

W y
L y

W y
 .                                           (2-58) 

The value of the equation above can be obtained directly from the distribution of the 

channel W. 

It should be noted that the SC decoding algorithm is neither the only nor the best-

performing decoding algorithm. In fact, Equation (2-54) shows that if the decoding 

algorithm can make full use of all the values in the set   ( i , and does not have 

to satisfy j i ) to estimate iu  , a better performance should be achieved. Hussami et 

al. pointed out that the BP algorithm performs better in decoding polar codes than the 

SC algorithm does [110]. However, the advantage of the SC decoding algorithm lies 

in its usage in the theoretical analysis of asymptotic performances. It was based on this 

algorithm that Arikan proved the achievability of the symmetric capacity of polar 

codes, and computed the decoding complexity of polar codes to be only ( log )O N N . 

For an arbitrary B-DMC W and an information set   , when the SC decoding 

algorithm is employed, the upper bound on the average block error probability of polar 

codes satisfies [63]: 
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( )ˆ( ) Pr( ) ( )i

e i i N
i i

P u u Z W
 

   
 

 .                           (2-59) 

As mentioned earlier, to design polar codes is essentially to determine the rules for the 

regions of the sets    and   . Equation (2-59) indicates that the rules can be 

determined by minimizing the rightmost expression in the equation. 

Regarding the average block error probability, Arikan gave a stricter upper bound, 

i.e., the convergence speed of channel polarization [63, 64]. For a given B-DMC W 

and an arbitrary 0 1/ 2  ,   

( )Prlim ( ) 2 (( ) )i N
N

N
W IZ W




  .                            (2-60) 

The results of the above equation indicate how to choose the frozen set   when the 

SC decoder are employed. Based on these results, Arikan proved that polar codes can 

achieve the symmetric capacity by using the SC decoding algorithm [63]. 

Theorem 2-1 (Achievability of the Symmetric Capacity of Polar Codes): For a 

given B-DMC W and a fixed ( )R I W , there exists a polar code sequence of block 

length 2nN  and rate NR R . For an arbitrary 0 1/ 2   and an arbitrary 0n n , 

its average block error probability under the SC decoding satisfies 

( ) (( ) ( 2 ))i
e N

i

NOP Z W




 


 .                                (2-61) 

Proof: For an arbitrary 0 1/ 2  , let 1 / 2   , and choose the information 

set   to be 

( ){ [ ] : ( ) 2 }i N
Ni N Z W

   ,                                (2-62) 

and then according to Equation (2-60), there is 

| |
lim lim ( )N
N N

R I W R
N 

  


.                              (2-63) 

For a sufficiently-long block length N, there is 
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2 2N NN
   ,                                               (2-64) 

Hence, there is 0n  satisfying 

( ) 2( ) ) 2( i
e N

N N

i

P Z NW
 



  


 .                        (2-65) 

Because this error probability averages all the frozen sets, there must exist a frozen set, 

which causes the maximum error probability to be 2 NN
 .                                                 □ 

If the channel W is a symmetric channel, the symmetric capacity I(W) equals the 

channel capacity C. In addition, Arikan pointed out that for a B-DMC, the selection of 

the value u  will not influence the average block error probability [63]. Therefore, to 

simplify the coding design, u  can be set as 0. 

Suppose a polar code of block length 16N   is designed for a BEC channel with 

erasure probability 0.4. Firstly, Bhattacharyya parameters are iteratively computed 

based on Equation (2-48) and Equation (2-49), as shown in Fig. 2-9. When the polar 

coding rate is 9/16, 9 bit position indices with minimum Bhattacharyya parameters are 

selected as the information set   , and then {7,8,10,11,12,13,14,15,16}  

(positions of the bold green figures shown in Fig. 2-9), and correspondingly 

{1, 2,3, 4,5,6,9}   (positions of the bold red figures shown in Fig. 2-9). If the 

information bit sequence to be sent is 1 0 0 1 1 1 0 1( )0 u  , let it be passed through 

the corresponding “good” bit channels in the set    and set the input of the 

corresponding “bad” bit channels in the remaining set   as the frozen bit sequence 

0 0 0 0 0 )0( 0 u   so at this point the input coding sequence is (0 0 0 0 0 0 1 0 0 0 

1 1 1 0 0 1). Carrying out the channel recursion conversion as shown in Fig. 2-7 on 

this input coding sequence will generate a codeword sequence x = (1 0 1 0 0 1 0 1 0 0 

1 1 0 0 1 1). After having x pass through the BEC channel, the received sequence will 

be y = (1 ? ? ? 0 ? 0 1 0 0 1 ? 0 ? 1 1)，where ? represents the bits deleted after being 
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passed through the BEC channel. As the decoder is visible to the corresponding frozen 

bit sequence in the set   , it is only necessary to apply the SC decoding on the 

corresponding information bit sequence in the set  . The LR value of information 

bits can be iteratively computed using Equation (2-56) and Equation (2-57). Lastly, the 

estimate of the corresponding information bit sequence can be obtained through 

Equation (2-54), i.e. the SC decoding decision rule. 

 

Fig. 2-9 An example of encoding and decoding for a polar code of length 16 with rate 9/16 

Although Arikan proved that polar codes can achieve the symmetric capacity, it only 

serves as evidence of an asymptotic performance. Therefore, it is quite necessary to 

study the channel polarization rate of polar codes and the SC decoding performance 

when the block length is finite. Fig. 2-10 [63] is the simulation diagram of the rate 

versus reliability relation for polar codes of block length 10 15 20 2 , 2{ , 2 }N   in a BEC 

channel with erasure probability 0.5. Fig. 2-10 has two curve assemblies, each 

containing three curves, where the solid lines represent R with respect to

( )( )i
U Ni

p Z W


    and the dashed lines represent R   with respect to 
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( )max ( )i
L i Np Z W  , where R is the rate of polar codes, Up  is the upper bound ( )eP   

of block error probability for polar codes with rate R under the SC decoding algorithm 

and Lp  corresponds to the lower bound on ( )eP  . By simulating polar codes of finite 

block lengths, Fig. 2-10 theoretically proves the achievability of the channel capacity 

of polar codes. As the block length increases, the BER performance curve improves 

continuously. That means, the faster the curve drops, the closer the performance gets 

to the theoretical limit. However, it is obvious in Fig. 2-10 that the SC decoding 

algorithm for polar codes needs to be further improved to obtain a performance 

comparable to that of LDPC codes. 

 

Fig. 2-10 Bounds on block error probability for polar codes with different block lengths 

2.4.4 Encoding and Decoding Complexity and Advantages and Disadvantages 

One of the main advantages of polar codes is that they enjoy relatively low encoding 

and decoding complexity, which both are ( log )O N N  . Let ( )e N   be the encoding 

complexity of the polar code of block length N, and then it can be known from Fig. 2-

5 that when 2N  , only one exclusive-or (XOR) operation is needed to compute 1
0 2u G , 

so at this point the encoding complexity is (2) 1e  . When 4N  , it can be seen from 
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Fig. 2-6 that four XOR operations are needed so its encoding complexity is (4) 4e  . 

Similarly, based on the iterative linear transformation relation in Fig. 2-7, there are 

( ) 2 ( )
2 2e e

N N
N                                                      (2-66) 

2( 2 ( ))
2 4 4e

N N N    

     4( 2 ( ))
2 2 8 8e

N N N N     

  log
2

N
N  .                                                 (2-67) 

Therefore, Equation (2-67) shows that the encoding complexity of polar codes is only 

( log )O N N . 

Equation (2-56) and Equation (2-57) indicate that the value of ( ){ }i
NL   can be 

computed by using the set ( ) /2 2 2 2 2
/2 1 1, 1,ˆ ˆ{ ( , )}i N i i

N o eL y u u   and the set ( ) 2 2
/2 /2 1 1,ˆ{ ( , )}i N i

N N eL y u 
  

(where {0, , 2 1}i N  ) with its computational complexity being ( )O N  [63]. Then 

the computation of the decoding complexity of one polar code of block length N can 

be simplified into that of two polar codes of block length 2N . Suppose the execution 

of the decoding algorithm is absolutely right and it consumes one unit value, and then 

the decoding complexity of polar codes of block length 2N   is O(1). If we let the 

decoding complexity of polar codes of block length N be ( )d N , then there is  

( ) ( ) 2 ( )
2d d

N
N O N   .                                    (2-68) 

Similar to the derivation of Equation (2-67), Equation (2-68) shows that the decoding 

complexity of polar codes is also ( log )O N N . 

In summary, the polar code as a brand-new channel coding method has the following 

advantages: 
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 Capable of achieving the symmetric capacities of B-DMCs; 

 Enjoying both relatively low encoding and decoding complexity; 

 Able to arbitrarily change rates without increasing the encoding complexity 

because of the encoding structure; 

 Easy to realize the encoding and decoding structures through hardware and 

capable of high-rate parallel decoding;  

 Free from error floor influence and hence able to be applied in scenarios with 

strict requirements for error rates, such as wire communications, deep space 

communications, and disk storage; 

 Presently not restricted by intellectual property rights and patents. 

Meanwhile, it also has the following shortcomings: 

 Still in the early stage of theoretical research with the necessity to further 

improve the theoretical concepts; 

 In need of further improvements in decoding algorithms in order to increase the 

actual performance of polar codes with finite block lengths;  

 Only capable of fully demonstrating its performance advantages when block 

lengths are long, which leads to a relatively long decoding delay. 

2.5 Summary 

Polar codes, as a brand new modern channel coding method, not only are the first 

type of very good codes to have been proven capable of asymptotically achieving the 

symmetric capacities of B-DMCs, but also boast relatively low encoding and decoding 

complexity. This chapter, based on channel polarization theory, studied the encoding 

and decoding algorithm for polar codes and discussed the performance of polar codes 

from both the theoretical and practical perspectives. With many advantages in coding 



Chapter 2 Channel Polarization and Polar Codes 

55 

construction that are absent from other modern channel coding methods, polar codes 

have a very good prospect for practical applications in wireless communication 

systems.
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Chapter 3 Encoding and Decoding Algorithms for 
SCPL codes 

3.1 Introduction 

Turbo codes and LDPC codes are two types of channel coding methods that are 

capable of approaching the Shannon capacity limit. However, due to high complexity 

either in encoding or decoding, both codes need to be further improved in actual 

applications. In a wireless communication system, encoding and decoding complexity 

are the key issues that need to be considered. Thus, to identify a channel coding method 

with good performance in application as well as low encoding and decoding 

complexity is of great importance in the field of research on channel coding. 

As a special type of LDPC codes, LDGM codes have the advantage of low encoding 

and decoding complexity and are easier to realize [56], and that is why research on the 

channel coding technology for LDGM codes with low encoding and decoding 

complexity is of both theoretical and practical significance. LDGM codes are also a 

type of linear systematic codes, whose generator matrix can be obtained simply 

through the combination of a sparse matrix and an identity matrix. Therefore, its 

coding complexity is much smaller than that of LDPC codes. Meanwhile, due to the 

sparsity of the parity-check matrix, LDGM codes can also adopt the BP decoding 

algorithm without changing the decoding complexity. Despite the many advantages of 

LDGM codes, there are a lot of degree-1 variable nodes in their Tanner graph, which 

makes it impossible to update information through bi-directional transmission, and 

results in high error floors of LDGM codes independent of the block length [51]. 

Therefore, LDGM codes are widely considered a coding method with poor asymptotic 

performance, whose individual application in actual wireless communication systems 
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is limited to some degree. In 2003, Frias and Zhong proposed a construction method 

for serially-concatenated LDGM (SCLDGM) codes [56], which significantly 

alleviates the high error floor problem for the decoding of single LDGM codes, and 

achieves an excellent performance approaching the Shannon capacity limit [56-60]. 

In recent years, polar codes have become a key issue for research on channel coding. 

Compared with modern channel coding schemes such as Turbo codes and LDPC codes, 

polar codes have the absolute advantages of low encoding and decoding complexity, 

and being immune from the influence of error floors due to their structural 

characteristics. Although polar codes have been proven to be able to reach the 

symmetric capacity of B-DMC when their block lengths tend to infinity, the 

performance in the decoding of polar codes of finite block lengths needs to be further 

improved in practical applications as compared with the cases of Turbo codes and 

LDPC codes. Therefore, Arikan's research results have been extended by a few pieces 

of literature, which enhanced the decoding performance through the improvement of 

polar decoding algorithms [71, 72], [112-121]. However, these studies are only 

concerned with the algebraic structure design of the decoder of polar codes, and barely 

discussed how to apply them in reality and how to make them approach the Shannon 

capacity limit. 

Currently one of the research focal points on polar codes is to improve their 

performance in actual applications. In order to enhance the convergence speed of the 

BER performance of polar codes, Bakshi et al. [124] were the very first to have 

mentioned the concept of applying concatenated codes. The concatenation involves 

using a high-rate RS code as the outer code and a short polar code as the inner code. 

As long as proper design parameters are chosen, the convergence speed of this code-

concatenation method will be significantly improved without affecting its 
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computational complexity. However, this code-concatenation method only proved its 

asymptotic performance in theory but did not give its practical performance when 

block lengths are finite. Eslami and Pishro-Nik [115], bearing in mind the actual 

application of polar codes, designed a code-concatenation method based on polar 

codes of finite block lengths, which uses polar codes as the outer codes, and LDPC 

codes as the inner codes (referred to as Polar-LDPC codes in this paper). Its application 

in real high-rate optical transport networks (OTNs) not only achieved a performance 

approaching the Shannon capacity limit but also effectively avoided the error floor 

problem. However, because this code-concatenation method uses LDPC codes as the 

inner codes, the encoding complexity of the concatenated codes remains high. 

Concatenated codes have been widely studied since their invention by Forney in 

1966. Up till now, it has been possible to apply concatenated codes in many real and 

specific communication environments, including deep space communication, long 

distance optical fiber channel and data storage, etc. To apply channel coding methods 

in such communication environments is very demanding on the reliability of 

communication transmission, which requires the BER to be at least as low as 10-10. 

LDPC codes as an excellent channel coding method can be applied in such 

communications environments. As SNR increases, its BER performance converges 

extremely fast within the low SNR region but within the mid-high SNR region, there 

is a possibility of the abrupt occurrence of error floors before BER falls to 10-10. 

From the perspective of practical applications, this chapter firstly introduces the 

principles of concatenated codes and then it theoretically analyzes the feasibility of 

serially concatenating polar codes and LDGM codes. According to the analysis, the 

existence of high error floors for LDGM codes is attributed to large numbers of degree-

1 variable nodes found in the Tanner graph. As a result, information being transmitted 
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between these variable nodes and parity-check nodes can barely get updated. The 

reason for polar codes being immune from the influence of error floors is analyzed to 

be that in the Tanner graph of any polar code of a block length equal to or bigger than 

8, its girth is at least 12, and the minimum size of the stopping set of polar codes will 

change with ( )O N , where N is the block length. Then, in order to effectively address 

the slow convergence of the BER performance of polar codes and the high error floor 

problem of LDGM codes, a SCPL coding scheme is proposed which uses polar codes 

as the outer codes and LDGM codes as the inner codes, thus combining the advantages 

of both codes. Lastly, this novel channel coding method is tested through simulation 

with reasonably selected design parameters for the SCPL coding method, such as 

proper allocation of the coding rates between inner codes and outer codes, and the 

weights of regular LDGM codes. The simulation results show that the design of 

serially concatenating the two codes with poor performance in actual application in a 

proper way makes a very good channel coding method, whose performance extremely 

approaches the Shannon capacity limit with encoding complexity lower than that of 

the Polar-LDPC code. The error floor problem is also effectively avoided. 

3.2 Principles of Concatenated Codes 

In 1966, Forney proposed the concept of concatenated codes as an effective channel 

coding technology, which constructs short codes into powerful long codes [46]. 

Concatenated codes are usually composed of two subcodes, which are taken from 

different numerical ranges and are then serially or parallel concatenated. Concatenated 

coding schemes, which use non-binary codes (usually RS codes) as the outer codes, 

and binary codes (usually convolutional codes or Turbo codes) as the inner codes, have 

already been widely applied in digital communications and data storage. Such coding 
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schemes reduce the decoding complexity while maintaining a good decoding 

performance [125]. The outer codes of concatenated codes are usually quite long, 

which employ the algebraic decoding method; the inner codes are usually short, which 

use the soft-decision decoding algorithm. 

As the concatenation methods for these two types of subcodes differ, this results in 

different types of concatenated codes. Concatenated codes can generally be divided 

into serially concatenated codes and parallel concatenated codes. Serially concatenated 

codes are generated by serially concatenating the two types of subcodes as the inner 

and outer codes, as shown in Fig. 3-1; and parallel concatenated codes are generated 

by parallel concatenating the two types of subcodes in an up-down fashion. Therefore, 

Turbo codes can be regarded as parallel concatenated convolutional codes [125]. 

 

Fig. 3-1 A simple communication system using concatenated codes 

The serially concatenated codes shown in Fig. 3-1 consist of two subcodes: A 

1 1( , )N K  binary code IC  and a 2 2( , )N K  non-binary code OC  with its symbol taken 

from 1GF(2 )K . The encoding by a concatenated encoder consists of two steps [125]: 

First, encoding of outer codes, which divides 1 2K K  bits of binary information into 2K  

bytes, with each byte containing 1K  information bits. According to the encoding rules 

of OC , these 2K  bytes are encoded into a codeword of 2N  bytes. Secondly, encoding 

of inner codes, which encodes every 1K -bit byte into a codeword in IC  and then 

generates a codeword constructed by 2N  codewords in IC  of block length 1 2N N . 

Therefore, the resulting concatenated code is a binary linear block code of 
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1 2 1 2( , )N N K K . The subcodes IC  and OC  are called the inner code and outer code 

respectively. To decode the concatenated codes constructed by IC  and OC , the inner 

codes and outer codes are decoded in succession, after which the information with 

error corrected is obtained. Therefore, one important advantage of concatenated codes 

is that the decoding can be conducted based on each subcode. Because of this 

advantage, compared with decoders which individually use any subcode, concatenated 

decoders have significantly lower complexity. 

Concatenated codes as a channel coding method can efficiently overcome random 

errors and burst errors. In case of any small amount of random errors generated after 

information is passed through a channel, they can be corrected just through the 

decoding of inner codes IC  alone. However, if random errors or burst errors generated 

in the channel are large in quantity, they cannot all be corrected by IC  alone because 

although the errors may have only affected a small number of bytes, it is very likely 

for them to have already exceeded the correcting capability of IC . Nonetheless, at this 

point, a considerable number of errors have already been effectively corrected by IC . 

The output errors from the inner decoder are no more than a small input of wrong 

characters for the outer decoder and can subsequently be easily corrected by OC  [125]. 

In order to obtain a better decoding performance and at the same time maintain low 

decoding complexity, short codes are usually used as the inner codes with the soft-

decision decoding algorithm while long codes are used as the outer codes with the 

hard-decision decoding algorithm. If there is no strict requirement for the decoding 

complexity and the decoding delay, we can consider adopting the soft-decision 

decoding algorithm for both the inner codes and outer codes and iteratively execute 

the decoding of the inner codes and outer codes so as to markedly improve the overall 
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decoding performance. During each iterative decoding process, the soft information 

output from the inner decoder can be taken as the input of the outer decoder, and then 

used for the soft-decision decoding of the outer codes. The outer decoder do not make 

hard-decisions directly on the outputs, but rather exports likelihood ratio soft 

information and feeds back such soft information to the inner decoder as an input, 

which will be used for the next iterative decoding. Iterative decoding is continually 

executed until a certain termination condition is met. As the errors of the inner decoder 

usually occur in succession, in order to prevent direct correlations among successive 

iterative decoding, usually an interleaver is required between the inner encoder and the 

outer encoder. Accordingly, a deinterleaver is required between the inner and outer 

decoders as well. Concatenated codes employing this kind of iterative decoding have 

a very good decoding performance, which closely approaches the Shannon capacity 

limit [125]. 

So far we have discussed concatenated codes using the serial method but of course 

concatenated codes can also be realized in a parallel fashion [125]： Through a pseudo 

random interleaver, two encoders can independently encode the same information 

sequence, and generate two independent parity-check bits. During the decoding 

process, two decoders conduct iterative decoding based on these two parity-check bits. 

3.3 LDGM Codes and the Analysis of Their Error Floors 

3.3.1 LDGM Codes 

As a special type of LDPC codes, the encoding structure and the decoding algorithm 

of LDGM codes are developed on the basis of LDPC codes. That is why LDGM codes 

possess most of the characteristics of LDPC codes. As shown in Equation (3-1), the 

parity-check matrix of a systematic LDGM code consists of two parts. The left part is 



Chapter 3 Encoding and Decoding Algorithms for SCPL Codes 

63 

a randomly structured ( )K N K  -dimensional sparse matrix P while the right one is 

a K-dimensional diagonal identity matrix I. If all the rows (and columns) in P have the 

same number of “1”, this LDGM code is called a regular LDGM code; if all the rows 

(and columns) in P do not have the same number of “1”, then this LDGM code is called 

an irregular LDGM code. 

[ | ]TH P I       

1 1 0 1 0 0 1 0 0 0

0 0 1 1 0 1 0 1 0 0

0 1 1 0 1 0 0 0 1 0

1 0 0 0 1 1 0 0 0 1

 
 
 
 
 
  

.                    (3-1) 

As the parity-check matrix H has N columns and M rows, a codeword sequence c 

of N bits must satisfy the parity-check relation T 0Hc . The number of information 

bits is K N M  , and the coding rate is /R K N . 

The parity-check matrix of LDGM codes can also be represented by the Tanner 

graph [126-128]. The Tanner graph of the parity-check matrix in Equation (3-1) is as 

shown in Fig. 3-2, in which the variable nodes and check nodes of LDGM codes are 

respectively denoted by circles and squares. Different from those in the Tanner graph 

of LDPC codes, the variable nodes of LDGM codes consist of two parts, one 

corresponding to the systematic information bit nodes, and the other corresponding to 

the coded bit nodes. Therefore, the only difference between LDGM codes and LDPC 

codes is that, in the parity-check matrix of LDGM codes, there are N K  degree-1 

coded bit nodes with only one edge connected to the parity-check nodes, e.g. {s7, s8, 

s9, s10} as shown in Fig. 3-2. Therefore, LDGM codes cannot update the log-likelihood 

ratio (LLR) soft information transmitted from the degree-1 variable nodes to the 

corresponding parity-check nodes. 
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Fig. 3-2 A Tanner graph representation for parity-check matrix of LDGM codes 

When systematic information bits, parity-check bits and codeword sequences are 

respectively expressed as T
1 2[ , , , ]Ku u u u  , T

1 2[ , , ]Mp p p p   and 

1 2 [ , , , ]Nc c c c T
1 2 1 2[ , , , , , , ]K Mu u u p p p   , the encoding of LDGM codes can 

be represented by the following equation: 

    ,
1

, 1
K

m k m k
k

p u h m N K


                                     (3-2) 

where ,m kh  denotes the position corresponding to the mth row and kth column element 

in the parity-check matrix. 

Because LDGM codes are a systematic code, as can be seen from Equation (3-2), 

the coded bits of LDGM codewords can be absolutely determined by the sparse parity-

check matrix H and can be decoded without converting the parity-check matrix into 

the corresponding generator matrix, which reduces the encoding complexity to a large 

degree. 

From the above analysis, we know that the parity-check matrices of LDGM codes 

are just as obviously sparse as those of LDPC codes. Due to such sparsity of the parity-

check matrix, the decoding of LDGM codes can also employ the BP decoding 

algorithm suitable for LDPC codes [129, 130], which only needs to be changed 

appropriately without increasing the decoding complexity. 
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3.3.2 Error Floor Analysis of LDGM Codes 

To effectively overcome the high error floors of LDGM codes, the cause of such 

problems must first be analyzed. Similar to how LDPC codes are defined, define 

( , , , )v cN K d d  to represent systematic LDGM codes, which have N K  parity-check 

nodes of degree 1cd   and K systematic variable nodes of degree vd , and in which 

N K  coded bit nodes of degree l are connected to the corresponding parity-check 

nodes, as shown in Fig. 3-2. These degree-1 coded bit nodes are the exact reason for 

the occurrence of high error floors in systematic LDGM codes. This is because the 

special structure of LDGM codes causes reliable information to remain unchanged as 

the initial a priori information input during the transmission process from degree-1 

coded bit nodes to parity-check nodes, and not to be influenced by the process of 

iterative decoding. Therefore, any error occurring in degree-1 coded bit nodes will 

result in errors in the information being transmitted from the parity-check bit nodes 

connected to such coded bit nodes to all the systematic variable nodes connected to 

such parity-check bit nodes. Hence, when errors occur in more than half of the parity-

check nodes connected to the systematic variable nodes, errors will occur to the 

decoding of systematic variable nodes. As the parity-check nodes and the coded bit 

nodes are in one-to-one correspondence, errors will also occur in more than half of the 

coded bit nodes and consequently lead to high error floors, which cannot be improved 

by increasing the block length [51, 56]. 

To explain it in details, consider a systematic variable node connected to vd  parity-

check nodes and a BSC channel with an error transition probability of p. Suppose all 

the information transmitted to these vd  parity-check nodes from other systematic 

variable nodes is correct, and vd  is odd, and then if errors occur in at least ( 1) / 2vd   

coded bit nodes of degree l connected to these vd  parity-check nodes, the decoding 
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will fail, causing an erroneous estimate of the information from systematic variable 

nodes. In the case of vd  being even, if errors occur in more than / 2vd  degree-1 coded 

bit nodes, or errors occur in a total of / 2vd  degree-1 coded bits nodes plus systematic 

variable nodes, then the decoding will produce a wrong estimate for the system 

variable nodes. Accordingly, the BER of the error floor region can be approximately 

expressed as [56]: 

 When vd  is odd,  

( 1)/2

(1 )
v

v

v

d
v d kk

k d

d
BER p p

k


 

 
  

 
 .                                (3-3) 

 When vd  is even, 
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d
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k


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             
 .       (3-4) 

As can be known from the above discussion, the drawback of LDGM codes is the 

existence of high error floors. Although it is possible to design a scheme which makes 

a compromise between the convergence performance and error floor performance of 

LDGM codes, a channel coding scheme which solely uses LDGM codes still has its 

limitations in wireless communication applications. 

3.4 BP Decoding and Error Floor Analysis of Polar Codes 

3.4.1 BP Decoding Algorithm of Polar Codes 

Because of its ability to significantly improve the BER performance of the SC 

decoding algorithm in practical applications, the BP decoding algorithm is used for the 

decoding of polar codes in this chapter. 

Let the kernel matrix be 2

1 0

1 1
G

 
  
 

 , and then 2
nG   represents the nth order 
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Kronecker product of 2G . For example, 

3
2

1 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0

1 0 1 0 0 0 0 0

1 1 1 1 0 0 0 0

1 0 0 0 1 0 0 0

1 1 0 0 1 1 0 0

1 0 1 0 1 0 1 0

1 1 1 1 1 1 1 1

G

 
 
 
 
 
   
 
 
 
 
  

.                           (3-5) 

For an arbitrary 2nN  , 1n   and 1 K N  , polar codes are ( , )N K  linear block 

codes and their generator matrix is the K N  dimensional sub-matrix of 2
nG , which 

are generated following the selection rules of information set discussed in Chapter 2. 

For a fixed N and all 1 K N  , a diagram describing the transformation relation of 

the matrix 2
nG  can be used to represent polar codes. As shown in Fig 3-3 [131], a 

transformation diagram of 2
nG  when 8N   is described. In the diagram, each edge 

connected to two nodes carries information of “1” or “0”, which is transmitted from 

the left node to the right node. In each node, modulo-2 addition is performed on all the 

values from the left node and then the results obtained are delivered through this node 

to the right node. This diagram describes the linear transformation relation of 

8 8 3
1 1 2x u G , where 8

1 1 8( , )u u u   and 8
1 1 8( , )x x x  . 

It can also be seen in Fig. 3-3 that the diagram of polar codes has some sparsity, 

which suggests that the BP decoding algorithm is an effective decoding method for 

polar codes as well. Based on the idea of Forney-style factor graphs [132], Fig. 3-4 

depicts the factor graph of polar codes when 8N   [131]. 
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Fig. 3-3 A graph representation for the transformation of 2

nG  

 

Fig. 3-4 A factor graph representation for the transformation of 2

nG  

The nodes in the factor graph are marked using the integer pair ( , )i j  , where 

1 1i n    and 1 j N  . From the point of view of the decoder, the leftmost node 

(1, )j  is associated with the source message to be estimated ju , while the rightmost 

node ( 1, )n j   is associated with the channel input variables jx   (i.e., the observed 

values of the noisy channel output). Apart from these nodes corresponding to these 

sources and channels, the decoder also needs to estimate whether the value of each 

node ( , )i j  is 0 or 1 in the factor graph. The role of the BP decoder is to associate 

iterative messages through each node ( , )i j , with the message ( )
,
t

i jR  being transmitted 



Chapter 3 Encoding and Decoding Algorithms for SCPL Codes 

69 

to the right and the message ( )
,
t

i jL  being transmitted to the left ( 0,1,t    is the time 

index). These messages correspond to the LR values at the time index t, so they can be 

initialized as [131] 

(0)
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j j
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All the other (0)
,i jR   and (0)

,i jL   are set to 1. It should be noted that when j is the 

corresponding frozen bit index, it is meaningful to set (0)
1, jR  to ∞ because the decoder 

has already known that the value of the bit index at the corresponding position in the 

encoder is 0. On the other hand, when j is the corresponding information bit index, to 

set the value of (0)
1, jR  to 1 means the a priori information of the 0 or 1 at the bit index 

position has the same probability. 

The basic computational block of BP decoding is a four-terminal processing module, 

as shown in Fig. 3-5 [131]. Therefore, there are 12 such computational modules in Fig. 

3-4. Generally speaking, in the factor graph of polar codes of block length N, there are 

in total 1
2 logN N   such modules. This computational block module performs the 

following iterative operations [133]: 

( 1) ( ) ( ) ( )
, 1, 1, ,( , )

i i

t t t t
i j i j i j N i j NL f L L R

    ,                                  (3-8) 

( 1) ( ) ( ) ( )
, 1, 1, ,( , )

i i

t t t t
i j N i j N i j i jL L f L R

    ,                                      (3-9) 

( 1) ( ) ( ) ( )
1, , 1, 1,( , )

i i

t t t t
i j i j i j N i j NR f R L R
     ,                                (3-10) 

( 1) ( ) ( ) ( )
1, , , 1,( , )

i i

t t t t
i j N i j N i j i jR R f R L
    ,                                      (3-11) 
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where 2n i
iN   and ( , ) (1 ) / ( )f x y xy x y    for any two reals x and y. 

 

Fig. 3-5 The basic computational block of the BP decoder 

3.4.2 Error Floor Analysis of Polar Codes 

To analyze the error floors of polar codes, we need to first discuss the girth of the 

Tanner graph of polar codes. A circle in a Tanner graph refers to a path whose starting 

and ending points are the same. The length of the smallest circle in the Tanner graph 

is called the girth of the Tanner graph. When polar codes are decoded using the BP 

algorithm, the extrinsic information of each node will always remain unrelated to that 

of other nodes before the number of iterations reaches the girth. Researchers have been 

committed to constructing codes with a large girth because such codes can achieve a 

better performance under the BP decoding algorithm. 

Theorem 3-1 (Girth of Polar Codes): Any polar code of a block length more than 

or equal to 8 should have a girth of at least 12. 

Proof: As can be seen in Fig. 3-6 [114], there are two types of circles in the Tanner 

graph of polar codes of 8N  : one type as demonstrated by the thick solid line and 

the other as demonstrated by the thick dashed line. For the first type of circle, its upper 

and bottom parts are of the same shape in the Tanner graph. Based on the structural 

characteristics of polar codes, we know that the Tanner graph of polar codes of block 

length 2n  is contained in that of polar codes of block length 12n , which means all the 

circles in the Tanner graph of polar codes of short block lengths also exist in that of 

polar codes of long block lengths. See Fig. 3-6 for a polar code of a block length of 

only 4, whose Tanner graph contains the shortest circle of length 12, including 6 
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variable nodes and 6 parity-check nodes. On the other hand, the second type of circle 

in this diagram adopts a structure almost as long as the block length, and thus its range 

in the diagram is wider. For polar codes of block length 8, even the minimum length 

of this type of circle is still 12. Based on the above analysis, the girth of the polar code 

is 12.                                                                                                                              □ 

 

Fig. 3-6 Different types of cycles in the Tanner graph for polar codes with N = 8 

As we use the BP decoding algorithm for the decoding of polar codes in this section, 

it is very necessary to study stopping sets (i.e., the stopping distances) and minimal 

stopping set of polar codes. This is because the stopping sets and the stopping distances 

play a decisive role in the BER and the error floors of the BP decoding for polar codes. 

Ref. [114] pointed out that the stopping distances of polar codes vary with the size of 

( )O N  and it is due to such a big influence of the stopping distances that polar codes 

are less prone to error floors. Besides, according to the simulation results of polar codes 

in BEC and BI-AWGN channels conducted in Ref. [114], no error floor occurs when 

BER falls all the way down to 10-11. To sum up, the large girth and stopping distances 

guarantee that polar codes do not show any error floor. 
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3.5 Encoding and Decoding Schemes for SCPL Codes 

Based on the above analysis, in our proposed scheme, high rate polar codes are used 

as the outer codes and are serially concatenated with LDGM codes, which in theory 

should generate a kind of concatenated codes with very good BER performance under 

different channel conditions. This is because errors occur almost in every frame of the 

decoding output of LDGM codes but such errors are very small in quantity in each 

frame. This makes it possible to utilize a type of high rate outer codes, which uses the 

output of the inner decoder as the a priori probability information to perform the 

initialization operation. Then through the high rate outer decoder, most frames 

containing bit errors output from the inner decoder can be further eliminated, which 

ensures the convergence speed of decoding. Meanwhile, in order to minimize the loss 

in the outer coding rate, we make the inner coding rate approach the channel capacity 

as close as possible, and thus the outer coding rate will be close to 1. Lastly, we use 

polar codes as the outer codes, the output of the outer decoder will not have any error 

floor. It should be noted that the inner codes and outer codes considered in this paper 

are all binary codes, which is slightly different from traditional concatenated coding 

schemes using non-binary codes as the outer codes. 

Fig. 3-7 presents the block diagram of SCPL codes proposed in this chapter, which 

shows that this system serially concatenates binary polar codes, treated as the outer 

codes, and binary LDGM codes, treated as the inner codes. To be more specific, firstly 

a polar encoder of rate 1/K N  encodes the information 1 2[ , , , ]Ku u u u ; then the 

codeword 
11 2[ , , , ]Nv v v v  output from the outer encoder is re-encoded through the 

LDGM encoder of rate 1 /N N ; lastly, the codeword 
1 11 2 1[ , , , , , , ]N N Nv v v p p   c  

of overall rate /K N  is generated, where 
11[ , , ]N Np p  p  is the coded bit vector of 
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LDGM codes. After BPSK modulation, the codeword is passed through an AWGN 

channel with the variance of Gaussian random variable being 2
0 / 2N   . At the 

receiver, firstly the LDGM decoder uses the parity-check matrix to perform BP 

iterative decoding on the received signal 1 2[ , , , ]Ny y y y . After several iterative 

updates of LLR soft information are made between the variable nodes and parity-check 

nodes in the inner decoder, the LLR soft information (i.e., the soft information output 

from the corresponding inner decoder) is output at the variable nodes. Then the LLR 

soft information output from the inner decoder is taken as the a priori probability 

information of the outer decoder for input initialization. The final LLR soft 

information (i.e., the soft information output from the corresponding outer decoder) is 

output after several iterations are made using the BP decoding algorithm for polar 

codes. Lastly, the decoding results are obtained through decisions. 

 

Fig. 3-7 The encoding and decoding block diagram for the proposed SCPL codes 

Generally speaking, one problem for LDPC codes is high encoding complexity, 

which is attributed to the fact that the encoder needs to store a parity-check matrix and 

a generator matrix of size 2( )O N   and consequently the encoding process needs 

quadratic time. However, in the process of SCPL encoding proposed in this chapter, 

the encoder only needs to store a parity-check matrix of size ( )O N   for the inner 



Chapter 3 Encoding and Decoding Algorithms for SCPL Codes 

74 

LDGM codes, and a generator matrix of size 1 1( log )O N N  for the outer polar codes, 

which solves the high complexity problem of Polar-LDPC codes [115] (see Table 3-

1). 

Table 3-1 Comparison of the complexity between Polar-LDPC codes and SCPL codes 

Complexity Polar-LDPC codes SCPL codes 

Storage size 

Parity-check matrix: ( )O N Parity-check matrix: ( )O N  

Generator matrix N：  
1 1

( log )O N N , 2( )O N  

Generator matrix ： 

1 1
( log )O N N   

Encoding time 1 1
( log )O N N + 2( )O N  1 1

( log )O N N + ( )O N  

 

For the decoding of SCPL codes, the BP algorithm is performed in the inner and 

outer codes sequentially. Their Tanner graph is as shown in Fig. 3-8, where (8,7) polar 

codes and (13,8) LDGM codes are serially concatenated. 2 8u u  are the information 

bits, 1 8v v  are the coded bit outputs of polar codes (i.e., systematic bits of LDGM 

codes), 1 5p p   are the coded bits of LDGM codes and 1 5s s   corresponds to the 

parity-check bits of all the degree-1 coded bits. It should be particularly noted that 

during the encoding process of SCPL codes, the position of the output bit sequence 

has already been randomly permuted. Therefore, unlike the conventional concatenated 

codes, SCPL codes do not need interleavers and deinterleavers to correct burst errors. 

 

Fig. 3-8 Graph based representation of SCPL codes 

From previous discussions, we know that an outer polar decoder can use the output 
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of the inner LDGM decoder as a priori information to further reduce the decoding error 

bits from the inner decoder. Hence, the output of the inner decoder already contains 

the position information of the output error bits. This is because, through simulation, 

the probability for the inner decoder to correctly output the decoded bit 0 or 1 is close 

to 1, i.e., the certainty of the inner decoder correctly decoding this bit is 100%. In 

contrast, the probability for the inner decoder to output the error bit 0 or 1 is close to 

0.5, i.e., the certainty of the inner decoder determining the information bit to be 0 or 1 

is 50%. This means that, as shown in Fig. 3-7, the section from the output of the outer 

polar encoder to the output of the inner LDGM decoder can be considered a virtual 

“BEC” channel and consequently the error information bit outputs from the inner 

decoder are equivalent to the bits which have already been “erased” in this “BEC” 

channel. It should be noted that as this “BEC” channel is not a standard BEC channel, 

one cannot know for sure the specific positions of these “erased” bits. However, since 

the output of the virtual “BEC” channel contains the a priori probability information 

of the error bits, it is possible to know where these “erased” bits may exist. The outer 

decoder treats the output of the inner decoder as the output signals from the BEC 

channel and then uses the a priori probability information of the output bits from the 

inner decoder to obtain the a priori information of the positions of the “erased” bits, 

whose initialized LLR soft information is 0. Finally, the a priori probabilities of all bits 

are initialized and input into the outer decoder, allowing the outer decoder to further 

correctly decode the a priori probability information from the inner decoder. Since the 

channel observed by the outer polar codes is no longer an AWGN channel, but rather 

a virtual “BEC” channel, the encoding of the outer polar codes should be designed 

based on the erasure probability   of the virtual “BEC” channel as follows: 

1

1
K

N
   .                                                (3-12) 
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The concatenated decoding algorithm for SCPL codes based on the Tanner graph 

consists of the following three steps: initializing, decoding of inner LDGM codes and 

decoding of outer polar codes. 

(1) Initializing soft information 

At the receiver, firstly the LLR of the received sequence 1 2 [ , , , ]Ny y y y   is 

computed as follows: 

Pr( | 0)
( ) log

Pr( | 1)
i i

i
i i

y c
c

y c
L




                                     (3-13) 

2

2 iy


 ,                                                        (3-14) 

where i denotes the ith element in the received signal sequence y and the 

codeword sequence c. Then, the LLR obtained by computation is initialized and 

separately fed into systematic information bit nodes and parity-check bit nodes 

as follows: 

1( ) ( ) ( ) 1ij i iL q L v L c i N    ,                              (3-15) 

1( ) ( ) ( ) 1ji j iL r L s L c N i N     ,                       (3-16) 

where ( )ijL q  denotes the initialized information of the systematic information 

bit node iv  and ( )jiL r  denotes the initialized information of the parity-check bit 

node js . 

(2) Decoding of inner LDGM codes 

i) soft information updates transmitted from js  to iv : 

1

,

( ) 2 tanh ( ( ) tanh( ( / 2)))
j

ji j i j
i V i i

L r L s L q


  

  ,                      (3-17) 

where tanh( / 2) ( 1) / ( 1)x xx e e    and jV  denotes the set that iv  is connected to js . 

ii) soft information updates passed from iv  to js : 
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,

( ) ( ) ( )
i

ij i j i
j S j j

L q L v L r 
  

   ,                                   (3-18) 

where iS  denotes the set that js  is connected to iv . 

iii) repeat steps i) and ii), until the restricting condition for the stopping of iterations 

is satisfied, and finally the soft information obtained after the update of the systematic 

bit nodes is 

( ) ( ) ( )
i

i i ji
j S

L Q L v L r


  .                                       (3-19) 

If, during the concatenated decoding process, this soft information is used to 

initialize the bit nodes of the outer polar decoder, then the output errors of the inner 

LDGM decoder will be further reduced. 

(3) Decoding of outer polar codes 

Firstly, the soft information ( )iL Q  passed from the inner decoder is initialized as 

1 1, ( )n i iL L Q  ,                                                (3-20) 

where 
1 1,n iL   denotes the LLR input from the outer polar codes, where 11 1l n    and 

11 i N  . 

At the same time, the LLR value of the input information sequence is initialized: 

1,

0 if

ifi

l
R

l


  




,                                    (3-21) 

where   and   are the information set and the frozen set of polar codes, respectively. 

Then the initialized LLR is engaged in computing the updated information in the 

BP iterative computational block, as follows: 

  , 1, 1, ,( , )
l ll i l i l i N l i NL f L L R     , 

, 1, 1, ,( , )
l ll i N l i N l i l iL L f L R     , 

 1, , 1, 1,( , )
l ll i l i l i N l i NR f R L R      , 
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1, , , 1,( , )
l ll i N l i N l i l iR R f R L     ,                                  (3-22) 

where 12n l
lN   and ( , ) ln((1 ) / ( ))f x y xy x y   for any reals x and y. 

Finally, through the decoding decision rule  

1, 1,

othe

1

rwi

, if 0
ˆ

se0,
i i

i

L R
u

 
 


,                                    (3-23) 

the estimate of the information bit sequence is obtained. When the estimate of the 

decoding output is identical with the information delivered, or the number of iterations 

is reached, the iteration stops; if the maximum number of decoding iterations has been 

reached, but the estimate of the decoding output is still inconsistent with the 

information delivered, the decoding fails. 

3.6 Simulation Design for SCPL Codes  

For SCPL codes, the combination of the coding rates of the inner codes and outer 

codes has a great impact on the decoding performance. Meanwhile the selected 

weights of inner LDGM codes will influence the decoding performance of the 

concatenated codes. Therefore, in order to design a SCPL coding scheme for achieving 

the best BER performance, the design parameters, i.e., the combination of inner and 

outer coding rates and the inner code weights, must first be properly determined. In 

this section, we will construct the SCPL coding scheme through computer simulations. 

Firstly, the combination of inner and outer coding rates is considered. Assume that two 

subcodes of SCPL codes are the 1( , )N K   polar code and the 1( , )N N   LDGM code 

respectively, the concatenated coding rate R is 0.5 and then the product of the rates of 

inner codes and outer codes is 0.5. Secondly, to simplify the realization of the SCPL 

coding scheme, only LDGM codes with regular sparse matrices are considered, i.e. the 

row weight and the column weight of the sparse matrix are equal and are both w. It 
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should be noted that in all the simulations, P-matrix is generated by following the 

progressive edge growth (PEG) algorithm [133], and the information of at least 109 

frames is simulated. In order to decode each frame, both the inner and outer codes use 

BP decoding till the correct information bit is estimated or the required number of 

iterations is reached. 

As far as we know, the SCPL coding scheme proposed in this chapter cannot use the 

analyzing method similar to that of the extrinsic information transfer (EXIT) chart 

[134] so as to theoretically search for the optimal distribution of inner and outer coding 

rates. Fortunately, through computer simulations, we can in sequence find the proper 

allocation of inner and outer coding rates and the weights of the inner codes. 

3.6.1 Construction Procedure of SCPL Codes 

Define the inner and outer coding rates as LR   and PR   respectively, and then 

0.5L PR R R    . Also select the inner code weight 6w    and outer code block 

length 12
1 2N   as the simulation parameters. Because using high-rate polar codes as 

the outer codes can remove most error bits output of the inner codes, we present the 

BER performance curves of three different combinations of the inner and outer coding 

rates in Fig. 3-9 as a representative sampling of all the combinations of the inner and 

outer coding rates. The combinations of the inner and outer coding rates ( , )P LR R  

respectively are (0.9804,0.51), (0.9615,0.52) and (0.9434,0.53). It should be noted that 

both LR  and PR  are larger than the rate of 0.5. To minimize the loss in the outer coding 

rate, LR  is chosen to be close to R, and then PR  is extremely close to 1. As shown in 

the diagram, when the coding rate PR  is very large, the performance of SCPL codes is 

not very good, which is demonstrated by the obvious existence of error floors. 

However, with the decrease of PR , the error floors disappear, but at the same time the 
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BER convergence speed also decreases. Therefore, there is this dilemma about making 

a compromise between the convergence performance and the error floor. Hence, in the 

following simulation, the combination of coding rates ( , ) (0.9615,0.52)P LR R   will be 

regarded as a compromising simulation parameter. 

 

Fig. 3-9 The BER comparison of the SCPL coding scheme with different rate allocations 

 

Fig. 3-10 BER comparison of the SCPL coding scheme with different w 

As the output of the inner decoder has some influence on the a priori probability 

information input of the outer decoder, we will next analyze how the selected weights 

of LDGM codes influence the BER performance of the SCPL coding scheme. Fig. 3-
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10 shows the BER performance curve of SCPL codes of outer code length 12
1 2N   

and inner coding rate 0.52. It can be seen from the diagram that different inner code 

weights do have a big impact on the performance of SCPL codes. Specifically, even 

though SCPL codes get the optimal BER performance when 5w  , there are obvious 

error floors. However, with the increase of w, the error floors become lower and lower 

till they disappear eventually. So, in the following simulation, the inner code weight 

6w   will be treated as a compromising simulation parameter. 

3.6.2 Simulation Results and Performance Comparison 

Fig. 3-11 shows the simulation results of the BER performance of SCPL codes when 

0.52LR   and 6w  . Not only is the performance curve of SCPL codes depicted, it is 

also compared with the performances of LDGM codes and polar codes in the AWGN 

channel, both of coding rate 0.5 and block length 213. As shown in the diagram, SCPL 

codes greatly improve the performance of polar codes, and have a fast convergence 

speed. Meanwhile, they significantly alleviate the error floor problem of LDGM codes. 

In addition, the diagram also gives the performance curves of LDPC codes and Polar-

LDPC codes in [115], where the LDPC codes have a block length of 213 and a pair of 

irregular degree distribution functions as follows [134]: 3( ) 0.508 0.419x x x  

170.073x and 7( )x x  ; the convergence threshold of such LDPC codes is 0.5dB. As 

the diagram shows, the performance of these SCPL codes is very close to that of Polar-

LDPC codes. Also, compared with the case of LDPC codes, error floors do not appear 

until BER drops to 10-10. Although the performance convergence speed of Polar-LDPC 

codes is better than that of SCPL codes, they have high encoding complexity. 

Fig. 3-12 presents the performance gain curves of SCPL codes of various block 

lengths. The diagram shows that, as expected, the BER performance gets better and 
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better as the block length increases. To be more specific, error floors do not appear for 

the three curves even till BER falls to 10-10. With the channel capacity limit under this 

scheme being 0.18dB, the diagram shows that when BER=10-5 is used as the standard 

for measuring reliable communication, the performance of SCPL codes of block length

14
1 2N  , 0.52LR   and 6w   is only 0.8 dB away from the Shannon capacity limit. 

It is believed that with the increase of the block length, the performance of SCPL codes 

will infinitely approach the theoretical capacity limit. 

 

Fig. 3-11 The BER comparison for different coding schemes 

 

Fig. 3-12 The BER performance of the SCPL coding scheme for different block lengths. 
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3.7 Summary 

In this chapter, we first introduced the basic principles of classic concatenated codes. 

Then, targeting the slow convergence speed of polar codes, and the high error floors 

of LDGM codes, we theoretically proved the feasibility of serially concatenating these 

two channel codes of both low encoding and decoding complexity and then proposed 

a SCPL coding scheme with low encoding and decoding complexity. Lastly, by 

properly choosing simulation parameters, we described the method for designing 

SCPL codes and conducted actual simulation on these novel SCPL codes. The 

simulation results show that SCPL codes not only have an excellent performance 

approaching the Shannon theory limit, but also are free from the error floor problem. 

Therefore, SCPL codes can effectively address the issue regarding the actual 

application of polar codes and provide a brand-new method for research on channel 

coding schemes in the fields of deep space communication, long distance optical fiber 

channel and data storage, etc. 
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Chapter 4 Polar Coding Schemes for Single-Relay 
Transmission Systems 

4.1 Introduction 

With the increasing tension on the resources of wireless spectrum, it has become an 

issue of common concern to academia and industry both at home and abroad as to how 

to realize interconnection between more users and support higher-rate and higher-

bandwidth wireless data transmission while making full use of the limited spectrum 

resources. In recent years, cooperative communication technologies, as the key 

technology for data transmission between wireless network terminals, relay stations 

(relay terminals) and base stations, have solved the problem regarding high-rate data 

transmission and large-scale network topologies. 

As the most basic component of cooperative communication systems such as 

cellular mobile communications and wireless Ad Hoc networks, the relay channel 

model is of great theoretical significance. From the viewpoint of information theory, 

adding relay nodes between the source node and the destination node to help transmit 

information from the source node is conducive to increasing communication channel 

capacity [77]. However, how to use channel coding schemes to improve the reliability 

of relay systems with the aim of approaching or reaching the channel capacity poses a 

key problem to current research. 

In the relay channel model, relay nodes have two commonly used modes of 

communication, i.e., half-duplex and full-duplex modes. The half-duplex mode is 

characterized by relay nodes sending and receiving data only using different frequency 

bands or during different time phases, while in comparison, in the full duplex mode, 

relay nodes can send and receive data using the same frequency band or during the 
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same time phase. As the half duplex mode is easier to be configured in relay equipment 

at a lower realization cost, this mode is more commonly used in actual wireless device 

applications. However, the full-duplex mode boasts a higher system capacity [77, 135]. 

So far, there have been a handful of research findings regarding the application of 

polar codes in single-relay channels [107-109]. However, all such work was based on 

the full-duplex mode and/or the hypothesis that the destination node has orthogonal 

receiver components. Under this hypothesis, by using the properties of orthogonal 

multiple access, a two-node transmission system can be simplified into a simple end-

to-end transmission system, thus avoiding the necessity to study the design of polar 

coding schemes for scenarios when there is interference between the source signal and 

the relay signal. However, in actual wireless relay systems, the multiple-access channel 

model in the system must be considered because in non-orthogonal multiple access 

mode, it is inevitable that the source signal and the relay signal interference with each 

other. Therefore, it is necessary to study the polar coding schemes in this mode. In 

addition, although existing research findings show that there are polar codes capable 

of achieving the capacity of the relay system, it still remains a challenging topic as to 

how to design polar codes with low encoding and coding complexity for more practical 

BI-AWGN channels. By now, there is no relevant research on methods of constructing 

polar codes in actual half-duplex relay channels. 

This chapter firstly presents a system model and then analyzes the upper and lower 

bounds on the capacity of the half-duplex relay channel. Although distributed channel 

coding technologies such as convolutional codes, Turbo codes and LDPC codes have 

been applied to this channel model and have obtained performances approaching the 

channel capacity limit, there is still not one capable of achieving the capacity limit. 

Secondly, for the degraded half-duplex single-relay channel model, we propose a 
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cooperative partial message relaying (CPMR) transmission protocol based on polar 

codes. Theoretical analysis shows that to apply the CPMR scheme in this channel 

model can asymptotically achieve the capacity limit of the relay channel and we also 

derive the upper bound on the average block error probability under the SC decoding 

algorithm. Then, through the analysis of the channel capacity limit, we elaborate on 

several key factors affecting the capacity limit. Lastly, according to the multi-access 

channel model in the relay channel, a JISPIC receiver structure based on polar codes 

is designed, based on which, we verify through simulation the feasibility of the CPMR 

scheme of finite block lengths in an AWGN channel employing BPSK modulation. 

The CPMR scheme proposed in this chapter not only inherits the advantages of the 

low encoding and decoding complexity of polar codes, but also is able to obtain a 

performance comparable to that of conventional LDPC coding schemes. 

4.2 Half-duplex Single-relay Channel 

4.2.1 Channel Model 

A discrete memoryless single-relay channel is a simple three-node communication 

model [13, 77], as shown in Fig. 4-1. The relay channel in the diagram is composed of 

three nodes, i.e., source node (S), relay node (R) and destination node (D). The link 

between S and R is called the SR channel, that between S and D the SD channel and 

that between R and D the RD channel. With the assistance of R, S sends messages to 

D through the SR channel and the SD channel. 

 

Fig. 4-1 The general model of the single-relay channel 
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If a relay node transmits information in half duplex mode, it means that it cannot 

send or receive information in the same frequency band at the same time. In other 

words, the sending channel and the receiving channel must be orthogonal. This 

orthogonality can be frequency domain orthogonal, time domain orthogonal, or time-

frequency domain orthogonal. If the relay node attempts to send and receive 

information in the same frequency band at the same time, then received signals will 

interfere with each other. In theory, as the transmitted signals are known, the relay node 

can eliminate this interference. However, from the perspective of practical applications, 

as transmitted signals are usually larger than received signals by 100-150dB [9], this 

will cause errors to the interference cancellation algorithm. Due to the difficulty in 

accurately performing the interference cancellation algorithm, wireless 

communications with full duplex mode have not been widely applied. However, the 

rapid development of analogue processing technologies gives full duplex mode the 

potential of being applied in relay channels. Although almost all of the earlier research 

on relay channel was conducted based on full-duplex relaying, much of the research 

in recent years, particularly research on actual transmission protocols, was premised 

on half-duplex relaying. 

Take the half-duplex relay channel model as shown in Fig. 4-2 for example. 

Consider a binary-input discrete memoryless relay channel, and assume that the relay 

node works in time-division half-duplex mode. In each information block transmission, 

the overall transmission (normalized) is divided into two phases, i.e., the broadcast 

(BC) phase and the multi-access (MAC) phase. Let the interval of a BC phase be t, 

then the interval of a MAC phase is 1 t . The communication process of this system 

is as follows: In the BC phase, S broadcasts 0X  , and R and D receive 1Y   and 0Y  

respectively. At this point, R only receives but does not send. After receiving the 
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information sent from S, R generates new information 1X  in a certain way (see the 

brief discussion on cooperative strategies in the next paragraph). In the MAC phase, 

R sends 1X  but does not receive new information, and meanwhile S sends 2X . 2Y  is 

the final information received by D in the MAC phase. 

 

Fig. 4-2 The time-division half-duplex single-relay channel model 

There are three most basic and commonly-used cooperative strategies in relay 

systems [7, 9, 77]. Such cooperative strategies are called relay protocols. The first 

cooperative strategy is the amplify-and-forward (AF) protocol, under which, the relay 

node only applies simple signal amplification to received signals and then forward 

them to the destination node, with the amplification factor being determined by the 

relative strengths of the SR and SD channels. The major shortcoming of the AF 

protocol lies in that while amplifying signals, the relay also amplifies noise. The 

second cooperative strategy is the DF protocol. Under this protocol, the relay node can 

decode information sent from the source node and after re-encoding the information, 

forwards the re-encoded information to the destination node. When the SR channel is 

very good, i.e., when the source node and the relay node are close to each other in 

physical distance, the DF protocol is close to optimum. When the RD channel is very 

good, i.e., when the relay node is close to the destination node in distance, usually a 

third cooperative strategy - the compress-and-forward (CF) protocol will be used. 

Under this protocol, the relay node does not decode information received from the 

source node, but rather it independently observes the received information in order to 

assist the decoding by the destination node. Therefore, it is equivalent to the relay node 
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sending a piece of estimation information of the source node to the destination node. 

Such a strategy is also known as estimate-and-forward (EF) or quantize-and-forward 

(QF). 

In this chapter, we mainly consider relay nodes using the DF protocol, i.e., it is 

assumed that the relay node is relatively close to the source node in distance. The DF 

protocol satisfying this assumption is superior to other protocols [7] so the 

transmission between the source node and the relay node is reliable. In order to ensure 

the reliability of DF cooperative communication systems, researchers have proposed 

a number of channel coding technologies [14-20]. At present, channel coding 

technologies for DF cooperative relaying mainly focuses on two aspects: 

 Utilizing information theory to analyze the capacities of relay channels; 

 Making full use of the relay channel capacity limit and designing efficient 

distributed channel coding for multiple users in order to further improve the 

efficiency and reliability of communication systems. 

4.2.2 Capacity of Half-duplex Single-relay Channels 

Similar to the case of end-to-end communication channels, a basic problem for relay 

channels is the channel capacity. Many basic definitions of end-to-end communication 

channels can also be applied to relay channels, such as transmission rate, achievable 

rate and channel capacity, etc. However, the design of channel coding schemes cannot 

just be confined to the design of source encoders and destination decoders but it also 

needs to include the coding design for the relay node. Up till now, the closed-loop 

expression of relay channel capacity is still unknown and we can only determine its 

upper bound and lower bounds. Also only under certain conditions will these bounds 

be tight. 

Khojastepour [135], using cut-set theorem for multi-state networks and random 
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channel coding technologies, derived the upper and lower bounds on the half-duplex 

relay channel. 

The upper bound on the capacity of the half-duplex single-relay channel is  

              
0 1 2

0 0 1 2 2 1
, ( , , )

sup min{ ( ; , ) (1 ) ( ; | ),U

t p x x x
C tI X Y Y t I X Y X          

0 10 2 2( ; ) (1 ) ( , ; )}tI X Y t I X X Y  .                         (4-1) 

The lower bound on the capacity of the half-duplex single-relay channel is  

              
0 1 2

0 1 2 2 1
, ( , , )

sup min{ ( ; ) (1 ) ( ; | ),L

t p x x x
C tI X Y t I X Y X           

0 10 2 2( ; ) (1 ) ( , ; )}tI X Y t I X X Y  .                         (4-2) 

If the transition probability of the relay channel can be written as follows: 

0 1 2 0 1 2 1 0 0 1 2 1 2( , , | , , ) ( | ) ( | ) ( | , )p y y y x x x p y x p y y p y x x ,          (4-3) 

then the relay channel is called physically degraded and the lower bound on the 

capacity of the half-duplex relay channel is the capacity of the physically degraded 

half-duplex relay channel, shown as follows: 

               
0 1 2

0 1 2 2 1
, ( ,) )(

sup min{ ( ; ) (1 ) ( ; | ),
t p x xp x

C tI X Y t I X Y X           

0 10 2 2( ; ) (1 ) ( , ; )}tI X Y t I X X Y  .                       (4-4) 

Khojastepour [135] and Chakrabarti [18] pointed out that when 0x  , 1x   and 2x   are 

uniformly distributed and the time allocation factor t ( 0 1t  ) has taken the optimum, 

the relay channel capacity in Equation (4-4) is achievable. At this point, the two terms 

in the expression on the right-hand side of Equation (4-4) are equal. 

If the half-duplex relay channel is only stochastically degraded, there exists a 

distribution 0 1( | )q y y , which makes 0 2 0 1 2( , | , , )p y y x x x  satisfy 

1

0 2 0 1 2 1 0 0 1 2 1 2( , | , , ) ( | ) ( | ) ( | , )
y

p y y x x x p y x q y y p y x x .           (4-5) 

At this point, the expression in Equation (4-4) only represents the achievable DF rate. 
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It should be noted that, as can be seen from Equation (4-3) and Equation (4-5), physical 

degradation implies stochastic degradation. 

4.3 CPMR Transmission Strategy of Infinite Block Lengths 

Based on the polarization phenomenon of polar codes, this section presents a low 

complexity CPMR protocol, with the aim of achieving the capacity of degraded half-

duplex relay channels. 

4.3.1 CPMR Transmission Strategy in BC Phase 

If the SD channel in Fig. 4-2 is expressed as SDW , the SR channel as SRW , and it 

satisfies that SDW  is the stochastically degraded channel (expressed as SD SRW W ) of 

SRW , then we get the following lemma. 

Lemma 4-1: let SDW  and SRW  be two B-DMCs and satisfy SD SRW W . Meanwhile 

let ( )i
SDW  and ( )i

SRW  be the ith polarized bit channel generated by polar codes based on 

the channels SDW  and SRW , in which [ ]i N . Following Equation (2-62), define the 

information sets of SDW   and SRW   as SD   and SR   respectively, then we have the 

following characteristics: 

1) the Bhattacharyya parameters of the channels ( )i
SDW  and ( )i

SRW  satisfy [65]: 

( ) ( )( ) ( )i
D R

i
S SZ W Z W ;                                               (4-6) 

2) if SDi , then SRi , which means [109] 

SD SR  .                                                     (4-7) 

From the polar code construction methods for the two channels in Lemma 4-1, we 

know that all the “good” bit channels in SDW  are also “good” bit channels in SRW  (i.e., 

Equation (4-7)). Therefore, we define all the bit channel index sets of the source node 
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in the BC phase as [ ]BCN , then [ ]BCN  can be divided into three subsets corresponding 

to the bit channels and yet independent and disjoint from each other, as shown in Fig. 

4-3: 

 

Fig. 4-3 The polar coding construction for BC phase 

 \SR SD   represents the information set of the channel SRW  and the frozen set 

of the channel SDW  . To interpret it with the idea of channel polarization, it 

means that \SR SD    contains the bit channels of 1 0 00( ; ) ( ; )I X Y I X Y   which 

are “good” in SRW  but are “bad” in SDW ; 

 SD  is the information set of the channels SRW  and SDW , i.e., SD  contains the 

bit channels of 0 0( ; )I X Y  which are “good” in SRW  and SDW ; 

 [ ] \BC SRN   denotes the frozen set of the channels SRW  and SDW , i.e.,   

contains the bit channels of 0 11 ( ; )I X Y  which are “bad” in SRW  and SDW . 

The basic idea of polar coding in the BC phase as shown in Fig. 4-3 is that the source 

node transmits the information bits belonging to the information set SR� to the relay 

node and the destination node, and as SD SRW W  and SD SR  , the destination node 

can only receive the information bits belonging to SD� . It should be noted that 

( [\ ])SD SR SD BCN     . 

The above analysis shows that messages from the source node can directly generate 

a codeword 0x  of block length BCN  based on SR�, and then broadcast it to the relay 
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node and the destination node. According to the structure in Fig. 4-3, the input vector 

u of length BCN  in the source node can be divided into three independent sub-vectors: 

\01 SR SD
  um , 02 SD

 m u  and u . Then, the encoder output can be expressed as 

|
0 01 02

|{0} BC SR

SR SD SD

NG G G  


   x m m ,                        (4-8) 

where 
SR SD

G   , 
SD

G   and G   are the submatrices of the generator matrix of polar 

codes consisting of rows with indices in \SR SD  , SD  and  , respectively. 

When block length BCN  , the polar coding rate generated is 

0

| |SR

BC

R
N




.                                                   (4-9) 

As can be known from Theorem 2-1,  

0 0 1lim ( ; )
BCN

R I X Y


 .                                           (4-10) 

After receiving 1y , the relay node can reliably decode the source message using the 

SC decoding algorithm given the frozen bits u  . However, as SD SRW W  , i.e., 

1 0 00( ; ) ( ; )I X Y I X Y  , the destination node cannot reliably reconstruct the source 

message, but can only store the received 0m  and not start decoding until the MAC 

phase completes. Suppose that the destination node already has the a priori information 

of 01m  before decoding (the frozen bit u  is also known to the polar decoder for the 

destination node), and then the destination node can also recover the message 02m . As 

both the source node and the relay node contain the message vector 01m , in the MAC 

phase the relay node and/or the source node will collaborate to assist the transmission 

of 01m  in order for the destination node to resolve the uncertainty about the source 

message 0m . 
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4.3.2 CPMR Transmission Strategy in MAC Phase 

Although the destination node has received 0 0( ; )BCN I X Y  bits of information, it still 

needs 0 0 01( ( ; ) ( ; ))BCN I X Y I X Y  bits of information (i.e., information of 01m ) so as to 

reliably decode the source message 0m . Although the relay node can recover all of 

0m , it only needs to transmit part of the bits in 0m  to resolve the uncertainty about 

0m  in the destination node. Define this part of the bit vector as 1m  (if the relay node 

decodes correctly, then 1 01m m  ). Then 1m   can be encoded into a codeword 1x   of 

block length MACN  with rate  

1

| | | |
lim lim

MAC MAC

SR SD

N N
MAC

R
N 




 
  

0 1 0 0( ( ; ) ( ; ))
MAC

BC I X Y I X Y
N

N
                              (4-11) 

Such a transmission strategy is known as the CPMR Protocol. 

Meanwhile, the source node also sends a codeword 2x  of block length MACN  and 

there is a certain correlation between 2x  and 1x  sent by the relay node. That is to say, 

when the relay node sends 1x , the source node sends 1 2(1 )r r x x , where (0,1)r  

is the correlation parameter between codewords 1x  and 2x . However, as pointed out 

by Ref. [18], the half-duplex relay channel capacity in Equation (4-4) is not sensitive 

to the correlation parameter r, so the coding strategy for the relay node can be 

simplified so that only the two fundamental extremes of the correlation parameter need 

to be considered, i.e., 0r   and 1r  . Hence we only consider the two fundamental 

extremes of the correlation parameter so as to simplify the system design, as illustrated 

by the two CPMR transmission strategies in Fig. 4-4. 
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a) r=0 

  

b) r=1 

Fig. 4-4 The diagram of the half-duplex relay channel with CPMR protocol 

(1) 1x  and 2x  completely independent, i.e., 0r  . 

The source node sends a new message 2m , and encodes it into a codeword 2x  with 

rate 

2 2 2 1lim ( ; | )
MACN

R I X Y X


 .                                    (4-12) 

By reviewing section 2.4, we know that the polar code is a channel coding 

technology capable of achieving the symmetric capacity of B-DMCs. The basic 

principle of this technology is to convert the repeated use of a specific B-DMC into 

the individual use of each bit channel after polarization. Polarized bit channels are 

either “good” or “bad”, which is a phenomenon called channel polarization. Sasoglu 

et al. extended this phenomenon into the two-user multiple-access channel (T-MAC), 

and pointed out that the channel polarization phenomenon also exists in T-MAC, but 

different to single-user polarization with two extremes, it can be polarized into five 

different possible extremes, and uncoded transmission based on these five extreme bit 
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channels is optimal [75]. Compared with the single-user phenomenon, the polar coding 

scheme constructed from the T-MAC polarization phenomenon not only inherits the 

same ending and decoding complexity but also has the same block error probability. 

Meanwhile, Sasoglu et al. also proved that, through channel polarization, polar codes 

can reach any point in the capacity region of T-MAC. 

Define the channel 1 2 2:P     as T-MAC, where the RD and SD channels are 

B-DMCs respectively, and then R1 and R2 satisfy such relations [91]: 

1 1 2 20 ( ; | )R I X Y X ,                                     (4-13) 

 2 2 2 10 ( ; | )R I X Y X ,                                     (4-14) 

2 21 1 20 ( ; )R R I X X Y  .                                (4-15) 

Define 1
3

2 22 2 1 1 22( ) ( ( ; | ), ( ; | ), ( ; ))P I X Y X I X Y X I X X Y  . If 

3{(0,0,0), (0,1,1), (1,0,1), (1,1,1), (1,1, 2))M    ,  

and for 3p , let ( , ) min || ||x Md p M p x   represent the distance from p to M, and 

then for any 0  , there is [75] 

( )|{ [ ] : ( ( ), ) } |
lim 0

i

N

i N d P M

N




 



,                          (4-16) 

where ( )iP  denotes the ith bit channel after the T-MAC polarization. 

According to Equation (4-16), we have five possible extremes as shown in Fig. 4-5 

[75]: 

 (000) represents the bit channels which do not output any information useful 

for input decision, i.e., the bit channels observed by the two users are all “bad”; 

 (011) and (101) represent the bit channels which provide entirely useful 

information for deciding the input of one user but do not provide any 

information useful for deciding the input of the other user, i.e., one user 

observes the “good” bit channels while the other user observes the “bad” bit 
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channels; 

 (111) denotes the competing bit channels, i.e., if either of the two users transmits 

at the rate of 0, then the other user observes “good” bit channels; 

 (112) represents the bit channels where all the outputs can reliably determine 

the inputs, i.e., both the two users observe “good” bit channels. 

 

Fig. 4-5 Five limiting regions for T-MAC after polarizing 

In the MAC phase, the source and the relay node send the codeword 1 2( , )x x  at the 

same time, and after N independent use of the channel P receive 2y . When N→∞, T-

MAC starts polarizing: almost all bit channels ( )iP   tend to the five extreme bit 

channels shown in Fig. 4-5. It should be noted that when estimating the symbol of the 

ith bit channel, assume that the receiver has already received the a priori information 

of the previous ( 1i   )th estimated symbol 1
1 2 1

ˆ ˆ( , )ix x  , and therefore based on this 

assumption and the five extreme scenarios in Fig. 4-5, we come up with the following 

coding schemes. 

1

1 1

|
1

|
1 {0} MACNG G  
 x u .                                    (4-17) 

2

2 2

|
2

|
2 {0} MACNG G  

 x u .                                  (4-18) 

where 1u  and 2u  are respectively the input vectors of length MACN  in the relay node 
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and the source node, 1  and 2  are respectively the information sets to be sent by the 

relay node and the destination node, in which, 1 1 1( ) MACN u  , 2 2 1( ) MACN u  , 1   and 

2  are respectively the frozen sets of the relay node and the destination node, i.e., 

11 [ ] \MACN  , 22 [ ] \MACN  . The values of these two sets are already known to 

the destination node, and 
1

G , 
2

G , 
1

G  and 
2

G  are the submatrices of the generator 

matrix of polar codes consisting of rows with indices in 1  , 2   1   and 2  , 

respectively. 

For an arbitrarily small 0�  , the information sets 1   and 2   can be set 

respectively according to the following rules [75]: 

 If ( )|| ( ) (0,0,0) ||iP    , then 1, 1iu   and 2, 2iu  ; 

 If ( )|| ( ) (0,1,1) ||iP    , then 1, 1iu   and 2, 2iu  ; 

 If ( )|| ( ) (1,0,1) ||iP    , then 1, 1iu   and 2, 2iu  , or 1, 1iu   and 2, 2iu  ; 

 If ( )|| ( ) (1,1,1) ||iP    , then 1, 1iu   and 2, 2iu  ; 

 If ( )|| ( ) (1,1, 2) ||iP    , then 1, 1iu   and 2, 2iu  ; 

 Otherwise, then 1, 1iu   and 2, 2iu  . 

The above rules for selecting 1  and 2  ensures that information bits can be passed 

through “good” bit channels provided that the previous symbol decoding is assumed 

to be correct. Therefore, after the destination node receives 2y , it can attempt to carry 

out successive decoding on 2y  in the order of 1,1 2,1 1,2 2,2( , ), ( , ),u u u u , so as to obtain 

a relatively low block error probability. 

(2) 1x  and 2x  are completely correlated, i.e., 1r  . 

The source node and the relay node also send 01m  through the same codeword 1x  
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and together help the destination node resolve the uncertainty about the source 

message 0m . 

After the decoding completes in the MAC phase, the destination node can use the 

estimated partial message 1m̂  as a priori information to decode 0y  received in the BC 

phase with the aim of recovering the source message 0m . At this point, in order to 

decode 0y , the destination node will treat it as decoding the polar codes constructed 

from the received information set SD . As the destination node has already known the 

a priori information 1m̂ , its corresponding rate will become smaller, and then there is  

0 0 0

| |
lim lim ( ; )
BC BC

S

B
N N

D

C

R' I X Y
N 

 


.                               (4-19) 

From the above design of the CPMR protocol, we know that when 0r  , the overall 

transmission rate allR  is  

0 2(1 )allR tR t R   .                                          (4-20) 

When BCN  and MACN  tend to infinity, from Equation (4-10) and Equation (4-12) 

we get  

0 1 2 2 1,
lim ( ; ) (1 ) ( ; | )

BC MAC
allN N

R tI X Y t I X Y X


   .                   (4-21) 

The above equation is exactly the half-duplex relay channel capacity in Equation (4-

4). As the optimization of t has already made the two terms on the right-hand side of 

the equality equal to each other in Equation (4-4), we will just focus on the first term. 

Similarly, when 1r  , there is  

0allR tR .                                                    (4-22) 

In this case, 2 2 1( ; | ) 0I X Y X  , so we have 

0 1,
lim ( ; )

BC MAC
allN N

R tI X Y


 .                                        (4-23) 
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The above equation is exactly the half-duplex relay channel capacity in Equation (4-4) 

when 1r  . 

To sum up, when 0r    and 1r   , with the CPMR protocol as the transmission 

strategy, information rates can all asymptotically achieve the half-duplex relay channel 

capacity of Equation (4-4). 

4.3.3 Analysis of the Asymptotic Performance 

The following paragraphs discuss in great detail the asymptotic performance of the 

CPMR protocol based on polar codes when 0r   and 1r  . 

Define the block error probability of the CPMR scheme as follows: 

0 2 0 2

0 0

ˆ ˆPr{( , ) ( , )}, 0

ˆPr{ }, 1e

r
P

r

 
   

m m m m

m m
.                          (4-24) 

Then, the following theorem gives the upper bound on the block error probability Pe. 

Theorem 4-1 (Asymptotic Performance of the CPMR Scheme): When 0r   and 

1r  , for an arbitrary 0 1/ 2  , the block error probability of the CPMR scheme 

based on the SC decoding algorithm is upper bounded by  

( ) ( )max{ (2 ), (2 )}BC MACN N
eP O O

   ,                            (4-25) 

where the block length BCN  and MACN  tend to infinity. 

Proof: Let    represent the error event 0 2 0 2ˆ ˆ{( , ) ( , )}m m m m   existing at the 

destination node when 0r   or the error event 0 0ˆ{ }m m  existing at the destination 

node when 1r  . Let BC  be the error event 0 0ˆ{ }m m  when the relay decodes the 

received source message 0m  at the end of BC phase, and define MAC  respectively as 

the error event 1 12 2ˆ ˆ{( , ) ( , )}m m m m  under the condition of 0r   or the error event 

1 1ˆ{ }m m   under the condition of 1r    existing for the destination node when the 

MAC phase ends. Then, c
BC   and c

MAC   respectively represent the complementary 
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events of the event BC  and the event MAC . Accordingly, we have  

                                   Pr( )eP      

   Pr( ) Pr( | ) Pr( ) Pr( | )c c
BC BC BC BC        

Pr( ) Pr( | )c
BC BC    .                                                  (4-26) 

Based on the SC decoding performance of single-user polar codes demonstrated in 

Theorem 2-1, we know that after the relay node decodes the source message 0m  

transmitted via the SR link, the block error probability obtained is  

( )Pr( ) (2 )BCN
BC O

 .                                    (4-27) 

The second term in Equation (4-26) can be further rewritten into  

                  Pr( | ) Pr( | ) Pr( | , )c c c
BC MAC BC BC MAC         

 Pr( | ) Pr( | , )c c c c
MAC BC BC MAC       

          Pr( | ) Pr( | , )c c c
MAC BC BC MAC      .                            (4-28) 

Then Equation (4-28) is computed for 0r   and 1r  . 

(1) 0r   

The first term in Equation (4-28) represents the error probability of the event 

1 12 2
ˆ ˆ{( , ) ( , )}m m m m  on the condition that the source message received by the relay 

node is correctly decoded after the BC phase. 

Let 1, 2, 1 2
1

2 1
ˆ ˆ( ˆ ˆ, ( , )) ( , )i

ii iu u   y u u   represent the decoding rule for estimating 

1, 2,,( )i iu u   when 1
12 2 1ˆ ˆ( , )( , )iu uy   is given. This corresponds to Arikan’s genie-aided 

decision rule [63], where genie firstly provides the information 1
1 2 1ˆ ˆ( , )iu u  previously 

correctly decoded and then the decoder performs estimation on the current 1, 2,,( )i iu u  

based on the received 2y . The existence of such an assumption is reasonable because 

the decoder already knows the value of each frozen bit and its corresponding index, 
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and thus it can carry out successive decoding in the order of 1,1 2,1 1,2 2,2( ), (, , ),u u u u  

based on the SC decoding algorithm. 

From the discussion on T-MAC capacity region by Ref. [75], we can get the 

following conclusion. 

For T-MAC in the MAC phase, there are two polar code sequences of sufficiently-

long block lengths, whose rate pairs satisfy 

1 1 2

2 2 2 1

( ; )

( ; | )

R I X Y

R I X Y X





 








.                                   (4-29) 

Then, the upper bound on the average block error probability for decoding 2y  received 

at the destination node is 

( )Pr( | ) (2 )MACNc
MAC BC O

  ,                                 (4-30) 

where, 0� , and 0 1/ 2  . 

(2) 1r   

The first term in Equation (4-28) represents the error probability of the event 

1 1ˆ{ }m m  when the received source message is correctly decoded by the relay node 

in the BC phase. At this point, according to the rate design of the CPMR scheme 

hereinbefore, the source and relay nodes send exactly the same codeword at rates 

smaller than the capacity of the transmission channel, so we can get  

( )Pr( | ) (2 )MACNc
MAC BC O

  .                                (4-31) 

The second term in Equation (4-28) represents the error probability of recovering 

the source message 0m  received in the BC phase after the successful decoding of the 

partial message 1m . Therefore, for any given rate 00 0( ; )R' I X Y ,  

( )Pr( | , ) (2 )BCNc c
BC MAC O

   .                              (4-32) 

Combine Equation (4-30), Equation (4-31) and Equation (4-32), and then we get 



Chapter 4 Polar Coding Schemes for Single-Relay Transmission Systems 

103 

that Equation (4-28) is upper bounded by  

( ) ( )Pr( | ) max{ (2 ), (2 )BC MACN Nc
BC O O

    .                  (4-33) 

When the block length BCN  and MACN  tend to infinity, we combine Equation (4-27) 

and Equation (4-33) and substitute it into Equation (4-26), and then Equation (4-25) in 

this theorem holds.                                                                                                       □ 

The preceding analysis shows that only by satisfying that SDW  is the stochastically 

degraded channel of the channel SRW  can Theorem 4-1 be proved. As we all know, 

generally speaking, the DF relay protocol can only reach the capacity of physically 

degraded half-duplex relay channels [77, 135], and if a half-duplex relay channel is 

stochastically degraded, its channel capacity will be consistent with the DF achievable 

rate. However, physical degradation implies stochastic degradation, so the CPMR 

scheme proposed herein also applies to physically degraded half-duplex relay channels. 

From the above analysis of the asymptotic performance of the CPMR scheme, we 

know that the proposed scheme can reach the capacity of physically degraded half-

duplex relay channels when the block length is infinite. Compared with the case of 

conventional LDPC coding schemes, the above conclusion is obtained by just using 

polar encoding and decoding methods of low constructive complexity, so the 

complexity of the encoder and decoder in the relay channel is only ( log )O N N . In 

addition, if all links in the relay channel are BEC channels, then the construction 

complexity of polar codes is only ( )O N  [63]. 

4.4 CPMR Transmission Scheme of Finite Block Lengths 

This section discusses in detail how to realize the CPMR transmission scheme based 

on polar codes of finite block lengths. In order to facilitate the design and analysis of 
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system models, from the perspective of practical application of wireless 

communications, we build a system model for the half-duplex AWGN relay channel 

with BPSK modulation. Assume that the channel state information is given for the 

three nodes in the relay channel. This section not only discusses the influence of the 

time allocation factor t on system capacity, but also designs the coding method and the 

receiver structure based on the channel model and lastly it provides the simulated 

system performance as well as its analysis. 

4.4.1 System Model 

Fig. 4-6 illustrates a practical relay system model, where, with the help of the 

wireless access point (R), the mobile user terminal (S) sends data to the base station 

(D). The relay system transmits data in time-division half-duplex mode. This section 

also normalizes the system time, and defines t as the system time allocation factor. 

During the first time interval t (BC phase), S sends data to R and D at the same time; 

during the second time interval (1 )t  (MAC phase), R and S send data to D at the 

same time while R at this point does not receive any data. 

 

Fig. 4-6 A half-duplex single-relay system model 

As this section only focuses on analyzing the actual performance of the CPMR 

scheme, the system model is simplified as shown in Fig. 4-7. Assume the wireless relay 

access point R is located on the connector between S and D and it normalizes the 
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distance between S and D to 1. Use (0,1)d   to represent the distance from S to R, 

then the distance from R to D is (1 )d . In this study, only large-scale path loss is 

considered, so the channel parameters of the SR, SD and RD channels in the system 

respectively are  

1/

1

1/ (1 )

SR

SD

RD

h d

h

h d





 
 


 

,                                       (4-34) 

where   denotes the fading coefficient of the channel, assuming 2  . Also, assume 

all the noise in the system is white Gaussian noise with mean of 0 and variance of 1. 

 

Fig. 4-7 The simplified model of the half-duplex single-relay system 

Based on the above definitions and assumptions, we have the following channel 

models: 

01[ ] [ ] [ ] 1, ,S SR R BCY i P h X i Z i i N    ,                            (4-35) 

0 0[ ] [ ] [ ] 1, ,S SD D BCY i P h X i Z i i N    ,                           (4-36) 

2 2 1[ ] [ ] [ ] [ ] 1, ,S SD R RD D MACY i P' h X i P h i Z' iX i N     ,(4-37) 

where [ ]RZ i , [ ]DZ i  and [ ]DZ' i  are respectively the additive white Gaussian noises of 

the SR and SD links in the BC phase and the additive white Gaussian noise of the SD 

link in the MAC phase, SP  denotes the source transmission power in the BC phase, 

and 0
2[ [ ] ]SP E X i  , SP'   is the source transmission power in the MAC phase, and 

2
2[ [ ] ]SP' E X i  and RP  denotes the relay transmission power in the MAC phase, and 

1
2[ [ ] ]RP E X i . 
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Assume an average global transmission power is constrained by [18]: 

: (1 )( )S S RtP t P' P P     ,                                  (4-38) 

where P denotes the total transmission power of the relay system. As the noise power 

is normalized to 1, P is equivalent to the overall SNR of the system. Here we assume 

that the source node and the destination node have an overall average power limit 

rather than limit their transmission power separately because by flexibly allocating the 

transmission power between S and R, a higher system capacity can be achieved. 

As previously mentioned, in the MAC phase, the relay node and the source node 

can send partial messages to the destination node (i.e., 0,1r  ) in two cooperative 

modes to address the uncertainty about the source message received by the destination 

node in the BC phase. The only difference between the cooperative mode when 1r   

and the mode when 0r   is that there does not exist interference between signals in 

the MAC phase so the cooperative mode of 1r   can simply be regarded as an end-to-

end polar coding scheme, which simultaneously decodes the partial message from the 

source node and the destination node. Therefore, next we only consider the relatively 

more complex case of 0r   and evaluate the system performance through simulation. 

4.4.2 Analysis of Time Fraction 

The CPMR scheme proposed herein is based on Equation (4-4) whose channel 

capacity is our goal to be achieved by polar coding designs. When the power constrains 

of S and R are  

R

SP P

P P

' 
 

,                                                   (4-39) 

it can be proved that when the two terms in the min(.) function of Equation (4-4) are 

equal, the capacity C of the half-duplex relay channel is maximum [18]. Hence, when 

the power constrains in Equation (4-39) are satisfied, the numerical analysis method 
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can be used to obtain the optimal power allocation between SP'  and RP  as well as the 

optimal time allocation factor t. 

The analysis of the factors influencing the channel capacity is crucial to the design 

of channel coding schemes because it provides the basic capacity limit for reliable 

communication. Fig. 4-8 demonstrates the capacity comparison between the direct 

transmission channel and the half-duplex relay channel with t valued at the optimal 

and 0.5 respectively at different SNRs and ds when 0r  . For a fair comparison, we 

make the sum of the transmission powers of S and R equal to the transmission power 

for the direct transmission. By analyzing Fig. 4-8, it is easy get the following three 

conclusions: 

 

Fig. 4-8 Information rates vs. SNR for different relay positions on an AWGN relay channel with 
BPSK modulation 

1) by means of forwarding information from the relay node, a channel capacity 

bigger than that of the direct transmission can be obtained, and the closer the relay 

node is to the source node, the more obvious the gain in relay the system gets; 

2) in comparison with the direct transmission, the relay system used at low SNRs 

can produce bigger gain. However, as SNR increases, the advantage of using relay 



Chapter 4 Polar Coding Schemes for Single-Relay Transmission Systems 

108 

over the direct transmission diminishes until there is no advantage at all; 

3) compared with the optimal t, when choosing 0.5t  , the system capacity only 

sustains a small loss, so the time allocation factor has a relatively small influence on 

relay channel capacity. 

Inspired by the above observations, in order to simplify the system design and 

guarantee a minimum loss of channel capacity, we used 0.5t   for the system polar 

coding design during the simulation of the actual half-duplex relay channel model, 

which also ensures a near-optimal system performance with BPSK modulation at low 

SNRs. 

4.4.3 Construction of Polar Codes in the BI-AWGN Channel  

Arikan pointed out that the construction of polar codes is related to specific channels 

and if one wants to achieve the symmetric capacity other than the BEC channel, it must 

be done at the cost of greater coding complexity [111]. At this stage, research on polar 

codes mainly focuses on end-to-end channels while there is still no practical and 

specific coding scheme for the BI-AWGN channel with DF cooperative relay. We use 

a coding construction method similar to coding in the BEC channel, which can achieve 

a good performance in the BI-AWGN channel while maintaining relatively low coding 

complexity. 

In the process of constructing polar codes, assume that in the BC phase the SR 

channel and the SD channel are respectively BI-AWGN channels with channel 

capacity 0 1( ; )I X Y  and 0 0( ; )I X Y . If the coding construction for the BEC corresponds 

to that for the BI-AWGN channel, then the “erasure probabilities” of the SR and SD 

channels can respectively be expressed as  

0 0 11 ( ; )I X Y   ,                                                (4-40) 

0 00 1 ( ; )' I X Y   .                                               (4-41) 
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Then we use recursive formulae Equation (2-48) and Equation (2-49) to compute the 

Bhattacharyya parameters, where 0( )SRZ W    and 0( )SDZ W '  . Similarly, the 

“erasure probabilities” corresponding to the SD and RD channels in the MAC phase 

can be obtained respectively. 

Each mutual information in Equation (4-4), which is the expression for the capacity 

of physically degraded half-duplex relay systems, can be obtained respectively through 

the following equations  

0 1 1( ; ) ( ) ( )I X Y H Y H Z  ,                                         (4-42) 

00 0( ; ) ( ) ( )I X Y H Y H Z  ,                                        (4-43) 

2 2 1 2 1
1, 1

1
( ; | ) ( | ) ( )

2 b

I X Y X H Y X b H Z
 

 
   

 
 ,            (4-44) 

1 2 2 2( , ; ) ( ) ( )I X X Y H Y H Z  .                                        (4-45) 

It should be noted that their probability mass functions respectively are  

1 0
1, 1

2
1 1 ( )( ) ( ) ( )Y X Z SR S

a

f y f a y Phf
 

  ,                       (4-46) 

0 0
1, 1

2
0 0 ( )( ) ( ) ( )Y X Z SD S

a

f y f a y Phf
 

  ,                      (4-47) 

2 1 2 1

2 2
| 2 |

1 1
2

,

( ) ( || ( ) () ( ))Y X Z SX R R
a

DD SXf y f a b f y ab h hP' b P
 

   ,    (4-48) 

2 1 2
1, 1 1, 1

2 2
2 , 2 ( ) (( ( )) ( , ) )Y XX RD

a
RZ SD S

b

f y f a h hb f y a P' b P
   

    ,    (4-49) 

21
( ) exp( )

22
Z

z
f z




 ,                                     (4-50) 

where 
0 0

1
( 1) ( 1)

2X Xf f    , and the optimal distribution of 
1 2, ( , )XXf a b  is  

  
1 2 1 2, ,

1
(1,1) ( 1, 1)

4X X XXf f    , 
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1 2 1 2, ,

1
(1, 1) ( 1,1)

4X XX Xf f    .                                 (4-51) 

4.4.4 Receiver Structure 

 

Fig. 4-9 Block diagram of the receiver design for polar coded relay system 

From the preceding discussions, we know that when 0r   , the difficulty in the 

system design lies in how to correctly recover the partial message individually sent by 

the relay node while there is interference from new messages sent from the source. 

Under such circumstances, the codewords 0x , 1x  and 2x  respectively received by the 

destination node in the BC phase and the MAC phase construct distributed polar codes. 

At this point, the destination node can perform joint decoding on the received sequence 

in order to obtain the source message. Although the T-MAC polarization method 

discussed in the previous section can be used to perform joint detection on the received 

sequence in order to get the optimal performance, but due to high complexity of such 

joint detection, it is impractical to carry it out, which is why we use a iterative 

processing method (i.e., the “Turbo principle”) to address the issue of multiuser 

detection and decoding and why we designed the JISPIC receiver structure for the 

polar codes. The structure shown in Fig. 4-9 consists of two basic components - a two-

user multiple-access channel detector (TU-MACD) and two polar decoders. These two 

components are separated by the interleavers 1π , 2π  and the deinterleavers 1
1π
 , 1

2π
 . 

TU-MACD is composed of a soft parallel interference cancellation (SPIC) part and 
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single-user LLR calculation (SU-LLRC) parts. In the following paragraphs, each 

component of the JISPIC decoder is discussed in detail. 

 (1) TU-MACD  

Firstly we consider a polar encoder of block length SN  (because 0.5t  , for the 

convenience of expression, assume hereinafter BC MAC SN N N   ) with rate kR   for

1,2k   . For 1 k Sl R N   , the input to the encoder is ( (1), , ( ),k k kd d l  d

( ))k k Sd R N  , then for 1 Si N   , the corresponding output to the encoder is 

( (1), , ( ), ( ))k k k k Sb Ni bb  b . Before the source node and the relay node transmit 

messages, the messages will respectively be passed through a pair of interleavers 1π  

and 2π  with a view to reducing the impact of burst errors input to each polar decoder. 

In TU-MACD, we employ a soft-input soft-output (SISO) maximum a posteriori 

probability (MAP) multi-user detector, whose objectives are to compute the soft 

information of the symbol bits transmitted from the relay node and the source node 

according to the received signal ( (1), , ( ), ( ))Sy y y Ni  y  at the destination node 

and computer the a priori information of each symbol bit. For 1( )b i , the LLR of the 

“1” and “-1” transmitted by the SISO detector is  

1
1

1

Pr( ( ) 1| ( ))
[ ( )] log

Pr( ( ) 1| ( ))

b i y i
L b i

b i y i

 


  .                                  (4-52) 

Using Bayes’ formula, Equation (4-52) can be written as 

1 2

1 2

1 2
( ) 1, ( ) 1 1

1
11 2

( ) 1, ( ) 1

Pr( | ( ), ( ))
Pr( ( ) 1)

[ ( )] log log
Pr( ( ) 1)Pr( | ( ), ( ))

i
b i b i

i
b i b i

y b i b i
b i

L b i
b iy b i b i

 

 

 
 

 


      (4-53) 

1 1[ ( )] [ ( )]e aL b i L b i  ,                                                         (4-54) 

where 1[ ( )]aL b i  denotes the a priori LLR information of 1( )b i , which is computed 

from the previous iteration of the first MAP polar decoder. After being interleaved, 
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the value is fed back to the TU-MACD. 1[ ( )]eL b i  is the output extrinsic information 

delivered by the TU-MACD,  which is then de-interleaved and fed into the first 

channel decoder as the a priori information for the next iteration. Similarly, we can 

compute the soft information 2[ ( )]L b i  , the a priori information 2[ ( )]aL b i   and the 

extrinsic information 2[ ( )]eL b i  for 2 ( )b i .  

(2) SPIC  

In each iteration, SPIC performs a soft interference cancellation by subtracting the 

soft estimates of kb  obtained from the previous iteration from the received signal y. 

Suppose that ˆ
kb  is the soft estimates of kb . Then the output of SPIC for 1( )b i  can be 

written as:  

1 2
ˆ( ) ( ) ( )S SDb i y i P' h b i                                                (4-55) 

1 2 2
ˆ( ) ( ( ) ( )) ( )R RD S SDP h b i P' h b i b i z i   ,         (4-56) 

where ( )z i  denotes the white Gaussian noise and the white Gaussian noise vector is 

( (1), , ( ))Sz z N z . 2 2
ˆ( ) ( )b i b i  is the remaining interference information of the ith 

codeword, which shows that the soft estimates of code bits are not entirely identical to 

code bits. 2
ˆ ( )b i   represents the soft estimates of 2 ( )b i   obtained from the previous 

iteration. 2
ˆ ( )b i  can be computed from the following equation [136, 137]  

2 2 2
ˆ ( ) 1 Pr( ( ) 1| ( )) ( 1) Pr( ( ) 1| ( ))b i b i y i b i y i                    

2

2

[ ( )]

2[ ( )]

1 1
tanh( [ ( )])

1 2

e

e

L b i

eL b i

e
L b i

e





 .                                        (4-57) 

After passing through the SPIC, the multiple-access interference is almost 

completely eliminated. Similarly, 1
ˆ ( )b i  and 2( )b i  can also be computed. For the first 

iteration, suppose that the code bits kb   have equal probability (i.e., there is no 
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corresponding a priori information), and then we have [ ( )] 0kaL b i  . 

(3) SU-LLRC  

As the code bits 1b  has already obtained the a priori distribution from the extrinsic 

information delivered by the iterative decoder previously, the probability mass 

function of 1( )b i  can be computed when 1( )b i  is known. In the following iterations, 

SU-LLRC firstly computes the input extrinsic information of the code bits in the form 

of 1[ ( )]eL b i , which is given as  

1 1
1

1 1

Pr( ( ) | ( ) 1)
[ ( )] log

Pr( ( ) | ( ) 1)e

b i b i
L b i

b i b i

 


 



                          

12
1

2
( )

( ( ))
R RDP h

b i
i

  ,                                               (4-58) 

where the variance for the first decoder is given by the expectation, i.e.,  

2
1 1 1

ˆ( ( )) {( ( ) ( )}R RDi E b i P h b i   ,                                (4-59) 

where E{.} is the expectation operation. The SU-LLRC then delivers 1[ ( )]eL b i  as the 

a priori information to the decoder. The extrinsic information will become more and 

more reliable after exchanging the soft estimates and the interference will be 

suppressed over several iterations. After the last iteration, the MAP decoder computes 

the a posteriori LLR information 1[ ( )]L d l   for each information bit, i.e., 1
ˆ ( )d l 

1sgn( ( ( )))L d l . Similarly, we can also get 2
ˆ ( )d l . It should be noted that at the start of 

the first iteration, the statistics of 1[ ( )]eL b i  and 1[ ( )]aL b i  are carried out independently, 

but in the following iterations, due to the use of common information, they will become 

increasingly correlated so that the performance will not be further improved through 

iterations. 
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4.4.5 Simulation Results and Analysis 

In this section, we verify the system performance of the CPMR scheme based on 

polar codes of finite block lengths. From the conclusion derived from the analysis of 

Fig. 4-8, we know that the system can obtain bigger relaying gain at low SNRs with 

BPSK modulation and the use of identical time allocation parameters has a relatively 

small impact on the relay channel capacity. Therefore, we first determine the overall 

transmission power to be 6P = - dB, and then compute the optimal power allocation 

and transmission rate when 0.5t = , 0.5d =  and 0r =  so as to achieve the maximum 

system channel capacity C, with the simulation parameters as shown in Table 4-1. For 

better practical performance, the BP decoding is used as the decoding algorithm, and 

the maximum number of decoding iterations is 200 times. BCN   and MACN   are 

respectively 215. 

Table 4-1 Simulation parameters 

P(dB) SP' (dB) RP (dB) 0R (b/s) 0R' (b/s) 1R (b/s) 2R (b/s) C(b/s)

-6 -10.401 -7.959 0.488 0.162 0.326 0.063 0.275 

 
Although the source node broadcasts the codeword 0x   in the BC phase, the 

destination node cannot decode 0x  due to lack of reliable information. Therefore, the 

decoding performance of the relay node, which serves as the intermediate point for the 

partial reliable message, determines the reliability of decoding the received 0x  at the 

destination node. If the relay code decodes the codeword 0x   correctly, then the 

destination node’s performance in decoding the codeword 1x   using the JISPIC 

receiver in the MAC phase plays a determining role in reconstructing the source 

message received by the destination node in the BC phase. Fig. 4-10 illustrates the 

BER performance of decoding 1x  with the proposed JISPIC receiver. As the figure 
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shows, as the number of iterations between TU-MACD and the decoder increases, the 

decoding performance significantly improves, but when the number of iterations 

exceeds 2 times, the iterations cease to further improve the performance. This is 

because after a certain number of iterations, the extrinsic information of the two 

decoders will become increasingly correlated, which leads to less and less performance 

improvement. 

 

Fig. 4-10 The performance evaluations of the JISPIC receiver for decoding x1 

Theorem 4-1 proved that the CPMR scheme for the half-duplex relay system 

proposed herein is theoretically optimal, and as long as the block length is sufficiently 

long, the system channel capacity can be achieved. However, as can be seen from the 

simulation results in Fig. 4-11, the decoding performance of the CPMR scheme of 

finite block lengths using the BP algorithm has a slow convergence speed, which is a 

common issue for constructing polar codes of finite block lengths [63]. To further 

enhance the system performance, the BP decoder in the CPMR scheme can be replaced 

with the SCLD decoder for decoding polar codes (see Ref. [71, 72] regarding the 

SCLD decoding algorithm). As can be seen from Fig. 4-11, compared with the CPMR 
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scheme using the BP decoder, the CPMR scheme which has switched to the SCLD 

decoder has notably improved its decoding performance. Apart from demonstrating 

the influence of these two different types of decoders on the CPMR scheme, the 

diagram also gives the performance of the half-duplex relay system employing the 

conventional LDPC coding scheme, where LDPC codes are optimized using density 

evolution together with Gaussian approximation [18]. The simulation results in Fig. 4-

11 show that when BER=10-5 is used as the standard for measuring reliable 

communication, the CPMR scheme using the SCLD decoder has a performance about 

0.1dB superior to that using the LDPC code. While the time complexity of the BP 

decoder is ( log )O N N  , the time coding complexity of the SCLD decoder is 

( log )O L N N  (where, L is the list number used by the SCLD decoder), but when the 

SCLD decoder is used for decoding, its space complexity is only ( )O N . Compared 

with the application of the conventional LDPC coding scheme in the relay system, the 

CPMR scheme based on polar codes also enjoys relatively low coding complexity, 

which is only ( log )O N N . 

 

Fig. 4-11 The BER comparison for different coding schemes 
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4.5 Summary 

In this chapter, we firstly introduced the basic principles and the mathematical 

model of the half-duplex single-relay channel. Then we studied in detail the polar 

coding technology under this model and proposed a novel cooperative partial message 

relay forward protocol. We elaborated on the coding method and briefly discussed the 

selection of partial messages in the CPMR protocol. By analyzing the asymptotic 

performance, we put forward that, while maintaining the low complexity of polar 

coding, the CPMR scheme can asymptotically achieve the capacity limit of the 

degraded half-duplex single-relay channel. In addition, the upper bound on the average 

block error probability under the SC decoding algorithm was also derived. 

We also examined the practical polar coding scheme in the half-duplex relay system 

and its simulation performance. Based on “Turbo” theory, we designed a joint iterative 

soft parallel interference cancellation receiver structure based on polar codes using 

MAP detection at the receiver in order to recover the superposed information from the 

source node and the relay node in the MAC phase. Through the analysis of the relay 

channel capacity limit, we explained the key factors affecting the capacity limit of the 

channel model, based on which, we conducted simulation verification of the CPMR 

scheme of finite block lengths for the AWGN channel with BPSK modulation. The 

simulation results show that the proposed scheme can achieve a better performance 

than the conventional LDPC coding scheme under the SCLD decoding algorithm.
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Chapter 5 Polar Coding Schemes for Multiple-Relay 
Transmission Systems 

5.1 Introduction 

From the research related to the previous chapter, we know that Meulen [13] 

introduced the classic three-node relay channel model, whose mathematical model is 

as shown in Fig. 5-1 [94]. In this model, node 1, which is a relay node, only serves to 

help transmit information from node 0 to node 2. A straightforward application of the 

model can be found in cooperative communications, where by using one node between 

the source node and the destination node can the distance be shortened by “one hop”. 

Such applications involve studies on information payload, interference, power 

consumption and other issues. 

 

Fig. 5-1 The mathematical model of the general one-relay network 

Fig. 5-1 demonstrates the simplest discrete memoryless single-relay network, where 

node 0, node 1 and node 2 respectively represent the source, relay and destination. This 

network model is denoted by 0 1 1 2 0 1 1 2( , ( , | , ), )p y y x x      , where 0   and 1  

respectively represent the symbols transmitted by node 0 and node 1 while 1  and 2  

denote the received symbols of node 0 and node 1. Specifically, the random variable 

0X  is the channel input for source node 0, 2Y  the channel output for destination node 

2 and 1Y  the output received by relay node 1. After processing the received 1Y , relay 

node 1 sends the input variable 1X . For an arbitrary time t, 1X  is a function expressed 

as follows: 
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1 1 1 1( ) ( (1), (2), ( 1))tx t f y y y t  ,                                (5-1) 

where ( )tf   is an arbitrary function and 1 1 1( (1), (2), ( 1))y y y t   denotes the sequence 

received by the relay node before time t. 

Up till now, research on the capacity of single-relay network still cannot exceed the 

maximum achievable rate derived and proved by Cover and Gamal [77]. The most 

important conclusion from their research regarding the DF protocol is that the 

following rate is achievable:  

0 1

0 1 1 0 1 2
( , )

sup min{ ( ; | ), ( , ; )}S
p x x

R I X Y X I X X Y .                       (5-2) 

In addition, if this relay network can be written in the following form 

1 2 0 1 1 0 1 2 1 0 1( , | , ) ( | , ) ( | ), ,p y y x x p y x x p y y x x                       (5-3) 

1 0 1 2 1 1( | , ) ( | , )p y x x p y y x ,                          (5-4) 

then this relay network is called physically degraded. Equivalently, if the equalities in 

Equation (5-3) and Equation (5-4) hold, then 0 1 1 2( , )X X Y Y   constitutes a Markov 

chain. At this point, the expression on the right-hand side of the equality in Equation 

(5-2) is exactly the capacity of a physically degraded single-relay network. 

It should be noted that the rate in Equation (5-2) is achievable for any single-relay 

network. The prerequisite of being physically degraded only serves to prove that such 

a rate does not go beyond the boundary, and thus when the network has characteristics 

of physical degradation, it can achieve its system capacity. The rate can be put into 

practical application because it provides the achievable rate of the relay network, i.e., 

the lower bound on the network capacity. When the source-relay channel is better than 

the relay-destination channel (i.e., when the relay is physically closer to the source 

than to the destination), this lower bound is very compact and is arbitrarily approaching 

the network capacity. In order to achieve this rate, which is the achievable rate of the 
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DF relay protocol, the relay node needs a coding scheme for decoding the received 

source signal, and then delivering them to the destination node after re-encoding. 

Based on cut-set theory of network information flow [91], Cover and Gamal also 

presented the upper bound on the system capacity of this single-relay network as 

follows [7]: 

0 1

0 1 2 0 1 2 1
( , )

sup min( ( , ; ), ( ; , | ))S
p x x

C I X X Y I X Y Y X .                   (5-5) 

If a single-relay network is one with orthogonal receiver components (SRN-

ORCs), then its probability mass function describes the characteristics of the network 

as follows [138]: 

0,21 2 0 1 0 1,2 11( , | , ) ) | ),( | (p y y x x p y x p y xy ,                     (5-6) 

where 2 0,2 1,2( , )Y Y Y  . Fig. 5-2 describes this network system model, including the 

following vector of length N: M to be sent by the source includes information bits and 

frozen bits (the decoder is already known to the frozen bits) while M̂   is the 

corresponding estimation of M. 0X  is the symbol vector input from the source to the 

channel while 1Y  and 0,2Y  are respectively the channel outputs of the relay node and 

the destination node. Similarly, 1X  is the vector input by the relay node while 1,2Y  is 

the value observed by the destination node. Define 0,1W , 0,2W  and 1,2W  respectively as 

the marginal probability mass functions of 1y , 0,2y  and 1,2y  in Equation (5-6). 

 

Fig. 5-2 The single-relay network with orthogonal receiver components 

Before discussing about the capacity limit of this network model, we will first 

review the definition of degradation raised in the last chapter, which exactly explains 
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the statement that some channels are not as good as others. 

Definition 5-1 (Stochastically Degradation): Let the channel 11 :W    and the 

channel 22 :W    be two B-DMCs. If 1W  is the stochastically degraded channel of 

2W , then for each 1 1y   and x  there exists a B-DMC 2 1:W   , satisfying  

2

21 1 22 1( | ) ( | ) ( | )
y

W y x y x W yW y .                                (5-7) 

If the source-destination channel 0,2 0,2( | )W y x   in a single-relay network is 

stochastically degraded with respect to the source-relay channel 10,1( | )W y x , then this 

network is called stochastically degraded. Similarly, if SRN-ORCs satisfies  

0,10,2 2 1 0,2 1( | ) ( | ) (, | )p y x W y x p y yy  ,                            (5-8) 

then this network is called physically degraded. From Equation (5-7) and Equation (5-

8), we know that physical degradation implies random degradation. 

In order to further explore the feasibility of applying the low complex CPMR 

scheme to multiple-relay systems, in this chapter, we carry out relevant research based 

on the primitive relay channel [138], which not only simplifies the system design but 

also makes it easier to explain the principles of the CPMR scheme. When determining 

the achievable rate during the application of the CPMR scheme based on polar codes 

in a primitive single-relay channel, the following additional assumptions are needed:  

 0X  and 1X  must satisfy binary uniform distribution; 

 0,1W , 0,2W  and 1,2W  must be symmetric channels; 

 0,2W  is the degraded channel of 0,1W . 

Consider these requirements and then we have the following definitions. 

Definition 5-2 (Upper Capacity Bound on SRN-ORCs): 

0 1
0 0,2 1 1,2 0 1 0,2

( ) ( )
max min{ ( ; ) ( ; ), ( ; , )}O

S
p x p x

C I X Y I X Y I X Y Y  .             (5-9) 
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Definition 5-3 (DF Achievable Rate of SRN-ORCs): 

0,2 1,2 0,1min{ ( ) ( ), ( )}O
SR I W I W I W  .                           (5-10) 

Based on the above two definitions, we consider the SRN-ORCs model, and for an 

arbitrary transmission rate O
SR R  there exists a polar code sequence of block length 

N, with the block error probability ˆPr( )M M  under the SC decoding algorithm to 

be upper bounded by (2 )N
eP O

 , where 0 1/ 2   [108]. 

In a practical wireless environment, there exists not just a single relay node in a 

wireless network, but rather probably multiple relay nodes assisting transmit 

information from the source node to the destination node. In fact, research on multiple-

relay networks has already presented quite a few findings [91-96], but most of the 

work reached its conclusions based on non-constructive random coding schemes. 

These results indicate the existence of a coding sequence capable of achieving the 

capacity of a multiple-relay network but they do not address as to how to design a 

channel coding method with low encoding and decoding complexity. So far there are 

no relevant research findings on practical constructive channel coding methods 

capable of reaching the capacity of a multiple-relay network. 

Since non-constructive random coding schemes have high complexity in multiple-

relay networks, the main idea of this chapter is to extend our low-complexity CPMR 

scheme to multiple-relay networks with the aim of achieving the capacity of multiple-

relay networks. Based on Razaghi’s research on multiple-relay networks [96], this 

chapter first elaborates on the CPMR schemes for two-relay network systems, with the 

design concept being to describe and summarize the integral components of the CPMR 

scheme for multiple-relay networks. In this scheme, the message to be delivered by 

the relay node is the partial message from the previous relay node or the source node 



Chapter 5 Polar Coding Schemes for Multiple-Relay Transmission Systems 

123 

(i.e., it corresponds to the partial information sets). It should be noted that the different 

relations between the messages to be delivered and their partial message sets will result 

in different CPMR schemes for multiple-relay networks. Therefore, in this chapter, we 

design CPMR schemes correspondingly for two types of degraded multiple-relay 

networks with orthogonal receiver components, propose the algorithm for computing 

the partial message set, analyze the constructive polar coding method, verify the 

asymptotic capacity achievability of the CPMR scheme and lastly derive the upper 

bound on the average block error probability. 

5.2 Model of Multiple-relay Networks  

Fig. 5-3 [94] presents the system model of a general multiple-relay network. The 

model describes a network with 2K   nodes, where the source node is marked as 

index 0, the destination node as index 1K   and the relay nodes sequentially as index 

1 to K. The relay nodes themselves do not send any information, but simply help 

transmit messages from the source node to the destination node to address the 

uncertainty about source messages. We respectively define the random variable 0X  as 

the network input, 1KY   as the ultimate output of the network, 1 2, , , KX X X  as relay 

input and 1 2, , , KY Y Y   as the output of the corresponding relay node. This network 

model can be characterized by the joint probability mass function 

1 2 1 0 1( , , , | , , , )K Kp y y y x x x  . 

 

Fig. 5-3 The mathematical model of the general multiple relay network 

The upper bound on the cut-set of this multiple-relay network model is [7] 
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0 1
0 1 11 1( , , , )

max min ( , , ; , , | , , )
K

M k k K k Kk Kp x x x
C I X X Y Y X X   

    .       (5-11) 

In the case of a discrete memoryless multiple-relay network, if for an arbitrary

1, ,k K  , it satisfies:  

1 1 0 1 1 1( , , | , , , , , , ) ( , , | , , , )k K k k k K k K k k Kp y y y x x x x p y y y x x         , (5-12) 

then this multiple-relay network is called physically degraded [94]. Equivalently, 

Equation (5-12) shows that 0 1 1 1( , , ) ( , , , ) ( , , )k k k K k KX X Y X X Y Y        

constitutes a Markov chain. 

Based on the above multiple-relay network, Razaghi designed theoretically random 

coding methods and corresponding brand-new DF transmission protocols - PF 

protocol A and PF protocol B, for two special cases of this model (i.e., the serially-

degraded multiple-relay network and the doubly-degraded multiple-relay network), 

and proved that this scheme can ensure reliable communication with a arbitrarily small 

error probability [96]. 

The channel capacity of a serially-degraded multiple-relay network is  

0
0 1

1 1( , , )
max min ( , , ; | , , )

K

A
M k k k Kk Kp x x

C I X X Y X X  
   .            (5-13) 

Razaghi proved that PF protocol A is capable of achieving this network capacity [96]. 

However, when the relay has a very short transmission distance and the message from 

the source node to the relay node is blocked due to a long distance, using PF protocol 

B can obtain a network capacity higher than A
MC . 

For a discrete memoryless doubly-degraded multiple-relay network model, if for an 

arbitrary 0 k K   , 1
1 1 2( , )K K

k k k kX Y X Y 
      and 1

0 1 1( , )k K K
K k kX Y X Y
    

constitute a Markov chain, then the capacity of the doubly-degraded multiple-relay 

network is  

0
0 1 1

( , , )
max min{ ( ; | ),

K

B K
M

p x x
C I X Y X


                 
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0 1 1 1 2 2( ; | ) ( ; | ),K K
KI X Y X I X Y X    

1
0 1 2 2 3 3( ; | ) ( ; | ),K K

KI X Y X I X Y X   

   ⋮ 

2
0 1 1 1( ; | ) ( ; | ),K K

K K K K KI X Y X I X Y X
    

0 1( ; )}K
KI X Y  ,                                                         (5-14) 

where 1( , , , )j
i i i jX X X X  . 

5.3 Model of Degraded MRN-ORCs 

From the previous discussions, we know that there are some restrictions on directly 

applying polar codes to a multiple-relay network. Therefore, in this section, we focus 

on two types of degraded multiple-relay networks with orthogonal receiver 

components and directly deduce their capacities according to Equation (5-13) and 

Equation (5-14). 

 (1) Serially-Degraded Multiple-Relay Network with Orthogonal Receiver 

Components (SDMRN-ORCs). 

Definition 5-4 (SDMRN-ORCs): Consider a serially-degraded multiple-relay 

network as shown in Fig. 5-4. If the channel output of this network can be further 

expressed as 2 0,2 1,2 1 0, 1 1, 1 , 1( , ), , ( , , , )K K K K KY Y Y Y Y Y Y       , then we say that this 

network has orthogonal receiver components. Let ,{ }k lW   be the 1K    B-DMC sets 

connecting the node k and the remaining 1K k   nodes in the multiple-relay network, 

where 0 k K    and 1 1k l K     . If , 1 , ,1{ }k K k K kW W W     is satisfied, then 

this network is called serially stochastically degraded. 
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Fig. 5-4 The system model of SDMRN-ORCs 

Lemma 5-1 (Transmission Properties of the Information Sets in SDMNR-

ORCs): Consider a multiple-relay network model defined as above. If 

, 1 , ,1{ }k K k K kW W W     is satisfied, then for all the corresponding polarized bit 

channel indices i, there is ( ) ( ) ( )
, 1 , ,1{ }i i i

k K k K kW W W    and we have 

( ) ( ) ( )
, 1 , ,1{ ( ) ( ) ( )}i i i

k K k K kZ W Z W Z W    .                          (5-15) 

In addition, for 0 k K   , 1 1k l K      and arbitrary 0   , there exists 

information sets ,{ } [ ]k l N , satisfying  

( )
, ,{ } { [ ] : ( ) [0, )}i

k l k li N Z W    .                           (5-16) 

Then it has the following transmission properties:  

, 1 , ,1{ }k K k K k      .                                (5-17) 

Proof: Let 0 1/ 2    be an arbitrary constant and N be the polar code block 

length. Let the Bhattacharyya parameters of the polarized bit channel 

( ) ( ) ( )
, 1 , ,1, , ,i i i

k K k K kW W W    be ( ) ( ) ( )
, 1 , ,1( ), ( ), , ( )i i i

k K k K kZ W Z W Z W    respectively. Let 1 2 N
N



   

(i.e.,   is arbitrarily small) and let , 1k l  and ,k l  denote information sets:  

( )
, 1 , 1{ [ ] : ( ) }i

k l k li N Z W     ,                             (5-18) 

( ) 2
, ,{ [ ] : ( ) 1 }i

k l k li N Z W     .                          (5-19) 

For an arbitrarily small  , there always exists 21    and as the channel ( )
, 1
i

k lW   is 

the degraded channel of the channel ( )
,
i

k lW , ( ) ( )
, 1 ,( ) ( )i i

k l k lZ W Z W   is satisfied. Therefore, 

for an arbitrary , 1k li  , there exists the following relation:  
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( ) ( )
, , 1

21( ) ( )i i
k l k lZ W Z W      .                           (5-20) 

This means that if , 1k li  , then ,k li , i.e., we can get , 1 ,k l k l   . 

Therefore, all 0 k K   and 1 1k l K     satisfy Equation (5-15) and (5-17). □ 

As can be seen from the proof of Lemma 5-1, the transmission properties of 

information sets are a common phenomenon in degraded multiple-relay networks. 

When channel polarization occurs, all the “good” information bit indices of the 

degraded channel ,k lW  are also “good” information bit indices for the non-degraded 

channel , 1 , 2 ,1, , ,k l k l kW W W   , as shown by Equation (5-17). However, all the “good” 

information bit indices for the channel , 1 , 2 ,1, , ,k l k l kW W W    are not necessarily “good” 

information bit indices for the degraded channel ,k lW . 

Although the capacity of SDMNR-ORCs is still not known, we can easily deduce 

the achievable rate of SDMNR-ORCs from the right-hand side of the equality in 

Equation (5-13). 

Corollary 5-1 (Achievable Rate of SDMNR-ORCs): 

0 1
0 1

( ) ( ) ( )
max min{ ( ; ),

K

OA
M

p x p x p x
R I X Y


                                  

0 0,2 1 1,2( ; ) ( ; ),I X Y I X Y   

3

1 1,3
1

( ; ),k k
k

I X Y 

  

                                                  ⋮ 

1 1,
1

( ; ),
K

k k K
k

I X Y 

  

1

1 1, 1
1

( ; )}
K

k k K
k

I X Y


  

 .                                     (5-21) 

If this network satisfies Equation (5-12), then the maximum achievable rate on 
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0 1( ) ( ) ( )Kp x p x p x  is the capacity OA
MC .  

When there is only one relay node in this network, i.e., 1K  , then Corollary 5-1 is 

simplified to be the capacity of the degraded SRN-ORCs, as shown by the right-hand 

side of the equality in Equation (5-10). 

(2) Doubly-Degraded Multiple-Relay Network with Orthogonal Receiver 

Components (DDMRN-ORCs). 

In this model, node k is completely blocked due to its long distance to node 2k   

and the remaining relay nodes, so the source node can only communicate with relay 

node k through the relay nodes before relay node k. 

Definition 5-5 (DDMRN-ORCs): Consider a doubly-degraded multiple-relay 

network as shown in Fig. 5-5. If the channel output of this network can be further 

expressed as 1 0, 1 1, 1 , 1( , , , )K K K K KY Y Y Y      , then we say that this network has 

orthogonal receiver components. Let , 1 , 1{ , }k k k KW W   be the K B-DMC sets connecting 

node k and node 1k    and connecting node k and 1K   , where 0 k K   . If 

, 1 , 1{ }k K k kW W  , then the network is called doubly stochastically degraded. 

 

Fig. 5-5 The system model of DDMRN-ORCs 

Lemma 5-2 (Transmission Properties of the Information Sets of DDMNR-

ORCs): Consider a multiple-relay network defined as above. If , 1 , 1{ }k K k kW W   

exists, then for all the corresponding polarized bit channel indices i, there is 

( ) ( )
, 1 , 1{ }i i

k K k kW W  , so  

( ) ( )
, 1 , 1{ ( ) ( )}i i

k K k kZ W Z W  .                                     (5-22) 
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In addition, for 0 k K  , the subscript { 1, 1}l k K    and an arbitrary 0  , there 

exists information sets ,{ } [ ]k l N , satisfying  

( )
, ,{ } { [ ] : ( ) [0, )}i

k l k li N Z W    .                          (5-23) 

Then it has the following transmission properties:  

, 1 , 1{ }k K k k   .                                          (5-24) 

Proof: The proof can be deduced from the conclusion of Lemma 5-1.                    □ 

Similarly, based on Equation (5-14), we get the following corollary. 

Corollary 5-2 (Achievable Rate of DDMNR-ORCs): 

0 1
0 1

( ) ( ) ( )
max min{ ( ; ),

K

OB
M

p x p x p x
R I X Y


 

0 0, 1 1 2( ; ) ( ; ),KI X Y I X Y    

0 0, 1 1 1, 1 2 3( ; ) ( ; ) ( ; ),K KI X Y I X Y I X Y    

                                                ⋮ 

1

1 1, 1 1
1

( ; ) ( ; ),
K

k k K K K
k

I X Y I X Y


   


  

1

1 1, 1
1

( ; )}
K

k k K
k

I X Y


  

 .                                       (5-25) 

In this network, if for 0 k K   , 1
1 1 2( , )K K

k k k kX Y X Y 
      and 1

0 1( , )k K
K kX Y X


1
K

kY   constitute a Markov chain, then the maximum achievable rate on 

0 1( ) ( ) ( )Kp x p x p x  is the capacity OB
MC . 

5.4 CPMR Scheme for Degraded TRN-ORCs 

In this chapter, we propose a novel CPMR scheme employing the polar coding 

algorithm and prove that this method can achieve the network capacities OA
MC  and OB

MC . 
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Different to the scheme in Ref. [92-96], our proposal no longer uses the block Markov 

superposition coding and the random “binning” method. Instead, we use a more 

practical polar coding method with low constructive complexity, which can be easily 

extended into multiple-relay networks. In order to make the capacity achievability 

easier to understand and also for a better comparison with Razaghi’s coding method, 

firstly, we employ the serially-degraded two-relay network with orthogonal receiver 

components (SDTRN-ORCs) (where, 2 30,2 1,2 0,3 1,3 2,3( , ) ( ,, , )Y Y Y Y Y Y Y  ) shown in Fig. 

5-6 and the doubly-degraded two-relay network with orthogonal receiver components 

(DDTRN-ORCs) (where, , 0,3 3 1,3 2,3( , ),Y Y Y Y ) shown in Fig. 5-7 (i.e., 2K  . It should 

be noted that from the analysis of 2K   hereinafter, we can directly get the coding 

scheme when 1K  ) and prove the achievability of their capacities. This method of 

proof almost embodies all the basic ideas contributing to proving that the CPMR 

scheme can be used to achieve the capacity of this type of networks. Therefore, this 

method of proof can be directly extended to the case of 2K  . 

 

Fig. 5-6 The model of SDTRN-ORCs 

 

Fig. 5-7 The model of DDTRN-ORCs 

From Corollary 5-1 and Corollary 5-2, we can easily get the network capacity of 

TRN-ORCs. 

Corollary 5-3 (Capacity of the SDTNR-ORCs): 

0 21
0 1

( ) ( ) ( )
max min{ ( ; ),OA

T
p x p x p x

C I X Y                                  



Chapter 5 Polar Coding Schemes for Multiple-Relay Transmission Systems 

131 

0 0,2 1 1,2( ; ) ( ; ),I X Y I X Y   

0 0,3 1 1,3 2 32 ,( ; ) ( ; ) ( ; )}I X Y I X Y I X Y  .              (5-26) 

Corollary 5-3 (Capacity of the DDTRN-ORCs): 

0 21
0 1

( ) ( ) ( )
max min{ ( ; ),OB

T
p x p x p x

C I X Y                                  

0 0,3 1 2( ; ) ( ; ),I X Y I X Y   

0 0,3 1 1,3 2 2,3( ; ) ( ; ) ( ; )}I X Y I X Y I X Y  .              (5-27) 

5.4.1 CPMR Transmission Strategy for Degraded TRN-ORCs  

Different to the case of PF protocol A and PF protocol B in [96], for the two types 

of network models, i.e., SDTRN-ORCs and DDTRN-ORCs, in this chapter we 

respectively describe two CPMR protocols, namely the CPMR-A protocol and the 

CPMR-B protocol. Let 0m   be the source message vector while 1m   and 2m   are 

respectively the message vectors forwarded by relay node 1 and relay node 2. The two 

protocols are different in that in the CPMR-A protocol, relay node 1 can decode the 

received source message 0m  and then forward the partial message 1m  of 0m  to help 

relay node 2 decode the received source message 0m ; with the help of the received 

1m , relay node 2 can decode the source message 0m , and then forward the partial 

message 2m   of 0m   to the destination node; with the help of the received partial 

messages 1m  and 2m , the destination node can decode the received source message 

0m . In comparison, in the CPMR-B protocol, relay node 1 also decodes the received 

source message 0m  and then forwards the partial message 1m  of 0m  to relay node 2; 

however, relay node 2 only decodes the received 1m  instead of 0m  and then forwards 

the partial message 2m  of 1m  to the destination node; with the help of 1m  and 2m  
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(both the functions of 0m ), the destination node decodes the source message 0m . 

From Definition 5-4, we know that there are three communication channel sets in 

the SDTRN-ORCs model, 0,1 0,2 0,3, , }{W W W  , 1,2 1,3, }{W W  , and 2,3{ }W  , they satisfy the 

relations 0,3 0,2 0,1W W W    and 1,3 1,2W W  . Let 0,1 0,2 0,3{ , , }    , 1,2 1,3{ , }    and 

2,3{ }   be the corresponding three information sets (as shown in Lemma 5-1) and 

satisfy the relations 0,3 0,2 0,1     and 1,3 1,2  . From Definition 5-5, we know 

that although DDTRN-ORCs does not have the channel 0,2W  and its corresponding 

information set 0,2 , it still satisfies the transmission properties in Lemma 5-2. 

Assume that the source delivers the message 0m   (whose information bit index 

belongs to the set 0,1  ) to relay node 1, relay node 2 and destination node 3, but 

because of 0,3 0,2 0,1W W W  , relay node 2 and destination node 3 can only respectively 

obtain the partial messages corresponding to the subsets 0,2   and 0,3   of 0,1  . In 

addition, relay node 1 delivers the partial message 1m  (whose information bit index 

belongs to set 1,2 ) to relay node 2 and destination node 3, but because of 1,3 1,2W W , 

the destination node can only obtain the partial message corresponding to the subset 

1,3   of 1,2  . Lastly, relay node 2 delivers the message 2m   (whose information bit 

index belongs to set 2,3 ) to destination node 3 to completely solve the uncertainty 

about the source message for destination node 3. 

Based on the above analysis, the polarized channel set [N] corresponding to source 

node 0 can be divided into four independent subsets, as shown in Fig. 5-8 (where nodes 

0 - 3 respectively represent the source node, the two relay nodes and the destination 

node): 
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Fig. 5-8 The CPMR-A protocol for the SDTRN-ORCs model 

 0,1 0,2   represents the information set of the channel 0,1W  and the frozen set 

of the channels 0,2W  and 0,3W . 

 0,2 0,3   is the information set of the channels 0,1W  and 0,2W  and the frozen 

set of the channel 0,3W . 

 0,3  denotes information set of the channels 0,1W , 0,2W  and 0,3W ; 

 0 0,1[ ] \N   means the frozen set of the channels 0,1W , 0,2W  and 0,3W . 

Accordingly, the set [N] of relay node 1 can be divided into three independent 

subsets:  

 1,2 1,3    is the information set of the channel 1,2W   and the frozen set of 

channel 1,3W . 

 1,3  denotes the information set of the channels 1,2W  and 1,3W ;  

 1 1,2[ ] \N   represents the frozen set of the channels 1,2W  and 1,3W . 

Similarly, the set [N] of relay node 2 can be divided into two independent subsets:  

 2,3  represents the information set of the channel 2,3W ;  
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 2 2,3[ ] \N   is the frozen set of the channel 2,3W . 

 

Fig. 5-9 The CPMR-B protocol for DDTRN-ORCs model 

Similar to the CPMR-A protocol, the CPMR-B protocol divides the polarized 

channel set [N] corresponding to source node 0 in DDTRN-ORCs into just three 

independent subsets, as shown in Fig. 5-9: 

 0,1 0,3   represents the information set of the channel 0,1W  and the frozen set 

of the channel 0,3W . 

 0,3  is the information set of the channels 0,1W  and 0,3W ,  

 0 0,1[ ] \N   denotes the frozen set of the channels 0,1W 0,3W . 

The CPMR-B protocol uses the same partial message constructive method for relay 

node 1 and relay node 2 as the CPMR-A protocol. 

Let N respectively represent the lengths of three time blocks as shown in Fig. 5-8. 

Because 0,3 0,2 0,1W W W   , assume at time block t, the source node delivers the 

message bit vector ( )
0
tm  , which is divided into three independent and disjoint sub 

message bit vectors ( ) ( )
0,1 0,201 0 ( )t t  m m  (the message bit vector which is in the set 

0,1   but not in the set 0,2   of ( )
0
tm  ),   (the message bit vector ( ) ( )

02 0 0,2 0,3( )t tm m  
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which is in the set 0,2   but not in the set 0,3   of ( )
0
tm  ) and ( ) ( )

03 0 0,3( )t t m m   (the 

message bit vector which is in the set 0,3  of ( )
0
tm ). At the same time, let ( 1)

1
tm  and 

( 2)
2
tm  be the partial message vectors respectively forwarded by relay node 1 and relay 

node 2 at time blocks 1t   and 2t  . In the CPMR-A protocol, the messages ( 1)
1

tm  

and ( 2)
2
tm  delivered by the two relay nodes are respectively the previously received 

partial messages of the source message ( )
0
tm . ( 1)

1
tm  and ( 2)

2
tm  are computed from the 

following two equations:  

1

( 1) ( )
1 0( )t tf  m m ,                                        (5-28) 

2

( 2) ( )
2 0( )t tf  m m .                                       (5-29) 

In these equations, f(·) is the partial message function with the information sets of the 

source message and partial message as the parameters, where, 1 0,1 0,2     and 

2 1,2 1,3 0,2 0,3( ) ( )       . 

In comparison, in the CPMR-B protocol as shown Fig. 5-9, the message ( )
0
tm  of 

source node 0 at time block t is only divided into two independent and disjoint sub 

message bit vectors ( ) ( )
0,1 0,301 0 ( )t t  m m  (the message bit vector which is in the set 

0,1   but not in the set 0,3   of ( )
0
tm  ) and ( ) ( )

03 0 0,3( )t t m m   (the message bit vector 

which is in the set 0,3  of ( )
0
tm ). The messages ( 1)

1
tm  and ( 2)

2
tm  delivered by the two 

relay nodes are respectively the previously received partial message of the source 

message ( )
0
tm  and the partial message of ( 1)

1
tm  delivered by relay node 1. ( 1)

1
tm  and 

( 2)
2
tm  are computed from the following two equations:  

1

( 1) ( )
1 0( )t tf  m m ,                                             (5-30) 

2

( 2) ( 1)
2 1( )t tf  m m ,                                          (5-31) 



Chapter 5 Polar Coding Schemes for Multiple-Relay Transmission Systems 

136 

where 1 0,1 0,3     and 1,2 1,32 ( )     . In the CPMR-A protocol, the partial 

message sets 1  and 2  can be computed according to the algorithms in Table 5-1 to 

Table 5-3. While 1  and 2  in the CPMR-B protocol can also be computed based on 

such algorithms, the difference is that there do not exist the channel 0,2W  and the set 

0,2   in the CPMR-B protocol. It should be noted that that the Bhattacharyya 

parameters of the channel 1, , ( {2,3})kW k    in relay node 1 can also be computed 

according to the algorithm in Table 5-2. 

Table 5-1 The algorithm of computing the erasure probability for a given channel model 

Input:      A specific B-DMC channel model 
Output:   The “erasure probability”   for the given channel model 
1 If the channel is BEC then 
2      define    “erasure probability” 
3 elseif the channel is BSC then 

             define 1 ( )H p    //p is the transition probability for the BSC channel and H(.) is the 

information entropy. 
4 elseif the channel is BI-AWGN then  

5      define 1 ( )I W    //I(.) is the mutual information for the channel W 

6 end if 

7 return   
 

Table 5-2 The algorithm of computing Bhattacharyya parameters for the source node 

Input:     The “erasure probability” 0, , ( {1, 2,3})j j   for the B-DMC 0, , ( {1, 2,3})jW j    

Output:  Bhattacharyya parameters. 
1 for j = 1,2,3 do 

2      0, 0,( )j jZ W    

3      for 1 to N do //compute Bhattacharyya parameters 

4           
(1) ( ) ( ) 2

0, 0, 0,2 ( ) ( )i i

j j jZ Z W Z W   

5           
(2) ( ) 2

0, 0,( )i

j jZ Z W  

6           
( ) (1) (2)

0, 0, 0,{ ( )} [ ; ]i

j j jZ W Z Z  

7       end for 
8 end for 

9 return 
( )

0,{ ( )}i

jZ W  
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Table 5-3 The algorithm of computing the partial message sets for Protocol CPMR-A 

Input:     
( )

0,{ ( )}i

jZ W  and 
( )

1,{ ( )}i

kZ W  

Output:  Partial message sets 
1 for j = 1,2,3 do 

2     [value0,j,index0,j]=sort(
( )

0,{ ( )}i

jZ W  ,'descending') // sort function sorts 
( )

0,{ ( )}i

jZ W   in 

descending order and returns the values as value0,j and also returns a corresponding index 
matrix index0,j 

3     0, 0,( )j jK NI W   

4     00, 0 ,, ( 1: )j j jindex N K N   

5 end for 
6 for k = 2,3 do 

7      [value1,k,index1,k]=sort(
( )

1,{ ( )}i

kZ W ,'descending') 

8      1, 1,( )k kK NI W   

9      11, 1 ,, ( 1: )k k kindex N K N   

10 end for 

11 1 0,1 0,2 0,1 0,2( , )setdiff     //the setdiff function returns the difference between 

                two sets 

12 2 1,2 1,3 0,2 0,3( ) ( )       1,2 1,3 0,2 0,3( , ) ( , )setdiff setdiff      

13 return 1
  and 2

  

 

5.4.2 Polar Encoding and Decoding Process for the Degraded TRN-ORCs 

Table 5-4 The encoding and decoding process for the SDTRN-ORCs using CPMR-A protocol 

Time  
block 

node 0 node 1 node 2 node 3 
Send Receive Send Receive Send Receive 

1 (1)
0x  

(1)
0,1y  ∅ 

(1)
0,2y  ∅ 

(1)
0,3y  

2 (2)
0x  

(2)
0,1y  (1)

1x  
(1)
1,2y ,

(2)
0,2y  ∅ 

(1)
1,3y ,

(2)
0,3y  

3 (3)
0x  

(3)
0,1y  (2)

1x  
(2)
1,2y ,

(3)
0,2y  (1)

2x  
(1)
2,3y ,

(2)
1,3y ,

(3)
0,3y  

⋮ 

t ( )
0
tx  

( )
0,1
ty  ( 1)

1
tx ( 1)

1,2
ty ,

( )
0,2
ty  ( 2)

2
tx ( 2)

2,3
ty ,

( 1)
1,3

ty ,
( )
0,3
ty

t+1 ( 1)
0
tx  

( 1)
0,1
ty  ( )

1
tx  

( )
1,2

ty ,
( 1)
0,2
ty  ( 1)

2
tx ( 1)

2,3
ty ,

( )
1,3

ty ,
( 1)
0,3
ty

t+2 ( 2)
0
tx  

( 2)
0,1
ty  ( 1)

1
tx ( 1)

1,2
ty ,

( 2)
0,2
ty ( )

2
tx  

( )
2,3
ty ,

( 1)
1,3

ty ,
( 2)
0,3
ty

⋮ 

 

The encoding and decoding process in the CPMR-A protocol for the SDTRN-ORCs 

model is executed sequentially, following the time block order (see Table 5-4; in the 
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encoding and decoding using the CPMR-B protocol for the DDTRN-ORCs model, 

relay node 2 does not receive the source message delivered by the source node): 

 (1) Time block t  

The source encoder firstly encodes the message 0m  into a polar codeword 0x  and 

then delivers it to relay node 1. As the frozen set 0  is already known to the relay 

nodes, relay node 1 can execute the SC decoding algorithm and thus reliably 

reconstruct the source message, when the transmission rate of the source message is  

0,1
0 0 1

|
li lim

|
m ( ; )

N N
R X

N
I Y

 
 


.                               (5-32) 

On the other hand, although in the CPMR-A protocol relay node 2 and destination 

node 3 receive the codeword 0x   at the same time, relay node 2 only receives 

0 20 ,( ; )NI X Y  bits of information of the sub messages 02m  and 03m  in 0x  but still lacks 

0 1 0,20( ( ; ) ( ; ))N I X Y I X Y  bits of information of the sub message 01m  in 0x  in order to 

fully recover the source message. Meanwhile, destination node 3 only receives 

0 30 ,( ; )NI X Y   bits of information of the sub message 03m   in 0x   but lacks 

0 1 0,30( ( ; ) ( ; ))N I X Y I X Y   bits of information of the sub messages 01m   and 02m   in 

order to fully recover the source message. Therefore, relay node 2 and the destination 

node only store the received 0x  and do not conduct further decoding until they have 

received sufficient helpful partial messages. However, in the CPMR-B protocol, relay 

node 2 does not receive the source message but only receives the partial message from 

relay node 1. 

(2) Time block 1t    

The codeword to be delivered by relay node 1 is determined by the codeword 0x  

delivered by the source, so relay node 1 can cooperate with the source node in 



Chapter 5 Polar Coding Schemes for Multiple-Relay Transmission Systems 

139 

transmitting the source message. Because in the CPMR-A protocol 0,3 0,2 0,1    , 

relay node 1 in each time block knows exactly what partial message is required by 

relay node 2 to reliably recover the source message. Similar to the treatment of the 

source node, the partial message 1m  can also be divided into two independent and 

disjoint sub vectors: 1,1 2 11 1 ,3( ) m m  (the message bit vector which is in the set 

1,2  but not in the set 1,3  of 1m ) and 112 ,31( ) m m  (the message bit vector which 

is in the set 1,3  of 1m ). When the decoded source message 0m  is given (assume the 

previous 0m  decoded is correct), relay node 1 can generate a polar codeword 1x  of 

block length N. Therefore, the partial message 1m  of ( )
0
tm  decoded by relay node 1 (in 

fact, if the decoding by relay node 1 is correct, then ( 1) ( )
1 01

t t m m ) is delivered to relay 

node 2 and destination node 3 to resolve the two nodes’ uncertainty about the source 

message ( )
0
tm , with the transmission rate being  

0,1 0,2
1

| | | |
R

N



 

.                                         (5-33) 

With the help of the received 
1

( 1) ( )
1 0( )t tf  m m , relay node 2 can decode the source 

message ( )
0
tm  . However, although the destination node has respectively obtained 

0 30 ,( ; )NI X Y  bits of information and 1 31 ,( ; )NI X Y  bits of information during time block 

t and 1t  , it still lacks 0 1 0,3 10 1 ,3( ( ; ) ( ; ) ( ; ))N I X Y I X Y I X Y   bits of information for 

reconstructing the source message. In the CPMR-B protocol, because 0,3 0,1   and 

1,3 1,2  , relay node 1 knows what partial message is required by the destination 

node for reliable decoding. Therefore, relay node 1 delivers the partial message 1m  to 

relay node 2 and destination node 3 to just resolve the destination node’s uncertainty 

about the source message. With the help of 
1

( 1) ( )
1 0( )t tf  m m , relay node 2 can also 
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correctly decode the message 1m . 

(3) Time block 2t    

Relay node 2 encodes the message 2m   into the codeword 2x   of block length N, 

which is transmitted to the destination node at the rate  

1,2 1,3 0
2

,2 0,3| | | | | | | |
R

N

  

   

                             (5-34) 

 to finally resolve the uncertainty about the source message ( )
0
tm . In fact, when both 

relay node 1 and relay node 2 correctly decode, ( 2) ( 1) ( )
2 11 02( , )t t t m m m  . Lastly, the 

destination node uses the received helpful messages ( 1)
1

tm  and ( 2)
2
tm  as the a priori 

information so as to reconstruct the source message ( )
0
tm . At this point, the codeword 

0x  is considered as the codeword 0'x  delivered from the source node to the destination 

node during time block t, so the rate accordingly decreases to 

0,3
0 0 0,3

| |
lim lim ( ; )
N N

R
N

' I X Y
 

 


.                             (5-35) 

In the CPMR-B protocol, relay node 2 sends the partial message ( 2)
2
tm   (in fact, 

when both relay node 1 and relay node 2 can correctly decode, ( 2) ( ) ( 1)
2 01 12
t t t m m \ m , 

which represents the bits in ( )
01
tm  but not in ( 1)

12
tm ) to the destination node to finally 

resolve the uncertainty about the source message ( )
0
tm . Lastly, the destination node 

uses the received helpful messages 
1

( 1) ( )
1 0( )t tf  m m  and 

2

( 2) ( 1)
2 1( )t tf  m m  as the a 

priori information so as to reconstruct the source message ( )
0
tm . 

From the above discussion, we know that, when N→∞, both the CPMR-A protocol 

and the CPMR-B protocol based on polar codes can asymptotically achieve the 

capacities A
T
OC   and B

T
OC  . Therefore, the upper bound on the average block error 

probability for the CPMR scheme can be determined according to the following 
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theorem. 

Theorem 5-1 (Capacity Achievability of Polar Codes for the SDTRN-ORCs and 

SDTRN-ORCs): Consider the SDTRN-ORCs and DDTRN-ORCs. Any transmission 

rate 0 O
T

AR C   or 0 O
T

BR C   is said to be achievable if there exists a sequence of 

polar codes of block length N, such that the block error probability 0 0
ˆPr( )eP  m m  

at the destination under the SC decoding algorithm is bounded by (2 )N
eP O

  for 

any 0 1/ 2   and sufficiently large N. 

5.4.3 Asymptotic Performance of the Block Error Probability 

This subsection proves Theorem 5-1. Let 0  represent the error event which occurs 

when destination node 3 reconstructs the source message ( )
0
tm  . Let 1  , 2   and 3  

respectively be the event 0 0ˆ{ }m m  occurring at relay node 1, the event 1 1ˆ{ }m m  

occurring when relay node 2 recovers the partial message 1m  delivered by relay node 

1 and the event 2 2ˆ }{m m   occurring when destination node 3 recovers the partial 

message 2m  delivered by relay node 2. At the same time, define 1
c , 2

c  and 3
c  as the 

complementary events of the above events. According to the formula of total 

probability, the block error probability of the CPMR scheme can be computed as  

0Pr( )eP    

0 1 1Pr( ( ))c       

0 1 0 1Pr( ) Pr( )c        

1 0 1 1 0 1Pr( ) Pr( | ) Pr( ) Pr( | )c c         

   1 0 1Pr( ) Pr( | )c    .                                            (5-36) 

If the polar code sequence is transmitted from source node 0 to relay node 1 at rate 
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0 0 1( ; )R I X Y , then based on the properties of polar codes, we can easily get  

1Pr( ) (2 )NO
 .                                            (5-37) 

The second term in Equation (5-36) indicates the error probability for the destination 

node to reconstruct the source message 0m   when relay node 1 decodes correctly. 

Therefore, this term can be further written into  

0 1 2 1 0 1 2 2 1 0 1 2Pr( | ) Pr( | ) Pr( | , ) Pr( | ) Pr( | , )c c c c c c c               

                 2 1 0 1 2Pr( | ) Pr( | , )c c c      .                                          (5-38) 

The first term in Equation (5-38) indicates the error probability for relay node 2 to 

reconstruct the partial message 1m  when relay node 1 decodes correctly. Therefore, 

when relay node 1 delivers the partial message to relay node 2 at a coding rate smaller 

than the channel capacity, i.e. 11 1,2( ; )R I X Y  , then its error probability is upper 

bounded by  

2 1Pr( | ) (2 )c NO
  .                                          (5-39) 

Similarly, the second term in Equation (5-38) can be further written into  

0 1 2 3 1 2 0 1 2 3 3 1 2 0 1 2 3Pr( | , ) Pr( | , ) Pr( | , , ) Pr( | , ) Pr( | , , )c c c c c c c c c c c c                   

             3 1 2 0 1 2 3Pr( | , ) Pr( | , , )c c c c c        .                                         (5-40) 

For any 2 2 2,3( ; )R I X Y , it satisfies  

3 1 2Pr( | , ) (2 )c c NO
   .                                        (5-41) 

The second term in Equation (5-40) indicates the error probability for destination 

node 3 to reconstruct the source message 0m  when destination node 3 receives two 

correct helpful partial messages 1m  and 2m  from the two relays. Therefore, for any 

300 ( ; )R' I X Y , its error probability is also upper bounded by  
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0 1 2 3Pr( | , , ) (2 )c c c NO
    .                                  (5-42) 

Therefore, based on Equation (5-37) and Equation (5-39) to (5-42), we know that 

when N→∞, the probability of the error event 0  is upper bounded by (2 )NO
 .      □ 

5.5 CPMR Scheme for Degraded MRN-ORCs 

By letting the message delivered by the relay node be the partial message 

corresponding to the information set of the partial message from the other relay nodes 

or the source node, the CPMR scheme discussed in the previous section can be 

extended to multiple-relay networks. As the different relations between the message 

forwarded by the relay node and the messages forwarded by its neighboring relay 

nodes will result in different CPMR protocols in a multiple-relay network, we will next 

deduce and prove that the CPMR scheme can also achieve the capacity of the 

SDMNR-ORCs model and that of the DDMNR-ORCs model. 

5.5.1 CPMR Transmission Strategy for the Degraded MRN-ORCs 

From Definition 5-4, it is known that for 0 k K   and 1 1k l K    , we can let 

,{ }k lW  be the 1K   given channel sets in the SDMRN-ORCs model. Let ,{ } [ ]k l N  

be the corresponding information set and satisfy the transmission properties of Lemma 

5-1. From Definition 5-5, we know that for all 0 k K  , we can let , 1 , 1{ , }k k k KW W   

respectively be the K given channel sets in the DDMRN-ORCs model. Let 

, 1 , 1{ , }k K k k     be the corresponding information set satisfying the transmission 

properties of Lemma 5-2. 

Assume that in the CPMR-A protocol, source node 0 delivers the message 0m  

(whose information bit index belongs to the set 0,1 ) to the remaining 1K   nodes 
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and because 0, 1 0, 0,1K KW W W     , these nodes can only respectively obtain the 

partial source information corresponding to the subset 0,{ }l  of 0,1 . In addition, relay 

node k forwards the partial message km  (whose information bit index belongs to the 

set , 1k k ) to relay node 1k   and the remaining 1 ( 1)K k    degraded channels, but 

because , 1 , , 1k K k K k kW W W   , the remaining nodes can only respectively obtain 

the partial source messages corresponding to the subset 1
, 2{ }K

k l l k

   of , 1k k . Lastly, 

relay node K delivers the message Km  (whose information bit index belongs to the set 

, 1K K ) to the destination node to fully resolve the destination node’s uncertainty about 

the source message. Therefore, the polarized channel set [N] corresponding to source 

node 0 can be divided into 2K   independent and disjoint subsets: 

 0, 0, 1l l   represents the information set of the channel 0,1 0,, , lW W  and the 

frozen set of the channel 0, 1 0, 1, ,l KW W  ; 

 0, 1K  is the information set of the channel 0,1 0, 1, , KW W  ;  

 0 0,1[ ] \N   denotes the frozen set of the channel 0,1 0, 1, , KW W  . 

Accordingly, the set [N] of relay node k can be divided into three independent subsets:  

 , , 1k l k l   is the information set of the channel ,k lW  and the frozen set of the 

channel , 1k lW  ; 

 , 1k K   represents the information set of the channels ,k lW  and , 1k KW  ; 

 ,[ ] \k k lN   means the frozen set of the channels ,k lW  and , 1k KW  . 

Similarly, the set [N] of relay node K can be divided into two independent subsets:  

 , 1K K  represents the information set of the channel , 1K KW  ;  

 , 1[ ] \K K KN    denotes the frozen set of the channel , 1K KW  . 
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Similar to the discussion on the CPMR-A protocol, we also define the information 

sets and frozen sets for the CPMR-B protocol. The difference lies in that the relay 

nodes in the CPMR-B protocol have a very short transmission distance and the 

transmission is blocked due to the long channel distance between the source node and 

the relay nodes. Therefore, we divide the set [N] of the polarized bit channel 

corresponding to the source node in the DDMRN-ORCs model into just three 

independent and disjoint subsets:  

 0,1 0, 1K    represents the information set of the channel 0,1W  and the frozen 

set of the channel 0, 1KW  ; 

 0, 1K   is the information set of the channels 0,1W  and 0, 1KW  ; 

 0 0,1[ ] \N   denotes the frozen set of the channels 0,1W  and 0, 1KW  . 

The set [N] of relay node k can be divided into three independent and disjoint subsets:  

 , 1 , 1k k k K     represents the information set of the channel , 1k kW    and the 

frozen set of the channel , 1k KW  ; 

 , 1k K   is the information set of the channels , 1k kW   and , 1k KW  ; 

 , 1[ ] \k k kN    denotes the frozen set of the channels , 1k kW   and , 1k KW  . 

Let N respectively represent the length of each time block. Because 

0, 1 0, 0,1K KW W W    , assume that during time block t, source node 0 wants to send 

the information bit vector ( )
0
tm , which is divided into 1K   independent and disjoint 

sub information bit vectors ( ) ( ) ( )
01 0 0 1, , , ,t t t

l K m m m  , where ( )
0, 0

)
, 1

(
0 0 ( )l
t t

ll   m m  

(the information bit vector which is in the set 0,l  but not in the set 0, 1l  of ( )
0
tm ). 

Also, let ( )t l
k
m  be the partial message delivered by relay node k during time block t l . 

In the CPMR-A protocol, the message ( )t l
k
m   delivered by K relay nodes is the 
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corresponding partial message of the previously received source message ( )
0
tm . ( )t l

k
m  

is computed from the following equation:  

)
0

( ( )( )
k

tt l
k f   mm ,                                           (5-43) 

where f(·) is the partial message function with the information sets of the source 

message ( )
0
tm  and the partial message as the parameters, where,  

1 0,1 0,2   , 

1,2 1,3 1,2 ,32 1)( ( )       , 

⋮ 

2

, 1 , 0, 0, 1
1
( ) ( )

K

k k k Kk k k
k



 


     , 

⋮ 

   
2

, 1 , 1 0, 0, 1
1
( ) ( )

K

k k k KK K K
k



  


       .                 (5-44) 

1  to K  can be inferred by applying the algorithms in Table 5-1 to 5-3. 

In comparison, because 0, 1 0,1KW W  , in the CPMR-B protocol, the message ( )
0
tm  

of source node 0 during time block t is only divided into two independent and disjoint 

sub message bit vectors 0,1 0,
)

1
( ( )
01 0 ( )t t

K  m m  (the message bit vector which is in 

the set 0,1  but not in the set 0, 1K   of ( )
0
tm ) and ( ) (

0, 1
)

0 1 0 ( )t t
KK  m m  (the message 

bit vector which is in the set 0, 1K  of ( )
0
tm ). At the same time, let ( )t l

k
m  be the partial 

message delivered by relay node k during time block t l , and ( )t l
k
m  respectively be 

the partial message of the received message ( 1)
1

t l
k
 
m   from node 1k   . ( )t l

k
m   can be 

computed from the following equation:  

) )( ( 1
1( )

k

t l t l
k kf  

 m m ,                                         (5-45) 
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where f(·) is the partial message function with the information sets of the source 

message ( 1)
1

t l
k
 
m  and the partial message as the parameters, in which, for an arbitrary 

1 k K    

1, 1, 1( )k k l k K      .                                       (5-46) 

k  can be inferred by the same method used to obtain 1  to K . 

5.5.2 Polar Encoding and Decoding Process for the Degraded MRN-ORCs  

The encoding and decoding for the two protocols in the SDMRN-ORCs and the 

DDMRN-ORCs model are executed sequentially:  

(1) Time block t   

The source message vector 0m  is firstly encoded into the codeword 0x  and then is 

transmitted to relay node 1. Provided that the frozen set 0  is already known to relay 

node 1, relay node 1 can execute the SC decoding algorithm and thus reliably 

reconstruct the source message, when the transmission rate of the source message is:  

0,1
0 0 1

|
li lim

|
m ( ; )

N N
R X

N
I Y

 
 


.                                 (5-47) 

On the other hand, although in the CPMR-A protocol, the remaining 1K    nodes 

receive the codeword 0x  at the same time, node K only receives 0 0,( ; )kNI X Y  bits of 

information but still lacks 0 1 0,0( ( ; ) ( ; ))kN I X Y I X Y   bits of additional information 

about the sub message 01 0, Km m  in 0x  in order to fully recover the source message. 

Therefore, Node k only stores the received 0x  and does not conduct further decoding 

until it has received sufficient helpful messages. However, in the CPMR-B protocol, 

only relay node 1 and the destination node receive the source message while other 

relay nodes do not receive the source message due to the long distance to the source 

node. 
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(2) Time block t l   

Because in the CPMR-A protocol 0, 1 0, 0,1K K      , relay node k in each 

time block knows exactly what partial message is required by relay node 1k    to 

reliably recover the source message. Therefore, after the partial message km  of ( )
0
tm  

is decoded by relay node k, it is forwarded to relay node 1k   and destination node 

1K   to resolve the uncertainty about the source message ( )
0
tm  for relay node 1k   

and destination node 1K  , with the transmission rate being  

, 1

2

, 0, 0
1

, 1(| | | |) | | | |
K

k k k K k

k

k
kR

N



 


  

    

.                   (5-48) 

With the help of the received ( ) ( )
0( )

k

t l t
k f  m m  , relay node 1k    can decode the 

source message ( )
0
tm . In the CPMR-B protocol, after relay node k decodes the received 

1km , it sends the partial message km  to relay node 1k   and destination node 1K   

to just resolve the destination node’s uncertainty about the source message, with the 

transmission rate being:  

0,1 0, 1
1

| | | |KR
N



 

, 

0,
2

1 0, 1 1, 1| | | | | |K KR
N
 


  

, 

⋮ 

0,1 1

1

1
, 1| | (| |)k K

K

k
kR

N











 
.                                          (5-49) 

With the help of ( ) ( 1)
1( )

k

t l t
k k

lf  
 m m , relay node 1k   can also correctly decode the 

message ( 1)
1

t
k

l 
m  . At this point, although the destination node has already received 
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1

1 1, 1
1

( ; )
K

k k K
k

I X Y


  

   bits of information during time block t l  , it still needs 

1

0 1 1 1, 1
1

( ( ; ) ( ; ))
K

k k K
k

N I X Y I X Y


  


  bits of reliable information to reconstruct the source 

message. 

(3) Time block t K   

Relay node K encodes the message Km  into the codeword Kx  of block length N, 

which is transmitted to the destination node at the rate 

2

1
, 1 , 1 0, 0, 1(| | | |) | | | |

K

k k k K K
k

K

K

R
N






   

    

                 (5-50) 

 to finally resolve the uncertainty about the source message ( )
0
tm  . Lastly, the 

destination node uses the received helpful message ( ) ( )
0( )

k

t l t
k f  m m  as the a priori 

information so as to reconstruct the source message ( )
0
tm . At this point, the codeword 

0x  is considered as the codeword 0'x  delivered from the source node to the destination 

node during time block t, so the rate accordingly decreases to 

0, 1
0 0 0, 1lim l m (

|
i

|
; )K

K
N N

Y
N

R' I X
 

 


.                         (5-51) 

In the CPMR-B protocol, relay node K sends the partial message Km  to destination 

node 1K   to ultimately resolve the uncertainty about the source message ( )
0
tm , with 

the transmission rate being:  

0,1 1
1

, 1| | (| |)k

K

k
K

K

R
N

 


 
.                                    (5-52) 

Lastly, the destination node uses the received helpful message ) )( ( 1
1( )

k

t l t l
k kf  

 m m  as 

the a priori information so as to reconstruct the source message ( )
0
tm . 
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Theorem 5-2 (Capacity Achievability of Polar Codes for the SDMRN-ORCs 

and DDMRN-ORCs): Consider SDMRN-ORCs and DDMRN-ORCs. Any 

transmission rate 0 O
M

AR C   or 0 O
M

BR C   is said to be achievable if there exists a 

sequence of polar codes of block length N, such that the block error probability 

0 0
ˆPr( )eP  m m  at the destination under the SC decoding algorithm is bounded by 

(2 )N
eP O

  for any 0 1/ 2   and sufficiently large N. 

5.5.3 Asymptotic Performance of the Block Error Probability 

This subsection proves Theorem 5-2. Let 0   represent the error event which occurs 

when the destination node reconstructs the source message ( )
0
tm . Let k , K  and 1K   

respectively be the event ˆ{ }k km m   occurring at relay node 1k   , the event 

1 1
ˆ{ }K K m m   occurring when relay node K recovers the partial message Km  

delivered by relay node 1K    and the event ˆ{ }K Km m   occurring when the 

destination node recovers the partial message Km  delivered by relay node K. At the 

same time, define c
k , c

K  and 1
c
K  as the complementary events of the above events. 

According to the formula of total probability, the block error probability of the CPMR 

scheme can be iteratively computed as  

0 1 2Pr( | , , , )c c c
e kP       

0 1 1 1 2Pr( ( ) | , , , )c c c c
k k k           

0 1 1 2 0 1 1 2Pr( | , , , ) Pr( | , , , )c c c c c c c
k k k k                

1 1 2 0 1 2 1Pr( | , , , ) Pr( | , , , , )c c c c c c
k k k k              

1 1 2 0 1 2 1Pr( | , , , ) Pr( | , , , , )c c c c c c c c
k k k k              

          1 1 2 0 1 2 1Pr( | , , , ) Pr( | , , , , )c c c c c c c
k k k k             .      (5-53) 
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The first term in Equation (5-53) indicates the decoding error probability for relay 

node 1k   when the decoding is correct from relay node 1 to relay node k. If a polar 

code sequence is transmitted from node k to node 1k   at rate , 1( ; )k k k kR I X Y  , then 

based on the properties of polar codes, we can easily get  

1 1 2Pr( | , , , ) (2 )c c c N
k k O


      .                             (5-54) 

If destination node 1K   can correctly decode the partial message delivered from 

node k, the error probability for the destination node to reconstruct the source message 

can be written as: 

0 1 2 1 1 2 0 1 2 1Pr( | , , , ) Pr( | , , , ) Pr( | , , , , )c c c c c c c c c
K K K K K                  

1 1 2 0 1 2 1Pr( | , , , ) Pr( | , , , , )c c c c c c c c
K K K K             

1 1 2 0 1 2 1Pr( | , , , ) Pr( | , , , , )c c c c c c c
K K K K             .(5-55) 

For any , 1( ; )K K K KR I X Y  , it satisfies   

1 1 2Pr( | , , , ) (2 )c c c N
K K O


      .                              (5-56) 

The second term in Equation (5-55) indicates the error probability for the destination 

node to reconstruct the source message 0m  when the destination node receives the 

correct helpful partial messages from all the relays. Therefore, for any 

00 0, 1( ; )KR' I X Y  , its error probability is also upper bounded by  

0 1 2 1Pr( | , , , , ) (2 )c c c c N
K K O


      .                         (5-57) 

Therefore, when N→∞, the probability of the error event 0   is upper bounded by 

(2 )NO
 .                                                                                                                          □ 

As can be seen from the asymptotic performance analysis of the CPMR scheme of 

infinite block lengths in Theorem 5-1 and Theorem 5-2, the proposed scheme can 

achieve the capacities of SDMRN-ORCs and DDMRN-ORCs with arbitrarily small 
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error probabilities while the complexity of the encoder and decoder in the system is 

only ( log )O N N . Next, we will evaluate the actual performance of the CPMR scheme 

of finite block lengths and the feasibility of such a scheme. 

5.6 Simulation Results and Analysis 

For the convenience of evaluating the feasibility of the actual execution of the 

CPMR scheme and analyzing its performance, we carry out simulation based on the 

DDTRN-ORCs. The specific simulation parameters and their descriptions are as 

follows: 

 Suppose the channel 0,1W  and the channel 0,3W  are BSC channels independent 

of each other and their transition probabilities are 10,1 0( | ) 0.03y xW    and 

30,3 0, 0( | ) 0.12y xW  ;  

 Suppose the channel 1,2W   and the channel 1,3W   are also BSC channels 

independent of each other and their transition probabilities are 

21,2 1( | ) 0.001y xW   and 31,3 1, 1( | ) 0.005y xW  ;  

 The discussion on the channel 2,3W  is based on two situations: One situation is 

that 2,3W  is a completely error-free channel with fixed channel capacity while 

the other situation is that 2,3W  is an independent BSC channel with a transition 

probability probability of 32,3 2, 2( | ) 0.15y xW  .  

Based on the above suppositions, in the expression on the right-hand side of the 

equality in Equation (5-27), 0,1)( 0.8056I W   , 0,3 )( 0.4706I W   , 1,2 )( 0.9886I W   , 

1,3 )( 0.9546I W  , and 2,3 )( 0.3092I W  . Therefore, the capacity of the DDTRN-ORCs 

is equal to the capacity of the channel 0,1W , i.e. 0,1) 0 6( .805OB
TC I W  . 
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Fig. 5-10 illustrates the BER ( 0 0ˆPr( )m m ) curve of the CPMR scheme when the 

channel 2,3W  is a completely error-free channel (assume 2,3 2( )I W R ) versus varying 

channel transmission rate 0R , transmission rate 2R  of relay node 2 and block length 

2nN  . As expected, with the increase of the block length and decrease of rate 0R , 

BER is becoming smaller and smaller, which shows that the proposed scheme can 

achieve the channel capacity through proper design. In addition, by increasing the rate 

2R , BER also decreases accordingly. This is because the channel 2,3W  is a completely 

error-free channel while both the channel 1,2W  and the channel 1,3W  are also near error-

free, which shows that almost the destination node can correctly decode all the partial 

messages delivered from relay node 1 and relay node 2 and the more reliable the partial 

messages forwarded by the relay nodes are, the more capable the destination node is 

of obtaining such helpful information in order to resolve the uncertainty about 0m . 

When 2R  is increasing, it means that the quantity of messages relay node 2 assists in 

forwarding is also increasing and the number of messages the source-destination 

channel has to decode is decreasing, resulting in significant improvement in the 

performance. 

Fig. 5-11 shows the BER curve when the channel 2,3W  is a BSC channel. As can 

be seen from the diagram, in this case, increasing 2R  does not necessarily improve the 

system performance. This situation occurs because some bits of the partial message 

forwarded by relay node 2 are reversed during transmission in the channel, which 

subsequently results in error bits. From a certain perspective, the occurrence of such 

error bits causes error floors in the system performance. At this point, the destination 

node cannot correctly recover the partial message forwarded by relay node 2 as the a 

priori information for the decoding of 0m . Whether this message is decoded correctly 
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has an absolute impact on the performance in the decoding of 0m , which means that 

the error event 3  in Equation (5-40) plays a crucial role on the performance of the 

whole system. 

 

Fig. 5-10 Performance of the CPMR scheme for DDTRN-ORCs: 2,3
W  is an error-free channel 

 

Fig. 5-11 Performance of the CPMR scheme for DDTRN-ORCs: 2,3
W  is a BSC channel 

To sum up, although the CPMR scheme for multiple-relay transmission systems 

is theoretically optimal, the simulation results show that, as a common problem with 
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the construction of polar codes of finite block lengths, the convergence speed of the 

CPMR system of finite block lengths is relatively slow. However, the application of 

the CPMR scheme in multiple-relay systems presents a specific and practical 

constructive channel coding method, which systematically realizes low encoding and 

decoding complexity of just ( log )O N N . As for the insufficiency in performance, the 

simulation results can be improved by the use of the SCLD decoding algorithm, which 

is expected to realize a performance approaching the relay capacity limit. 

5.7 Summary 

In this chapter, we introduced a novel DF strategy based on polar codes - the 

CPMR cooperative transmission scheme. The advantage of this scheme is that it can 

address the relatively high encoding and decoding complexity of non-constructive 

random coding methods in multiple-relay networks. By giving the relay node the 

flexibility of forwarding partial messages from the source or other relay nodes, the 

CPMR scheme of low complexity can be extended to multiple-relay networks. We 

explained the core idea of the CPMR schemes for two types of two-relay network 

models and then extended it to multiple-relay networks. In this chapter, we not only 

described the correlation between partial messages and the corresponding information 

sets but also analyzed the encoding and decoding process of constructive polar codes. 

The results show that CPMR schemes with low complexity can replace random coding 

methods with high complexity and can achieve the system capacity of these two types 

of degraded multiple-relay networks. Lastly, we evaluated the feasibility of the CPMR 

scheme through simulations.



Conclusion 

156 

Conclusion 

As one of the key areas of research on wireless communications, cooperative 

communication technologies constitute an integral part of future broadband wireless 

communication systems and the study on such technologies has posed itself as a novel 

and challenging topic. Distributed channel coding for cooperative communication 

systems is a channel coding technique designed for decreasing the bit error rate for 

transmitted symbols and improving the system reliability. Thus, a proper distributed 

channel coding scheme is of great importance. Although common distributed Turbo 

codes and distributed LDPC codes can achieve a performance approaching the channel 

capacity limit, LDPC codes are non-systematic codes with high encoding complexity 

while Turbo codes have high decoding complexity. In view of that, in this thesis, we 

conducted research and analysis using the latest polar codes as our research objects. 

Compared with Turbo codes and LDPC codes, polar codes benefit from fast encoding 

and parallel decoding. Therefore, research on the application of polar codes in wireless 

networks is of great value. With a comprehensive knowledge of the current 

development and research on cooperative communication technologies and distributed 

channel coding both at home and abroad, we carried out an in-depth study on some 

key technologies for polar codes and proposed new ideas and methods regarding the 

improvement of performance of polar codes for wireless communication channels and 

the realization of polar codes in half-duplex single-relay channels and multiple-relay 

networks, which led to some valuable research results. Our findings can be 

summarized into the following three points: 

Firstly, in response to the slow convergence speed of polar codes and the high error 

floors of LDGM codes, by utilizing the idea of concatenated codes, we proposed a 

SCPL coding scheme with low complexity which uses polar codes as the outer codes 
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and LDGM codes as the inner codes. By constructing SCPL codes and deriving the 

corresponding message iterative decoding algorithm based on the Tanner graph, we 

improved the basic theoretical analysis of SCPL codes. Through actual simulations of 

SCPL codes, we properly selected SCPL coding design parameters to evaluate the 

BER performance under different parameters. Our research findings show that SCPL 

codes can effectively address the problems in practical applications of polar codes. 

They not only overcome the error floor problem but are also easier to be implemented 

into practical applications while maintaining a relatively low coding complexity. In the 

meantime, they also guarantee a performance approaching the Shannon theoretical 

capacity limit. They represent a new pioneering direction in research on polar codes 

for areas such as deep space communications, long-distance optical fiber 

communications and data storage. 

Then, we examined the challenges for polar codes in cooperative relay transmission 

systems in terms of capacity achievability, difficulty in realization, design of 

cooperative transmission protocols and actual performance. Based on the degraded 

half-duplex single-relay channel model, we proposed a CPMR transmission scheme 

with low complexity. Through a detailed theoretical study on the polar coding method 

and the CPMR protocol, it was shown that, while maintaining the low complexity of 

polar coding, the CPMR scheme can asymptotically achieve the capacity limit of the 

degraded half-duplex single-relay channel. The upper bound on the average block error 

probability under the SC decoding algorithm was also derived. Regarding the 

application of the CPMR scheme in the actual model, we, employing “Turbo” theory, 

designed a JISPIC receiver structure based on polar codes using MAP detection on the 

receiver side in order to recover the two streams of superposed information from the 

source node and the relay node in the MAC phase. Through the analysis of the relay 



Conclusion 

158 

channel capacity limit, we explained the key factors affecting the capacity limit of the 

channel model, based on which, we conducted simulations of the CPMR scheme of 

finite block lengths using BPSK modulation for the AWGN channel. Compared with 

the already mature LDPC codes, the proposed scheme inherits the advantages of low 

encoding and decoding complexity of polar codes, achieves a superior performance, 

and effectively solves the problems with the actual application of polar codes in the 

DF relay channel. 

Lastly, to address the high encoding complexity of non-constructive coding methods 

in multiple-relay systems, we gave the relay node the flexibility of forwarding partial 

messages from the source or other relay nodes so that the CPMR scheme with low 

complexity can be extended to multiple-relay networks. Regarding the two types of 

degraded multiple-relay networks with orthogonal receiver components, we described 

the correlation between partial messages and corresponding information sets for 

CPMR protocols, analyzed the constructive encoding and decoding process of polar 

codes, proved the asymptotic achievability of the capacity of the CPMR scheme, and 

through equation derivation, we found that the upper bound on the block error 

probability inherits that of the polar codes. Lastly, we evaluated the feasibility of the 

CPMR scheme in multiple-relay transmission systems through simulations. 

In this thesis, we conducted an in-depth study on the application of polar codes in 

wireless communications with emphasis on the analysis of some specific methods for 

implementing polar codes in relay systems, from which some meaningful conclusions 

are drawn. However, due to the limitation of time and resources, it was not possible to 

research on all the technologies for polar codes and therefore our current work can still 

be further improved and expanded mainly in the following two areas: 

Firstly, the SPCL scheme proposed in this thesis, which is a near-optimal solution, 
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was obtained through computer simulations, and we did not provide any theoretical 

analysis regarding how to search for the optimal combination of outer and inner coding 

rates and the best inner code weight. Provided that there is a solid theoretical 

foundation regarding polar codes, the next step will be to research on the optimum 

SCPL coding scheme with the aim of achieving the optimum system performance. 

Secondly, as we focus on the theoretical analysis of coding schemes and 

communication protocols based on polar codes in relay systems, for the convenience 

of explaining the basics of the application of the CPMR scheme in multiple-relay 

systems and evaluating its performance, we only paid attention to two types of 

degraded multiple-relay network models with orthogonal receiver components in 

Chapter 5. The application of the CPMR scheme in general multiple-relay networks 

would necessitate a background knowledge of source coding. Therefore, one of the 

future tasks would be to incorporate the source coding technology in the design of a 

more general coding strategy with the aim of applying the CPMR scheme in a wider 

range of general multiple-relay network topologies.
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