2,593 research outputs found

    Dynamic modeling, property investigation, and adaptive controller design of serial robotic manipulators modeled with structural compliance

    Get PDF
    Research results on general serial robotic manipulators modeled with structural compliances are presented. Two compliant manipulator modeling approaches, distributed and lumped parameter models, are used in this study. System dynamic equations for both compliant models are derived by using the first and second order influence coefficients. Also, the properties of compliant manipulator system dynamics are investigated. One of the properties, which is defined as inaccessibility of vibratory modes, is shown to display a distinct character associated with compliant manipulators. This property indicates the impact of robot geometry on the control of structural oscillations. Example studies are provided to illustrate the physical interpretation of inaccessibility of vibratory modes. Two types of controllers are designed for compliant manipulators modeled by either lumped or distributed parameter techniques. In order to maintain the generality of the results, neither linearization is introduced. Example simulations are given to demonstrate the controller performance. The second type controller is also built for general serial robot arms and is adaptive in nature which can estimate uncertain payload parameters on-line and simultaneously maintain trajectory tracking properties. The relation between manipulator motion tracking capability and convergence of parameter estimation properties is discussed through example case studies. The effect of control input update delays on adaptive controller performance is also studied

    Vibration Based Control for Flexible Link Manipulator

    Get PDF

    A quasi-static model-based control methodology for articulated mechanical systems

    Get PDF
    Hazardous environments encountered in nuclear clean-up tasks mandate the use of complex robotic systems in many situations. The operation of these systems is now performed primarily under teleoperation. This is, at best, five times slower than equivalent direct human contact operations.One way to increase remote work efficiency is to use automation for specific tasks. However, the unstructured, complex nature of the environment along with the inherent structural flexibility of mobile robot work systems makes task automation difficult and in meiny cases impossible.This research considers a quasi-static macroscopic modeling methodology that could be combined with sensor-guided manipulation schemes to achieve the needed operational accuracies for remote work task automation. Application of this methodology begins with an off-line analysis phase in which the system is identified in terms of the ideal D-H parameters and its structural elements. Themanipulator is modeled with fundamental components (i.e. beam elements, hydraulic elements, etc)and then analyzed to determine load dependent functions that predict deflections at each joint and the end of each link. Next, forces applied at the end-effector and gravity loads are projected into local link coordinates using the undeflected pose of the manipulator. These local loads are then used to calculate deflections which are expressed as 4 by 4 homogeneous transformations and inserted into the original manipulator transformations to predict end-effector position and orientation (anderror/deflection vector). The error/deflection vector is then used to determine corrective actions based on the manipulator flexibilities, pose and loading. This corrective action alters the manipulator commands such that the manipulator end-effector is moved to the desired location based on the error between the model predictions and commanded position using the ideal kinematics.The modeling methodology can readily be applied to any kinematic chain. This allows analysis of a conceptual system in terms of basic mechanics and structural deflections. The methodology allows components such as actuators or links to be interchanged in simulation so that alternative designs may be tested. This capability could help avoid potentially costly conceptual design flaws at a very early stage in the design process.Real-time compensation strategies have been developed so as to lessen concerns with structural deformation during use. The compensation strategies presented here show that the modeling methods can be used to increase the end-effector accuracy by calculating the deflections and command adjustments iteratively in real-time. The iterations show rapid convergence of the adjusted command positions to reach the desired end-effector location. The compensation methods discussed are easily altered to fit systems of any complexity, only requiring changes in the number of variables and the number of equations to solve. Most importantly, however, is that the modeling methodology,in conjunction with the compensation methods, can be used to correct for a significant fraction of the errors associated with manipulator flexibility effects. Implementation in a real-time system only involves changes in path planning, not in low-level control.The modeling methods and deflection predictions were verified using a sub-system of the OakRidge National Laboratory\u27s Dual Arm Work Platform. The experimental method used simple,non-contact measurement devices that are minimally intrusive to the manipulator\u27s workspace. The Results show good correlation between model and experimental results for some configurations. Experimental results can be extrapolated to predict that errors could be reduced from several inches to several tenths of an inch for systems like the Dual Arm Work Platform in some configurations.Continuing work will investigate applications to selective automation for Decontamination and Dismantlement tasks, using this work as a necessary foundation

    A 17 degree of freedom anthropomorphic manipulator

    Get PDF
    A 17 axis anthropomorphic manipulator, providing coordinated control of two seven degree of freedom arms mounted on a three degree of freedom torso-waist assembly, is presented. This massively redundant telerobot, designated the Robotics Research K/B-2017 Dexterous Manipulator, employs a modular mechanism design with joint-mounted actuators based on brushless motors and harmonic drive gear reducers. Direct joint torque control at the servo level causes these high-output joint drives to behave like direct-drive actuators, facilitating the implementation of an effective impedance control scheme. The redundant, but conservative motion control system models the manipulator as a spring-loaded linkage with viscous damping and rotary inertia at each joint. This approach allows for real time, sensor-driven control of manipulator pose using a hierarchy of competing rules, or objective functions, to avoid unplanned collisions with objects in the workplace, to produce energy-efficient, graceful motion, to increase leverage, to control effective impedance at the tool or to favor overloaded joints

    Payload maximization for mobile flexible manipulators in environment with an obstacle

    Get PDF
    A mobile flexible manipulator is developed in order to achieve high performance requirements such as high-speed operation, increased high payload to mass ratio, less weight, and safer operation due to reduced inertia. Hence, this paper presents a method for finding the Maximum Allowable Dynamic Load (MADL) of geometrically nonlinear flexible link mobile manipulators. The full dynamic model of a wheeled mobile base and the mounted flexible manipulator is considered with respect to dynamics of non-holonomic constraint in environment including an obstacle. In dynamical analysis, an efficient model is employed to describe the treatment of a flexible structure in which both the geometric elastic nonlinearity and the foreshortening effects are considered. Then, a path planning algorithm is developed to find the maximum payload that the optimal strategy is based on the indirect solution to the open-loop optimal control problem. In order to verify the effectiveness of the presented algorithm, several simulation studies are carried out for finding the optimal path between two points in the presence of obstacles. The results clearly show the effect of flexibility and the proposed approach on mobile flexible manipulators

    Correction of Force Errors for Flexible Manipulators in Quasi-Static Conditions

    Get PDF
    This paper deals with the problem of controlling the interactions of flexible manipulators with their environment. For executing a force control task, a manipulator with intrinsic (mechanical) compliance has some advantages over the rigid manipulators commonly employed in position control tasks. In particular, stability margins of the force control loop are increased, and robustness to uncertainties in the model of the environment is improved for compliant arms. On the other hand, the deformations of the arm under the applied load give rise to errors, that ultimately reflect in force control errors. This paper addresses the problem of evaluating these errors, and of compensating for them with suitable joint angle corrections. A solution to this problem is proposed in the simplifying assumptions that an accurate model of the arm flexibility is known, and that quasi-static corrections are of interest.MIT Artificial Intelligence Laborator
    corecore