180 research outputs found

    Natural oscillations of underactuated cable-driven parallel robots

    Get PDF
    Underactuated Cable-Driven Parallel Robots (CDPR) employ a number of cables smaller than the degrees of freedom (DoFs) of the end-effector (EE) that they control. As a consequence, the EE is underconstrained and preserves some freedoms even when all actuators are locked, which may lead to undesirable oscillations. This paper proposes a methodology for the computation of the EE natural oscillation frequencies, whose knowledge has proven to be convenient for control purposes. This procedure, based on the linearization of the system internal dynamics about equilibrium con_gurations, can be applied to a generic robot suspended by any number of cables comprised between 2 and 5. The kinematics, dynamics, stability and stiffness of the robot free motion are investigated in detail. The validity of the proposed method is demonstrated by experiments on 6-DoF prototypes actuated by 2, 3, and 4 cables. Additionally, in order to highlight the interest in a robotic context, this modelling strategy is applied to the trajectory planning of a 6-DoF 4-cable CDPR by means of a frequency-based method (multi-mode input shaping), and the latter is experimentally compared with traditional non-frequency-based motion planners

    Design, modelling and control of a brachiating power line inspection robot

    Get PDF
    The inspection of power lines and associated hardware is vital to ensuring the reliability of the transmission and distribution network. The repetitive nature of the inspection tasks present a unique opportunity for the introduction of robotic platforms, which offer the ability to perform more systematic and detailed inspection than traditional methods. This lends itself to improved asset management automation, cost-effectiveness and safety for the operating crew. This dissertation presents the development of a prototype industrial brachiating robot. The robot is mechanically simple and capable of dynamically negotiating obstacles by brachiating. This is an improvement over current robotic platforms, which employ slow, high power static schemes for obstacle negotiation. Mathematical models of the robot were derived to understand the underlying dynamics of the system. These models were then used in the generation of optimal trajectories, using nonlinear optimisation techniques, for brachiating past line hardware. A physical robot was designed and manufactured to validate the brachiation manoeuvre. The robot was designed following classic mechanical design principles, with emphasis on functional design and robustness. System identification was used to capture the plant uncertainty and a feedback controller was designed to track the reference trajectory allowing for energy optimal brachiation swings. Finally, the robot was tested, starting with sub-system testing and ending with testing of a brachiation manoeuvre proving the prospective viability of the robot in an industrial environment

    Rest-to-Rest Trajectory Planning for Underactuated Cable-Driven Parallel Robots

    Get PDF
    This article studies the trajectory planning for underactuated cable-driven parallel robots (CDPRs) in the case of rest-to-rest motions, when both the motion time and the path geometry are prescribed. For underactuated manipulators, it is possible to prescribe a control law only for a subset of the generalized coordinates of the system. However, if an arbitrary trajectory is prescribed for a suitable subset of these coordinates, the constraint deficiency on the end-effector leads to the impossibility of bringing the system at rest in a prescribed time. In addition, the behavior of the system may not be stable, that is, unbounded oscillatory motions of the end-effector may arise. In this article, we propose a novel trajectory-planning technique that allows the end effector to track a constrained geometric path in a specified time, and allows it to transition between stable static poses. The design of such a motion is based on the solution of a boundary value problem, aimed at a finding solution to the differential equations of motion with constraints on position and velocity at start and end times. To prove the effectiveness of such a method, the trajectory planning of a six-degrees-of-freedom spatial CDPR suspended by three cables is investigated. Trajectories of a reference point on the moving platform are designed so as to ensure that the assigned path is tracked accurately, and the system is brought to a static condition in a prescribed time. Experimental validation is presented and discussed

    Comfort-Centered Design of a Lightweight and Backdrivable Knee Exoskeleton

    Full text link
    This paper presents design principles for comfort-centered wearable robots and their application in a lightweight and backdrivable knee exoskeleton. The mitigation of discomfort is treated as mechanical design and control issues and three solutions are proposed in this paper: 1) a new wearable structure optimizes the strap attachment configuration and suit layout to ameliorate excessive shear forces of conventional wearable structure design; 2) rolling knee joint and double-hinge mechanisms reduce the misalignment in the sagittal and frontal plane, without increasing the mechanical complexity and inertia, respectively; 3) a low impedance mechanical transmission reduces the reflected inertia and damping of the actuator to human, thus the exoskeleton is highly-backdrivable. Kinematic simulations demonstrate that misalignment between the robot joint and knee joint can be reduced by 74% at maximum knee flexion. In experiments, the exoskeleton in the unpowered mode exhibits 1.03 Nm root mean square (RMS) low resistive torque. The torque control experiments demonstrate 0.31 Nm RMS torque tracking error in three human subjects.Comment: 8 pages, 16figures, Journa

    Redundant Hybrid Cable-Driven Robots: Modeling, Control, and Analysis

    Get PDF
    Serial and Cable-Driven Parallel Robots (CDPRs) are two types of robots that are widely used in industrial applications. Usually, the former offers high position accuracy at the cost of high motion inertia and small workspace envelope. The latter has a large workspace, low motion inertia, and high motion accelerations, but low accuracy. In this thesis, redundant Hybrid Cable-Driven Robots (HCDRs) are proposed to harness the strengths and benefits of serial and CDPRs. Although the study has been directed at warehousing applications, the developed techniques are general and can be applied to other applications. The main goal of this research is to develop integrated control systems to reduce vibrations and improve the position accuracy of HCDRs. For the proposed HCDRs, the research includes system modeling, redundancy resolution, optimization problem formulation, integrated control system development, and simulation and experimental validation. In this thesis, first, a generalized HCDR is proposed for the step-by-step derivation of a generic model, and it can be easily extended to any HCDRs. Then, based on an in-plane configuration, three types of control architecture are proposed to reduce vibrations and improve the position accuracy of HCDR. Their performance is evaluated using several well-designed case studies. Furthermore, a stiffness optimization algorithm is developed to overcome the limitations of existing approaches. Decoupled system modeling is studied to reduce the complexity of HCDRs. Control design, simulations, and experiments are developed to validate the models and control strategies. Additionally, state estimation algorithms are proposed to overcome the inaccurate limitation of Inertial Measurement Unit (IMU). Based on these state observers, experiments are conducted in different cases to evaluate the control performance. An Underactuated Mobile Manipulator (UMM) is proposed to address the tracking and vibration- and balance-control problems. Out-of-plane system modeling, disturbance analysis, and model validation are also investigated. Besides, a simple but effective strategy is developed to solve the equilibrium point and balancing problem. Based on the dynamic model, two control architectures are proposed. Compared to other Model Predictive Control (MPC)-based control strategies, the proposed controllers require less effort to implement in practice. Simulations and experiments are also conducted to evaluate the model and control performance. Finally, redundancy resolution and disturbance rejection via torque optimization in HCDRs are proposed: joint-space Torque Optimization for Actuated Joints (TOAJ) and joint-space Torque Optimization for Actuated and Unactuated Joints (TOAUJ). Compared to TOAJ, TOAUJ can solve the redundancy resolution problem as well as disturbance rejection. The algorithms are evaluated using a Three-Dimensional (3D) coupled HCDR and can also be extended to other HCDRs

    Bio-inspired robotic control in underactuation: principles for energy efficacy, dynamic compliance interactions and adaptability.

    Get PDF
    Biological systems achieve energy efficient and adaptive behaviours through extensive autologous and exogenous compliant interactions. Active dynamic compliances are created and enhanced from musculoskeletal system (joint-space) to external environment (task-space) amongst the underactuated motions. Underactuated systems with viscoelastic property are similar to these biological systems, in that their self-organisation and overall tasks must be achieved by coordinating the subsystems and dynamically interacting with the environment. One important question to raise is: How can we design control systems to achieve efficient locomotion, while adapt to dynamic conditions as the living systems do? In this thesis, a trajectory planning algorithm is developed for underactuated microrobotic systems with bio-inspired self-propulsion and viscoelastic property to achieve synchronized motion in an energy efficient, adaptive and analysable manner. The geometry of the state space of the systems is explicitly utilized, such that a synchronization of the generalized coordinates is achieved in terms of geometric relations along the desired motion trajectory. As a result, the internal dynamics complexity is sufficiently reduced, the dynamic couplings are explicitly characterised, and then the underactuated dynamics are projected onto a hyper-manifold. Following such a reduction and characterization, we arrive at mappings of system compliance and integrable second-order dynamics with the passive degrees of freedom. As such, the issue of trajectory planning is converted into convenient nonlinear geometric analysis and optimal trajectory parameterization. Solutions of the reduced dynamics and the geometric relations can be obtained through an optimal motion trajectory generator. Theoretical background of the proposed approach is presented with rigorous analysis and developed in detail for a particular example. Experimental studies are conducted to verify the effectiveness of the proposed method. Towards compliance interactions with the environment, accurate modelling or prediction of nonlinear friction forces is a nontrivial whilst challenging task. Frictional instabilities are typically required to be eliminated or compensated through efficiently designed controllers. In this work, a prediction and analysis framework is designed for the self-propelled vibro-driven system, whose locomotion greatly relies on the dynamic interactions with the nonlinear frictions. This thesis proposes a combined physics-based and analytical-based approach, in a manner that non-reversible characteristic for static friction, presliding as well as pure sliding regimes are revealed, and the frictional limit boundaries are identified. Nonlinear dynamic analysis and simulation results demonstrate good captions of experimentally observed frictional characteristics, quenching of friction-induced vibrations and satisfaction of energy requirements. The thesis also performs elaborative studies on trajectory tracking. Control schemes are designed and extended for a class of underactuated systems with concrete considerations on uncertainties and disturbances. They include a collocated partial feedback control scheme, and an adaptive variable structure control scheme with an elaborately designed auxiliary control variable. Generically, adaptive control schemes using neural networks are designed to ensure trajectory tracking. Theoretical background of these methods is presented with rigorous analysis and developed in detail for particular examples. The schemes promote the utilization of linear filters in the control input to improve the system robustness. Asymptotic stability and convergence of time-varying reference trajectories for the system dynamics are shown by means of Lyapunov synthesis

    Modeling, analysis and control of robot-object nonsmooth underactuated Lagrangian systems: A tutorial overview and perspectives

    Get PDF
    International audienceSo-called robot-object Lagrangian systems consist of a class of nonsmooth underactuated complementarity Lagrangian systems, with a specific structure: an "object" and a "robot". Only the robot is actuated. The object dynamics can thus be controlled only through the action of the contact Lagrange multipliers, which represent the interaction forces between the robot and the object. Juggling, walking, running, hopping machines, robotic systems that manipulate objects, tapping, pushing systems, kinematic chains with joint clearance, crawling, climbing robots, some cable-driven manipulators, and some circuits with set-valued nonsmooth components, belong this class. This article aims at presenting their main features, then many application examples which belong to the robot-object class, then reviewing the main tools and control strategies which have been proposed in the Automatic Control and in the Robotics literature. Some comments and open issues conclude the article
    • …
    corecore