171,811 research outputs found

    Practical line rasterization for multi-resolution textures

    Get PDF
    Draping 2D vectorial information over a 3D terrain elevation model is usually performed by real-time rendering to texture. In the case of linear feature representation, there are several specific problems using the texturing approach, specially when using multi-resolution textures. These problems are related to visual quality, aliasing artifacts and rendering performance. In this paper, we address the problems of 2D line rasterization on a multi-resolution texturing engine from a pragmatical point of view; some alternative solutions are presented, compared and evaluated. For each solution we have analyzed the visual quality, the impact on the rendering performance and the memory consumption. The study performed in this work is based on an OpenGL implementation of a clipmap-based multi-resolution texturing system, and is oriented towards the use of inexpensive consumer graphics hardware. 1

    An efficient multi-resolution framework for high quality interactive rendering of massive point clouds using multi-way kd-trees

    Get PDF
    We present an efficient technique for out-of-core multi-resolution construction and high quality interactive visualization of massive point clouds. Our approach introduces a novel hierarchical level of detail (LOD) organization based on multi-way kd-trees, which simplifies memory management and allows control over the LOD-tree height. The LOD tree, constructed bottom up using a fast high-quality point simplification method, is fully balanced and contains all uniformly sized nodes. To this end, we introduce and analyze three efficient point simplification approaches that yield a desired number of high-quality output points. For constant rendering performance, we propose an efficient rendering-on-a-budget method with asynchronous data loading, which delivers fully continuous high quality rendering through LOD geo-morphing and deferred blending. Our algorithm is incorporated in a full end-to-end rendering system, which supports both local rendering and cluster-parallel distributed rendering. The method is evaluated on complex models made of hundreds of millions of point sample

    Real-time rendering of large surface-scanned range data natively on a GPU

    Get PDF
    This thesis presents research carried out for the visualisation of surface anatomy data stored as large range images such as those produced by stereo-photogrammetric, and other triangulation-based capture devices. As part of this research, I explored the use of points as a rendering primitive as opposed to polygons, and the use of range images as the native data representation. Using points as a display primitive as opposed to polygons required the creation of a pipeline that solved problems associated with point-based rendering. The problems inves tigated were scattered-data interpolation (a common problem with point-based rendering), multi-view rendering, multi-resolution representations, anti-aliasing, and hidden-point re- moval. In addition, an efficient real-time implementation on the GPU was carried out

    TetSplat: Real-time Rendering and Volume Clipping of Large Unstructured Tetrahedral Meshes

    Get PDF
    We present a novel approach to interactive visualization and exploration of large unstructured tetrahedral meshes. These massive 3D meshes are used in mission-critical CFD and structural mechanics simulations, and typically sample multiple field values on several millions of unstructured grid points. Our method relies on the pre-processing of the tetrahedral mesh to partition it into non-convex boundaries and internal fragments that are subsequently encoded into compressed multi-resolution data representations. These compact hierarchical data structures are then adaptively rendered and probed in real-time on a commodity PC. Our point-based rendering algorithm, which is inspired by QSplat, employs a simple but highly efficient splatting technique that guarantees interactive frame-rates regardless of the size of the input mesh and the available rendering hardware. It furthermore allows for real-time probing of the volumetric data-set through constructive solid geometry operations as well as interactive editing of color transfer functions for an arbitrary number of field values. Thus, the presented visualization technique allows end-users for the first time to interactively render and explore very large unstructured tetrahedral meshes on relatively inexpensive hardware

    SupeRVol: Super-Resolution Shape and Reflectance Estimation in Inverse Volume Rendering

    Full text link
    We propose an end-to-end inverse rendering pipeline called SupeRVol that allows us to recover 3D shape and material parameters from a set of color images in a super-resolution manner. To this end, we represent both the bidirectional reflectance distribution function (BRDF) and the signed distance function (SDF) by multi-layer perceptrons. In order to obtain both the surface shape and its reflectance properties, we revert to a differentiable volume renderer with a physically based illumination model that allows us to decouple reflectance and lighting. This physical model takes into account the effect of the camera's point spread function thereby enabling a reconstruction of shape and material in a super-resolution quality. Experimental validation confirms that SupeRVol achieves state of the art performance in terms of inverse rendering quality. It generates reconstructions that are sharper than the individual input images, making this method ideally suited for 3D modeling from low-resolution imagery

    Accurate Single Image Multi-Modal Camera Pose Estimation

    Get PDF
    Abstract. A well known problem in photogrammetry and computer vision is the precise and robust determination of camera poses with respect to a given 3D model. In this work we propose a novel multi-modal method for single image camera pose estimation with respect to 3D models with intensity information (e.g., LiDAR data with reflectance information). We utilize a direct point based rendering approach to generate synthetic 2D views from 3D datasets in order to bridge the dimensionality gap. The proposed method then establishes 2D/2D point and local region correspondences based on a novel self-similarity distance measure. Correct correspondences are robustly identified by searching for small regions with a similar geometric relationship of local self-similarities using a Generalized Hough Transform. After backprojection of the generated features into 3D a standard Perspective-n-Points problem is solved to yield an initial camera pose. The pose is then accurately refined using an intensity based 2D/3D registration approach. An evaluation on Vis/IR 2D and airborne and terrestrial 3D datasets shows that the proposed method is applicable to a wide range of different sensor types. In addition, the approach outperforms standard global multi-modal 2D/3D registration approaches based on Mutual Information with respect to robustness and speed. Potential applications are widespread and include for instance multispectral texturing of 3D models, SLAM applications, sensor data fusion and multi-spectral camera calibration and super-resolution applications

    Virtual Rephotography: Novel View Prediction Error for 3D Reconstruction

    Full text link
    The ultimate goal of many image-based modeling systems is to render photo-realistic novel views of a scene without visible artifacts. Existing evaluation metrics and benchmarks focus mainly on the geometric accuracy of the reconstructed model, which is, however, a poor predictor of visual accuracy. Furthermore, using only geometric accuracy by itself does not allow evaluating systems that either lack a geometric scene representation or utilize coarse proxy geometry. Examples include light field or image-based rendering systems. We propose a unified evaluation approach based on novel view prediction error that is able to analyze the visual quality of any method that can render novel views from input images. One of the key advantages of this approach is that it does not require ground truth geometry. This dramatically simplifies the creation of test datasets and benchmarks. It also allows us to evaluate the quality of an unknown scene during the acquisition and reconstruction process, which is useful for acquisition planning. We evaluate our approach on a range of methods including standard geometry-plus-texture pipelines as well as image-based rendering techniques, compare it to existing geometry-based benchmarks, and demonstrate its utility for a range of use cases.Comment: 10 pages, 12 figures, paper was submitted to ACM Transactions on Graphics for revie
    corecore