
Vis Comput (2013) 29:69–83
DOI 10.1007/s00371-012-0675-2

O R I G I NA L A RT I C L E

An efficient multi-resolution framework for high quality
interactive rendering of massive point clouds using multi-way
kd-trees

Prashant Goswami · Fatih Erol · Rahul Mukhi ·
Renato Pajarola · Enrico Gobbetti

Published online: 15 February 2012
© Springer-Verlag 2012

Abstract We present an efficient technique for out-of-core
multi-resolution construction and high quality interactive vi-
sualization of massive point clouds. Our approach intro-
duces a novel hierarchical level of detail (LOD) organiza-
tion based on multi-way kd-trees, which simplifies memory
management and allows control over the LOD-tree height.
The LOD tree, constructed bottom up using a fast high-
quality point simplification method, is fully balanced and
contains all uniformly sized nodes. To this end, we introduce
and analyze three efficient point simplification approaches
that yield a desired number of high-quality output points.
For constant rendering performance, we propose an effi-
cient rendering-on-a-budget method with asynchronous data
loading, which delivers fully continuous high quality render-
ing through LOD geo-morphing and deferred blending. Our
algorithm is incorporated in a full end-to-end rendering sys-

Electronic supplementary material The online version of this article
(doi:10.1007/s00371-012-0675-2) contains supplementary material,
which is available to authorized users.

P. Goswami (�) · F. Erol · R. Pajarola
Visualization and MultiMedia Lab, University of Zurich, Zurich,
Switzerland
e-mail: goswami@ifi.uzh.ch

F. Erol
e-mail: erol@ifi.uzh.ch

R. Pajarola
e-mail: pajarola@acm.org

E. Gobbetti
CRS4, Pula (CA), Italy
e-mail: gobbetti@crs4.it

R. Mukhi
Department of Informatics, University of Zurich, Zurich,
Switzerland
e-mail: rahul.mukhi@uzh.ch

tem, which supports both local rendering and cluster-parallel
distributed rendering. The method is evaluated on complex
models made of hundreds of millions of point samples.

Keywords Point-based rendering · Level-of-detail ·
Multi-way kd-tree · Entropy-based reduction ·
k-clustering · Parallel rendering · Geo-morphing

1 Introduction

Modern 3D scanning systems can generate massive datasets,
which easily exceed 100s of millions of points. Visualizing
such massive models is best addressed using level-of-detail
(LOD), asynchronous out-of-core data fetching and parallel
rendering techniques. However, since modern GPUs sustain
very high primitive rendering rates, a slow CPU-based data
fetching and LOD selection process can easily lead to star-
vation of the graphics pipeline. Hence, the CPU-GPU bot-
tleneck becomes the prominent challenge to be addressed
as a whole, from the choice of data structures used for pre-
processing and rendering the models, to the design of the
display algorithm. In recent years, this consideration has
led to the emergence of a number of coarse-grained multi-
resolution approaches based on a hierarchical partitioning
of the model data into parts made of 100s to 1000s of prim-
itives. These methods successfully amortize data structure
traversal overhead over rendering cost of large numbers of
primitives, and effectively exploit on-board caching and ob-
ject based rendering APIs.

Direct point-based rendering (PBR) is gradually emerg-
ing in industrial environments as a viable alternative to the
more traditional polygonal mesh methods for interactively
inspecting very large geometric models. Points as render-
ing primitives are often a more efficient means for initial
data processing and visual analysis of large raw 3D data.

http://dx.doi.org/10.1007/s00371-012-0675-2
mailto:goswami@ifi.uzh.ch
mailto:erol@ifi.uzh.ch
mailto:pajarola@acm.org
mailto:gobbetti@crs4.it
mailto:rahul.mukhi@uzh.ch

70 P. Goswami et al.

Furthermore, PBR is also advantageous compared to trian-
gles especially in regions where a triangle might project to
a pixel or less on the screen. Points also constitute a more
compact representation as the mesh connectivity of triangles
is not required. More benefits arise due to the simplicity of
pre-processing algorithms.

In this paper, we further improve the state-of-the-art in
PBR with a novel end-to-end system for out-of-core multi-
resolution construction and high quality parallel visualiza-
tion of large point datasets. The proposed approach fea-
tures fast pre-processing and high quality rendering of mas-
sive point clouds at hundreds of millions of point splats per
second on modern GPUs, improving the quality vs. per-
formance ratio compared to previous large point data ren-
dering methods. We exploit the properties of multi-way kd-
trees to make rendering more GPU oriented which includes
a fast high quality LOD construction and a LOD tree with
uniformly sized nodes which can efficiently be stored in
the GPU’s Vertex Buffer Objects (VBOs) or using OpenGL
bindless graphics extensions.

Some basic features of our framework were presented
in a preliminary short paper [1]. We here provide a more
thorough exposition, but also present a number of signifi-
cant extensions. In particular, we generalize our balanced
LOD construction technique to support different data reduc-
tion strategies, and introduce two novel strategies, namely
Entropy-Based Reduction and k-Clustering. These strate-
gies, together with the original Normal Deviation Cluster-
ing, are comparatively analyzed with respect to a standard
iterative point collapse method [17]. We also introduce in
our tree the ability to blend representations among levels
using a Geo-morphing technique, guaranteeing for the first
time smooth-transitions in an adaptive coarse-grained point-
based renderer. In addition, we present how our render-
ing approach can be integrated in a cluster-parallel adap-
tive LOD point rendering framework, and discuss addi-
tional qualitative and quantitative results. Finally, we have
attempted to further clarify our data structures and the steps
in our algorithms to facilitate implementation and to make
the transfer between abstract concepts and actual code as
straightforward as possible.

2 Related work

While the use of points as rendering primitives has been in-
troduced very early [2, 3], only over the last decade they
have reached the significance of fully established geometry
and graphics primitives [4–6]. Many techniques have since
been proposed for improving upon the display quality, LOD
rendering, as well as for efficient out-of-core rendering of
large point models. We concentrate here on discussing only
the approaches most closely related to ours. For more de-
tails, we refer the reader to the survey literature [6–8].

QSplat [9] has for long been the reference system for
large point rendering. It is based on a hierarchy of bounding
spheres maintained out-of-core, that is traversed at run-time
to generate points. This algorithm is CPU bound, because
all the computations are made per point, and CPU/GPU
communication requires a direct rendering interface, thus
the graphic board is never exploited at its maximum per-
formance. A number of authors have also proposed vari-
ous ways to push the rendering performance limits, mostly
through coarse grained structures and efficient usage of re-
tained mode rendering interfaces.

Grottel et al. [10] recently presented an approach for
rendering of Molecular Dynamics datasets represented by
point glyphs, which also includes occlusion culling and
deferred splatting and shading. The method uses a regu-
lar grid rather than a hierarchical data decomposition, and
has thus limited adaptivity. Sequential Point Trees [11] in-
troduced a sequential adaptive high performance GPU ori-
ented structure for points limited to models that can fit on
the graphics board. XSplat [12] and Instant points [13] ex-
tend this approach for out-of-core rendering. XSplat is lim-
ited in LOD adaptivity due to its sequential block build-
ing constraints, while Instant points mostly focuses on rapid
moderate quality rendering of raw point clouds. Both sys-
tems suffer from a non-trivial implementation complexity.
Layered point clouds (LPC) [14] and Wand et al.’s out-of
core renderer [15] are prominent examples of high perfor-
mance GPU rendering systems based on hierarchical model
decompositions into large sized blocks maintained out-of-
core. LPC is based on adaptive BSP sub-division, and sub-
samples the point distribution at each level. In order to refine
an LOD, it adds points from the next level at runtime. This
composition model and the pure subsampling approach lim-
its the applicability to uniformly sampled models and pro-
duces moderate quality simplification at coarse LODs. In
Bettio et al.’s approach [16], these limitations are removed
by making all BSP nodes self-contained and using an it-
erative edge collapse simplification to produce node repre-
sentations. We propose here a faster, high quality simplifi-
cation method based on adaptive clustering. Wand et al.’s
approach [15] is based on an out-of-core octree of grids,
and deals primarily with grid based hierarchy generation and
editing of the point cloud. The limitation is in the quality of
lower resolutions created by the grid no matter how fine it
is. All these previous block-based methods produce variable
sized point clouds allocated to each node. None of them sup-
port fully continuous blending between nodes, potentially
leading to popping artifacts.

All the mentioned pipelines for massive model rendering
create coarser LOD nodes through a simplification process.
Some systems, e.g., [14, 15], are inherently forced to use
fast but low-quality methods based on pure sub-sampling or
grid-based clustering. Others, e.g., [12, 16], can use higher

An efficient multi-resolution framework for high quality interactive rendering of massive point clouds 71

quality simplification methods, as those proposed by Pauly
et al. [17]. In this context, we propose three fast, high quality
techniques which produce targeted number of output points
and improve upon the state-of-art in this context, for ex-
ample [17]. All the proposed methods produce high qual-
ity simplifications on non-uniform point clouds and are able
to rapidly generate the information required to implement
geo-morphing. Moreover, our pre-processor does not require
prior information like connectivity or sampling rate from the
input data points.

Our framework supports cluster-parallel distributed ren-
dering on a graphics cluster through the integration with a
parallel graphics library. Among various parallel rendering
framework options, like VR Juggler [18] and Chromium [19],
we have chosen Equalizer [20] for its configuration and task
distribution flexibility and extensibility features to port our
point renderer to run on a cluster driving multiple displays.
Many works (e.g., [21, 22]) leverage the parallel power of
multiple machines to achieve speed-up or for large wall
based displays using triangular primitives. Similar solutions
(e.g., [23, 25]) have been introduced for parallel point-based
rendering of moderately sized models. None of these works,
however, compare points as parallel rendering primitives on
large wall displays with triangles for very large models. Our
paper further provides an initial evaluation of parallel ren-
dering in the context of point-based graphics in comparison
to triangles, both on performance and quality level.

3 Multi-resolution data structure

3.1 The multi-way kd-tree (MWKT)

The concept of multi-way kd-trees (MWKT) for out-of-core
rendering of massive point datasets was introduced in [1];
see also Fig. 1. The benefits of a MWKT over conventional
data structures can be summarized as follows:

1. A MWKT is symmetric like an octree or kd-tree.
2. A MWKT divides data equally among all nodes similar

to kd-trees.
3. A MWKT is flexible, given the number of points in

the model n, a fan-out factor N can be chosen for leaf
nodes to have approximately s ≈ n/N number of ele-
ments which can be a target VBO size.

4. Since the fan-out factor and number of internal nodes can
directly be controlled in a MWKT, one has more choices
for LOD adaptivity. Leaves of a MWKT contain the orig-
inal model points and the LOD is constructed bottom-up
for internal nodes.

5. A MWKT can be kept and managed in an array just like
a kd-tree.

Additionally, MWKTs are in fact easy to implement and
offer equally sized nodes that are easy to handle caching
units.

Fig. 1 Multi-way kd-tree (MWKT) example for N = 4. Each of the
leaf regions contains nearly the same number of points

Algorithm 1 MWKdTree(node)
1: if (number of points in node ≤ s) then
2: return
3: end if

4: Determine the longest axis of node
5: if (an ancestor sorted along same axis exists) then
6: Get sorted data from ancestor
7: else
8: Sort data of node
9: end if

10: Split the node data into N child nodes Nci

11: for all (children i ≤ N) do
12: MWKdTree(Nci)
13: Get reduced LOD points from child node by calling

Representatives(Nci)
14: end for

3.2 MWKT construction

The procedure to construct a MWKT is outlined in Algo-
rithm 1. In a fully balanced tree, n

s
is a power of N and

thus N can be chosen such that log n
s
/ logN is as close as

possible to an integral value. In that case, the number of
points in the leaf nodes will consequently be as close as pos-
sible to the target VBO size s.

In the tree construction procedure, we exploit delaying
the sorting wherein we first check if an ancestor was sorted
along the desired axis. This can be implemented by retriev-
ing sorted lists from ancestors as indicated in Fig. 2. If an

72 P. Goswami et al.

Fig. 2 Delayed sorting during node construction

ancestor in the MWKT has already sorted the points along
the desired axis, the order is carried over to the new node,
otherwise the points are sorted locally. However, if the size
of desired sorted segment is much smaller than that of the
sorted ancestor, we perform a new local sort on that segment
in the current node.

3.3 Hierarchical multi-resolution construction

The basic space sub-division strategy ensures that each leaf
node in a MWKT stores close to s points. However, in order
to maintain the equally sized uniform caching units, we also
need to ensure that Representatives() in Algorithm 1 re-
turns s representative points for every child node Nci . In this
section, we provide a brief review of the earlier proposed
work followed by two new methods of multi-resolution hi-
erarchy creation: entropy-based reduction and k-clustering.
Given an initial set of points, all these methods can pro-
vide a simplification that yields a desired number of target
points k. The aim of all presented approaches is to gener-
ate k best clusters through global simplification of the input
dataset. All of the proposed methods use a virtual K3-grid
to support fast spatial search and data access, i.e., to obtain
an initial neighborhood set, but this can be replaced by other
spatial indexing methods. The neighborhood set of a point
can be defined either by a k-nearest neighbor set or as being
within a spatial range d < r1 + r2 where d is the distance be-
tween point centers and r1, r2 the point splat radii. We focus
on the latter in our algorithms. Any of the three presented
methods can be employed to implement Representatives()
in Algorithm 1. In Sect. 6, we provide a comparative anal-
ysis between these methods together with an iterative point
collapse method as suggested in [17].

3.3.1 Normal deviation clustering

Point simplification is achieved by clustering points in ev-
ery cell of the K3-grid within each MWKT node. This is

achieved as follows: Each grid cell constitutes a cluster ini-
tially, and each such cluster is pushed into a priority queue
Q which is ordered by an error metric; see Fig. 3. The error
metric itself could be chosen to be the number of points in
the cluster. It should be noted that once initial clusters are
obtained, we operate only over Q and the grid structure can
be dropped. Thereafter, in each iteration, the top cluster of Q

is popped and points within it, which satisfy the normal de-
viation limit are merged. This is exemplified in Fig. 3 where
a K3 grid is established in the multi-way kd-tree node. All
points falling in a grid cell, for example A, constitute one
cluster. These clusters are added to a priority queue Q. At
each iteration, cluster from the top of Q is popped. In the
shown example, grid cell B will be popped before A. Points
within it that respect the maximum normal deviation thresh-
old are combined. Whereas cells like B would produce mul-
tiple points, others with less normal deviation (like A) would
generate a single point. Grouping of points within a cluster
is done using θ (Fig. 3) which is compared with a global
threshold. As shown in the figure, after merging points, the
resultant clusters are pushed again in Q with updated maxi-
mum normal angle deviation in the cluster. This is repeated
until a convergence is obtained in terms of required number
of points. As shown, this leads to better quality and simplifi-
cation as compared to simple averaging of all points within
one grid cell as in [15]. For a more detailed description of
this method, we refer the reader to [1].

3.3.2 Entropy-based reduction

This technique aims to create k points using entropy as an
error metric, given by (1). Here Entropyi refers to the en-
tropy of the ith point which is calculated using θij , which is
the normal angle deviation of the ith point to its j th neigh-
bor, and leveli , which indicates the number of times the ith
point has been merged. We call this Entropyi as it represents
to some sorts the amount of entropy induced into the system
by combining a point with its neighbors and hence the sum-
mation in (1). In this approach, in each iteration we pick up
a point, which when merged with its neighbors introduces
the minimum entropy to the system. The more often a point
is merged, the higher is its level leveli and hence its entropy.
On the other hand, the lower the normal angle deviation θij

is with its neighbors, the smaller the entropy. Neighbors are
computed once in the beginning for all points. Thereafter,
each time a point p is merged with another point q , the
neighborhood set of the new point is obtained by taking the
union of the old neighbors of p ∪ q .

Entropyi =
∑

j

1 + leveli
1 + cos θij

(1)

The basic steps of the entropy-based reduction are out-
lined in Algorithm 2. The algorithm begins by initializing

An efficient multi-resolution framework for high quality interactive rendering of massive point clouds 73

Fig. 3 Normal deviation
clustering. Points (shown by
green arrows in their unit
normal spheres) within a grid
cell are clustered according to
their normal deviation

Algorithm 2 Entropy-Based Reduction
Require: S, the input point set

1: Initialize min priority queue Q on entropy
2: Initialize c = |S|
3: Mark all points valid
4: Set level of all points to 0

5: Compute neighbors for each point
6: Compute entropy for all points using (1) and push them

into Q

7: while (c > k and Q is not empty) do
8: p = Pop Q

9: if (p.valid) then
10: – Create p′
11: – p′.level = p.level + 1
12: – Compute position, normal and radius of p′ using

p and its valid neighbors
13: – Mark all neighbors of p as invalid
14: – Assign valid neighbors of neighbors of p to p′
15: – Compute the entropy of p′ together with its

neighbors
16: – Push p′ to Q

17: – Decrement c for each point newly marked invalid
18: end if
19: end while

20: Output: Valid points in Q

all points by finding their neighbors and computing their en-
tropy using (1). All points are marked valid and their level is
initialized to 0. A global minimum priority queue Q is prior-
itized on the entropy values and all points are pushed into it.
Thereafter, the top point from Q is popped and merged with
its neighbors to create a new point. This necessitates com-
putation of position, normal, and the radius of a new point
p′, obtained by merging point p with its neighbors (line 12).

The radius of the new point p′ is such that it covers all the
merged neighbors. All merged neighbors are marked invalid
and the entropy is recomputed for the newly created point p′
before adding it back to Q (lines 7–19). This procedure is
repeated until k points are obtained or Q is empty. The final
set of points is obtained by emptying Q in the end (line 20).

3.3.3 k-clustering

Standard k-clustering is the natural choice that comes up in
one’s mind when k clusters are desired. The basic method is
derived from k-means clustering [27] that aims to partition
n observations into k clusters such that each observation is
grouped with the cluster having closest mean. For this, the
observations are repeatedly moved among the clusters un-
til an equilibrium is attained. The complexity of solving the
original k-means clustering problem is NP-hard [28]. For
our purpose, we need a simpler formulation of k-means clus-
tering to obtain k points from the given set S, which are good
enough representatives of their cluster such that the remain-
ing |S| − k points can be grouped into one of the chosen k

points.
The choice of k clusters (set M in Algorithm 3) is crucial

to obtain high quality aggregate clusters. However, to ob-
tain an initial crude guess for the k seed points, we use the
hashing method proposed in [24] which is based on a sep-
aration of the point data into non self-overlapping minimal
independent groups. The basic motivation behind their ap-
proach is that if a point set is sufficiently split into multiple
groups, overlapping splats can be reduced. Overlap between
splats can be determined using overlap length, area or even
volume between two or more splats. We divide the origi-
nal set S of splats into 8 groups using the fast online hash
algorithm which gives us the initial estimate of the set M .
At this point, M is not overlap free, and hence is refined
further such that no two points have an overlap. One could
employ either the offline or online algorithm as suggested
in [24]. Furthermore, one can choose to divide into more or

74 P. Goswami et al.

Algorithm 3 k-Clustering
Require: S, the input point set

1: Compute neighbors for each point in S

2: Group points into 8 groups using online group hashing
as given in [24]

3: Pick group with most number of splats, M

4: Initialize maximum priority queue Q on overlapping
extent with neighboring splats

5: Calculate overlap of each point in M with its neighbors
and push it into Q if there is an overlap

6: /*— Remove the points from over-sampled regions —*/
7: while (there is overlap in M and Q is not empty) do
8: – p = Pop Q

9: – Remove p from M

10: – Recalculate overlap of its neighbors
11: end while

12: /*— Add points to the under-sampled regions —*/
13: for each point p in (S − M) do
14: if p and none of its neighbors are in M then
15: – Add p to M

16: end if
17: end for

18: /*— Iterate for k points by removing or adding points
as required —*/

19: while (|M| > k) do
20: – Remove a point from M that has least deviation

with its (extended) surrounding points
21: end while
22: while (|M| < k) do
23: – Add a point from (S −M) to M that has least over-

lap in group M with its neighbors
24: end while

25: for each point p in (S − M) do
26: Group p with its neighbor in M having minimum

normal deviation
27: end for

28: Output: Points in M merged with their neighbors

less than 8 groups without loss of generality. The basic idea
here is to choose the points in one of the 8 groups (M) as
an initial set to generate our k clusters. To this end, we add
or remove points in M such that the model is adequately
sampled with minimal overlap and complex regions having
higher sampling density.

The basic steps followed to obtain k clusters are given
in Algorithm 3. Following division of input points into 8
groups using the hashing method proposed in [24], the group

with maximum number of splats is picked (lines 2, 3) which
constitutes the initial M ; see also Fig. 4(a). Thereafter, splats
are pushed into Q based on overlap priority and points are
removed from Q until there is no more overlap in M (lines
4–11) (Fig. 4(b)). In order to enforce more uniform sam-
pling, points are selected from (S − M) which have none
of their neighbors in M (lines 12–17). This gives us a good
initial estimate of M (Fig. 4(c)). It should be noted that at
this point (following line 17), M has almost no overlap. M

itself is further refined until it has only k points left. If M has
more than k elements, the point with the least deviation with
its surrounding set of points is removed (lines 19–21). Here,
we determine the deviation by taking an extended neighbor-
hood which is in fact all the points in ±1 grid cells of the
current cell that contains the point. To ensure that point den-
sities are not significantly reduced in some regions, we in-
clude the number of points in the extended neighborhood set
in the error metric. On the other hand, if M has fewer than
k elements, points are chosen from (S − M) which have the
least overlap in M (lines 22–24). Following this, each of the
remaining points in (S − M) are grouped with a neighbor
point present in M that has least normal deviation with it
(lines 25–27).

3.4 Data organization

After the MWKT construction, all nodes are kept on disk
in a compressed form using LZO compression. The position
values (x, y, z) of a point are quantized with respect to the
minimum and maximum coordinates of the bounding box of
the node using 16 bits, normals with 16 bits using a look-up
table corresponding to vectors on a 104 × 104 grid on each
of the 6 faces of a unit cube and splat radius using 8 bits with
respect to the minimum and maximum splat size in a node.
Further, geo-morphing coordinates are maintained by keep-
ing with each point in a coarser level node, the number of
refined LOD points it represents in the child node. The extra
space overhead incurred is just one byte per point. Through
this number, the correspondence of finer LOD points in child
nodes to coarser LOD points in the parent node can be made
as points are ordered sequentially in VBOs. Furthermore, in
each of the three simplification methods proposed above it is
straightforward to maintain geo-morphing correspondences.

4 Rendering

4.1 LOD selection

We employ a simple view dependent screen-space LOD re-
finement strategy. At rendering time, a node is associated
with a projected size and based on this a decision is made

An efficient multi-resolution framework for high quality interactive rendering of massive point clouds 75

Fig. 4 k-Clustering (a) Initial points in M (line 3 in Algorithm 3) (b) Overlapping points removed (lines 7–11) (c) Points added to undersampled
regions (lines 13–17)

Fig. 5 Quality comparison: (a) rendering on budget (3M points) vs.
(b) pixel error threshold (3.0 pixels)

which nodes are to be refined or coarsened. For each ren-
dered frame, a set of nodes in the LOD hierarchy with pro-
jected size larger than a given threshold is selected for dis-
play (see also Fig. 6). These selected nodes constitute the
targeted rendering front for that frame.

An alternative to using VBOs on GPU is to use OpenGL
bindless graphics extensions (GL_NV_shader_ buffer_
load and GL_NV_ vertex_buffer_unified _mem-
ory), which reduce GPU cache misses involved in setting
vertex array state by directly specifying GPU addresses,
letting shaders fetch from buffer objects by GPU address.
Since our structures have a coarse granularity, the rendering
performance of the two approaches appears to be similar
(see Sect. 6).

4.2 Rendering on budget

In interactive rendering applications it is often preferable to
maintain a constant high frame rate than adhering to a strict

Fig. 6 LOD update and asynchronous fetching example for a MWKT
with N = 2

LOD requirement, especially during interactive manipula-
tions. To optimize interactivity and LOD quality, rendering
can be controlled by a rendering budget B which indicates
that no more than the best B LOD points are displayed ev-
ery frame which are also the parts of 3D scene closer to the
user. This is achieved through Algorithm 4; we maintain a
priority queue Q of LOD nodes at runtime ordered by the
following LOD metric for refinement or coarsening.

εl = c0(lmax − l + 1)

c1d + c2d2
. (2)

76 P. Goswami et al.

Algorithm 4 LOD selection for rendering on a budget B

1: Initialize empty queue Q prioritized on εl

2: Push the root node r onto Q

3: count = |r|
4: n = null

5: while (count −|n|+ s ·N � B and Q is not empty) do
6: Pop node n from Q

7: if (n is not a leaf) then
8: count = count − |n|
9: for (each child c of n) do

10: Push c onto Q, prioritized on εl

11: count = count − |c|
12: end for
13: else
14: Add n to rendering front
15: end if
16: end while

17: if (Q is not empty) then
18: Add nodes from Q to rendering front
19: end if

Here, d is the distance to the viewer, ci are constants and
l refers to the level of node in MWKT, lmax being the maxi-
mum level (also refer to [1]).

Note, however, that our rendering system also supports
view-dependent LOD selection based on projected screen-
space LOD point pixel size as shown in Fig. 5. For that
purpose, the LOD nodes, e.g., of the past frame’s render-
ing front, are refined or coarsened based on projected pixel
size and no budget limit is included.

4.3 Asynchronous fetching

In order to maintain a consistent frame rate, inclusion of
many new nodes via LOD refinement or coarsening can be
spread over a few frames. For this purpose, we make use
of incrementally updating the front from the last rendered
frame, both for pixel- and budget-based rendering. The cur-
rent front is derived from the last one and all newly selected
nodes are activated for display. This way out-of-core latency
can largely be hidden. Figure 6 illustrates how parent-to-
children and children-to-parent fetches can be carried out
asynchronously using a concurrent thread while rendering
the data already available in the GPU memory.

4.4 Geo-morphing

In order to make continuous transition between LODs, our
rendering employs geo-morphing. Given the front based
rendering as indicated in Fig. 6 and described in Sect. 4.3,

during each transition of type parent-to-child or child-to-
parent, the additional data required for geo-morphing is sup-
plied as a per vertex texture to the vertex shader for interpo-
lation. To achieve this, each splat in the currently rendered
VBO is also given the target splat position, size, and normal
that will replace it. This is simple in our case as each par-
ent splat maintains the count of its refined splats in the child
VBO, and hence can compute the index to these splats. The
transition from a coarser parent LOD point to a set of refined
child LOD points (or the other way around) is then smoothed
over a few frames during which the positions, sizes and nor-
mals of source and target splats are slowly interpolated.

4.5 Backface and occlusion culling

Our approach integrates backface culling, using normal cone
for each node in tree and occlusion culling, similar to [14]
to avoid rendering of invisible points. Unused point budget
reclaimed from the occluded or backfacing LOD nodes can
be reused to refine some more nodes of a coarser LOD res-
olution.

4.6 Smooth point interpolation

Real-time smooth point interpolation for small models is
easy to achieve with conventional blended splatting algo-
rithms. However, most of these approaches are not well
suited for very large scale point sets as ours since they
are too resource intensive and slow down rendering speed
significantly. Object-space smoothing approaches often use
two passes over the point geometry and another pass over
the image. To avoid multiple processing and rasterization of
geometry, we adopt the deferred blending approach as intro-
duced in [24]. While rendering, point splats in a node are
separated into eight groups such that the overlap within a
group is minimal. This is done based on an online hashing
scheme [24] and can be combined with the asynchronous
loading of LOD nodes from hard disk. Each group is then
rendered into a separate frame buffer texture and finally the
eight partial images obtained from these groups are blended
using the algorithm given in [24] in a final fragment pass.

5 Parallel rendering

The integration of sophisticated features like smooth blend-
ing and geo-morphing together with the capability of ren-
dering several hundreds of millions of points per second,
makes point-based rendering attractive for large display
walls or multi-machine rendering. Not only rendering work-
load can be distributed over available computer and graph-
ics resources, but also a wide range of applications can em-
ploy our techniques for efficient visualization of high quality
data.

An efficient multi-resolution framework for high quality interactive rendering of massive point clouds 77

Fig. 7 Main task division modes on our point renderer using (a) sort-first and (b) sort-last modes. Screen area or data rendered by each of the
three machines is color-coded, and the left large image shows the color-coded final assembled image

The basic motivation to use points instead of triangles on
multi-machine large displays comes from the possibility of
more efficient rendering with not much loss in quality; also
see Sect. 6. The rendering data can be more easily divided
among the machines without worrying about the connectiv-
ity between meshes of different levels-of-detail. The quality
gap between triangles and points can be partly bridged by
using more sophisticated operations like geo-morphing.

Decomposition modes Equalizer supports two basic task
partitioning modes for scalable rendering which are di-
rectly applicable in our case: screen domain or sort-first, and
database domain or sort-last [26].

– Sort-first or screen-space decomposition divides the task
in image space. Therefore, all machines render the com-
plete database but only within a sub-set of the overall view
frustum. Each machine performs culling with the supplied
frustum and renders only the visible MWKT nodes on its
screen tile, as indicated in Fig. 7(a). This configuration is
particularly useful for wall displays.

– Sort-last or database decomposition refers to the division
of the 3D data among the rendering machines. Each of
the rendering clients obtains a range [low,high] from the
Equalizer server which is a subrange of the unit inter-
val [0,1] which represents the entire database. Therefore,
any given machine renders only the geometric data corre-
sponding to its supplied range based on some linear data
indexing and sub-division. Our division strategy is simi-
lar to [21], wherein we divide the list of all selected and
visible MWKT nodes after the LOD traversal among the
participating machines equally; also see Fig. 7(b). This
achieves an implicit load balancing of rendering burden
among machines.

Fig. 8 St. Matthew model on a high-resolution 24 Mpixel tiled-wall
display cluster using glPoints and a LOD rendering budget of only 3M
points per machine, drawn at 15 fps

Figure 8 demonstrates the quality of the St. Matthew
model rendering with OpenGL points as primitives with a
rendering budget of approximately 3M per rendering ma-
chine.

6 Results

The proposed method has been implemented in C++ using
OpenGL and GLUT. Unless otherwise specified, the results
have been evaluated on a system with 2 × 2.66 GHz Dual-
Core Intel Xeon processors, NVIDIA GeForce GTX 285
and a display window of 1024 × 1024 pixels.

The parallelized version of this software ported to Equal-
izer is used to run experiments on a PC cluster of six Ubuntu
Linux nodes with dual 64-bit AMD 2.2 GHz Opteron pro-
cessors and 4 GB of RAM each. Each computer connects to
a 2560 × 1600 LCD panel through one NVIDIA GeForce
9800 GX2 graphics card, thus resulting in a 24 Mpixel 2 × 3

78 P. Goswami et al.

Fig. 9 Point clustering created with (from left to right) normal deviation, k-clustering, entropy-based reduction, and Pauly’s iterative simplification
methods, respectively, for three different models

tiled display wall. Each node has a 1 Gb ethernet network in-
terface, which is also utilized to access out-of-core data from
a central network attached disk. For comparative analysis of
quality and efficiency, we use a simple polygonal rendering
application, eqPly, which renders triangle mesh data in par-
allel using optimized static display lists.

6.1 Pre-processing

The MWKT pre-processing time and disk usage of various
models have been presented in detail in [1]. In this section,
we describe and compare the additional results obtained
using various point simplification methods. Figure 9 com-
pares the outputs obtained using: normal deviation cluster-
ing, entropy-based reduction, k-clustering and iterative sim-
plification [17]. All these methods produce a desired num-

ber of output (representative) points k, for a given input
point set. It shows that simplification through normal de-
viation and k-clustering produce the best results followed
by entropy-based reduction and iterative simplification. Nor-
mal deviation and entropy-based reduction are simple to im-
plement. The relative loss of quality in iterative simplifi-
cation is attributed to the fact that each time a point pair
is chosen to collapse, it replaces it with a new represen-
tative point with larger radius which results in accumulat-
ing conservative coverage attributes. It also needs a higher
number of iterations to achieve k points which ultimately
leads to a larger overlap as compared to other methods.
In our methods, a group of splats are replaced by a single
representative point, thereby reducing this overlap. Further-
more, as listed in Table 1 simplification through normal de-
viation runs much faster than all other methods producing

An efficient multi-resolution framework for high quality interactive rendering of massive point clouds 79

Fig. 10 Varying zoom views of the Pisa Cathedral (368M samples), St. Matthew 0.25 mm (187M samples), and David 1 mm (28M samples)
models

Fig. 11 Choice of splat primitive: Square OpenGL points, round points, elliptical depth-sprites, and blended splats

Table 1 Comparison of pre-processing time (in sec) on various mod-
els using normal deviation, entropy-based reduction, k-clustering, and
iterative simplification [17] methods. Input and output point counts are
as given in each case

Model In Out Nor. D. k-Clust. Entr. R. Iter. S.

Armadillo 173K 39K 1.24 3.08 4.27 7.72

David Head 417K 77K 1.63 6.91 7.55 26.73

Lucy Head 513K 47K 1.69 7.47 9.44 38.43

high quality clusters. In fact, all the three proposed meth-

ods reduce pre-processing time while enhancing point qual-
ity as compared to [17] while still yielding the desired k

clusters. k-clustering can be chosen over normal deviation

if strict quality control is preferred over time. All the pro-
posed methods can easily be employed for pre-processing

of large out-of-core point data models due to their efficiency
and high quality. Furthermore, all these methods are simple
to implement and integrate with any point renderer.

6.2 Rendering quality

Figure 10 shows different views of our large models demon-
strating the LOD mechanism for a rendering budget of B =
3 to 5 million points. Furthermore, in Fig. 11, we compare
the rendering quality of different point drawing primitives:
simple square OpenGL points, screen-aligned round anti-
aliased points, surface-aligned elliptical depth-sprites, and
blended points. In [1], the comparison of sampling and ren-
dering quality depending on the choice of LOD tree data
structure (octree, kd-tree, or MWKT) has been presented.

In Fig. 12, we compare the LOD quality generated by
our method with respect to other state of the art approaches.
Rusinkiewicz et al. [9] start with a mesh and use a very
fine LOD granularity to produce lower resolution and tree
traversal as compared to ours. On the other hand, in [14]
the LOD hierarchy construction purely relies on point sub-
sampling leading to a somewhat noisier LOD with less bud-
get. Our method offers a more flexible and tunable compro-
mise between the two, for choice of granularity, and hence
efficiency vs. quality.

80 P. Goswami et al.

Fig. 12 LOD quality comparison between (a) Layered point clouds,
(b) QSplat, and (c) our approach for a rendering budget of approxi-
mately 3M points

6.3 Rendering efficiency

In Table 2, we list the rendering performances for various
models. These tests were conducted on a 1024 × 1024 pixel
screen for curved paths of camera that allow rotation, trans-
lation and zooming-in of the models. As is clear from Ta-
ble 2, rendering efficiency in terms of frames per second and
points per second is quite similar for all models despite them
varying significantly in size. We achieve rendering rates of
nearly 290M points per second with peaks exceeding 330M
even for the larger datasets. Additionally as is obvious from
Table 2, geo-morphing does not reduce the rendering perfor-
mance significantly while providing higher rendering qual-
ity.

Table 3 compares the rendering performance of our
MWKT with and without bindless graphics for a budget of
5M points. Our experiments suggest that the use of bindless
graphics does not necessarily imply a performance boost es-
pecially within the order of VBO switches that the MWKT
achieves. In all our measurements, even with a high ren-

Table 2 Rendering performance statistics for various models and
VBO sizes, given a rendering budget of B = 3M comparing normal
vs. geo-morphed rendering

Model #Samples N VBO(K) Fps Pps(M) Fps Pps(M)

Nor. Nor. Geo Geo

David2mm 4.1M 3 51 95 288 80 244

Lucy 14M 2 55 98 294 80 241

David1mm 28M 5 45 94 290 78 241

St. Matthew 186.9M 3 85 97 290 81 240

Pisa Cathedral 368.5M 4 90 93 285 77 237

Table 3 Performance comparison with bindless graphics for a budget
of 5M points

Model Normal Bindless

fps pps fps pps

Lucy 57 290.00 57 289.67

David1mm 55 284.23 55 282.94

St. Matthew 54 271.45 53 269.33

dering budget for massive models, frame rates, and point
throughput came out to be quite similar for bindless as well
as normal VBOs. On the other hand, with the proper con-
struction of the MWKT one can clearly benefit over standard
binary kd-trees (as demonstrated in Table 4).

We tested our implementation for various VBO sizes and
thus fan-out values N with the St. Matthew model using
simple OpenGL points as drawing primitives. An extensive
statistical analysis of this is available in [1] showing that
the proper choice of N and VBO size can be important to
obtain an optimal performance. This is further verified by
additionally comparing our MWKT also with a kd-tree for
point throughput using budget-based rendering for similar
maximal node sizes (see also Table 4). It shows the total
VBO fetches and context switches for different VBO sizes.
It is clear that a MWKT can obtain better frame rates and
point throughput for same sized VBOs than a kd-tree due to
minimized VBO fetches and context switches. Further, for a
similar amount of space occupied, and hence LOD quality,
the MWKT can be constructed in less time than a kd-tree.

State-of-the-art chunk-based systems [14, 16] can be
made more efficient with the integration of MWKT as their
basic data structure on the efficiency front.

6.4 Parallel rendering

In Fig. 13, we compare the quality between using triangles
or points on multi-machine large tiled displays for different
rendering budgets. Figure 14 summarizes the performance
comparison. We make two observations here:

An efficient multi-resolution framework for high quality interactive rendering of massive point clouds 81

Table 4 Comparison of performance and pre-processing statistics between kd-tree and MWKT using a budget of 3M points. CS refers to total
context switches and VBOF to total VBO fetches from disk to graphics memory

Model VBO Size Fps Pps CS VBOF Time (s) Space (MB)

David1mm 55048 Kd-tree 84 254 297170 526 620 234

13762 44 132 1110910 2135 705 250

St. Matthew 24029 85 255 268723 811 7686 2186

45614 73 219 406126 1013 6152 1750

David1mm 55048 MW Kd-tree 91 281 86685 162 382 224

13762 58 173 831707 1399 573 250

St. Matthew 24029 96 289 92580 174 5208 1739

45614 95 287 120341 202 4977 1674

Fig. 13 Quality comparison between triangles and points as rendering primitives on various rendering budgets per machine for points (a) Triangles
(b) Points (28 M) (c) Points (2 M) (d) Points (1 M)

Fig. 14 Comparing triangles and points as rendering primitives on
parallel multi-machine large displays

1. Rendering using points is about 3–4 times faster even
when using the maximal rendering budget.

2. There is no significant quality difference between
Fig. 13(a) and Fig. 13(b) which compare the maximal
rendering budget using both kinds of primitives. Even as
the point rendering budget is reduced and the frame rates
obtained increase, quality is not notably affected.

The same observation is reinforced from Fig. 8. This im-
plies that one could obtain a close to one order of magnitude
of speed-up when rendering points in comparison to trian-
gles without losing too much on the quality front.

7 Conclusion and future work

We have presented an efficient framework for hierarchical
multi-resolution pre-processing and rendering of massive
point cloud datasets which can support high quality render-
ing using geo-morphing and smooth point interpolation. Our
fast, high quality pre-processing methods improve upon the
state-of-art to obtain targeted number of output points which
can be efficiently kept as VBOs. We have demonstrated that
our novel point hierarchy definition is flexible in that it can
adapt to a desired LOD granularity by adjusting its fan-out
factor N that we can target specific rendering-efficient VBO
sizes, and that our algorithm supports adaptive out-of-core
rendering, featuring asynchronous pre-fetching and loading
from disk as well as rendering on a budget.

Related future work could include better compression
schemes to reduce the per node VBO data size while still
allowing it to be used by the GPU with minimal runtime
processing overhead on the CPU, and to apply extensions
that make the approach suitable for streaming over network
and remote rendering.

Acknowledgements We would like to thank and acknowledge the
Stanford 3D Scanning Repository and Digital Michelangelo projects
as well as Roberto Scopigno, for the Pisa Cathedral model, for provid-
ing the 3D geometric test datasets used in this paper. This work was
supported in parts by the Swiss Commission for Technology and Inno-
vation (KTI/CTI) under Grant 9394.2 PFES-ES.

82 P. Goswami et al.

References

1. Goswami, P., Zhang, Y., Pajarola, R., Gobbetti, E.: High quality
interactive rendering of massive point models using multi-way kd-
trees. In: Proceedings Pacific Graphics Poster Papers, pp. 93–100
(2010)

2. Levoy, M., Whitted, T.: The use of points as display primitives.
TR 85-022, Technical Report, Department of Computer Science,
University of North Carolina at Chapel Hill (1985)

3. Grossman, J.P., Dally, W.J.: Point sample rendering. In: Proceed-
ings Eurographics Workshop on Rendering, pp. 181–192 (1998)

4. Pfister, H., Gross, M.: Point-based computer graphics. IEEE Com-
put. Graph. Appl. 24(4), 22–23 (2004)

5. Gross, M.H.: Getting to the point. . . ? IEEE Comput. Graph. Appl.
26(5), 96–99 (2006)

6. Gross, M.H., Pfister, H.: Point-Based Graphics. Morgan Kauf-
mann, San Mateo (2007)

7. Sainz, M., Pajarola, R.: Point-based rendering techniques. Com-
put. Graph. 28(6), 869–879 (2004)

8. Kobbelt, L., Botsch, M.: A survey of point-based techniques in
computer graphics. Comput. Graph. 28(6), 801–814 (2004)

9. Rusinkiewicz, S., Levoy, M.: QSplat: A multiresolution point
rendering system for large meshes. In: Proceedings ACM SIG-
GRAPH, pp. 343–352 (2000)

10. Grottel, S., Reina, G., Dachsbacher, C., Ertl, T.: Coherent culling
and shading for large molecular dynamics visualization. Comput.
Graph. Forum 29(3), 953–962 (2010) (Proceedings of EUROVIS)

11. Dachsbacher, C., Vogelgsang, C., Stamminger, M.: Sequential
point trees. ACM Trans. Graph. 22(3) (2003). Proceedings ACM
SIGGRAPH

12. Pajarola, R., Sainz, M., Lario, R.: XSplat: External memory mul-
tiresolution point visualization. In: Proceedings IASTED Interna-
tional Conference on Visualization, Imaging and Image Process-
ing, pp. 628–633 (2005)

13. Wimmer, M., Scheiblauer, C.: Instant points: Fast rendering of
unprocessed point clouds. In: Proceedings Eurographics/IEEE
VGTC Symposium on Point-Based Graphics, pp. 129–136 (2006)

14. Gobbetti, E., Marton, F.: Layered point clouds. In: Proceedings
Eurographics/IEEE VGTC Symposium on Point-Based Graphics,
pp. 113–120 (2004)

15. Wand, M., Berner, A., Bokeloh, M., Fleck, A., Hoffmann, M.,
Jenke, P., Maier, B., Staneker, D., Schilling, A.: Interactive editing
of large point clouds. In: Proceedings Eurographics/IEEE VGTC
Symposium on Point-Based Graphics, pp. 37–46 (2007)

16. Bettio, F., Gobbetti, E., Martio, F., Tinti, A., Merella, E., Com-
bet, R.: A point-based system for local and remote exploration of
dense 3D scanned models. In: Proceedings Eurographics Sympo-
sium on Virtual Reality, Archaeology and Cultural Heritage, pp.
25–32 (2009)

17. Pauly, M., Gross, M., Kobbelt, L.P.: Efficient simplification of
point-sampled surfaces. In: Proceedings IEEE Visualization, pp.
163–170 (2002)

18. Bierbaum, A., Just, C., Hartling, P., Meinert, K., Baker, A., Cruz-
Neira, C.: VR Juggler: A virtual platform for virtual reality ap-
plication development. In: Proceedings IEEE Virtual Reality, pp.
89–96 (2001)

19. Humphreys, G., Houston, M., Ng, R., Frank, R., Ahern, S., Kirch-
ner, P.D., Klosowski, J.T.: Chromium: A stream-processing frame-
work for interactive rendering on clusters. ACM Trans. Graph.
21(3) (2002). Proceedings ACM SIGGRAPH

20. Eilemann, S., Makhinya, M., Pajarola, R.: Equalizer: A scalable
parallel rendering framework. IEEE Trans. Vis. Comput. Graph.
15(3), 436–452 (2009)

21. Goswami, P., Makhinya, M., Bösch, J., Pajarola, R.: Scalable par-
allel out-of-core terrain rendering. In: Eurographics Symposium
on Parallel Graphics and Visualization, pp. 63–71 (2010)

22. Corea, W.T., Klosowski, J.T., Silva, C.T.: Out-of-core sort-first
parallel rendering for cluster-based tiled displays. In: Fourth Eu-
rographics Workshop on Parallel Graphics and Visualization, pp.
63–71 (2002)

23. Hubo, E., Bekaert, P.: A data distribution strategy for parallel
point-based rendering. In: Proceedings International Conference
on Computer Graphics, Visualization and Computer Vision, pp.
1–8 (2005)

24. Zhang, Y., Pajarola, R.: Deferred blending: Image composition
for single-pass point rendering. Comput. Graph. 31(2), 175–189
(2007)

25. Corrêa, W.T., Fleishman, S., Silva, C.T.: Towards point-based ac-
quisition and rendering of large real-world environments. In: Pro-
ceedings of the 15th Brazilian Symposium on Computer Graphics
and Image Processing, p. 59 (2002)

26. Molnar, S., Cox, M., Ellsworth, D., Fuchs, H.: A sorting classi-
fication of parallel rendering. IEEE Comput. Graph. Appl. 14(4),
23–32 (1994)

27. MacQueen, J.B.: Some methods for classification and analysis of
multivariate observations. In: Proceedings of 5th Berkeley Sym-
posium on Mathematical Statistics and Probability, pp. 281–297.
University of California Press, Berkeley (1967)

28. Dasgupta, S.: The hardness of k-means clustering. CS2008-0916,
Technical Report, Department of Computer Science and Engineer-
ing University of California, San Diego (2008)

Prashant Goswami is a doctoral
student at VMML, University of
Zürich. He completed his B.Tech.
and M.Tech. in Computer Science
and Engineering at IIT Delhi. His
research interests include point-based
rendering, particle simulation, and
parallel rendering.

Fatih Erol is a doctoral student at
VMML, University of Zürich. He
completed his M.Sc. degree in Com-
puter Engineering at Bilkent Uni-
versity. His research interests in-
clude parallel rendering and load-
balancing.

An efficient multi-resolution framework for high quality interactive rendering of massive point clouds 83

Renato Pajarola has been a Profes-
sor in computer science at the Uni-
versity of Zürich since 2005, leading
the Visualization and MultiMedia
Lab (VMML). He has previously
been an Assistant Professor at the
University of California Irvine and
a Postdoc at Georgia Tech. He has
received his Dipl. Inf-Ing. ETH and
Dr. sc. techn. degrees in computer
science from the Swiss Federal In-
stitute of Technology (ETH) Zurich
in 1994 and 1998 respectively. His
research interests include real-time
3D graphics, scientific visualization
and interactive 3D multimedia.

Enrico Gobbetti is the Visual Com-
puting research director at the CRS4
research center in Italy. His re-
search spans many areas of com-
puter graphics and is widely pub-
lished in major journals and confer-
ences. Enrico holds an engineering
degree (1989) and a Ph.D. (1993) in
Computer Science from the Swiss
Federal Institute of Technology in
Lausanne.

Rahul Mukhi is pursuing his M.Sc.
in Informatics at University of Zurich.
He is interested in computer graph-
ics domain, specifically on research
topics like point based graphics, ge-
ometric modeling and physically
based simulation.

	An efficient multi-resolution framework for high quality interactive rendering of massive point clouds using multi-way kd-trees
	Abstract
	Introduction
	Related work
	Multi-resolution data structure
	The multi-way kd-tree (MWKT)
	MWKT construction
	Hierarchical multi-resolution construction
	Normal deviation clustering
	Entropy-based reduction
	k-clustering

	Data organization

	Rendering
	LOD selection
	Rendering on budget
	Asynchronous fetching
	Geo-morphing
	Backface and occlusion culling
	Smooth point interpolation

	Parallel rendering
	Decomposition modes

	Results
	Pre-processing
	Rendering quality
	Rendering efficiency
	Parallel rendering

	Conclusion and future work
	Acknowledgements
	References

