187,052 research outputs found

    Point process modeling for directed interaction networks

    Full text link
    Network data often take the form of repeated interactions between senders and receivers tabulated over time. A primary question to ask of such data is which traits and behaviors are predictive of interaction. To answer this question, a model is introduced for treating directed interactions as a multivariate point process: a Cox multiplicative intensity model using covariates that depend on the history of the process. Consistency and asymptotic normality are proved for the resulting partial-likelihood-based estimators under suitable regularity conditions, and an efficient fitting procedure is described. Multicast interactions--those involving a single sender but multiple receivers--are treated explicitly. The resulting inferential framework is then employed to model message sending behavior in a corporate e-mail network. The analysis gives a precise quantification of which static shared traits and dynamic network effects are predictive of message recipient selection.Comment: 36 pages, 13 figures; includes supplementary materia

    A survey of statistical network models

    Full text link
    Networks are ubiquitous in science and have become a focal point for discussion in everyday life. Formal statistical models for the analysis of network data have emerged as a major topic of interest in diverse areas of study, and most of these involve a form of graphical representation. Probability models on graphs date back to 1959. Along with empirical studies in social psychology and sociology from the 1960s, these early works generated an active network community and a substantial literature in the 1970s. This effort moved into the statistical literature in the late 1970s and 1980s, and the past decade has seen a burgeoning network literature in statistical physics and computer science. The growth of the World Wide Web and the emergence of online networking communities such as Facebook, MySpace, and LinkedIn, and a host of more specialized professional network communities has intensified interest in the study of networks and network data. Our goal in this review is to provide the reader with an entry point to this burgeoning literature. We begin with an overview of the historical development of statistical network modeling and then we introduce a number of examples that have been studied in the network literature. Our subsequent discussion focuses on a number of prominent static and dynamic network models and their interconnections. We emphasize formal model descriptions, and pay special attention to the interpretation of parameters and their estimation. We end with a description of some open problems and challenges for machine learning and statistics.Comment: 96 pages, 14 figures, 333 reference

    Dynamic Influence Networks for Rule-based Models

    Get PDF
    We introduce the Dynamic Influence Network (DIN), a novel visual analytics technique for representing and analyzing rule-based models of protein-protein interaction networks. Rule-based modeling has proved instrumental in developing biological models that are concise, comprehensible, easily extensible, and that mitigate the combinatorial complexity of multi-state and multi-component biological molecules. Our technique visualizes the dynamics of these rules as they evolve over time. Using the data produced by KaSim, an open source stochastic simulator of rule-based models written in the Kappa language, DINs provide a node-link diagram that represents the influence that each rule has on the other rules. That is, rather than representing individual biological components or types, we instead represent the rules about them (as nodes) and the current influence of these rules (as links). Using our interactive DIN-Viz software tool, researchers are able to query this dynamic network to find meaningful patterns about biological processes, and to identify salient aspects of complex rule-based models. To evaluate the effectiveness of our approach, we investigate a simulation of a circadian clock model that illustrates the oscillatory behavior of the KaiC protein phosphorylation cycle.Comment: Accepted to TVCG, in pres

    The Strength of Arcs and Edges in Interaction Networks: Elements of a Model-Based Approach

    Full text link
    When analyzing interaction networks, it is common to interpret the amount of interaction between two nodes as the strength of their relationship. We argue that this interpretation may not be appropriate, since the interaction between a pair of nodes could potentially be explained only by characteristics of the nodes that compose the pair and, however, not by pair-specific features. In interaction networks, where edges or arcs are count-valued, the above scenario corresponds to a model of independence for the expected interaction in the network, and consequently we propose the notions of arc strength, and edge strength to be understood as departures from this model of independence. We discuss how our notion of arc/edge strength can be used as a guidance to study network structure, and in particular we develop a latent arc strength stochastic blockmodel for directed interaction networks. We illustrate our approach studying the interaction between the Kolkata users of the myGamma mobile network.Comment: 23 pages, 5 figures, 4 table

    Network estimation in State Space Model with L1-regularization constraint

    Full text link
    Biological networks have arisen as an attractive paradigm of genomic science ever since the introduction of large scale genomic technologies which carried the promise of elucidating the relationship in functional genomics. Microarray technologies coupled with appropriate mathematical or statistical models have made it possible to identify dynamic regulatory networks or to measure time course of the expression level of many genes simultaneously. However one of the few limitations fall on the high-dimensional nature of such data coupled with the fact that these gene expression data are known to include some hidden process. In that regards, we are concerned with deriving a method for inferring a sparse dynamic network in a high dimensional data setting. We assume that the observations are noisy measurements of gene expression in the form of mRNAs, whose dynamics can be described by some unknown or hidden process. We build an input-dependent linear state space model from these hidden states and demonstrate how an incorporated L1L_{1} regularization constraint in an Expectation-Maximization (EM) algorithm can be used to reverse engineer transcriptional networks from gene expression profiling data. This corresponds to estimating the model interaction parameters. The proposed method is illustrated on time-course microarray data obtained from a well established T-cell data. At the optimum tuning parameters we found genes TRAF5, JUND, CDK4, CASP4, CD69, and C3X1 to have higher number of inwards directed connections and FYB, CCNA2, AKT1 and CASP8 to be genes with higher number of outwards directed connections. We recommend these genes to be object for further investigation. Caspase 4 is also found to activate the expression of JunD which in turn represses the cell cycle regulator CDC2.Comment: arXiv admin note: substantial text overlap with arXiv:1308.359
    • …
    corecore