118,512 research outputs found

    Developing Impervious Surface Estimates for Coastal New Hampshire

    Get PDF
    Future population growth and the corresponding increase in development in the coastal zone of NH are widely recognized as major threats to the integrity of coastal systems and their watersheds. The potential impacts associated with the expansion of developed land, and specifically with increasing amounts of impervious surfaces – rooftops, sidewalks, roads, and parking lots - may include significant changes in water quantity, degradation in water quality, and habitat loss. Because asphalt, concrete, stone, and other impenetrable materials effectively seal the ground surface, water is repelled and is prevented from infiltrating soils. Instead, stormwater runoff flows directly into our surface waters, depositing metals, excess nutrients, organics, and other pollutants into the receiving bodies. In addition to these environmental impacts, increasing levels of imperviousness can dramatically alter our landscapes, as forested and other natural settings are converted to urban/suburban uses. Many of the impacts associated with impervious surfaces had been well documented by studies in other areas of the country. However, comprehensive studies in coastal New Hampshire had not been undertaken. The primary goals of this project were to provide an accurate, current description of the extent of impervious surface coverage in this region, as well as an estimate of change in the amount of “imperviousness” over a recent, ten-year period

    Developing 1990, 2000, and 2005 Impervious Surface Estimates for Southern York County, Maine

    Get PDF
    Estimates of impervious surface acreage in 1990, 2000, and 2005 were generated for an 11-town region in York County, Maine, covered by the Piscataqua Region Estuaries Partnership (PREP). The project extended previous work done in New Hampshire, relying on comparable satellite-based data sources and image processing methodologies. As a result, standardized impervious surface estimates are now available for the entirety of the PREP region. The impervious surface estimates were derived by applying both traditional and subpixel classification techniques to 30-meter Landsat 5 Thematic Mapper (TM) and Landsat 7 Enhanced Thematic Mapper Plus (ETM+) satellite image data. The classifications indicated that 3.3% (9,098 acres) of the study area was impervious in 1990, with increases to 5.3 % (14,646 acres) in 2000 and 6.3% (17,394 acres) in 2005. At the subwatershed level, the Portsmouth Harbor subwatershed recorded the highest percentage of impervious surface acreage in 1990, 2000, and 2005 with 7.8% coverage (1,283 acres), 12.3% coverage (2,009 acres), and 14.5% coverage (2,380 acres) respectively. The regional accuracy assessment indicated an overall accuracy of 97.0% for the 1990 data, 93.0% for the 2000 data, and 92.0% for the 2005 data. These results reflect the overall presence/absence of impervious surfaces within the randomly selected assessment pixels. The three data sets have been archived in the GRANIT GIS clearinghouse, thereby making them available to the coastal resource community as well as the general public. The data are appropriate for watershed and subwatershed level characterizations. Users are discouraged from accessing them to support larger scale mapping and applications

    Mapping Tasks to Interactions for Graph Exploration and Graph Editing on Interactive Surfaces

    Full text link
    Graph exploration and editing are still mostly considered independently and systems to work with are not designed for todays interactive surfaces like smartphones, tablets or tabletops. When developing a system for those modern devices that supports both graph exploration and graph editing, it is necessary to 1) identify what basic tasks need to be supported, 2) what interactions can be used, and 3) how to map these tasks and interactions. This technical report provides a list of basic interaction tasks for graph exploration and editing as a result of an extensive system review. Moreover, different interaction modalities of interactive surfaces are reviewed according to their interaction vocabulary and further degrees of freedom that can be used to make interactions distinguishable are discussed. Beyond the scope of graph exploration and editing, we provide an approach for finding and evaluating a mapping from tasks to interactions, that is generally applicable. Thus, this work acts as a guideline for developing a system for graph exploration and editing that is specifically designed for interactive surfaces.Comment: 21 pages, minor corrections (typos etc.

    Data-Driven Shape Analysis and Processing

    Full text link
    Data-driven methods play an increasingly important role in discovering geometric, structural, and semantic relationships between 3D shapes in collections, and applying this analysis to support intelligent modeling, editing, and visualization of geometric data. In contrast to traditional approaches, a key feature of data-driven approaches is that they aggregate information from a collection of shapes to improve the analysis and processing of individual shapes. In addition, they are able to learn models that reason about properties and relationships of shapes without relying on hard-coded rules or explicitly programmed instructions. We provide an overview of the main concepts and components of these techniques, and discuss their application to shape classification, segmentation, matching, reconstruction, modeling and exploration, as well as scene analysis and synthesis, through reviewing the literature and relating the existing works with both qualitative and numerical comparisons. We conclude our report with ideas that can inspire future research in data-driven shape analysis and processing.Comment: 10 pages, 19 figure

    An approach for real world data modelling with the 3D terrestrial laser scanner for built environment

    Get PDF
    Capturing and modelling 3D information of the built environment is a big challenge. A number of techniques and technologies are now in use. These include EDM, GPS, and photogrammetric application, remote sensing and traditional building surveying applications. However, use of these technologies cannot be practical and efficient in regard to time, cost and accuracy. Furthermore, a multi disciplinary knowledge base, created from the studies and research about the regeneration aspects is fundamental: historical, architectural, archeologically, environmental, social, economic, etc. In order to have an adequate diagnosis of regeneration, it is necessary to describe buildings and surroundings by means of documentation and plans. However, at this point in time the foregoing is considerably far removed from the real situation, since more often than not it is extremely difficult to obtain full documentation and cartography, of an acceptable quality, since the material, constructive pathologies and systems are often insufficient or deficient (flat that simply reflects levels, isolated photographs,..). Sometimes the information in reality exists, but this fact is not known, or it is not easily accessible, leading to the unnecessary duplication of efforts and resources. In this paper, we discussed 3D laser scanning technology, which can acquire high density point data in an accurate, fast way. Besides, the scanner can digitize all the 3D information concerned with a real world object such as buildings, trees and terrain down to millimetre detail Therefore, it can provide benefits for refurbishment process in regeneration in the Built Environment and it can be the potential solution to overcome the challenges above. The paper introduce an approach for scanning buildings, processing the point cloud raw data, and a modelling approach for CAD extraction and building objects classification by a pattern matching approach in IFC (Industry Foundation Classes) format. The approach presented in this paper from an undertaken research can lead to parametric design and Building Information Modelling (BIM) for existing structures. Two case studies are introduced to demonstrate the use of laser scanner technology in the Built Environment. These case studies are the Jactin House Building in East Manchester and the Peel building in the campus of University Salford. Through these case studies, while use of laser scanners are explained, the integration of it with various technologies and systems are also explored for professionals in Built Environmen

    Impervious Surface Mapping in Coastal New Hampshire (2005)

    Get PDF
    Estimates of impervious surface acreage in 2005 were generated and compared to prior estimates for 1990 and 2000 for a 48-town region in coastal New Hampshire, including the 42 towns within Zones A and B of the New Hampshire Estuaries Project (NHEP) area. The estimates were based on applying both traditional and subpixel image classification techniques to 30-meter Landsat 5 Thematic Mapper (TM) satellite data, acquired 3 October 2005. The classifications indicated that impervious surface acreage increased from 4.3% (31,233 acres) in 1990, to 6.3% (45,445 acres) in 2000, to 7.4% (53,408 acres) in 2005. At the subwatershed level, the Portsmouth Harbor subwatershed recorded the highest percentage of impervious surface acreage in 1990 with 19.8% coverage (2,310 acres) and in 2000 with 25.5% coverage (2,975 acres), and this finding continued in 2005 with 28.9% (3,364 acres) of the watershed mapped as impervious. An accuracy assessment was applied to the regional data, and indicated an accuracy of 98.3% for the 2005 data, which compared favorably with the assessment of the 1990 effort (98.6% correct) as well as the 2000 data (93.1% correct). These figures reflect the overall presence/absence of impervious surfaces within the randomly selected pixels. The accuracy was further evaluated against April, 2003 Emerge 1-ft. resolution aerial photography to estimate the validity of the predicted range of imperviousness for a second set of randomly selected pixels. This assessment proved disappointing, as only 7% of the pixels sampled predicted the correct impervious percentage range. The data set representing impervious surface acreage in 2005 has been archived in the GRANIT GIS clearinghouse, thereby making it available to the coastal resource community as well as the general public. The data are appropriate for watershed and subwatershed level characterizations. Users are discouraged from accessing these data to support larger scale mapping and applications

    Unwind: Interactive Fish Straightening

    Full text link
    The ScanAllFish project is a large-scale effort to scan all the world's 33,100 known species of fishes. It has already generated thousands of volumetric CT scans of fish species which are available on open access platforms such as the Open Science Framework. To achieve a scanning rate required for a project of this magnitude, many specimens are grouped together into a single tube and scanned all at once. The resulting data contain many fish which are often bent and twisted to fit into the scanner. Our system, Unwind, is a novel interactive visualization and processing tool which extracts, unbends, and untwists volumetric images of fish with minimal user interaction. Our approach enables scientists to interactively unwarp these volumes to remove the undesired torque and bending using a piecewise-linear skeleton extracted by averaging isosurfaces of a harmonic function connecting the head and tail of each fish. The result is a volumetric dataset of a individual, straight fish in a canonical pose defined by the marine biologist expert user. We have developed Unwind in collaboration with a team of marine biologists: Our system has been deployed in their labs, and is presently being used for dataset construction, biomechanical analysis, and the generation of figures for scientific publication

    Interactive inspection of complex multi-object industrial assemblies

    Get PDF
    The final publication is available at Springer via http://dx.doi.org/10.1016/j.cad.2016.06.005The use of virtual prototypes and digital models containing thousands of individual objects is commonplace in complex industrial applications like the cooperative design of huge ships. Designers are interested in selecting and editing specific sets of objects during the interactive inspection sessions. This is however not supported by standard visualization systems for huge models. In this paper we discuss in detail the concept of rendering front in multiresolution trees, their properties and the algorithms that construct the hierarchy and efficiently render it, applied to very complex CAD models, so that the model structure and the identities of objects are preserved. We also propose an algorithm for the interactive inspection of huge models which uses a rendering budget and supports selection of individual objects and sets of objects, displacement of the selected objects and real-time collision detection during these displacements. Our solution–based on the analysis of several existing view-dependent visualization schemes–uses a Hybrid Multiresolution Tree that mixes layers of exact geometry, simplified models and impostors, together with a time-critical, view-dependent algorithm and a Constrained Front. The algorithm has been successfully tested in real industrial environments; the models involved are presented and discussed in the paper.Peer ReviewedPostprint (author's final draft
    • 

    corecore