74,167 research outputs found

    Point Process Models of 1/f Noise and Internet Traffic

    Full text link
    We present a simple model reproducing the long-range autocorrelations and the power spectrum of the web traffic. The model assumes the traffic as Poisson flow of files with size distributed according to the power-law. In this model the long-range autocorrelations are independent of the network properties as well as of inter-packet time distribution.Comment: 6 pages, 2 figures, CNET2004 Proceedings AI

    On the distribution function of the information speed in computer network

    Full text link
    We review a study of the Internet traffic properties. We analyze under what conditions the reported results could be reproduced. Relations of results of passive measurements and those of modelling are also discussed. An example of the first-order phase transitions in the Internet traffic is presented.Comment: cpcauth.cls included, 6 pages, 3 eps figures, Proceeding CCP 2001 Aachen, to appear in Comp. Phys. Com

    Transport on complex networks: Flow, jamming and optimization

    Get PDF
    Many transport processes on networks depend crucially on the underlying network geometry, although the exact relationship between the structure of the network and the properties of transport processes remain elusive. In this paper we address this question by using numerical models in which both structure and dynamics are controlled systematically. We consider the traffic of information packets that include driving, searching and queuing. We present the results of extensive simulations on two classes of networks; a correlated cyclic scale-free network and an uncorrelated homogeneous weakly clustered network. By measuring different dynamical variables in the free flow regime we show how the global statistical properties of the transport are related to the temporal fluctuations at individual nodes (the traffic noise) and the links (the traffic flow). We then demonstrate that these two network classes appear as representative topologies for optimal traffic flow in the regimes of low density and high density traffic, respectively. We also determine statistical indicators of the pre-jamming regime on different network geometries and discuss the role of queuing and dynamical betweenness for the traffic congestion. The transition to the jammed traffic regime at a critical posting rate on different network topologies is studied as a phase transition with an appropriate order parameter. We also address several open theoretical problems related to the network dynamics

    Unravelling the Impact of Temporal and Geographical Locality in Content Caching Systems

    Get PDF
    To assess the performance of caching systems, the definition of a proper process describing the content requests generated by users is required. Starting from the analysis of traces of YouTube video requests collected inside operational networks, we identify the characteristics of real traffic that need to be represented and those that instead can be safely neglected. Based on our observations, we introduce a simple, parsimonious traffic model, named Shot Noise Model (SNM), that allows us to capture temporal and geographical locality of content popularity. The SNM is sufficiently simple to be effectively employed in both analytical and scalable simulative studies of caching systems. We demonstrate this by analytically characterizing the performance of the LRU caching policy under the SNM, for both a single cache and a network of caches. With respect to the standard Independent Reference Model (IRM), some paradigmatic shifts, concerning the impact of various traffic characteristics on cache performance, clearly emerge from our results.Comment: 14 pages, 11 Figures, 2 Appendice
    • …
    corecore