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Abstract 

 

Nonparametric Regression Analysis 

 

Shuling Guo Malloy, M.S. Stat 

The University of Texas at Austin, 2015 

 

Supervisor: Lizhen Lin 

 

      Nonparametric regression uses nonparametric and flexible methods in analyzing 

complex data with unknown regression relationships by imposing minimum assumptions 

on the regression function.  The theory and applications of nonparametric regression 

methods with an emphasis on kernel regression, smoothing spines and Gaussian process 

regression are reviewed in this report. Two datasets are analyzed to demonstrate and 

compare the three nonparametric regression models in R. 
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1. Introduction 
  Regression analysis focuses on estimating the relationships among variables. The 

aim of a regression analysis is to produce a reasonable analysis to the unknown response 

function m, where for n data points (Xi, Yi), in a regression model: 

𝑌! = 𝑓 𝑋! +   𝜀! , 𝑖 = 1,…𝑛 

  Many techniques for carrying out regression analysis have been developed in the 

literature. Familiar methods such as linear regression and logic regression are parametric, 

in that the regression function is defined in terms of a finite number of unknown 

parameters that are estimated from the data. Parametric regression is about finding the 

optimum parameters from data by assuming a parametric model. Parametric regression 

methods are global methods since all data instances affect the final global estimate [1]. 

  Nonetheless, there are cases when parametric regression is not desirable.  For 

example, the data can be generated from a very complicated model with large number of 

parameters; a model for distribution densities can’t be assumed. Assuming a wrong 

model leads to inconsistent estiamtes and  large errors. In these cases, a preselected 

parametric model might be too restricted or too low-dimensional to fit unexpected 

features, whereas the nonparametric approach offers a flexible alternative in analyzing 

unknown regression relationships. 

  Nonparametric regression is a form of regression analysis in which the predictor 

does not take a predetermined form but is constructed according to information derived 

from the data [2]. Unlike parametric approaches where the function m is fully described by 

a finite set of parameters, nonparametric modeling accommodates a very flexible form of 

the regression curve. Nonparametric estimation methods are instance-based or memory-

based methods, since nonparametric estimation is affected only by nearby instances and 

local models are created as needed. 

  The theory and applications of nonparametric regression methods with an 

emphasis on kernel regression, smoothing spines and Gaussian process regression are 

reviewed in this report. Two datasets are analyzed to demonstrate and compare the three 

nonparametric regression models in R. 
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2. Nonparametric regression 
      The nonparametric regression approach has four main purposes [3]. First, it 

provides a versatile method of exploring a general relationship between variables. 

Second, it gives predictions of observations yet to be made without reference to a fixed 

parametric model.  Third, it provides a tool for finding spurious observations by 

studying the influence of isolated points. Fourth, it constitutes a flexible method of 

substituting for missing values or interpolating between adjacent X values. 

Nonparametric regression can be used as a benchmark for linear models against which to 

test the linearity assumption. Nonparametric regression also provides a useful way to 

enhance scatterplots to display underlying structure in the data. 

  A reasonable approximation to the regression curve f(x) will be the mean of 

response variables near a point x.  This local averaging procedure can be defined as 

𝑓 𝑥 =   𝑛!! 𝑊!" 𝑥 𝑌!

!

!!!

 

Every smoothing method can be described this way. The amount of averaging is 

controlled by a smoothing parameter [4]. The choice of smoothing parameter is related to 

the balances between bias and variance. 

 

2.1 Kernel regression 

2.1.1  Model 

      Kernel regression as a nonparametric technique involves weighting each 

neighboring data point according to a kernel function giving a decreasing weight with 

distance and then computing a weighted local mean of linear or polynomial regression 

model [5]. The primary tuning parameter is the bandwidth of the kernel function, which is 

generally specified in a relative fashion so that the same value can be applied along all 

predictor variables. Larger bandwidths result in smoother functions. The smoothing 

parameter can be chosen using generalized cross-validation (GCV) methods [4]. A further 

discussion on choice of the bandwidth parameter is given in section (4) below. The form 

of the kernel function is of secondary importance. 
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   Kernel smoothing describes the shape of the weight function by a density 

function K with a scale parameter that adjusts the size and the form of the weights near x. 

The kernel function K is a continuous and bounded (usually symmetric around zero) real 

function which integrates to 1. Most common kernel functions are listed in Table. 2.1. 

 

 
 

Table. 2.1: The most common kernel functions. 

 

 
Figure 2.1: The Epanechnikov kernel K (u) = 0.75(1-u2) I (|u| <=1). 

 

       Nadaraya and Watson (1964) proposed to estimate f(x) as a locally weighted 

average, using a kernel as a weighting function [6]. The Nadaraya-Watson estimator is: 
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𝑓! 𝑥 =   
𝑛!! 𝐾!(𝑥 −   𝑋!)𝑌!!

!!!

𝑛!! 𝐾!!
!!! (𝑥 − 𝑋!)

 

 

where K is a kernel with a bandwidth h. The fraction is a weighting term with sum 1. The 

choice of the kernel K is not too important. The bandwidth h controls the amount of 

smoothing. In general the bandwidth depends on the sample size (hn). 

 

2.1.2  Statistical inferences 

1)  Consistency 

     Assume the predictors or the covariates X are random, in general, for an i.i.d. 

sample of the random variable X, for any value x0, 𝑓(x0) is a biased estimate of f(x0). 

The bias goes to zero if h →0 as N →∞. The bias depends on h, the curvature of f(.), and 

K(.): 

 
The size of this bias is O(h2). Assuming that h →0 as N →∞, the variance of 𝑓(x0) is: 

 
The variance depends on the N, h, f(.) and K(.). It will go to 0 as Nh →∞, so h must 

converge to 0 at a slower rate than N goes to ∞. 

       The above results were derived by approximating integrals by a Taylor 

expansion of f(x+hu) in the argument hu →0. The kernel estimator 𝑓(x0) is pointwise 

consistent at any point x0 if both the variance and bias disappear as N →∞, which 

requires that h →0 and Nh →∞. The uniform convergence (stronger) property holds if 

Nh/ln(h) →∞. 

 

2) Asymptotic normality 

       Since the kernel estimator is the sample average, a central limit theorem (CLT) 

can be applied. Given the order of the variance, the rate of convergence is sqrt(Nh) as in 

standard regression estimates. As the estimator is biased, 𝑓(x0) is centered around its 
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expectation, therefore by the CLT: 

 
Given the bias, [𝑓(x0) – E(𝑓(x0))] is also asymptotically normally distributed, but with a 

non-zero mean. 

 

3) Confidence Intervals 

      The conventional confidence intervals (C.I.) for estimates of f(x0) for any point x0 

can be obtained by using the variance formula above: 

 
where bias(x0) is given above and 𝑓(x0) is assumed asymptotically normal. For the 

problem with C.I. containing negative values, the solution is to consider constructing the 

C.I. by inverting a test statistic. 

 
This set must be found numerically. In practice, it is hard to calculate the bias, and there 

may not be a reason to calculate the C.I. for 𝑓(x0). 

 

4) Bandwidth 

       There is a genuine trade-off between bias and variance of the estimate at any 

given point x.  In general, large h reduce the variance by smoothing over a large number 

of points, but this is likely to lead to bias because the points are “averaged” in a 

mechanical way that does not account for the particular shape of the distribution. In 

contrast, small h gives higher variance but have less bias. In the limit, h →0, the kernel 

reproduced the data. 

      A natural approach to deal with the trade-off between bias and variance is to 

minimize the MSE: 

      MSE(fˆ(x0)) = Var[fˆ(x0)] + [bias(fˆ(x0))]2 

As shown in previous formulas, the bias is O(h2) and the variance is O(1/Nh). Intuitively, 

h should be chosen to that the (bias)2 and the variance are of the same order. The square 

of the bias is O(h4) => h4 = 1/Nh => h = (1/N)1/5. That is, h = O(N-0.2) and sqrt(Nh) = 
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O(N0.4). Since the MSE is approximated using asymptotic expansion, it is called AMSE 

(asymptotic MSE). 

      Another approach developed by Rosenblatt (1956) to find optimal bandwidth is 

minimizing the SSE at a very large number of hypothetical points [7]. As the number of 

points goes to infinity, this amounts to minimizing the mean of the integrated squared 

error (MISE). If the previous asymptotic approximations are used, the MISE becomes 

AMISE. That is, an optimal bandwidth minimizes 

                    
Differentiating AMISE(h) with regard to h yields the optimal bandwidth:  

 
where δ depends on the kernel function used: 

 
The optimal bandwidth, h*: 

 
The optimal bandwidth decreases (very slowly) as N increases. Then, h* →0 as N →∞ 

(as required for consistency). h* depends on δ, which is a function of the kernel K(.). For 

example, if K(.) is Gaussian, 

 
This result also shows that if the true density function has a lot of curvature, the 

bandwidth should be smaller. Since the optimal h* is unknown, we do not know f(x0) or 

fʹ′ʹ′(x0). Approximations methods are required. In practice, a normal density is commonly 

used instead of f(x0). 

      The choice of the kernel matters very little, since MISE(h*) varies little across the 

different kernels. Technically speaking the best kernel can be selected to minimize the 

AMISE. It is a calculus of variation problem, but the advantage is tiny. Since the 

Epanechnikov kernel (1969) is optimal, it is used to judge the efficiency of a kernel [8].  

      Cross-validation (CV) is another approach to find optimal bandwidth. CV 
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attempts to make a direct estimate of the squared error, and pick the h which minimizes 

this estimate. As MISE(h) is unknown, CV replaces it with an estimate. The goal is to 

find an estimate of MISE(h), and find the h, which minimizes this estimate. 

 

2.2. Spline Regression 

2.2.1 Regression splines 

      Regression can be performed on splines by estimating the regression function by 

fitting a kth order spline with knots at some pre-specified locations. A kth order spline is 

a piecewise polynomial function of degree k, that is continuous and has continuous 

derivatives of orders 1, … k-1, at its knot points. The continuity in all of their lower order 

derivatives makes splines very smooth. The most common case considered in practice is 

k = 3, cubic splines. It is claimed that a cubic spline is so smooth that the discontinuity at 

the knots cannot be noticed by human eyes. The discovery that splines could be used in 

place of polynomials occurred in the early twentieth century. Splines have since become 

one of the most popular ways of approximating nonlinear functions [9]. 

      Considering functions of the form 𝛽!𝑔!!!!!!
!!! , where β1, … βm+k+1 are 

coefficients and g1, … gm+k+1, are the truncated power basis functions for kth order 

splines over the knots t1, … tm, 

 
Here x+ denotes the positive part of x, i.e., x+ = max{x, 0}. The coefficients β1, … βm+k+1 

are just estimated by least squares. That is, 𝛽!,…𝛽!!!!! are first found to minimize the 

criterion 

 
then the regression spline is defined as 

 
      Regression splines are linear smoothers since the regression spline estimate at x is 
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a weighted combination of yi , i =1, … n. Spline regression as a classic tool can work 

well if good knot points t1, … tm are chosen, but in general choosing knots is a tricky 

business. One problem with regression splines is that the estimates tend to display erratic 

behavior, i.e., they have high variance at the boundaries of the domain. This gets worse as 

the order k gets larger. A way to remedy this problem is to force the piecewise 

polynomial function to have a lower degree to the left of the leftmost knot, and to the 

right of the rightmost knot, this is exactly what natural splines do. 

      A natural spline of order k, with knots at t1 < t2 <… < tm, is a piecewise 

polynomial function such that 1) function is a polynomial of degree k on each of [t1: t2], 

… [tm-1: tm]; 2) function is a polynomial of degree (k-1)/2 on (-∞, t1] and [tm, ∞); 3) 

function is continuous and has continuous derivatives of orders 1, … k-1 at its knots t1, … 

tm. There is a variant of the truncated power basis for natural splines (and a variant of the 

B-spline basis for natural splines). The m basis functions, g1, … gm, are only need to span 

the space of kth order natural splines with knots at t1, … tm. 

      For smoothing splines, knots don’t have to be chosen. These estimators perform a 

regularized regression over the natural spline basis, placing knots at splines circumvent 

the problem of knot selection as they just use the inputs as knots, and simultaneously they 

control for over-fitting by shrinking the coefficients of the estimated function in its basis 

expansion. 

 

2.2.2 Smoothing splines 

       Smoothing splines often deliver similar fits to those from kernel regression. Both 

have a tuning parameter: the bandwidth h for kernel regression, and the smoothing 

parameter λ for smoothing splines, which we would typically need to choose by cross 

validation. However, a choice of kernel is not required for smoothing splines. Smoothing 

splines are generally much more computationally efficient [10]. 
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      Considering functions of the form 𝛽!𝑔!!
!!! , where g1, … gn are the truncated 

power basis functions for natural cubic splines with knots at x1, … xn, the coefficients are 

specifically chosen to minimize  

                                                (1) 

where 𝐺 ∈ 𝑅!×! is the basis matrix defined as 

 
and Ω ∈ 𝑅!×! is the penalty matrix defined as 

 
Given the optimal spline estimate at 𝛽 minimizing (1), the smoothing spline estimate at 

x is defined as 

 
      The exact form of the penalty matrix Ω is actually not so important. The extra 

term 𝜆𝛽!Ω𝛽  is called a regularization term which has the effect of shrinking the 

components of the solution 𝛽 towards zero. The smoothing parameter λ ≥ 0 is a tuning 

parameter, and the higher the value of λ, the more shrinkage. Each computed coefficient 

𝛽!  corresponds to a particular basis function 𝑔! . The term 𝛽!Ω𝛽  imparts more 

shrinkage on the coefficients 𝛽!  that correspond to wigglier functions 𝑔! . With 

increasing λ, the wiggly basis functions 𝑔! are being shrunk away. 

      Similar to least squares regression, the coefficient 𝛽 minimizing (1) are 

 
Then smoothing splines are seen to be linear smoothers. With g(x) = (g( x1), …, g(xn)) 

 
which is linear combination of the yi, i = 1, … n.  What makes smoothing splines even 

more interesting is that they can be alternatively motivated directly from a functional 

minimization perspective. Consider minimizing over all functions f, 
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This criterion trades off the least squares error over  (xi, yi), i  = 1, … n with a 

regularization term that grows large when the second derivative of f is wiggly. 

Remarkably, it so happens that there is a unique function minimizing this criterion, and 

further, this function is exactly the cubic smoothing spline estimator 𝑟. 

      Smoothing Splines involve fitting a sequence of local polynomial basis functions 

to minimize an objective function involving both model fit and model curvature, as 

measured by the second derivative. The smoothing parameter, 𝜆, controls the trade-off 

between data fit and smoothness, with larger values leading to smoother functions but 

larger residuals (on the training data). The smoothing parameter can be selected through 

automated cross-validation, choosing a value that minimizes the average error on the 

withheld data. The approach can be generalized to higher dimensions.  

      For one input variable and one output variable, smoothing splines can basically do 

everything which kernel of splines can do. Their advantages of splines are their 

computational speed and simplicity (once the basis functions have been calculated), as 

well as the clarity of controlling curvature directly. Kernels however are easier to 

program (if slower to run), easier to analyze extend more straightforwardly to multiple 

variables, and to combinations of discrete and continuous variables. 

 

2.3. Gaussian Process Regression 

      Bayesian nonparametric regressions are Bayesian models where the underlying 

finite-dimensional random variable is replaced by a stochastic process. This replacement 

allows much richer nonparametric modeling in a Bayesian framework. In Gaussian 

process regression, a Gaussian process prior is assumed for the regression curve. The 

errors are assumed to have a multivariate normal distribution and the regression curve is 

estimated by its posterior distribution. The Gaussian prior may depend on unknown 

hyperparameters, which are usually estimated via empirical Bayes or MCMC methods. 

Many methods for model selection and hyperparameter selection in Bayesian methods 

are immediately applicable to Gaussian processes [11].  

      Gaussian process regression models provide a natural way to introduce kernels 
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into a regression modeling framework. By careful choice of kernels, Gaussian process 

regression models can sometimes take advantage of structure in the data.  Gaussian 

process regression models quantify uncertainty in predictions resulting not just from 

intrinsic noise in the problem but also the errors in the parameter estimation procedure 
[12]. 

      A Gaussian process is a stochastic process where any finite number of random 

variables have a joint Gaussian distribution. Let x ∈Rd be a random vector, and f be a 

stochastic process such that f (x) ∈ R, f is the stochastic process. A Gaussian process is 

specified by a mean function 

m(x) = E[f(x)] 

and a covariance function  (positive definite, a.k.a. kernel function) 

k(x, x0) = E[(f(x) − m(x))(f(x0) − m(x0))] 

The Gaussian process is written as 

f(x) ~ GP( m(x) , k(x, x0)) 

      A draw from a GP is a function f(). A common choice of the mean function is 

m(x) = 0, ∀x. This greatly simplifies calculations without loss of generality and allows 

the mean square properties of the process to be entirely determined by the covariance 

function k. A common choice of the covariance function is k(𝑥, 𝑥!) = exp(- !
!!!

||𝑥 −

𝑥!||!), though other covariance functions might be more appropriate for specific tasks. 

      By the definition of Gaussian process, for any finite set x1, … xn, 

(f(x1), … f(xn)) ~ N(𝜇, Σ) 

where 

 
and 

 
Any finite subset of those random variables follow a Gaussian distribution with the mean 

vector and the covariance matrix determined pointwise by m and k, respectively. 
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Therefore, Gaussian process can be thought of as an infinite-dimensional Gaussian 

distribution. 

      Bayesian nonparametric modeling with Gaussian process is basically realized by 

that the prior is a GP for the infinite set of random variables x, and the posterior upon 

observing some finite subset of the random variables is another GP. 

 

2.3.1 Gaussian process for regression without noise [13] 

      Consider the standard regression setting given a training set {(xi, yi)}, i = 1, ... n, 

where xi ∈ Rd and yi ∈ R. In order to predict y* on a test set x*, the key assumption 

made is that yx = f(x), ∀x (noiseless), and f ~ GP(0, k) for some covariance function k. 

This is the prior. This implies that the finite set of training and test outputs follow a 

(prior) Gaussian distribution: 

 
where Knn is the n×n covariance matrix defined on the training set and Kn* is the n×|test| 

covariance matrix, and so on. 

      Now the noiseless values are f1 = y1, . . . fn = yn, and the posterior on f is another 

slightly degenerate GP. For the purpose of regression, however, it is important to 

compute the finite-dimensional conditional distribution p(f*|x*, x1:n, f1:n). This follows 

from the property of the Gaussian distribution:  

               (2) 

In particular, the Bayesian prediction for f* is, i.e., the mean in (2), and the uncertainty is 

encoded in the covariance matrix above. 

 

2.3.2 Gaussian Process for Regression with Noise [14] 

      More often, the observed output is assumed noisy: 

 
where 𝜖~𝑁(0,𝜎!!). However, the underlying f is still assumed a GP. In this case, 
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The joint distribution between y1:n and f* is: 

 
A similar conditioning results is 

 
      The above is the predictive distribution for f*. The predictive distribution for y* 

has the same mean but wider spread: its covariance can be obtained by adding 𝜎!!𝐼 to the 

covariance. A quantity of interest is the marginal likelihood  

             
where the function values f1:n are integrated out (marginalized over). Using the fact that 

y1:n  ~ N (0, Knn + 𝜎n
2I), we have 

 
The marginal likelihood is used for model selection, e.g., tuning the kernel 

bandwidth  𝜎  in k. 
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3. Data 
3.1. Old faithful geyser dataset 

      The first dataset involves old faithful geyser dataset with 272 observations of 

waiting time between eruptions and the duration of the eruption for the Old Faithful 

geyser in Yellowstone National Park, Wyoming, USA [15]. The X variable here is the 

length of time in minutes that it takes for the geyser to erupt. The Y variable is the 

waiting time until the next eruption. It is believed that the waiting time depends on the 

eruption's length of time. 

      Figure 3.1 shows the scatter plot of waiting time to the next eruption against 

duration of the previous eruption. The relationship between the variables seems 

somewhat linear, but that may not be the best fit. This seemingly linear data is chosen to 

demonstrate the features of different nonparametric regression models to represent the 

relationship between the waiting time to the duration of the previous eruption. 

 

 
Figure 3.1: Scatter plot of waiting time to the next eruption against duration of the 

previous eruption for 272 observations from the old faithful geyser. 
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3.2. Internet traffic dataset 

      The second dataset is time series data about Internet traffic data with 1231 

observations collected from a private ISP with centers in 11 European cities. The data 

corresponds to a transatlantic link hourly and was collected from 06:57 hours on 7 June 

to 11:17 hours on 31 July 2005. The dataset is available at 

https://datamarket.com/data/list/?q=cat:ecd%20provider:tsdl 

      Figure 3.2 is the scatter plot of Internet traffic in bits (y = Internet traffic) against 

the time in hour (x = time) for 1231 observations from the Internet traffic data. This 

example is to demonstrate how nonparametric regression models can be applied on time 

series data with periodic trends. 

 

 

 

 

 

 

 

 

 

                        

 

Figure. 3.2:  Scatter plot of Internet traffic in bits against the time in hours for 1231 

observations from the Internet traffic data. 
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4. Results and discussion 
4.1. Kernel regression 

      For kernel regression, the primary tuning parameter is the bandwidth of the kernel 

function. The ksmooth() function in R is used to apply Nadaraya-Watson kernel 

regression with the choice of "normal" kernels. Figure 4.1 shows the effect of bandwidths 

h on kernel regression estimates for the geyser dataset. As indicated in Figure 4.1, a 

relatively small bandwidth h of 0.1 produces a very wiggly curve. The default bandwidth 

h of 0.5 seems a good fit curve. With increasing the bandwidth h, the estimates become 

smoother. A larger bandwidth h of 4 produces an overly smooth curve. It is evident that 

larger bandwidths h result in smoother functions. 

      Figure 4.2 shows the effect of bandwidths h on kernel regression estimated curve 

for the Internet traffic data. For very small bandwidths h between 0.1 and 0.5, the kernel 

regression estimates almost reproduce the data. With the increment of bandwidth h, a 

larger number of points are smoothed over. A larger bandwidth h of 6 produces an overly 

smooth curve. This proves again that larger bandwidth h results in smoother functions. 

 

 

Figure. 4.1: Effect of bandwidths h on kernel regression estimates for faithful geyser data. 
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Figure. 4.2(a): Effect of bandwidths h on kernel regression estimates for the Internet 

traffic data. 
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Figure. 4.2(b): Effect of bandwidths h on kernel regression estimates for the Internet 

traffic data.
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      The trade-off between bias and variance of the estimate always exists at any given 

point x. Small bandwidths give higher variance but have less bias. In contrast, high 

bandwidths h reduce the variance but increase bias because the points are “average” 

mechanical way that does not account for the particular shape of the distribution. An 

optimum bandwidth h can be specified by minimizing MSE or SSE. Cross validation is 

another way to get the optimum bandwidth h. 

4.2. Splines 

      Spline regression works well on the condition that good knot points are chosen. In 

this report, an R package called splines is used to perform spline regression and 

smoothing splines. The bs( ) function is applied to produce B-splines, a computationally 

efficient way to compute cubic regression splines. Four and eight equally spaced knots as 

well as unequally spaced knots are specified for the spline regression on the geyser 

dataset. 

      Figure 4.3 shows the effect of knots on the spline regression estimates for the 

geyser dataset. It is obvious that the spline regression estimated curve becomes wiggly 

with more knots. There isn't much difference between the estimated curves with equally 

spaced knots or not equally spaced 4 knots. Both regression splines with equally spaced 

and not equally spaced knots do a good job of smoothing the data. 

      Figure 4.4 illustrates the effect of knots on the spline regression estimates for the 

Internet traffic dataset. Since the drastic change of Internet traffic in bits during every 

period of 24 hours and the cyclic nature of 7 days, a big number of knots are needed to 

have a reasonable spline regression. With fewer knots, the estimate is getting smoother. It 

eventually looks like a linear regression line due to too few knots. With increasing the 

number of knots, the smoothing spline estimated curves start to catch the weekly peak 

features and then daily peak features. When the number of knots is large enough, the 

spline regression estimate is just reproducing data. 

      The two examples illustrate the importance of knots for regression splines.  

Splines with fewer knots are generally smoother than splines with more knots. Splines 



 20 

with no knots are generally smoother than splines with knots, which are generally 

smoother than splines with multiple discontinuous derivatives. However, increasing the 

number of knots usually increases the fit of the spline function to the data. Knots give the 

curve freedom to bend to more closely follow the data.  

 

 
Figure 4.3:  Effect of knots on spline regression estimates for the geyser dataset. 

 

 
Figure 4.4: Effect of knots on spline regression estimates for the Internet traffic dataset. 



 21 

      A smoothing spline has a knot at each data point, but introduces a penalty for lack 

of smoothness. The smooth.spline() function in R is used to computes cubic smoothing 

splines. By default, the value of the smoothing parameter is determined by cross-

validation. The default smoothing parameters are 0.9018476 and 0 for the geyser dataset 

and the Internet traffic dataset, respectively. Larger and smaller smoothing parameter 

values than the default are specified to illustrate the effect of smoothing parameters on 

smoothing spline estimates. 

      Figure 4.5 shows the effect of smoothing parameters on spline smoothing 

estimates for the geyser dataset. With a small smoothing parameter of 0.3, the smoothing 

spline is very wiggly. The smoothing spline with the default smoothing parameter of 0.9 

is doing a good job. With a much larger smoothing parameter of 1.5, the estimate is 

overly smooth appealing as a straight line.  

      Figure 4.6 presents the effect of smoothing parameters on spline smoothing 

estimates for the Internet traffic dataset. Smoothing parameter of 0 is the default 

smoothing parameter due to the nature of time series data with radical changes every 24 

hours. With the increasing smoothing parameter, the smoothing spline is getting more 

overly smooth. Smoothing spline does not work well for the Internet traffic dataset. This 

confirms the fact that the higher the value of smoothing parameter, the more shrinkage. 

      Spline smoothing quantifies the competition between producing a good fit to the 

data and producing a curve without too much rapid local variation. If the penalty is zero 

you get a function that interpolates the data points. If the penalty is infinite, you get an 

OLS fit to the data. Usually a nice compromise can be found somewhere in between. For 

data with too much rapid local variation, it is difficult to have a reasonable compromise. 
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Figure. 4.5: Effect of smoothing parameters on spline smoothing estimates for the geyser 

dataset. 

 

 

 
Figure. 4.6: Effect of smoothing parameters on smoothing spline estimates for the 

Internet traffic dataset. 

 

 



 23 

4.3. Gaussian process  

      The R package of GPfit is used to apply Gaussian process regression on both the 

geyser and Internet traffic datasets. GP_fit() function uses a novel parameterization of the 

spatial correlation function for the ease of optimization. The deviance optimization is 

achieved through a multi-start L-BFGS-B algorithm [16]. GP_fit() function returns the 

object of class GP that contains the data set X, Y and the estimated model parameters 𝛽  , 

𝜎!, 𝛿!"(𝛽). 

      Figure 4.3.1 shows the results of a Gaussian process regression on observations of 

waiting time between eruptions and the duration of the eruption for the Old Faithful 

geyser. The prediction of the waiting time from Gaussian process regression is 

reasonable. 

      Figure 4.3.2 presents a Gaussian process regression on observations of Internet 

traffic and time (x) for the Internet traffic dataset. The prediction of seasonal time series 

data by the conventional Gaussian process regression is not satisfactory. Other covariance 

functions might be more appropriate for this specific task. 

 

 
Figure 4.7: A Gaussian process regression to observations of waiting time between 

eruptions and the duration of the eruption for the Old Faithful geyser. 
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Figure 4.8: A Gaussian process regression to observations of Internet traffic and time (x) 

for the Internet traffic dataset. 
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5. Conclusions and future work 
 
      Three nonparametric regression methods, including kernel regression, smoothing 

spines and Gaussian process regression, have been applied on two datasets. For the 

seemly linear data from the geyser dataset, nonparametric regression models produce 

good regression estimates after optimal bandwidth h, knots, and smoothing parameters 

are specified for kernel regression, spline regression and smoothing splines, respectively. 

Gaussian process regression model also produces good regression estimates for the 

geyser dataset. 

      For the Internet traffic dataset, time series data with cyclic nature, kernel 

regression still works well. However, due to the drastic change of data with time and 

seasonal vibrations, it is hard to specify optimal smoothing parameters for smoothing 

splines in order to produce a good regression estimate. Conventional Gaussian process 

regression on these seasonal time series data doesn’t have a satisfactory prediction. Other 

covariance functions are needed for this specific task.  

      Other Gaussian regression methods have been proposed for modeling time series 

data, such as Gaussian process sequences [17] and Gaussian process with change point 

detection [18]. In the future, those Gaussian regression models will be applied on these 

time series data aiming for reasonable regression estimates and good predictions. It 

would be ideal that a new Gaussian regression model could be developed for time series 

data with drastic changes seasonally.   
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Appendix 

R code for the old faithful geyser dataset 

x<-faithful$eruptions 
y<-faithful$waiting 
 
###Kernel regression### 
# Default bandwidth of 0.5: 
oldfaithful.reg.default <- ksmooth(x, y, kernel="normal") 
# A smaller bandwidth of 0.1 
oldfaithful.reg.smallbw <- ksmooth(x, y, kernel="normal", bandwidth=0.1)  
# A larger bandwidth of 2: 
oldfaithful.reg.largebw <- ksmooth(x, y, kernel="normal", bandwidth=2);  
# An extreme bandwidth of 4: 
oldfaithful.reg.extremebw <- ksmooth(x, y, kernel="normal", bandwidth=4);  
 
# Plotting the estimated curve on top of the data: 
par(ps = 16, cex = 1, cex.main = 1)  
plot(x,y, xlab = "Eruption time (min)", ylab = "Waiting time to next eruption (min)") 
lines(oldfaithful.reg.smallbw, col="blue", lwd=2.5) 
lines(oldfaithful.reg.default, col="red", lwd=2.5) 
lines(oldfaithful.reg.largebw, col="green", lwd=2.5) 
lines(oldfaithful.reg.extremebw, col="purple", lwd=2.5) 
legend(4, 60, c("h = 0.1 ","h = 0.5","h = 2", "h = 4" ), lty=c(1,1,1,1), lwd=c(2.5,2.5, 2.5, 
2.5), col=c("blue","red", "green", "purple")) 

 
###Splines### 
library(splines) 
# Specifying 4 equally spaced knots: 
smallnumber.knots <- 4 
spacings<seq(from=min(x),to=max(x),length=smallnumber.knots+2)[2:(smallnumber.kn
ots+1)] 

smallregr.spline <- lm(y ~ bs(x, df = NULL, knots=spacings, degree = 3, intercept=T)) 
# Specifying 10 equally spaced knots: 
largenumber.knots <- 10 
spacings <-
seq(from=min(x),to=max(x),length=largenumber.knots+2)[2:(largenumber.knots+1)] 

largeregr.spline <- lm(y ~ bs(x, df = NULL, knots=spacings, degree = 3, intercept=T)) 
# Specifying unequally spaced knots: 
uneqregr.spline <- lm(y ~ bs(x, df = NULL, knots=c(0.25, 0.5, 0.6, 0.7, 0.8, 0.9), degree 
= 3, intercept=T)) 

 
# plotting the data with the regression spline overlain: 
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x.values <- seq(from=min(x), to=max(x), length=200) 
par(ps = 16, cex = 1, cex.main = 1)  
plot(x,y, xlab = "Eruption time (min)", ylab = "Waiting time to next eruption (min)") 
lines(x.values, predict(smallregr.spline, data.frame(x=x.values)), col="blue", lwd=2.5) 
lines(x.values, predict(largeregr.spline, data.frame(x=x.values)),col="red", lwd=2.5 ) 
lines(x.values, predict(uneqregr.spline, data.frame(x=x.values)), col="green", lwd=2.5) 
legend(3.1, 56, c("4 knots", "10 knots", "unequally spaced knots"), lty=c(1, 1, 1), 
lwd=c(2.5, 2.5, 2.5), col=c("blue", "red", "green")) 

 
###(Cubic) Smoothing Splines ### 
# The smooth.spline() function in R computes (cubic) smoothing splines 
smoothspline.reg <- smooth.spline(x, y) 
 
# By default, the value of the smoothing parameter is: 
smoothspline.reg$spar # The default choice is 0.9018476. 
#Specifying a larger smoothing parameter value: 
smoothspline.reg.large <- smooth.spline(x, y, spar = 1.5) 
#Specifying a smaller smoothing parameter value: 
smoothspline.reg.small <- smooth.spline(x, y, spar = 0.3) 
 
# plotting the data with the smoothing spline overlain: 
par(ps = 16, cex = 1, cex.main = 1)  
plot(x,y, xlab = "Eruption time (min)", ylab = "Waiting time to next eruption (min)") 
lines(smoothspline.reg.small, col="green", lwd=2.5) 
lines(smoothspline.reg, col="blue", lwd=2.5) 
lines(smoothspline.reg.large, col="red", lwd=2.5) 
legend(3.1, 56, c("smoothing parameter 0.3", "smoothing parameter 0.5", "smoothing 
parameter 1.5"), lty=c(1, 1, 1), lwd=c(2.5, 2.5, 2.5), col=c("green","blue", "red")) 

 
###Gaussion process### 
library(GPfit) 
GPmodel = GP_fit(x,y); 
 
par(ps = 16, cex = 1, cex.main = 1)  
plot(GPmodel, range=c(0, 6), resolution=50, colors=c('black', 'blue', 'red'), xlab = 
"Eruption time (min)", ylab = "Waiting time to next eruption (min)") 

legend(1.3, 40, c( "Model Prediction: y^(x) ", "Uncertanity Bounds: y^(x) ± 2 × s(x) "), 
lty=c( 1, 1), lwd=c( 2, 2), col=c("blue", "red")) 
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R code for the Internet traffic dataset 

MyData <- read.csv(file="European_hour.csv", head=TRUE, sep=",") 
x <- MyData$Time 
y <- MyData$Intensity 
 
###Kernal regression### 
# Default bandwidth of 0.5: 
internet.reg.default <- ksmooth(x, y, kernel="normal") 
# A smaller bandwidth of 0.1 
internet.reg.smallbw <- ksmooth(x, y, kernel="normal", bandwidth=0.1)  
# A larger bandwidth of 2 
internet.reg.largebw <- ksmooth(x, y, kernel="normal", bandwidth=2);  
# An extreme bandwidth of 6: 
internet.reg.extremebw <- ksmooth(x, y, kernel="normal", bandwidth=6);  
 
# Plotting the estimated curve on top of the data: 
par(ps = 16, cex = 1, cex.main = 1)  
plot(x,y, xlab = "Time (hour)", ylab = "Internet traffic (bit)") 
lines(internet.reg.default, col="red", lwd=2.5) 
legend(980, 1.06e+11, "h = 0.5 ", lty=1, lwd=2.5,col= "red") 
 
plot(x,y, xlab = "Time (hour)", ylab = "Internet traffic (bit)") 
lines(internet.reg.smallbw, col="blue", lwd=2.5) 
legend(980, 1.06e+11, "h = 0.1 ", lty=1, lwd=2.5,col= "blue") 
 
plot(x,y, xlab = "Time (hour)", ylab = "Internet traffic (bit)") 
lines(internet.reg.largebw, col="green", lwd=2.5) 
legend(980, 1.06e+11, "h = 2 ", lty=1, lwd=2.5,col= "green") 
 
plot(x,y, xlab = "Time (hour)", ylab = "Internet traffic (bit)") 
lines(internet.reg.extremebw, col="purple", lwd=2.5) 
legend(980, 1.06e+11, "h = 6 ", lty=1, lwd=2.5,col= "purple") 
 
###Splines### 
library(splines) 
# Specifying 50 equally spaced knots: 
smallnumber.knots <- 50 
spacings 
<seq(from=min(x),to=max(x),length=smallnumber.knots+2)[2:(smallnumber.knots+1)] 

smallregr.spline <- lm(y ~ bs(x, df = NULL, knots=spacings, degree = 3, intercept=T)) 
# Specifying 500 equally spaced knots: 
largenumber.knots <- 500 
spacings <-
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seq(from=min(x),to=max(x),length=largenumber.knots+2)[2:(largenumber.knots+1)] 
largeregr.spline <- lm(y ~ bs(x, df = NULL, knots=spacings, degree = 3, intercept=T)) 
 
# plotting the data with the regression spline overlain: 
x.values <- seq(from=min(x), to=max(x), length=200) 
par(ps = 16, cex = 1, cex.main = 1)  
plot(x,y, xlab = "Time (hour)", ylab = "Internet traffic (bit)") 
lines(x.values, predict(smallregr.spline, data.frame(x=x.values)), col="blue", lwd=2.5) 
lines(x.values, predict(largeregr.spline, data.frame(x=x.values)),col="red", lwd=2.5 ) 
legend(1000, 1.04e+11, c("50 knots", "500 knots"), lty=c(1, 1), lwd=c(2.5,  2.5), 
col=c("blue", "red")) 

 
###(Cubic) Smoothing Splines ### 
# The smooth.spline() function in R computes (cubic) smoothing splines 
smoothspline.reg <- smooth.spline(x, y) 
# By default, the value of the smoothing parameter is   
smoothspline.reg$spar # The default choice is 0. 
# Specify a larger smoothing parameter of 0.2: 
smoothspline.reg.large <- smooth.spline(x, y, spar = 0.2) 
# Specify a smoothing parameter of 0.4: 
smoothspline.reg.small <- smooth.spline(x, y, spar = 0.4) 
 
# plotting the data with the smoothing spline overlain: 
par(ps = 16, cex = 1, cex.main = 1)  
plot(x,y, xlab = "Time (hour)", ylab = "Internet traffic (bit)") 
lines(smoothspline.reg, col="blue", lwd=2.5) 
lines(smoothspline.reg.small, col="green", lwd=2.5) 
lines(smoothspline.reg.large, col="red", lwd=2.5) 
legend(980,1.05e+11, c("smoothing para 0", "smoothing para 0.2", "smoothing para 
0.4"), lty=c(1, 1, 1), lwd=c(2.5, 2.5, 2.5), col=c("blue","green", "red")) 

 
###Gaussian process### 
library(GPfit) 
GPmodel2 = GP_fit(x,y); 
plot.GP(GPmodel) 
par(ps = 16, cex = 1, cex.main = 1)  
plot(GPmodel2, range=c(0, 1200), resolution=50, colors=c('black', 'blue', 'red')) 
legend(860, 1.05e+11, c( "Model Prediction: y^(x) ", "Uncertanity Bounds: y^(x) ± 2 × 
s(x) "), lty=c( 1, 1), lwd=c( 2, 2), col=c("blue", "red")) 
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